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Abstract 26 

Bias correction of climate variables is a standard practice in Climate Change Impact (CCI) studies. 27 

Various methodologies have been developed within the framework of quantile mapping. However, 28 

it is well known that quantile mapping may significantly modify the long term statistics due to the 29 

time dependency of the temperature bias. Here, a method to overcome this issue without 30 

compromising the day to day correction statistics is presented. The methodology separates the 31 

modeled temperature signal into a normalized and a residual component relatively to the modeled 32 

reference period climatology, in order to adjust the biases only for the former and preserve the 33 

signal of the later. The results show that this method allows for the preservation of the originally 34 

modeled long-term signal in the mean, the standard deviation and higher and lower percentiles 35 

of temperature. The methodology is tested on daily time series obtained from five Euro CORDEX 36 

RCM models, to illustrate the improvements due to this method. 37 
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1 Introduction 51 

Climate model output provides the primary source of information used to quantify the effect of the 52 

foreseen anthropogenic climate change on natural systems. One of the most common and 53 

technically sound practices in Climate Change Impact (CCI) studies is to calibrate impact models 54 

using the most suitable observational data and then to replace them with the climate model data 55 

in order to assess the effect of potential changes in the climate regime. Often, raw climate model 56 

data cannot be used in CCI models due to the presence of biases in the representation of regional 57 

climate (Christensen et al., 2008; Haerter et al., 2011). In fact, hydrological CCI studies outcome 58 

have been reported to become unrealistic without a prior adjustment of climate forcing biases 59 

(Hagemann et al., 2013; Hansen et al., 2006; Harding et al., 2014; Sharma et al., 2007). 60 

Papadimitriou et al., (2017) quantified the effect of the bias in seven forcing parameters on the 61 

resulted runoff of a land surface model, emphasizing the necessity of bias adjustments beyond 62 

the precipitation and temperature parameters. The biases are attributed to a number of reasons 63 

such as the imperfect representation of the physical processes within the model code and the 64 

coarse spatial resolution that do not permit the accurate representation of small-scale processes. 65 

Furthermore, in some cases, climate model tuning for global projections focuses on the adequate 66 

representation of feedbacks between processes and hence the realistic depiction of a variable, 67 

such as temperature, against observations is sidelined (Hawkins et al., 2016). 68 

A number of statistical bias correction methods have been developed and successfully applied in 69 

CCI studies (e.g. Grillakis et al., 2013; Haerter et al., 2011; Ines and Hansen, 2006; Teutschbein 70 

and Seibert, 2012). Their main task is to adjust the statistical properties of climate simulations to 71 

resemble those of observations, in a common climatological period. A commonly used type of 72 

procedure to accomplish this is using a Transfer Function (TF) which minimizes the difference 73 

between the cumulative density function (CDF) of the climate model output and that of the 74 

observations, a process also referred to as quantile mapping. As a result of quantile mapping, the 75 

reference (calibration) period’s adjusted data are statistically closer, and sometimes near-identical 76 

to the observations. Hence the statistical outcome of an impact model run using observational 77 

data is likely to be reproduced by the adjusted data. The good performance of statistical bias 78 

correction methods in the reference period is well documented (Grillakis et al., 2011; Grillakis et 79 

al., 2013; Ines and Hansen, 2006; Papadimitriou et al., 2015). The procedure however overlooks 80 

the time dependency of the distribution and hence the unequal effect of the TF to the varying over 81 

time CDF. An indicative example is presented in Figure 1 where modeled temperature data have 82 

a mean bias of 2.49 oC in the reference period (Figure 1a) relatively to the observations. This 83 
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mean bias is expressed by the average horizontal distance between the TF and the bisector of 84 

the central plot. The left histogram illustrates the reference period modeled data for 1981-2010. 85 

The histogram at the bottom is derived from observational data. The histogram on the right is 86 

derived from a moving 30-year period between 1981 and 2098. The rightmost histogram shows 87 

the difference between the reference period and the moving 30-year period. The red mark shows 88 

the theoretical change in the average correction applied by the TF, due to the changes in the 89 

projected temperature histogram. Hence, the average correction applied for the 2068-2097 period 90 

reaches 3.85 oC, significantly higher than the reference period’s bias (Figure 1b). The time-91 

dependency of the correction magnitude introduces a long term signal distortion in the corrected 92 

data. In the quantile mapping based correction methodologies in which the TF distance from the 93 

bisector is variable, this effect is unavoidable. Nevertheless, in cases where the TF retains a 94 

relatively constant distance to the bisector (i.e. parallel to the bisector), the trend of the corrected 95 

data remains similar to the raw model data regardless of the temporal change in the model data 96 

histogram.  97 

Based on the previous example, the time extrapolation of the TF is regarded as a leap of faith 98 

that may lead to a false certainty about the robustness of the adjusted projection. Τhis may 99 

