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ABSTRACT 7 

The East Asian summer monsoon (EASM) is an important part of the global climate system 8 

and plays a vital role in the Asian climate. Its seasonal predictability is a long-standing issue 9 

within the monsoon scientist community. In this study, we will analyse the seasonal (the 10 

leading time is at least six months) prediction skill of the EASM rainfall and its associated 11 

general circulation in non-initialised and initialised simulations for the years 1979-2005 12 

which were performed by six prediction systems (i.e., the BCC-CSM1-1, the CanCM4, the 13 

GFDL-CM2p1, the HadCM3, the MIROC5 and the MPI-ESM-LR) from the Coupled Model 14 

Intercomparison Project phase 5 (CMIP 5). We found that most prediction systems simulated 15 

zonal wind over 850 and 200 hPa were significantly improved in the initialised simulations 16 

compared to non-initialised simulations. Based on the knowledge that zonal wind indices can 17 

be used as potential predictors for the EASM, we selected an EASM index based upon the 18 

zonal wind over 850 hPa for further analysis. This assessment showed that the GFDL-CM2p1 19 

and the MIROC5 added prediction skill in simulating the EASM index with initialisation, the 20 

BCC-CSM1-1, the CanCM4, and the MPI-ESM-LR changed the skill insignificantly, and the 21 

HadCM3 indicated a decreased skill score. The different response to the initialisation can be 22 

traced back to the ability of the models to capture the ENSO (El Niño-Southern Oscillation)-23 

EASM coupled mode, particularly the Southern Oscillation-EASM coupled mode. As it is 24 

known from observational studies, this mode links the oceanic circulation and the EASM 25 

rainfall. On the whole, we find that the GFDL-CM2p1 and the MIROC5 are capable of 26 

predicting the EASM on a seasonal time-scale under the current initialisation strategy.  27 
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coupled mode; CMIP5 29 
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1.  INTRODUCTION 30 

The Asian monsoon is the most powerful monsoon system in the world due to the thermal 31 

contrast between the Eurasian continent and the Indo-Pacific Ocean. Its evolution and 32 

variability critically influences the livelihood and the socio-economic status of over two 33 

billion people who live in the Asian monsoon dominated region. It encompasses two sub-34 

monsoon systems, the South Asian monsoon (SAM) and the East Asian monsoon (EAM) 35 

(Wang, 2006). In summer time (June-July-August), the EAM, namely, the East Asian 36 

summer monsoon (EASM) occurs from the Indo-China peninsula to the Korean Peninsula 37 

and Japan, and shows strong intraseasonal-to-interdecadal variability (Ding and Chan, 2005). 38 

Thus, an accurate prediction of the EASM is an important and long-standing issue in climate 39 

science. 40 

To predict the EASM, there are two approaches, a statistical prediction and a dynamical 41 

prediction, respectively. The statistical method seeks the relationship between the EASM and 42 

a strong climate signal (e.g., ENSO, NAO; Wu et al., 2009;Yim et al., 2014;Wang et al., 43 

2015). This method establishes an empirical equation between the EASM and climate index. 44 

However, it is limited by the strength of the climate signal. The other method is a dynamical 45 

prediction. It employs a climate model to predict the EASM (Sperber et al., 2001;Kang and 46 

Yoo, 2006;Wang et al., 2008a;Yang et al., 2008;Lee et al., 2010;Kim et al., 2012). Without 47 

initialisation, both the atmosphere general circulation models (AGCMs) and the coupled 48 

atmosphere-ocean general circulation models (CGCMs) cannot predict the climate on a 49 

seasonal time-scale (Goddard et al., 2001). Given an initial condition, the AGCMs have the 50 

ability to predict the climate, but show little skill in predicting the EASM (Wang et al., 51 

2005;Barnston et al., 2010). Because the AGCMs fail to produce a correct relationship 52 

between the EASM and the sea surface temperature (SST) anomalies over the tropical 53 

western North Pacific, the South China Sea, and the Bay of Bengal (Wang et al., 2004;Wang 54 

et al., 2005), the monsoon community endeavours to predict the EASM with CGCMs (Wang 55 

et al., 2008a;Zhou et al., 2009;Kim et al., 2012;Jiang et al., 2013). 56 

CGCMs have proved to be the most valuable tools in predicting the EASM (Wang et 57 

al., 2008a;Zhou et al., 2009;Kim et al., 2012;Jiang et al., 2013). However, the performance of 58 

CGCMs in predicting the EASM on seasonal time-scale strongly depends on their ability to 59 

reproduce the air-sea coupled process (Kug et al., 2008) and on the given initial condition 60 

(Wang et al., 2005). In the coupled model inter-comparison project (CMIP) phase 3 (CMIP3; 61 
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Meehl et al., 2007) era, the models simulate, not only a too weak tropical SST-monsoon 62 

teleconnection (Kim et al., 2008;Kim et al., 2011), but also a too weak East Asian zonal 63 

wind-rainfall teleconnection (Sperber et al., 2013). Compared to CMIP3 models, CMIP phase 64 

