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Abstract. Using fractional calculus, a dimensionally-consistent governing equation of transient, saturated 

groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a 

dimensionally-consistent continuity equation for transient groundwater flow in fractional time and in a 10 

multi-fractional, multi-dimensional confined aquifer is developed. For the equation of water flux within a 

multi-fractional multi-dimensional confined aquifer, a dimensionally consistent equation is also developed. The 

governing equation of transient groundwater flow in a multi-fractional, multi-dimensional confined aquifer in 

fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the 

capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical 15 

application of the fractional governing equation to a confined aquifer groundwater flow problem was also 

performed. 

1. Introduction 

Previous laboratory and field studies (Levy and Berkowitz, 2003; Silliman and Simpson, 1987; Peaudecerf 

and Sauty, 1978; Sidle et al., 1998; Sudicky et al., 1983) demonstrated substantial deviations from Fickian 20 

behavior in transport in subsurface porous media. Various authors (Meerschaert et al., 1999; Benson et al., 

2000a, b; Schumer et al., 2001; Meerschaert et al., 2002; Baeumer et al., 2005; Baeumer and Meerschaert, 2007; 

Meerschaert et al., 2006; Zhang et al., 2007; Schumer et al., 2009; Zhang and Benson, 2008; Zhang et al., 2009) 

have introduced the fractional advection-dispersion equation (fADE) as a model for transport in heterogeneous 

subsurface media as one approach to the modelling of the generally non-Fickian behavior of transport. As was 25 
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demonstrated by the above studies, the heavy tailed non-Fickian dispersion in subsurface media can be 

modelled well by a fractional spatial derivative, and the long particle waiting times in transport can be modelled 

well by means of a fractional time derivative within fADE. However, the above-mentioned studies focused on 

the fractional differential equation modeling of solute transport in fractional time-space, and not on the 

modeling of the underlying subsurface flows that transport the solutes. Also, as shown by Kim et al. (2014), 5 

non-Fickian behavior in transport can also be obtained if the underlying flow field has long-memory in time, 

which can be described by a time-fractional governing equation of the specific flow field (Ercan and Kavvas, 

2014; Ercan and Kavvas, 2016). Kang et al. (2015) also showed that velocity correlation and distribution in 

fractured media may lead to non-Fickian transport, and proposed a Continuous Time Random Walk model (see 

Metzler and Klafter (2000) for details of such models) that can account for velocity correlation and distribution. 10 

Cloot and Botha (2006) argued that there are many fractured rock aquifers where the groundwater flow 

does not fit conventional geometries (Black et al., 1986), and in such aquifers the conventional radial 

groundwater flow model underestimates the observed drawdown in early times and overestimates it at later 

times (Van Tonder et al., 2001). Based on this argument, which they supported by some field radial flow data, 

Cloot and Botha (2006) then formulated a fractional governing equation for radial groundwater flow in integer 15 

time but fractional space and provided some numerical applications of this model. In that formulation they also 

provided a formulation of the Darcy's flux in radial fractional space. However, besides taking the time as 

integer, they also considered a uniform homogeneous aquifer with a constant hydraulic conductivity. In the 

formulation of their radial groundwater flow model, they did not provide a derivation of the mass conversation 

equation for groundwater flow in fractional time-space. Also, they utilized the Riemann-Liouville form of the 20 

fractional derivative. Later, Atangana and his co-workers (Atangana, 2014; Atangana and Bildik, 2013; 

Atangana and Vermeulen, 2014) developed the fractional radial groundwater flow formulation of Cloot and 

Botha (2006) in terms of the Caputo derivative, and claimed it yielded superior performance when compared to 

the Riemann-Liouville derivative formulation. The fundamental advantage of the Caputo derivative over the 

Riemann-Liouville derivative is that it can accommodate the real-life initial and boundary conditions while the 25 

Riemann-Liouville derivative cannot (Podlubny, 1998). That is, the fractional differential equations with 

Caputo derivatives contain the physically-interpretable integer-order derivatives at the initial times and at the 

upstream spatial boundaries whereas the Riemann-Liouville derivatives do not (Podlubny, 1998). More 

recently, Atangana and Baleanu (2014) utilized a new definition of the fractional derivative, called the 

"conformable derivative" (Khalil et al. (2014)) for the modeling of radial groundwater flow in fractional time 30 
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but integer space. In all the above studies, the authors formulated their fractional governing equations instead of 

providing derivations of their groundwater flow equations from the basic conservation principles.  