significantly change the original modeled long-term trend or other higher moments of the climate 100 

variable statistics that eventually change the long-term signal of the climate variable. In their work 101 

on distribution based scaling (DBS) bias correction, Olsson et al. (2015) showed that their 102 

methodology might alter the long-term temperature trends, attributing the phenomenon in the 103 

severity of the biases in the mean or the standard deviation between the uncorrected 104 

temperatures and the observations. Maraun, (2016) discusses on whether the change in the trend 105 

is a desired feature of bias correction, concluding that it is case specific and depends on the 106 

skillfulness of the climate model to simulate the correct long term signal. In the case of CCI studies 107 

this implies that climate model data is assessed for its skill to well represent the trend, which is 108 

not a common practice. A possible but indirect solution to this is described in Maurer and Pierce, 109 

(2014) who study the change in precipitation trend over an ensemble of atmospheric general 110 

circulation model (AGCM). They conclude that, while individual quantile mapping corrected 111 

AGCM data may significantly modify the signal of change, a relatively large ensemble estimation 112 

diminished the problem as individual model trend changes were cancelled out . Li et al. (2010) 113 

present a quantile mapping method to adjust temperature biases taking into account the 114 

differences of the future and reference period distributions. A drawback of the method is that the 115 

difference between the two periods’ distributions depends on the future period length. In their 116 

work, Hempel et al. (2013) propose a methodology to resolve the trend changing issue, by 117 
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preserving the absolute changes in monthly temperature, and relative changes in monthly values 118 

of precipitation. A characteristic of their approach is that it maps anomalies instead of absolute 119 

values, indicating that specific correction values are attached to each temperature anomaly, while 120 

also it has the drawback that it does not correct adequately the edges of the distribution. A similar 121 

additive for temperature and multiplicative for precipitation approach was also followed by (Pierce 122 

et al., 2015). Bürger et al., (2013)  and Cannon et al. (2015) test the de-trending of the data prior 123 

their quantile mapping correction, figuring that the removal of the trends prior to the quantile 124 

mapping and its reintroduction after the correction tend without absolutely maintain the long term. 125 

In this study, we present a methodology to conserve the long term statistics such as trend and 126 

variability of the climate model data in quantile mapping. The methodology considers the 127 

separation of the temperature signal relatively to the raw data reference period, producing a 128 

normalized and a residuals data stream. The separation is performed in annual basis. The 129 

residuals include the gradual changes in the signal and the year to year fluctuations in the 130 

distribution of the temperature. The quantile mapping bias correction is then applied to the 131 

normalized daily temperature. Finally, the residual components are again merged to the bias 132 

corrected time series to form the finally corrected time series. The idea of identifying and using 133 

two different timescales in bias correction of temperature was introduced in Haerter et al., (2011), 134 

that present a method to separate the different timescales and apply correction to each one. The 135 

methodology presented here is tested along with a generalized version of the Multi-segment 136 

Statistical Bias Correction (MSBC) quantile mapping methodology (Grillakis et al., 2013). The 137 

methodology takes the form of a pre- and post-processing module that can be applied along with 138 

different statistical bias correction methodologies. The two step procedure is examined for its 139 

ability to remove the daily biases with simultaneous preservation of the long term statistics. The 140 

procedure is compared to the simple quantile mapping and a quantile mapping with combination 141 

with a simpler trend preservation procedure.  142 

 143 

2 Methods 144 

2.1 Residual separation 145 

The statistical difference of each individual year’s simulated data, comparing to the average 146 

reference period simulated data is identified as residuals. These are estimated between the CDF 147 

of each year’s modeled climate data and the CDF of the entire reference period of the model data. 148 

Let 𝑆𝑅 be the reference period model data and 𝑆𝑖 the climate data for year 𝑖, then the normalized 149 
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data 𝑆𝑖
𝑁  for year 𝑖 are estimated by transferring each year’s data onto the average reference 150 

period CDF through a transfer function 𝑇𝐹𝑆𝑖
 estimated annually. This can be formulated as Eq.(1). 151 

𝑆𝑖
𝑛 = 𝑇𝐹𝑆𝑅

−1 (𝑇𝐹𝑆𝑖
(𝑆𝑖)) Eq. (1) 

The difference between the original model data 𝑆𝑖 and the normalized data 𝑆𝑖
𝑁 are the residual 152 

components 𝑆𝑖
𝐷 of the time series (Eq. (2)). 153 

𝑆𝑖
𝐷 = 𝑆𝑖 −  𝑆𝑖

𝑛 Eq. (2) 

The original model data  𝑆𝑖 can be reproduced by adding back the residuals 𝑆𝑖
𝐷 to the normalized 154 

data 𝑆𝑖
𝑛. After the separation, the normalized climate model data are statistically bias corrected 155 

following a suitable methodology. The residuals are preserved in order later to be added later 156 

again to the bias corrected time series. We refer to the described method as Normalization Module 157 