5 (CMIP5; Taylor et al., 2012) models improved the representation of monsoon status 65 

(Sperber et al., 2013). Therefore, given the initial conditions, the CMIP5 models do have the 66 

potential to predict the EASM.  67 

As mentioned, initial conditions do play a vital factor in predicting the EASM on sub-68 

seasonal to seasonal time-scale (Wang et al., 2005;Kang and Shukla, 2006). Under the 69 

current set up of initialisation, the CMIP5 models showed the ability to predict the SST 70 

variation index (i.e., El Niño-Southern Oscillation-ENSO index; Niño3.4) of up to 15 months 71 

in advance (Meehl and Teng, 2012;Meehl et al., 2014;Choi et al., 2016). This extended 72 

prediction skill of the ENSO suggests that the EASM can be predicted on a seasonal time-73 

scale if the dynamical link between the ENSO and monsoon circulations is well represented 74 

in these models. Two scientific questions will be addressed in this study: 1. How realistic are 75 

the initialised CMIP5 models in representing the EASM? 2. Can the CMIP5 models capture 76 

the dynamical link between the ENSO and EASM? 77 

In this paper, we will intercompare the influence of the initialisation on the capability of 78 

the CMIP5 models to capture the EASM and the ENSO-EASM teleconnections. The model 79 

simulations, comparison data and methods are introduced in Section 2. Section 3 describes 80 

the seasonal skill of the rainfall predictions and the prediction of the associated general 81 

circulation of the EASM. The mechanism causing the differential response of the models to 82 

the initialisation is presented in Section 4. The discussions are shown in Section 5. Section 6 83 

summarises the findings of this paper. 84 

2.  MODELS, DATA AND METHODS 85 

2.1 MODELS AND INITIALISATION  86 

In this study, we assessed six prediction systems from CMIP5 project (Table 1). The six 87 

prediction systems have performed a yearly initialisation (Meehl et al., 2014). Their 88 

simulations can be used in seasonal prediction study. There are two group of experiments, 89 

without initialisation (non-initialisation) and with initialisation, respectively. For non-90 

initialised simulations, the models were forced by observed atmospheric composition changes 91 

(reflecting both anthropogenic and natural sources) and, for the first time, including the time-92 

evolving land cover (Taylor et al., 2012). For initialised simulations, the models update the 93 
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time-evolving observed atmospheric and oceanic component (Taylor et al., 2012). Following 94 

the CMIP5 framework, the six models established their initialisation strategy, which are 95 

summarised in Table 2. More details about the initialisation strategy of each model can be 96 

found in the reference paper in Table 1. To simplify the comparison, we select the first lead 97 

year (up to 12 months) results for further analysis. The HadCM3-ff is the full-field initialised 98 

simulation, which employs the same CGCM (HadCM3) as the anomaly initialisation. We 99 

select the satellite era (1979 to 2005) for our study due to the spatial coverage of precipitation 100 

observations.   101 

The six models employ different initialisation strategies for atmospheric and oceanic 102 

process, and for initial date (Table 2). These initialisation strategies contribute to a new 103 

approach for climate prediction on decadal time-scale (Meehl et al., 2014). As the ocean is 104 

driving the long-term prediction skill rather than the initial condition of the atmosphere, the 105 

timing of the initialization has to be considered in the time scale of the ocean circulation, i.e. 106 

years to decades. Therefore, on an ocean time scale, the initialization takes place with 107 

comparable timing and therefore the results are comparable. This approach based on decadal 108 

prediction experiments, which deviates from the scores of other seasonal prediction 109 

experiments based on initialisation techniques derived from weather forecasting.  110 

2.2 COMPARISON DATA 111 

The main datasets which were used for comparison in this study include: (1) monthly 112 

precipitation data from the Global Precipitation Climatology Project (GPCP; Adler et al., 113 

2003); (2) monthly circulation data from ECMWF Interim re-analysis (ERA-Interim; Dee et 114 

al., 2011); and (3) monthly mean SST from National Oceanic and Atmospheric 115 

Administration (NOAA) improved Extended Reconstructed SST version 4 (ERSST v4; 116 

Huang et al., 2015). All the model data and the comparison data are remapped onto a 117 

common grid of 2.5ºx2.5º by bi-linear interpolation to reduce the uncertainty induced by 118 

different data resolutions. 119 

2.3 EAST ASIAN MONSOON INDEX AND ENSO INDEX 120 

In recent decades, more than 25 general circulation indices have been produced to 121 

define the variability and the long-term change of the EASM. Wang et al. (2008b) arranged 122 

them according to their ability to capture the main features of the EASM. They found that the 123 

Wang and Fan index (hereafter WF-index; 1999) showed the best performance in capturing 124 

the total variance of the precipitation and three-dimensional circulation over East Asia. We, 125 
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thus, select the WF-index for further analysis. Its definition is a standardised average zonal 126 

wind at 850 hPa in (5°-15ºN, 90°-130ºE) minus in (22.5°-32.5ºN, 110°-140ºE). The WF-127 

index is a shear vorticity index which often is described by a north-south gradient of the zonal 128 

winds. In positive (negative) phase of the WF-index years, two strong (weak) rainfall belts 129 

located at the Indo China Peninsula-to-the Philippine Sea and the northern China-to-the 130 