Wheatcraft and Meerschaert (2008) were the first to provide a comprehensive derivation of the continuity 

equation for groundwater flow. These authors have shown that since a first-order Taylor series approximation is 

used to represent the change in the mass flux through a control volume, the traditional continuity equation in an 5 

infinitesimal control volume is exact only when the change in flux in the control volume is linear. They also 

showed that in analogy to using a first-order Taylor series, a fractional Taylor series is able to represent the 

nonlinear flux in a control volume exactly by only two terms. By replacing the integer-order Taylor series 

approximation for flux with the fractional-order Taylor series approximation, they derived a fractional form of 

the continuity equation for groundwater flow, removing the linearity or piecewise linearity restriction for the 10 

flux, and the restriction that the control volume must be infinitesimal. In their development of the continuity 

equation, Wheatcraft and Meerschaert (2008) considered the porous medium in fractional space but the flow 

process in integer time. They also considered the fractional porous media space to have the same fractional 

power in all directions. Furthermore, their derivation is confined to only the mass conservation. It does not 

address the fractional water flux (motion) equation, nor the complete governing equation of groundwater flow.  15 

Groundwater level fluctuations through time at certain locations exhibit long-range time 

correlation, which implies the need for the incorporation of time-fractional operation in the standard 

groundwater flow governing equations in order to accommodate the long-range time dependence 

(Li and Zhang, 2007; Rakhshandehroo and Amiri, 2012; Tu et al., 2017; Yu et al., 2016). Hence, in 

order to provide a general modeling structure, it is necessary to develop the governing equations of 20 

confined groundwater flow in fractional time as well as in fractional space. Also, different fractional 

powers should be considered in different spatial directions in order to accommodate the anisotropy 

of a confined aquifer medium. 

In parallel to the conventional governing equations of groundwater flow processes (Bear, 1979; 

Freeze and Cherry, 1979), the corresponding time-space fractional governing equations of the 25 

confined groundwater flow must have certain characteristics (Kavvas et al. 2017): a) From the outset, 

the form of the governing equation must be known completely. As such, it must be a prognostic 

equation. That is, in order to describe the evolution of the flow field in time and space it is solved 
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from the initial conditions and boundary conditions. The governing equation is fixed throughout the 

simulation time and space for the simulation of the groundwater flow in question once its physical 

parameters, such as porosity, saturated hydraulic conductivity, etc., are estimated. b) The fractional 

governing equations must be purely differential equations, containing only differential operators, 

and no difference operators. c) These equations must be dimensionally consistent. d) As the orders of 5 

the fractional derivatives in the equations approach the corresponding integer powers, the fractional 

governing equations of confined groundwater flow with fractional powers must converge to the 

corresponding conventional governing equations with integer powers. The following development 

of the fractional governing equations of confined groundwater flow will be performed within the 

above framework. 10 

2. Derivation of the Continuity Equation for Transient Groundwater Flow in a Multi-Fractional 

Confined Aquifer in Fractional Time 

Let   
  
      be a Caputo fractional derivative of the function f(x), defined as ( Li et al., 2009; Odibat and 

Shawagfeh, 2007; Podlubny, 1998; Usero, 2007), 
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Specializing the integer m =1 reduces Equation (1) to 
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Then to  -order 

  
 
     

 

      
 

     

      

 

 
         0 <                . (3) 

One can obtain a    -order approximation (i=1,2,3 ;                 ) to a function f (
.
) around 20 