(NM) to hereafter lighten the nomenclature of the paper. The normalization procedure is 158 

performed in annual basis, as it consists an obvious periodicity to use in the case of temperature, 159 

even if it is not so well defined in tropics. The underlying assumption of the NM procedure is that 160 

it assumes that there are no major changes in the reference period data, an assumption that can 161 

hardly fall short due to the usually short length of the reference period. 162 

 163 

2.2 Bias correction 164 

Here, the NM is applied along with a modification of the MSBC algorithm that is presented in 165 

Grillakis et al. (2013). This methodology follows the principles of quantile mapping correction 166 

techniques and was originally designed and tested for GCM precipitation adjustment. The method 167 

partitions the CDF data into discrete segments and an individual quantile mapping correction is 168 

applied to each segment, achieving a better fitted transfer function. Here the methodology is 169 

modified to use linear functions instead of the gamma functions used in the original methodology, 170 

in order to facilitate potential negative temperature values but also as a known technique in 171 

quantile mapping, as it has also been used elsewhere (Themeßl et al., 2011). An indicative 172 

example is shown in Figure 2, where the CDFs are split into discrete segments and linear 173 

functions are fit to each of them. In Figure 2, 𝑝 symbolizes the cumulative probability and 𝑠 is the 174 

slope of the linear function. Then the corrected temperature for each temperature value of the 175 

specific segment is estimated as in Eq. (3). 176 
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𝑇𝑐𝑜𝑟𝑟
𝑛 = 𝑠𝑜𝑏𝑠

𝑛 ∗ (
𝑇𝑟𝑎𝑤

𝑛 − 𝑏𝑟𝑎𝑤
𝑛

𝑠𝑟𝑎𝑤
𝑛 ) + 𝑏𝑜𝑏𝑠

𝑛  
Eq. (3) 

 

The optimal number of the segments is estimated by Schwarz Bayesian Information Criterion 177 

(SBIC) to balance between complexity and performance. Additionally, the upper and lower edge 178 

segments are explicitly corrected using the average difference between the reference period of 179 

the raw model data and the observations (Figure 2 ΔΤ). This provides robustness, avoiding 180 

unrealistic temperature values at the edges of the model CDF. The bias correction methodology 181 

modification has been already used in the Bias Correction Intercomparison Project (BCIP) (Nikulin 182 

et al., 2015), while produced adjusted data have been used in a number of CCI studies 183 

(Daliakopoulos et al., 2016; Grillakis et al., 2016; Koutroulis et al., 2016; Papadimitriou et al., 184 

2017, 2016). As the MSBC methodology belongs to the parametric quantile mapping techniques, 185 

it shares their advantages and drawbacks. A comprehensive shakedown of advantages and 186 

disadvantages of quantile mapping in comparison to other methods can be found in Maraun et al. 187 

(2010) and Themeßl et al. (2011). A step by step example of the multisegment correction 188 

procedure is provided in Appendix A of (Grillakis et al., 2013).  189 

 190 

2.3 Validation of the results  191 

The Klemes (1986) split sample test methodology was adopted for verification. Split sample is the 192 

most common type of test used for the validation of model efficiency. The methodology considers 193 

two periods of calibration and validation, between the observed and modeled data. The first period 194 

is used for the calibration, while the second period is used as a pseudo-future period in which the 195 

adjusted data are assessed against the observations. A drawback of the split sample test in bias 196 

correction validation operations is that the remaining bias of the validation period is a function of 197 

the bias correction methodology deficiency and the model deficiency itself to describe the 198 

validation period’s climate, in aspects that are not intended to be bias corrected. That said, a 199 

skillful bias correction method should deal well in that context, as model “democracy” (Knutti, 200 

2010), i.e. the assumption that all model projections are equally possible, is common in CCI 201 

studies with little attention to be given to the model selection. 202 

 203 
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3 Case study area and data 204 

To examine the effect of NM on the bias correction on a timeseries, the Hadley Center Central 205 

England Temperature (HadCET - Parker et al., 1992) observational dataset was considered to 206 

adjust the simulated output from the earth system model MIROC-ESM-CHEM (Hasumi and 207 

Emori, 2004) historical emissions run between 1850 and 2005 for Central England. This particular 208 

case study was chosen due to the large observational record (the longest instrumental record of 209 

temperature in the world) that is available for central England, i.e. the triangular area of the United 210 