Japanese Sea, and a weak (strong) rainfall belt occurs from the Yangtze river basin-to-the 131 

south of Japan. The June-July-August mean of WF-index is used to represent the EASM for 132 

further analysis in this study.  133 

Here, we choose the Niño3.4 and southern oscillation index (SOI) to represents the 134 

ENSO status. The Niño3.4 is calculated by the SST anomaly in the central Pacific (190-135 

240ºE, 5ºS-5ºN), while the SOI is based upon the anomaly of the sea level pressure 136 

differences between Tahiti (210.75ºE, 17.6ºS) and Darwin (130.83ºE, 12.5ºS). To calculate 137 

the SOI, we interpolate the grid data to the Tahiti and the Darwin point by bilinear 138 

interpolation. 139 

2.4 METHODS 140 

In this study, we chose the un-centred Pattern Correlation Coefficient (PCC) (for more 141 

details see Barnett and Schlesinger, 1987) to analyse the model performance in comparison to 142 

the observational data, because centred correlations alone are not sufficient for the attribution 143 

of seasonal prediction (Mitchell et al., 2001). The un-centred PCC is defined by: 144 

 145 

where n and m are grids on longitude and latitude, respectively. F(x,y) and A(x,y) represent two 146 

dimensions comparison and validating value. w(x,y) indicates the weighting coefficient for 147 

each grid. An equal weighting coefficient was applied in the study area.  148 

We also employed the anomaly correlation coefficient (ACC) to analyse the model 149 

performance in reproducing observational variations. The ACC is the correlation between 150 

anomalies of forecasts and those of verifying values with the reference values, such as 151 

climatological values (Drosdowsky and Zhang, 2003). Its definition is:  152 
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 154 

 155 

where n is the number of samples, and Fi, Ai, Ci represent comparison, verifying value, 156 

and reference value such as climatological value, respectively. Also,  is the mean of fi,  is 157 

the mean of ai, and wi indicates the weighting coefficient. If the variation of anomalies of 158 

comparison dataset is a coincident with that of the anomalies of verifying value, ACC will 159 

take 1 (the maximum value). It indicates that the forecast has good skill. 160 

The root-mean-square-error (RMSE) is employed to check the model deviation from 161 

the observation and its definition is:  162 

 163 

where Di represents the deviation between comparison and verifying value, wi is the 164 

weighting coefficient for each sample, and n is the number of samples. If RMSE is closer to 165 

zero, it means that the comparisons are closer to the verifying values. 166 

3.  SEASONAL PREDICTION SKILL OF THE EASM 167 

The EASM has complex spatial and temporal structures that encompass the tropics, 168 

subtropics, and midlatitudes (Tao and Chen, 1987;Ding, 1994). In the late spring, an 169 

enhanced rainfall pattern was observed in the Indochina Peninsula and in the South China 170 

Sea. At the same time, the rainfall belt advances northwards to the south of China. In the 171 

early summer, the rainfall concentration occurred in the Yangtze River Basin and in southern 172 

Japan, namely, the Meiyu and Baiu seasons, respectively. The rainfall belt can reach as far as 173 

northern China, the Korean Peninsula (called the Changma rainy season) and central Japan in 174 

July (Ding, 2004;Ding and Chan, 2005). 175 
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The EASM is characterised by both seasonal heterogeneous rainfall distribution and 176 

associated large-scale circulation systems (Wang et al., 2008b). In the summer season, water 177 

moisture migrates from the Pacific Ocean to central and eastern Asia, which is carried by the 178 

southwest surface winds. Generally, a strong summer monsoon year is followed by 179 

precipitation in northern China, while a weak summer monsoon year is usually accompanied 180 

by heavier rainfall along the Yangtze River basin (Ding, 1994;Zhou and Yu, 2005).  181 

For multi-model ensemble mean (MME), the prediction skill of the June-July-August 182 

mean rainfall and the associated general circulation variable (i.e., zonal and meridional wind, 183 

and mean sea level pressure) is presented in Figure 1. These variables have been widely used 184 

to calculate the monsoon index (Wang et al., 2008b). Table 3 shows the contribution of these 185 

variables in the EASM. Their abbreviations follow the guidelines of CMIP5 (Taylor et al., 186 

2012). Compared to the non-initialised experiment, a larger predicted area can be found in the 187 

initialised experiment, especially for the psl, ua850 and ua200. There are small changes to the 188 

predicted area between the non-initialised and initialised experiment for the pr, va850 and 189 

va200. The individual model shows an acceptable performance (high PCC) in capturing the 190 

observed spatial variation of the six variables, but a poor performance in simulating their 191 

temporal variation (with low ACC) (Figure 2). There is no improvement in estimating the 192 

spatial variation of the six variables with initialisation. We can see that the models show a 193 

higher ACC in the initialised simulations than that in the non-initialised ones. The 194 

improvement of simulating the temporal variation of zonal winds (i.e., ua850 and ua200) is 195 

larger than that of the rainfall and meridional winds. One can exploit this improvement by 196 

using a general circulation based monsoon index as a tool to predict the EASM. As 197 

mentioned in section 2.3, the WF-index better represents the monsoon rainfall and its 198 

associated general circulation structure than the other monsoon index. Therefore, the 199 

prediction skill of EASM in the following analysis is based on the WF-index.  200 