"a" as  

            
      

   

        
   

        ,          ;  i=1,2,3                   (4) 
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This result may be obtained by taking in the mean value representation of a function in terms of fractional 

Caputo derivative (Odibat and Shawagfeh, 2007; Usero, 2007; Li et al., 2009) the upper limit value of the 

Caputo derivative at "  " (i=1,2,3;                  to have a distinct value for the above    -order 

approximation (i=1,2,3 ;                 ) of the function f around "a". Based on this approximation, 

for the whole modelling domain in time and space, the governing equations become prognostic equations that 5 

shall be known from the outset of model simulation. The next issue is what to take for the value of "a". If one 

expresses Equation (4) with a =    -    , that is,  

                 
     

   

        
        

             ; i=1,2,3  ;                   (5)  

then the question becomes what to take for the value of     in Equation (5). In order to obtain fractional 

governing equations as purely differential equations, an analytical relationship between     and      
  10 

(i=1,2,3 ;                   that will be universally applicable throughout the modelling domain, must 

be established. Such an analytical relationship is possible when the lower limit in the above Caputo derivative in 

Equation (5) is taken as zero (that is,     =   ) for f(  ) =   . As will be shown below, it will be possible to 

develop purely differential forms (with no finite difference operators) for the fractional governing equations of 

confined groundwater flow by following the above construct. 15 

The net mass flux through the control volume in Figure 1, that also has a sink/source mass flux         , 

can be formulated within the above framework as 

                                                                       

                                                     (6) 

Then by combining Equation (5) with Equation (6) with     =    (i=1,2,3 ;                   and 20 

expressing the resulting Caputo derivative   

         (taking     =    causes the lower limit in the 
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Caputo derivative of Equation (5) to become 0) by  
 
        

     
   

 , (i=1,2,3 ;                   for 

convenience, yields the net mass flux through the control volume in Figure 1 to the orders of       , 

      , and        as   

 

       
 

 

  
 
  

                   
       

 

       
 

 

  
 
  

                     
     

 

       
 
 

  
 
  

                       
               

(7) 

where, due to the anisotropy in the hydraulic conductivities and in the subsequent flows in the porous media, 

different powers for fractional derivatives are considered in the three Cartesian directions in space.  5 

From Equation (5) it also follows with f(xi) = xi that to the order of      
    , i=1,2,3,  

    
     

   

     
   

 
     

     
   

    ,  i=1,2,3 ;                    .    (8) 

Also for the Caputo derivative: 

 
     

     
   

 
  

     

        
  , i=1,2,3 ;                 (9) 

Hence, introducing Equation (9) into Equation (8) yields to    -order fractional increments in space in the 

i-th direction, i=1,2,3,  10 

     
    

     
           

  
     

     ,                 ; 

                         .  

(10) 

Combining Equations (10) and (7) yields for the net mass outflow through the control volume in Figure 1 

as (to the order of      
    , i=1,2,3;                ), 
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(11) 

Denoting the porosity, which is the water volume per volume of the control volume in Figure 1 under 

saturated conditions, by n, the change of mass within the control volume in Figure 1 per time increment     

may be expressed as (Freeze and Cherry, 1979),  15 
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                    (12) 

Meanwhile, the specific storage Ss of a saturated aquifer may be defined as the volume of water that is 

released from a unit volume of the aquifer under a unit decline in the hydraulic head h (Freeze and Cherry, 

1979). Under this definition the change of mass in the control volume of Figure 1 per time increment    may be 

expressed as (Freeze and Cherry, 1979) ,  
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Expressing the relationship (10) to  -order fractional increments in time; 5 
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Meanwhile, using the approximation (5) in the time dimension to the order of       , for any function g of 

time, 
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Introducing Equation (15) into the right-hand-side of Equation (13) yields to order of       , 
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Then introducing Equation (14) into expression (16) yields, 
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as the time rate of change of mass in the control volume of size         . 10 

Since the net flux through the control volume is inversely related to the time rate of change of mass within 

the control volume of Figure 1, one may combine Equations (11) and (17) to obtain 
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(18) 

In the conventional case with the integer derivatives (Freeze and Cherry, 1979), 
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Hence, it is also expected that  



 

8 
 

 
      

     
  
      

    

     
  
  , i=1,2,3;                 ;                   (20) 

Combining the inequality (20) with the Equation (18) yields 
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(21) 

as the time-space fractional continuity equation of transient groundwater flow in an anisotropic confined aquifer 

with fractional dimensions, and in fractional time. 