Kingdom enclosed by Lancashire, London and Bristol. Discussion about dataset related 211 

uncertainties can be found in Parker et al., (1992) and Parker and Horton (2005). In the specific 212 

application and in order to resemble a typical CCI study, data between 1850 and 1899 serve as 213 

calibration period, while the rest of the data between 1900 and 2005 is used as pseudo-future 214 

period for the validation. Finally, the bias correction results of the two procedures, with (BC-NM) 215 

and without (BC) the normalization module, were compared against the validation period 216 

observations. An additional comparison was also performed to a less complicated trend 217 

preservation procedure, inspired by Bürger et al., (2013) and Cannon et al. (2015). This procedure 218 

considers the detrending of the raw data using a 5-year moving average temperature. The 219 

detrended data are corrected using the BC methodology, while the trend is additively put back 220 

into the timeseries after the correction, similarly to the NM. We refer to this as BC-TREND. This 221 

comparison is used to benchmark the BC-NM towards a simpler quantile mapping  that also 222 

approaches the trend preservation.  223 

Furthermore, to expand the methodology assessment in regional scale, the split sample test is 224 

adopted to assess the efficiency of the two procedures in a pan European scale. In order to scale 225 

up the split sample test, the k-fold cross validation test (Geisser, 1993) is employed. The 226 

procedure has been proposed for evaluating the performance of bias correction procedures in 227 

(Maraun, 2016). In k-fold cross validation test, the data is partitioned into k equal sized folds. Of 228 

the k folds, one subsample is retained each time as the validation data for testing the model, and 229 

the remaining k-1 subsamples are used as calibration data. In a final test, the procedures are 230 

applied on a long-term transient climate projection experiment to assess their effect in the long-231 

term attributes of the temperature in a European scale application.  232 

Temperature data from the European division of Coordinated Regional Downscaling Experiment 233 

(CORDEX), openly available through the Earth System Grid Federation (ESGF), are considered. 234 

Additional information about the Euro - CORDEX domain can be found on the CORDEX web 235 

page (http://wcrp-cordex.ipsl.jussieu.fr/). Data from five RCM models (Table 1) with 0.44o spatial 236 

http://wcrp-cordex.ipsl.jussieu.fr/
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resolution and daily time step between 1951-2100 are used. The projection data are considered 237 

under the Representative Concentration Pathway (RCP) 8.5, which projects an 8.5 W m-2 average 238 

increase in the radiative forcing until 2100. The European domain CORDEX simulations have 239 

been evaluated for their performance in previous studies (Kotlarski et al., 2014; Prein et al., 2015). 240 

The EOBSv12 temperature data was used (Haylock et al., 2008). Discussion about the 241 

applicability of EOBS to compare temperature of RCMs control climate simulations can be found 242 

in Kyselý and Plavcová (2010). Figure 3 shows the 1951-2005 daily temperature average and 243 

standard deviation for the five RCMs of Table 1. The RCMs’ mean bias ranges between about -2 244 

oC and 1 oC relatively to the EOBS dataset (individual models data are included to the ESM). The 245 

positive mean bias in all RCMs is mainly seen in Eastern Europe, while the same areas exhibit 246 

negative bias in standard deviation. Some of the bias may however be attributed to the ability of 247 

the observational dataset to represent the true temperature (Hofstra et al., 2010).  248 

For the k-fold cross validation, the RCM data between 1951-2010 are split into 6 ten-year sections, 249 

comprising a 6-fold, 5 RCM ensemble experiment of Figure 4. Each section is validated once by 250 

using the rest five sections for the calibration. A total number of 30 tests are conducted using 251 

each procedure.  252 

For the transient experiment, the RCM data between 1951 and 2100 are considered, using the 253 

1951-2010 as calibration to correct the 1951-2100 data. 254 

 255 

4 Results  256 

The results of the split sample test on the central England example are presented in Figure 5. 257 

The NM seperates of the raw data into a residuals and a normalized stream (5b). In the annual 258 

aggregates the normalized time series do not exhibit any trend or significant fluctuation, since the 259 

normalization is performed on annual basis, while the long-term trend and variability are contained 260 

in the residual time series. In Figure 5a, annual aggregates obtained via the BC, BC-NM and the 261 

BC-TREND procedures are compared to the raw data and the observations. Results show that 262 

all three procedures adjust the raw data to better fit the observations in the calibration period 263 

1850-1899. In the validation period, all three procedures produce similar results in terms of mean 264 

and standard deviation, but the BC-NM long-term linear trend is slightly lower than that of the BC 265 

results and slightly higher than the respective BC-TREND slope. While both BC and BC-TREND 266 

slopes are closer to the observations’ linear trend, the BC-NM is closer to the raw data trend 267 

(Table 2). The BC-TREND validation period trend is found lower relatively to the RAW data, but 268 
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closer to it, relatively to the BC. This is attributed to the new trend that was introduced to the 269 

detrended time series by the differential quantile mapping in each year’s CDF, similarly to the 270 