In non-initialised simulations, none of the models captured the observed EASM, as 201 

indicated by an insignificant ACC (Figure 3). The CanCM4 and the GFDL-CM2p1 simulate 202 

a negative phase, while the BCC-CSM1-1, the HadCM3, the MIROC5 and the MPI-ESM-LR 203 

all predicted a positive phase of the EASM. With initialisation, the GFDL-CM2p1 and the 204 

MIROC5 improved the skill to simulate the EASM, the CanCM4 and the MPI-ESM-LR 205 

displayed hardly any reaction, while the BCC-CSM1-1 and the HadCM3 showed a worse 206 

performance than without initialisation. Particularly with anomaly initialisation, the HadCM3 207 
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significantly lost its prediction skill in capturing the EASM. The CMIP5 models showed 208 

different response to the initialisation in predicting the EASM on seasonal time-scale. To 209 

understand the potential reason, we analysed the principle components of six variables, which 210 

contributed to the EASM. The details are presented in Section 4.   211 

4.  EASM-ENSO COUPLED MODE IN CMIP5 212 

We employed the EOF method to analyse the leading EOF modes of the six meteorological 213 

variables anomaly in the EASM region (0°-50ºN, 100°-140ºE). The first EOF mode of the 214 

rainfall is characterised by a “sandwich” pattern, which showed sharp contrast between the 215 

prominent rainfall centre over Malaysia, the Yangtze River valley and the south of Japan, and 216 

the enhanced rainfall over the Indo-China Peninsula and the Philippine Sea (Figure 4). The 217 

increased precipitation is associated with cyclones in the low-level (850 hPa) and anti-218 

cyclones in the upper level (200 hPa). 219 

The correlation coefficient of the first eigenvector and the associated principal 220 

component (PC) between the model simulation and the observation in the non-initialised and 221 

the initialised simulation is presented in Figure 5. The models captured the eigenvector of the 222 

first EOF for the six meteorological fields in non-initialised simulation. However, they failed 223 

to reproduce the associated PC of the first leading EOF mode. Compared to the non-224 

initialised simulation, the models showed no improvement to simulate the first leading EOF 225 

mode of rainfall, but exhibit a better performance in representing the first leading EOF mode 226 

of zonal wind. The CanCM4 and the GFDL-CM2p1 captured the first PC of ua850, but not 227 

the other five models. For the zonal wind at 200 hPa, the BCC-CSM1-1 fails to simulate its 228 

first EOF mode while the other six models can. Only the GFDL-CM2p1 accurately simulates 229 

the first EOF eigenvectors and the associated PC of va850, which cannot be reproduced in the 230 

other models. No models captured the spatial-temporal variation of the first EOF mode of 231 

meridional wind at 200 hPa. In addition, the GFDL-CM2p1 and the MIROC5 simulates a 232 

reasonable leading EOF mode and associated PC of psl, while the other models do not 233 

capture it. 234 

Figure 6 shows the fractional (percentage) variances of the six variables from the first 235 

EOF mode with the total variances from the observation, and the model simulation with 236 

(with-out) initialisation. The observational total variances for the pr, the ua850, the ua200, the 237 

va850, the va200 and the psl, are depicted by the first lead EOF mode in 21.2, 59.0, 36.5, 238 

20.6, 28.5 and 50.0 percent, respectively. The models simulated the comparable explanatory 239 
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variances, which showed a slight discrepancy for the first leading mode in the non-240 

initialisation. From non-initialised simulation to initialised simulation, the CGCMs tended to 241 

enhance the first EOF leading mode because they show larger fractional variances of the total 242 

variances of the six variables. We note that the CanCM4 and the GFDL-CM2p1 significantly 243 

increased the fractional variances from non-initialisation to initialisation. 244 

The ENSO is a dominant mode of the inter-annual variability of the coupled ocean and 245 

atmosphere climate system, which has strong effects on the inter-annual variation of the 246 

EASM (Wang et al., 2000;Wu et al., 2003). Wang et al. (2015) summarised that the first EOF 247 

lead mode of the ASM is ENSO developing mode. As previously mentioned, the first EOF 248 

mode was improved in the initialised simulations, compared to the non-initialised simulation. 249 

This also can be found in the ENSO indices (Figure 7). The individual members and their 250 

ensemble mean of the six models show a low correlation coefficient to the observational 251 

Niño3.4 and the SOI in the non-initialised simulations. These two indices showed strong anti-252 

phases in the observation, with the correlation range being -0.94 to -0.92 for four seasons 253 

(DJF, MAM, JJA, SON). Without initialisation, the models can describe the anti-correlation 254 

between Niño3.4 and the SOI, but with weaker correlation. Compared to the non-255 

initialisation, there is a significant improvement for models in capturing the observational 256 