Performing a dimensional analysis of Equation (21), one obtains 
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where L denotes length and T denotes time. Hence, the left hand and right hand sides of the continuity Equation 5 

(21) for transient groundwater flow in multi-fractional space and fractional time are shown to be consistent by 

means of Equation (22). 

It was shown by Podlubny (1998) that for  -1<        where n is any positive integer, as    and    

  n, the Caputo fractional derivative of a function f(y) to order    or    (i = 1, 2, 3;                

  ) becomes the conventional n-th derivative of the function f(y). Specializing the Podlubny (1998) result to n = 10 

1, for   and      1 ( i = 1, 2, 3;                  ), reduces the continuity equation (21) to the 

conventional continuity equation for transient groundwater flow in a confined aquifer:   
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3. An Equation for Specific Discharge (Motion Equation) in Fractional Multi-Dimensional Confined 

Aquifers 

A governing equation for water flux (specific discharge)    , (i = 1, 2, 3;                 ) in a 15 

saturated or unsaturated porous medium with fractional dimensions was recently developed (Kavvas et al., 

2016). For the case of transient groundwater flow in an anisotropic confined aquifer with multi-fractional 

dimensions that equation for the specific discharge takes the form, 
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 , i = 1,2,3;                   (24) 

where      
     denotes the saturated hydraulic conductivity in the i-th spatial direction (i=1,2,3;          

      ). Due to the groundwater flow being in the direction of decreasing hydraulic head, the right-hand-side 

(RHS) of Equation (24) takes a negative sign.  

A dimensional analysis on Equation (24) yields L/T for the units of both the left-hand-side (LHS) and the 

RHS of the equation, establishing its dimensional consistency. 5 

Applying the above-mentioned result of Podlubny (1998) on the convergence of a fractional derivative to 

a corresponding integer derivative, for      1 (i = 1, 2, 3;                  ), reduces the fractional 

specific discharge equation (24) for groundwater flow to the conventional Darcy's equation for groundwater 

specific discharge: 

                
    

        

   
 , i= 1,2,3 ;                   (25) 

for the case of integer spatial dimensions. As such, the fractional specific discharge equation (24) for confined 10 

groundwater flow in fractional spatial dimensions is consistent with the conventional Darcy's equation for the 

integer spatial dimensions.   

4. The Complete Equation for Transient Confined Groundwater Flow in Multi-Fractional Space and 

Fractional Time 

One can combine the specific discharge equation (24) for groundwater flow (the motion equation) in a 15 

fractional confined aquifer with the time-space fractional continuity equation (21) of groundwater flow in 

fractional time-space in confined aquifers to obtain,  
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(26) 
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as the time-space fractional governing equation of transient groundwater flow in a confined anisotropic aquifer 

with multi-fractional dimensions and in fractional time. In Equation (26)     may be taken as the pumping rate 

or recharge rate.  

Performing a dimensional analysis on the governing fractional Equation (26) for confined groundwater 

flow results in  5 

 

    
 

     

 

   

 

 

    

     

 

   
 

 

     

 

   

 

 

    

     

 

   
  

 

     

 

   

 

 

    

     

 

   
 

 

  
         

(27) 

which shows that both the RHS and the LHS of the equation have the unit 
 

   which verifies its dimensional 

consistency. 