Figure 1 example.  271 

Figure 5c shows that in the annual aggregated temperature, the BC-NM resemble the raw data 272 

histograms in shape, but shifted in mean towards the observations. A small decrease in the 273 

variability can also be observed in the BC-NM relatively to the raw data but consists a substantially 274 

smaller disturbance relatively to the BC. The annual variability in BC-TREND is closer to the raw 275 

data comparing to the BC approach, but still BC-NM outperforms in the annual variability 276 

preservation. The transfer of the mean with a simultaneous preservation of the larger part of the 277 

variability of the BC consists a nearly idealized behavior for the adjusted data when the long term 278 

statistics preservation is a desired characteristic, as the distribution of the annual temperature 279 

averages are retained after the correction (trend, standard deviation, interquartile range - Table 280 

2). The respective results generated on daily data (Figure 5d) show that all three procedures 281 

adjust the calibration and validation histograms in a similar degree towards the observations. This 282 

can also be verified by the mean, the standard deviation and the 10th and 90th percentile of the 283 

daily data of Table 2. An early concluding remark about the NM is that it retained the long-term 284 

statistics of the adjusted data towards the climate model signal better than the alternative 285 

approaches, without however sacrificing the daily scale quality of the correction.  286 

To further inter-compare the effect of each approach in the data variability beyond the inter-annual 287 

and the daily basis, we estimate the power spectral density – PSD (Huybers and Curry, 2006) 288 

over their daily temperature signals (Figure 7). The marked spectral peaks associate with the 289 

annual and 6-month periodicity is and expected result. Focusing on those regions (Figure 7b), it 290 

is shown that the BC-NM is closer to the observational variability relatively to the other two 291 

correction techniques, while in the 6-months all techniques provide similar results. The average 292 

power density of the domain beyond the annual periodic shows that BC-NM is closer to the raw 293 

data, while the respective sub-annual average is almost equal to the BC and the BC-TREND 294 

averages. Figure 7c shows the standard deviation estimated on temperature aggregates between 295 

1 and 10957 days (i.e. 30 years).  Figure 7d shows the average variability and average spectral 296 

power of the two scaling regimes, above and below annum. The sub-annual scales average 297 

variability of BC-NM resembles the observational variability, outperforming the BC and BC-298 

TREND approaches that show higher values. More importantly, the NM works well in the inter - 299 

annual scale where the average variability is found to be closer to the raw data variability 300 

comparing to the inflated BC and the deflated BC-TREND results. 301 
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In Figure 7, the results of the cross validation test of the BC on the Euro – CORDEX data with 302 

and without the use of NM are shown, in terms of mean temperature. The mean of the raw 303 

temperature data and the observations are respectively equal for their calibration and the 304 

validation periods due to the design of the experiment. The bias correction results show that both 305 

the correction with and without the NM, appropriately meet the needs in terms of the mean value. 306 

The differences between the calibration and validation averages with the corresponding 307 

observations show consistently low residuals. A significant difference between the two tests is 308 

that the use of the BC-NM increases the residuals due to the exclusion of some parts of the signal 309 

from the correction process. Nonetheless, the scale of the residuals is considered below 310 

significance in the context of CCI studies, as it ranges only up to 0.035 oC. The increased residuals 311 

of the NM are the trade off to the preservation of the model long-term climate change signal, in 312 

the transient experiment. Potential drawbacks that arise from the residuals existence are 313 

discussed later. Figure 8 shows the long-term change in the signal of the mean temperature, for 314 

the 10th and 90th percentiles (estimated on annual basis). The trends are estimated by linear least 315 

square regression and are expressed in oC per century. The use of the NM profoundly better 316 

preserved the long-term trend relatively to the raw model data in all three cases. Without using 317 

the NM module, the distortion in the mean annual temperature trend lies between -0.5 and 0.5 318 

degrees per century, while the distortion in the 10th and 90th percentiles are apparently more 319 

profound. Additionally, the northeastern Europe’s 10th and 90th percentiles reveal a widening of 320 

the temperature distribution when NM is not used. The widening is attributed to the considerable 321 

negative trend in the p10 and the considerable positive p90 trend in the same areas. The 322 

magnitude of the distortion is considerable and can potentially lead to CCI overestimation. In 323 

contrast, with the use of NM the change in the trend is reduced in most of the Europe’s area.  324 

The impact of NM on the standard deviation is also significant. Figure 9 shows the evolution of 325 

the standard deviations of the adjusted daily data for each model, in the cases of raw data and 326 

the bias corrected data using the BC and the BCNM. The standard deviation is estimated for each 327 

grid point and calendar year, and is averaged across the study domain. The results show that the 328 

standard deviation of the adjusted data differ from the respective standard deviations of the raw 329 

data, in both adjustment approaches. This is an expected outcome, as raw model data standard 330 

deviations differ from the respective observed data standard deviation (Figure 9 d, e). However, 331 

the standard deviation differences between BCNM and the raw data (Figure 9 f) is significantly 332 

more stable than that the respective differences from BC (Figure 9 g), meaning that the signal of 333 

standard deviation is better preserved and does not inflate significantly with time in the former 334 

case. Additionally, the variation of the standard deviations time series exhibits lower fluctuations. 335 
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 336 