Niño3.4 and the SOI in the initialised experiments. The initialisation lowers the spread of 257 

Niño3.4 and the SOI in all the six models. There is a noticeable change between the model in 258 

producing the relationship between the Niño3.4 and the SOI. We found that the GFDL-259 

CM2p1 (HadCM3) shows a lower (higher) Niño3.4-SOI correlation in initialisation than that 260 

in non-initialisation. With initialisation, the ensemble mean of each model outperforms its 261 

individual members in capturing Niño3.4 and the SOI, while without initialisation it showed 262 

a worse performance than that of the individual members in simulating Niño3.4 and the SOI.   263 

The EASM strongly relies on the pre-seasons ENSO signal due to the lag response of 264 

the atmosphere to the SST anomaly (Wu et al., 2003). The lead-lag correlation coefficients 265 

between the EASM index and the Niño3.4, and the SOI from JJA(-1) to JJA(+1) are 266 

illustrated in Figure 8. The pre-season Niño3.4 (SOI) presents a significant negative 267 

(positive) correlation to the EASM, while the post-season Niño3.4 (SOI) showed a notable 268 

positive (negative) correlation. This lead-lag correlation coefficient phase is called the 269 

Niño3.4-/SOI-EASM coupled mode (Wang et al., 2008b). In the non-initialised cases, the 270 

models do not produce the teleconnection between the ENSO and the EASM. The CanCM4, 271 
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the HadCM3 and the MPI-ESM-LR failed to represent the lead-lag correlation coefficient 272 

differences between pre-/post-season ENSO and EASM. The BCC-CSM1-1, the GFDL-273 

CM2p1 and the MIROC5 captured the coupled mode of the ENSO and the EASM. However, 274 

the pre-season ENSO has a weak effect on the EASM. Compared to the non-initialised cases, 275 

the MIROC5 and the GFDL-CM2p1 both demonstrated a significant improvement in 276 

simulating Niño3.4 (SOI)-EASM coupled mode in the initialisation. The BCC-CSM1-1, the 277 

HadCM3, and the HadCM3-ff showed no improvement, with insignificant correlation 278 

between Niño3.4 (SOI) and the EASM. The CanCM4 and the MPI-ESM-LR indicated a 279 

higher correlation between the EASM and the simultaneous-to-post-season ENSO than to the 280 

pre-season ENSO. 281 

5. DISCUSSION 282 

The model exhibits a better performance in simulating the general circulation of the 283 

EASM with initialisation. Thus, initialisation is helpful in forecasting the EASM on a 284 

seasonal time-scale. There are two initialisation methods in our study, full-field initialisation 285 

and anomaly initialisation (Table 1). The full-field initialisation produces more skilful 286 

predictions on the seasonal time-scale in predicting regional temperature and precipitation 287 

(Magnusson et al., 2013;Smith et al., 2013). Nevertheless, for predicting the EASM, there is 288 

no significant difference between the two methods. We can see that both the GFDL-CM2p1 289 

and the MIROC5 have a significant improvement in capturing the EASM, with full-field and 290 

anomaly initialisation, respectively. Only the HadCM3 was initialised by the two 291 

initialisation techniques. However, both these two initialised techniques are producing poor 292 

predictions of the EASM with no major differences. 293 

The current initialisation strategy updates the observed atmospheric component (i.e., 294 

zonal and meridional wind, geopotential height, etc.) and the SST (Meehl et al., 2009;Taylor 295 

et al., 2012;Meehl et al., 2014). With initialisation, the SST conveys its information via the 296 

large heat content of the ocean to the coupled system. Therefore, an index indicating an ocean 297 

oscillation like Niño3.4 showed a seasonal-to-decadal prediction skill (Jin et al., 2008;Luo et 298 

al., 2008;Choi et al., 2016). The models studied here demonstrated a prediction skill in 299 

simulating Niño3.4 and the SOI due to this effect. The change of the correlation between 300 

Niño3.4 and the SOI is insignificant from non-initialised to initialised simulations. We 301 

therefore conclude that the relationship between Niño3.4 and the SOI depends more on the 302 

model parameterisation than on the initial condition. 303 
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Wang et al. (2015) found that the second EOF mode of ASM is the Indo-western 304 

Pacific monsoon-ocean coupled mode, the third is the Indian Ocean dipole (IOD) mode, and 305 

the fourth is the trend mode. The Indo-western Pacific monsoon-ocean coupled mode is the 306 

atmosphere-ocean interaction mode (Wang et al., 2013;Xiang et al., 2013), which is 307 

supported by a positive thermodynamic feedback between the western North Pacific (WNP) 308 

anticyclone and the underlying Indo-Pacific sea surface temperature anomaly dipole over the 309 

warm pool (Wang et al., 2015). The IOD increases the precipitation from the South Asian 310 

subcontinent to southeastern China and suppresses the precipitation over the WNP (Wang et 311 

al., 2015). It affects the Asian monsoon by the meridional asymmetry of the monsoonal 312 

easterly shear during the boreal summer, which can particularly strengthen the northern 313 

branch of the Rossby wave response to the south-eastern Indian Ocean SST cooling, leading 314 

to an intensified monsoon flow as well as an intensified convection (Wang and Xie, 315 