Applying the above-mentioned result of Podlubny (1998) on the convergence of a fractional derivative to 

a corresponding integer derivative, for   and      1 (i = 1, 2, 3;                  ), the governing 

equation (26) for confined groundwater flow in fractional time-space takes the form 10 
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(28) 

which is the conventional governing equation for transient groundwater flow in an anisotropic confined aquifer 

(Freeze and Cherry, 1979). As such, the time-space fractional governing equation (26) of transient groundwater 

flow in a confined anisotropic aquifer with multi-fractional dimensions in fractional time is consistent with the 

conventional governing equation for transient groundwater flow in an anisotropic confined aquifer with integer 

derivatives.  15 

5. Physical Meaning of Fractional Time Derivative in the Fractional Governing Equations of 

Confined Transient Groundwater Flow 

Let us consider the Caputo fractional time derivative of the function f(t), 
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defined by, 20 
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As such, each local integer derivative       at each time position    (       in the time interval (0,  ) 

contributes with weight         to the Caputo fractional derivative of f(t) during the time interval (0,  ). 

Hence, the Caputo derivative is a nonlocal quantity, pertaining to a time interval, versus the conventional 

derivative of f(t),       , which is defined for the particular time location t. Within this framework, the effect of 

the initial condition at the initial time location 0 is still accounted for at any time t      t      during the 5 

whole simulation period (0,T) by means of the fractional time derivative that appears in the above governing 

equation (26) of confined transient groundwater flow in fractional time. It also follows from Equation (30) that 

this memory effect is modulated by the value of the fractional power  . As shown by Podlubny (1998), as  

       the Caputo fractional time derivative of f(t), as given by Equation (30), converges to the local time 

derivative        at t. 10 

6. A numerical application of the developed fractional governing equation of confined groundwater flow 

 

To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, 

a numerical application of the fractional governing equation to the physical setting of an example from Wang 

and Anderson (1995) is provided as shown in Figure 2. In this example, groundwater flow in a confined aquifer 15 

is simplified to be one-dimensional. The length of the confined aquifer is 100 m. The hydraulic transmissivity 

(T) of the aquifer is 0.02 m
2
/minute and the specific storage (S) of the aquifer is 0.002.  The groundwater 

hydraulic head is initially uniform at 20 m. The water level downstream suddenly drops to 10 m and stays at 10 

m. The groundwater level upstream is set to be 20 m throughout the simulation duration. The total simulation 

time is 600 minutes. 20 
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Non-dimensional groundwater hydraulic heads (    , where    is the initial groundwater hydraulic 

head) at x=50 m through time in the aquifer are shown in Figure 3, when fractional derivatives in space and time 

are taken as                 . As one can see from Figure 3, compared to the curve of hydraulic head 

recession in time that corresponds to          (the conventional integer derivative case), the hydraulic 

head recession in time gets slower with the decrease of      from 1. The groundwater hydraulic heads in 5 

Figure 3 clearly show heavier tails as fractional derivative orders in space and time decrease from 1. 

Additionally, the smaller the fractional orders are, the heavier the tails become with the increase in time. The 

modelling results may indicate nonlocal effects in groundwater flow and help explain the long-range 

dependence characteristics in some groundwater level fluctuation datasets (Tu et al., 2017). The results may 

also shed light on the non-Fickian transport phenomena in groundwater flow. 10 

7. Discussion on the Developed Fractional Governing Equations in the Context of Broader Geosciences 

The conventional governing equations of porous media flows in geosciences in various environments are 

all local-scale equations where only the interactions among nearest neighbours in time and space are described. 