5 Discussion 337 

This study focuses on known issues of bias correction that have been well discussed in the 338 

literature. Whether the long term signal of temperature should be preserved or not, has been 339 

discussed in a more theoretical level in  Maraun, (2016), while (Haerter et al., 2011) mention that 340 

a credible bias correction methodology should involve the consequences of greenhouse gas 341 

concentration changes. This is somehow consistent with temperature trend preservation as the 342 

model sensitivity is retained in the corrected timeseries. As pointed in (Fischer et al., 2012), 343 

models tend to underestimate the inter-annual variability due to deficiencies between land-344 

atmosphere interactions, which urge for its correction. Nevertheless, the long-term statistics 345 

preservation may be necessitated in cases that temperature is used in biophysical impact 346 

modeling (Rubino et al., 2016), or may be preferred as a safer option than the unintentional 347 

alteration, especially in cases where the observational data record is not long enough. 348 

The methodology shares similarities to other correction methods found in the literature. 349 

Furthermore it exhibits a number of advancements that overpasses drawbacks of other trend 350 

preserving methodologies. The fundamental idea of the presented method is also identified in 351 

Haerter et al., (2011) method that considers two different timescales and performs a cascade 352 

correction of temperature. In the present study a discrimination of annual and daily scales is used 353 

for the separation of the temperature signal in two parts. While in the former methodology, the 354 

cascade correction benefits the results in both timescales, here the separation offers a correction 355 

in the daily scale and an intentional preservation of the raw model statistics in the annual scale. 356 

Comparisons can also be performed to the methodology of Li et al. (2010) that use the differences 357 

in the raw data between the reference period and the projection period. In the present study the 358 

differences are defined between the reference period and each year of correction separately. This 359 

can be considered an evolution to the technique that overcomes the subjectivity of the future 360 

period selection. Additionally, the quantile mapping correction ensures the skillful correction in the 361 

higher and lower quantiles, relatively to simpler additive approaches such as Hempel et al. (2013) 362 

that although it preserves the trend and year-to-year variability, it marginally improves the tails of 363 

the temperature distribution (Sippel et al., 2016). Regarding the simpler BC-TREND version that 364 

was used for the central England example, it was found that it tends to preserve the long term 365 

statistics as also noted by (Cannon et al., 2015), but still, the 5-year average that was used for 366 

the trend preservation cannot encompass the changes in each year’s CDF, as the NM can.  367 
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Beyond the advancements, a critical drawback of the presented methodology is that it uses a 368 

large number of parameters to approximate the transfer functions in the two stages of the 369 

correction. The methodology would be described as of ‘varying complexity’ as the number of the 370 

estimated parameters (number of segments) and the added value of the complexity is weighed 371 

by an information criterion. Nonetheless it is highly invasive, which in the case that high noise 372 

observations was used, it would lead to transfer of that noise to the corrected data variability. This 373 

was marginally detected in the analysis of the standard deviations in Figure 9, even if the effect 374 

of BC-NM mitigated the effect comparing to the BC. Another weakness stems from the residuals 375 

exclusion from the correction. In the theoretical case where the future projected temperature 376 

variability change radically relative to the reference period, the correction would result to larger 377 

remaining biases as it was shown earlier, that could impair the physical continuity of the time 378 

series. This limitation shall be taken into consideration in the case that BC-NM was used to correct 379 

other types of variables, without forbidding its use on them.  380 

 381 

6 Conclusions 382 

This study elaborates the issue of the distortion of the long term statistics in quantile mapping 383 

statistical bias correction relatively to the raw model data. An extra processing step is presented, 384 

that can be applied along with quantile mapping statistical bias correction techniques. This step, 385 

namely NM, splits the original data into two parts, a normalized one that is bias adjusted using 386 

quantile mapping, and the residuals part that is added to the former after the bias correction. The 387 

methodology is tested and validated from several points of view, leading to some key remarks 388 

about its added value. First, it is shown that the use of the NM module results in the long-term 389 

temperature trend preservation of the mean temperature change, but also of the trend in the 390 

higher and lower percentiles. Furthermore, the examination of the standard deviation temporal 391 

evolution shows that it is better retained relatively to the raw data, as the exclusion of the residuals 392 

from the correction minimizes the inflation of the variance. Additionally, the inter-annual variability 393 

of the raw data is preserved relatively to the compared simpler quantile mapping methods, which 394 

comprises an important feature for climate impact studies that involve carbon cycle simulations 395 

(Rubino et al., 2016). Another noteworthy feature of the proposed method the normalization is 396 

performed on an annual basis, hence the projection period results are not affected by the length 397 

of the projection period. Nevertheless, it has to be stressed that a range of issues, such as the 398 

disruption of the physical consistency of climate variables, the mass/energy balance and the 399 

omission of correction feedback mechanisms to other climate variables (Ehret et al., 2012) were 400 
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not examined in this work, despite the existence of methods that preserve consistency between 401 

specific variables (Sippel et al., 2016). As an epilogue, bias correction cannot add further accuracy 402 

to the data but rather add usefulness to it, depending on the needs of each application. 403 