1996;Wang et al., 2003;Xiang et al., 2011;Wang et al., 2015). We noted that the models 316 

simulate a reasonable first EOF mode, but illustrate no skill in capturing the other EOF 317 

leading modes (not shown). We argue that the models cannot well represent the monsoon-318 

ocean interaction, even with initialisation. The models do not simulate the third EOF leading 319 

mode of the EASM since the predictability of the IOD extends only over a three-month time-320 

scale (Choudhury et al., 2015). The current initialisation strategies (both anomaly and full 321 

field) enhance the ENSO signal in the model simulations with higher explained fraction of 322 

variance. Kim et al. (2012) described a similar finding in ECMWF System 4 and NCEP 323 

Climate Forecast System version 2 (CFSv2) seasonal prediction simulations. With 324 

initialisation, the models well predict ENSO on seasonal time-scale, which leads to an overly 325 

strong modulation of the EASM by ENSO (Jin et al., 2008;Kim et al., 2012).  326 

It is worth mentioning that it was an extremely weak monsoon and strong El Niño year 327 

in 1998. The CanCM4, the GFDL-CM2p1, the MIROC5 and the MPI-ESM-LR have the 328 

ability to simulate the extreme monsoon event, while the BCC-CSM1-1, and the HadCM3 do 329 

not capture it even with initialisation. There is the potential for the BCC-CSM and the 330 

HadCM models to improve the teleconnection between the ENSO and the EASM. 331 

This study has discussed six CMIP5 models in predicting the EASM on seasonal time-332 

scale. The six models are earth system coupled models which present a better SST-monsoon 333 

teleconnection than CMIP3 models (Sperber et al., 2013) and IRI (International Research 334 

Institute for Climate and Society) models (Barnston et al., 2010). There are 4 AGCMs 335 
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contributing to the IRI prediction system, including ECHAM4.5, CCM3.6, COLA and 336 

GFDL-AM2p14. These models are forced to forecast the climate on seasonal time-scale by 337 

prescribed SST. Barnston et al. (2010) found that the models showed low prediction skill 338 

over East Asia. Therefore, the IRI prediction system cannot be used to predict the EASM.   339 

There are two seasonal forecast application systems, the ECMWF System and the NCEP 340 

CFS, respectively. Both the two application systems have low prediction skill of EASM (Kim 341 

et al., 2012;Jiang et al., 2013). The CMIP5 models have potential to be developed as 342 

application system for EASM seasonal prediction, especially the GFDL-CM2p1 and the 343 

MIROC5.  344 

To better predict the short-to-long term climate, World Climate Research Programme 345 

(WCRP) launched two new projects, i.e., Climate-system Historical Forecast Project (CHFP; 346 

Kirtman and Pirani, 2009;Tompkins et al., 2017) and Subseasonal-to-Seasonal (S2S) 347 

Prediction Project (Vitart et al., 2017). The two projects coordinate most climate modelling 348 

research group and provide a large range of forecast dataset. A comprehensive comparison of 349 

all the CHFP and S2S data with the CMIP5 simulations regard to the seasonal prediction skill 350 

of the EASM is certainly an interesting topic, which should be addressed in an additional 351 

paper.  352 

We have compared six CMIP5 systems with their respective initialisation strategies. 353 

The GFDL-CM2p1 and the MIROC5 have the potential to serve as seasonal forecast 354 

application system even with their current initialisation method. These models have great 355 

potential to optimise the SST-EASM interaction simulation performance to improve their 356 

seasonal prediction skill of the EASM.  357 

6.  SUMMARY 358 

Six earth system models from CMIP5 have been selected in this study. We have analysed the 359 

improvement of the rainfall, the mean sea level pressure, the zonal wind and the meridional 360 

wind in the EASM region from non-initialisation to initialisation. The low prediction skill of 361 

the summer monsoon precipitation is due to the uncertainties of cloud physics and cumulus 362 

parameterisations in the models (Lee et al., 2010;Seo et al., 2015). The models showed a 363 

better performance in capturing the inter-annual variability of zonal wind than the 364 

precipitation after initialisation. Thus, the zonal wind index is an additional factor, which can 365 

indicate the prediction skill of the model. When, we calculate the WF-index in both non-366 

initialised and initialised simulations, the GFDL-CM2p1 and the MIROC5 showed a 367 

Commented [BH8]: Comment 2 
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significant advancement in simulating the EASM from non-initialised to initialised 368 

simulation with a lower RMSE and a higher ACC. There is only a slight change in the WF-369 

index calculated from the BCC-CSM1-1, the CanCM4 and the MPI-ESM-LR data with 370 

initialisation. Compared to the non-initialised simulation, the HadCM3 loses prediction skill, 371 

especially with anomaly initialisation. 372 

To test the possible mechanisms of the models’ performance in the non-initialisation 373 

and the initialisation, we have calculated the leading mode of the six fields, which are 374 

associated to the EASM. The models demonstrated a better agreement with the observational 375 

first EOF mode in the initialised simulations. The first lead mode of zonal wind at 200 hPa 376 

showed a significant improvement in the models except the BCC-CSM1-1 with initialisation. 377 

Therefore, a potential predictor might be an index based upon the zonal wind at 200 hPa. 378 

Compared to the non-initialisation, the models enhanced the first EOF mode with a higher 379 

fraction of variance to the total variance after initialisation. The first EOF mode of the EASM 380 

is the ENSO developing mode (Wang et al., 2015). We have analysed the seasonal simulating 381 

skill of Niño3.4 and the SOI in each model. The models showed a poor performance in 382 

representing Niño3.4 and the SOI in the non-initialised simulation. Initialisation improved the 383 

model simulating skill of Niño3.4 and the SOI. The initialised simulations decreased the 384 

spread of ensemble members in the models. We found that there is no significant change in 385 

the models reproducing the correlation between Niño3.4 and the SOI from non-initialisation 386 

to initialisation. 387 

In general, the pre-season warm phase of the ENSO (El Niño) leads to a weak EASM 388 

producing more rainfall over the South China Sea and northwest China, and less rainfall over 389 

the Yangtze River Valley and the southern Japan; the cold phase of the ENSO (La Niña) 390 

illustrated a reverse rainfall pattern to El Niño in East Asia. The pre-season Niño3.4 (SOI) 391 

exhibits a strong negative (positive) correlation to the EASM, while the correlation between 392 

the post-season Niño3.4 (SOI) and the EASM illustrated an anti-phase as the pre-season. In 393 

the non-initialised simulations, the models do not capture Niño3.4-/SOI-EASM coupled 394 

mode. We found that only the MIROC5 has the ability to represent the Niño3.4-EASM 395 

coupled mode with initialisation. For the SOI-EASM coupled mode, the GFDL-CM2p1 and 396 

the MIROC5 captured it in the initialisation, while the BCC-CSM1-1, the HadCM3, the 397 

HadCM2-ff, the CanCM4 and the MPI-ESM-LR do not. Therefore, we argue that the 398 
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differential depiction of ENSO-EASM coupled mode in CMIP5 models lead to their 399 

differential response to initialisation. 400 
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Table 1. Details of the prediction systems investigated in this study. 620 

System  Institute Resolution Non-

Initialisation 

Initialisation Reference 

  Atmospheric Oceanic Members Members Type  

BCC-CSM1-1  Beijing Climate Center, China T42L26 1lonx1.33lat L40 3 3 Full-field Wu et al. (2014) 

CanCM4  Canadian Centre for Climate 

Modelling and Analysis, 

Canada 

T63L35 256 x 192 L40 10 10 Full-field Arora et al. 

(2011) 

GFDL-CM2p1  Geophysical Fluid Dynamics 

Laboratory, USA 

N45L24 1lon x 0.33-1lat 

L50 

10 10 Full-field Delworth et al. 

(2006) 

HadCM3  Met Office Hadley Centre, UK N48L19 1.25x1.25 L20 10 10 + 10 Full-field and 

Anomaly 

Smith et al. 

(2013) 

MIROC5  Atmosphere and Ocean 

Research Institute, Japan 

T85L40 256x192 L44 5 6 Anomaly Tatebe et al. 

(2012) 

MPI-ESM-LR  Max Planck Institute for 

Meteorology, Germany 

T63L47 GR15 L40 3 3 Anomaly Matei et al. 

(2012) 

 621 
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Table 2. Brief summaries of initialisation strategies used by modelling groups in the study. ECMWF: European Centre for Medium-Range 622 

Weather Forecasts; GODAS: Global Ocean Data Assimilation System; NCEP: National Centers for Environmental Prediction; S: Salinity; 623 

SODA: Simple Ocean Data Assimilation; T: Temperature. 624 

system  Atmosphere  Ocean Initialised date Internet 

BCC-CSM1-1  -  integration with ocean T nudged 

to SODA product above 1500 m 

Ensemble 1: 1st September 

Ensemble 2: 1st November 

Ensemble 3: 1st January 

http://forecast.bcccsm.ncc-cma.net/  

CanCM4  ECMWF re-

analysis 

 off-line assimilation of SODA 

and GODAS subsurface ocean T 

and S adjusted to reserve model 

T-S 

1st January http://www.cccma.ec.gc.ca/  

GFDL-CM2p1  GFDL re-analysis  assimilates observations of T, S 

from World Ocean Database 

1st November 

 

https://www.gfdl.noaa.gov/multide

cadal-prediction-stream/  

HadCM3  ECMWF re-

analysis 

 off-line ocean re-analysis 

product 

1st January http://cerawww.dkrz.de/WDCC/C

MIP5/  

MIROC5  -  integration using observational 

gridded ocean T and S 

1st January http://amaterasu.ees.hokudai.ac.jp/  

MPI-ESM-LR  NCEP re-analysis  off-line ocean hindcast forced 

with NCEP 

1st January http://cerawww.dkrz.de/WDCC/C

MIP5/  

 625 

http://forecast.bcccsm.ncc-cma.net/
http://www.cccma.ec.gc.ca/
https://www.gfdl.noaa.gov/multidecadal-prediction-stream/
https://www.gfdl.noaa.gov/multidecadal-prediction-stream/
http://cerawww.dkrz.de/WDCC/CMIP5/
http://cerawww.dkrz.de/WDCC/CMIP5/
http://amaterasu.ees.hokudai.ac.jp/
http://cerawww.dkrz.de/WDCC/CMIP5/
http://cerawww.dkrz.de/WDCC/CMIP5/
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Table 3.  Description of the six variables which contribute to the EASM. The abbreviation of these variables is followed to the guidelines of 626 