Nevertheless, it should not be belittled that this added usefulness may obscure a deterioration of 404 

the climate change signal owed to the bias correction. 405 

 406 
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residual histogram after bias correction. The change in the average correction (red mark) on the 552 

TF in comparison to the reference period mean correction (square) is shown. The animated 553 

version provided in the supplemental information shows the temporal evolution of the bias as the 554 

30-year time window moves on the projection data. Data were obtained from ICHEC-EC-EARTH 555 

r12i1p1 SMHI-RCA4_v1 RCM model of Euro-CORDEX experiment (0.11 degrees resolution) 556 

simulation under the representative concentration pathway of RCP85, for the location Chania 557 

International Airport (lon=24.08, lat=35.54). Observational data were obtained from the E-OBS 558 

v14 dataset (Haylock et al., 2008) of 0.25 degrees spatial resolution. 559 
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Figure 2: MSBC methodology on temperature correction using linear functions (borrowed from 561 

Grillakis et al., (2013); modified) in one of the data segments. 562 
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Figure 3: Mean temperature (upper) and standard deviation (lower) for  EOBS, RCM model 564 
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Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation (V) periods 568 

of each fold. Each experiment (Exp) was replicated for all five RCM models. 569 
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Figure 5: a) annual average temperature of raw model, observations and the bias corrected 571 

with,without the NM data and following the BC-TREND approach, for the calibration period 1850 572 

– 1899 (solid lines) and the validation period 1900-2005 (dashed lines). b) Annual averages of 573 

the normalized and the residuals of the raw temperature. Probability densities of annual (c) 574 

and of daily means (d). 575 
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Figure 6: Power spectral density of temperature (a) and high power regions of annual and 577 

half year periods (b). Standard deviation of temperature aggregates between 1 and 10957 578 

days (horizontal axis visible between 1 day and 10 years) in (c). In (d), the Inter-annual 579 

and sub-annual periods average (denoted with red and cyan arrows respectively) spectral 580 

power (a) and standard deviation (c). 581 

 582 

Figure 7: Mean surface temperature of the cross validation test. Panels a and b show the 583 

ensemble mean of the 5 raw models data and the EOBS respectively, while panel c their 584 

difference. . Panels d and e show the ensemble mean remaining bias of the 5 RCM models after 585 

the correction with and without the NM module respectively, for the calibration periods’ data. 586 

Panels f and g are the same as d to e but for the validation period data. 587 
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Figure 8: Ensemble long-term linear trend of the 5 RCM models’ data. The trend is estimated on 589 

the  mean temperature (top) and the 10th (mid) and 90th (bottom) percentiles on an annual basis. 590 

The change in the corrected data trend relatively to the raw data trend is provided for the BC 591 

(middle panels) and the BCNM data (right panels). All values are expressed as degrees per 592 

century [oC/100 y]. 593 
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and the BC-NM (c) for the different models and the observations, in annual basis. Differences 596 

between the raw and the bias corrected standard deviations are shown in (d) and (e). Plots (f) 597 

and (g) correspond to the same data as (d) and (e), but normalized for their 1951-2005 mean. 598 

 599 

List of Tables 600 

Table 1: RCM models used in this experiment. 601 

 602 

Table 2: Statistical properties of the calibration and the validation periods for the two bias 603 

correction procedures. Variables denoted with * are estimated on annual aggregates. SD stands 604 

for standard deviation, pn for the nth quantile 605 

 606 



 

21 
 

  607 



 

22 
 

 608 

Figure 1: Τhe transfer function (heavy black line) between observed (bottom histograms) and 609 

modelled (histograms on the left) for the reference period (1981-2010) is used to adjust bias of a 610 

30-year moving window starting from 1981-2010 to 2068-2097. The rightmost plot shows the 611 

residual histogram after bias correction. The change in the average correction (red mark) on the 612 

TF in comparison to the reference period mean correction (square) is shown. The animated 613 

version provided in the supplemental information shows the temporal evolution of the bias as the 614 

30-year time window moves on the projection data. Data were obtained from ICHEC-EC-EARTH 615 

r12i1p1 SMHI-RCA4_v1 RCM model of Euro-CORDEX experiment (0.11 degrees resolution) 616 

simulation under the representative concentration pathway of RCP85, for the location Chania 617 

International Airport (lon=24.08, lat=35.54). Observational data were obtained from the E-OBS v14 618 

dataset (Haylock et al., 2008) of 0.25 degrees spatial resolution. 619 
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 621 

Figure 2: MSBC methodology on temperature correction using linear functions (borrowed from 622 

Grillakis et al., (2013); modified) in one of the data segments.  623 
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 624 

Figure 3: Mean temperature (upper) and standard deviation (lower) for  EOBS, RCM model 625 

ensemble (ENS) and for their difference (model - obs) (DIFF) for the reference period 1951-2005.  626 

  627 
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 628 

Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation (V) periods 629 

of each fold. Each experiment (Exp) was replicated for all five RCM models.  630 

  631 
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 632 

Figure 5: a) annual average temperature of raw model, observations and the bias 633 

corrected with,without the NM data and following the BC-TREND approach, for the 634 

calibration period 1850 – 1899 (solid lines) and the validation period 1900-2005 (dashed 635 

lines). b) Annual averages of the normalized and the residuals of the raw temperature. 636 

Probability densities of annual (c) and of daily means (d). 637 

 638 
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 639 

Figure 6: Power spectral density of temperature (a) and high power regions of annual and half 640 

year periods (b). Standard deviation of temperature aggregates between 1 and 10957 days 641 

(horizontal axis visible between 1 day and 10 years) in (c). In (d), the Inter-annual and sub-annual 642 

periods average (denoted with red and cyan arrows respectively) spectral power (a) and standard 643 

deviation (c).   644 
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 645 

Figure 7: Mean surface temperature of the cross validation test. Panels a and b show the 646 

ensemble mean of the 5 raw models data and the EOBS respectively, while panel c their 647 

difference. . Panels d and e show the ensemble mean remaining bias of the 5 RCM models after 648 

the correction with and without the NM module respectively, for the calibration periods’ data. 649 

Panels f and g are the same as d to e but for the validation period data. 650 
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 652 

Figure 8: Ensemble long-term linear trend of the 5 RCM models’ data. The trend is estimated on 653 

the  mean temperature (top) and the 10th (mid) and 90th (bottom) percentiles on an annual basis. 654 

The change in the corrected data trend relatively to the raw data trend is provided for the BC 655 

(middle panels) and the BCNM data (right panels). All values are expressed as degrees per 656 

century [oC/100 y]. 657 

 658 
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 660 

Figure 9: Average of standard deviations for the study domain, for the raw data (a), the BC (b) and 661 

the BC-NM (c) for the different models and the observations, in annual basis. Differences between 662 

the raw and the bias corrected standard deviations are shown in (d) and (e). Plots (f) and (g) 663 

correspond to the same data as (d) and (e), but normalized for their 1951-2005 mean.  664 

665 
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Table 1: RCM models used in this experiment. 666 

# {GCM}_{realization}_{RCM} 

1 CNRM-CM5_r1i1p1_SMHI-RCA4_v1 

2 EC-EARTH_r12i1p1_SMHI-RCA4_v1 

3 EC-EARTH_r3i1p1_DMI-HIRHAM5_v1 

4 IPSL-CM5A-MR_r1i1p1_SMHI-RCA4_v1 

RCA4_v1RCA4_v1RCA4_v1 5 MPI-ESM-LR_r1i1p1_SMHI-RCA4_v1 

 667 

  668 
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Table 2: Statistical properties of the calibration and the validation periods for the two bias 669 

correction procedures. Variables denoted with * are estimated on annual aggregates. SD stands 670 

for standard deviation, pn for the nth quantile and IQR for the interquartile range. 671 

 Parameter RAW Normalized Residuals OBS BC BCNM BCTREND 

C
a
lib

ra
ti
o
n

 

Mean [oC] 11.2 11.2 0.0 9.1 9.2 9.2 9.1 

SD [oC] 4.5 4.6 0.9 5.3 5.3 5.3 5.3 

p10 [oC] 5.7 5.7 -0.9 2.1 2.2 2.2 2.1 

p90 [oCo] 17.4 17.2 1.0 16.3 16.3 16.2 16.2 

Slope [oC/10yr]* -0.067 0.000 -0.067 -0.026 -0.086 -0.065 -0.061 

 
SD [oC]* 0.46 0.46 0.01 0.61 0.57 0.45 0.53 

IQR* 0.76 0.76 0.01 0.86 0.95 0.75 0.94 

V
a
lid

a
ti
o
n

 

Mean [oC] 11.3 11.2 0.1 9.6 9.3 9.3 9.2 

SD [oC] 4.7 4.6 0.9 5.2 5.5 5.4 5.5 

p10 [oC] 5.6 5.7 -0.9 2.7 2.0 2.0 1.9 

p90 [oC] 17.4 17.2 1.0 16.3 16.3 16.2 16.2 

Slope [oC/10yr]* 0.052 0.000 0.051 0.076 0.062 0.051 0.044 

 
SD [oC]* 0.48 0.47 0.01 0.54 0.57 0.46 0.53 

IQR* 0.63 0.62 0.01 0.76 0.75 0.62 0.68 

 672 

 673 