CMIP5. 627 

variable Standard name Contribution to the EASM 

pr Precipitation Precipitation distribution indicates the strength of EASM 

psl Mean sea surface pressure Differences of mean sea surface pressure between land and ocean lead 

to EASM  

ua850 Zonal winds over 850 hPa A component of low-level cyclone which transports vapor from ocean 

to land 

va850 Meridional winds over 850 hPa  As ua850, and contributes to Hadley’s cell 

va200 Meridional winds over 850 hPa A component of upper-level Hadley’s cell 

ua200 Zonal winds over 850 hPa  As va200 

 628 

 629 

 630 
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 631 

Fig. 1. Anomaly correlation coefficient of six variables (i.e. precipitation, mean sea level pressure, and winds over 850 hPa and 200 hPa) 632 

between multi-model ensemble mean and observations in non-initialisation and initialisation. The green dotted grids illustrate the significant 633 

level at 0.05. The number at lower left corner indicates the ratio of significant grid points to entire grids. The GPCP was employed as the 634 

reference data for precipitation (pr) while winds (i.e. ua850, va850, ua200 and va200) and mean sea level pressure (psl) were compared with 635 

ERA-Interim re-analysis. 636 
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 637 

 638 

Fig.2. Taylor diagrams display of pattern (PCC) and temporal (ACC) correlation 639 

metrics of six variables between observation and model simulation in the EASM 640 

region (0-50ºN, 100-140ºE). Each coloured marker represents a model, i.e., the BCC-641 

CSM1-1 (black), the CanCM4 (green), the GFDL-CM2p1 (red), the HadCM3 (blue), 642 

the MIROC5 (brown), the MPI-ESM-LR (light-sea-blue), and the HadCM3-ff 643 

(orange). 644 

645 
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 646 

 647 

Fig. 3. Performance of the model ensemble member (hollow marker) and its ensemble 648 

mean (solid marker) on the EASM index. The abscissa and ordinates are the anomaly 649 

correlation coefficient (ACC) and the root-mean-square-error (RMSE), respectively. 650 

The observed EASM index is calculated by zonal wind at 850 hPa from the ERA-651 

Interim re-analysis data. The black dot lines indicate the significant level at 0.1. The 652 

vertical black line represents the correlation between the simulating and the 653 

observational EASM index is 0.  654 
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 655 

Fig. 4. Spatial distribution of observational of the first leading EOF mode of June-656 

July-August precipitation and winds over 850 hPa (a), mean sea level pressure and 657 

winds over 200 hPa (c) and the associated principal component (PC; b, d). The GPCP 658 

and ERA-Interim data from 1979-2005 were used for the EOF analysis in the EASM 659 

domain. 660 

661 
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 662 

 663 

 664 

Fig. 5. Portrait diagram display of correlation metrics between the observation and the 665 

model simulation of the first lead EOF mode for the six fields in the non-initialisation 666 

(left) and the initialisation (right). Each grid square is split by a diagonal in order to 667 

show the correlation with respect to both the eigenvector (upper left triangle) and its 668 

associated principal components (lower right triangle) reference data sets. 669 

670 
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 671 

 672 

Fig. 6. Fraction variance (%) explained by the first EOF mode for six fields in the 673 

non-initialisation (left) and the initialisation (right). 674 

 675 
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 676 

Fig. 7. Model prediction skill in representing the observational Niño3.4 (red), the SOI 677 

(blue) from the DJF to SON in non-initialisation (left) and initialisation (right). Green 678 

diagram shows the correlation coefficient between the model simulated Niño3.4 and 679 

the SOI. Box and whisker diagram shows ensemble mean of each model (asterisk), 680 

median (horizontal line), 25th and 75th percentiles (box), minimum and maximum 681 

(whisker). The two black dotted lines indicate 0.05 significant level based upon 682 

Student’s t-test. 683 

 684 

 685 
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 686 

 687 

 688 

Fig. 8. Lead-lag correlation coefficients between the EASM index and Niño3.4 689 

(upper), and SOI (lower) in non-initialised simulations (left) and initialised ones 690 

(right) for observation (marker line) and models (marker) from JJA(-1) to JJA(+1). 691 

The two black dotted lines are 0.05 significant level based upon Student’s t-test. The 692 

vertical line represents JJA(0), where the simultaneous correlations between the 693 

EASM index and Niño3.4, and SOI are shown. 694 

 695 