All of these governing equations are differential equations where the powers of the derivative terms that appear 

in these equations take integer values. In the case that a porous media flow field shows interactions among 15 

time-space locations that are separated by substantial distances in time or space, the local-scale conventional 

governing flow equations for such media, because they are based on local interactions, may not be able to 

describe such long-distance interactions adequately. A more efficient approach for modeling such long-distance 

interactions in time and space may be the use of fractional governing equations of porous media flows. Such 

fractional governing equations, as those developed in this study, utilize time-space derivatives with fractional 20 

powers. As already shown in Section 5 above, the fractional Caputo time derivative is nonlocal, and, as such, 
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can accommodate the effect of the initial conditions on the groundwater flow process for times that are 

substantially later than the initial time. Similarly, the fractional Caputo space derivatives in the governing 

Equations (21), (24) and (26) of this study are also nonlocal derivatives. To see this consider the Caputo 

fractional space derivative    
 
     : 

    
 
      

 

      
 

     

       

  
 

        (31)  5 

 

Hence, each local integer derivative       at each spatial location   in the spatial interval (0,   ) will 

contribute to the Caputo fractional derivative of the interval (0,   ) with weight         . As such, for 

groundwater flow in any i-direction, the effect of a boundary condition that is placed at boundary location "0" in 

the i-direction will be accounted for at any distance    from the boundary location "0" by means of the 10 

fractional space derivative that appears in the above fractional governing equations for the i-th direction. It 

follows from Equation (31) that this effect will be modulated by the value of the fractional derivative power  

due to the weight         . 

As shown in the previous sections, the fractional governing equations converge to their conventional 

integer counterparts as the fractional derivative powers take integer values. Consequently, the conventional 15 

governing equations of porous media flows may be considered as special cases of the corresponding fractional 

governing equations, corresponding to the integer values of the derivative powers. While the fractional powers 

of the derivatives in the governing equation (26) may take any fractional value within the interval (0,1), the 

integer powers of the derivatives in the conventional governing equation (28) are restricted to the value of unity. 

Within this context, the fractional governing equations of porous media flows may be thought as the 20 

generalizations of the conventional governing equations of porous media flows with integer powers. 
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From above it follows that the fractional governing equations developed in this study are nonlocal. 

Accordingly, they can account for the influence of the initial and boundary conditions on the flow process more 

effectively than the corresponding local-scale integer-order conventional governing equations, since the 

conventional governing equations consider the effect of initial and boundary conditions on the flow processes 

within shorter time/space ranges.  5 

From Equation (28) it may be noted that the saturated hydraulic conductivity plays the role of a diffusion 

coefficient in the conventional governing equation of transient groundwater flow in an anisotropic confined 

aquifer in integer time-space. For discussion purposes, let us rewrite Equation (26) for the governing equation of 

transient groundwater flow in an anisotropic confined aquifer in fractional time-space: 

  
   

     
 

   
       

     
  

 

  
 
  

         
    

     

       

      
 
    

      
  

 
       

     
  

 

  
 
  

         
    

     

       

      
 
    

      
  

       

     
  

 

  
 
  

         
    

     
 
       

      

    

      
    

    

      
 ;  

              ;    =             

(32) 

In this governing equation of transient confined groundwater flow in fractional time-space, the saturated 10 

hydraulic conductivities are augmented by fractional powers of time,      , and of space,   
     , i= 1,2,3, in 

terms of the ratios of fractional time to fractional space,  
    

  
     

  , i= 1,2,3, in multiple dimensions. As such the 

confined groundwater diffusion in fractional time-space is modulated by the above ratios of fractional time to 

fractional space. Accordingly, since the diffusion coefficient scales with a fractional power of time and a 

fractional power of space, the process represented by Equation (32) may be thought to be non-Fickian. One can 15 

also see from the Figure 3 on the numerical application of the fractional confined groundwater flow equation to 

a simple one-dimensional case, as the fractional powers of the derivatives in space and time in the governing 

equation decrease from unity, the recession rate of the nondimensional hydraulic heads from the initial 

condition also gets slower with respect to the case of the conventional governing equation with integer 

derivative powers. Therefore, the speed of the response of the groundwater system to the external forcings to the 20 

system (pumping rates, recharge rates, etc.) can be modulated in the fractional governing Equation (26) of 

confined aquifer groundwater flow by means of the values that the fractional derivative power  takes, slowing 

down with the decrease in the values of . 



 

15 
 

Kavvas et al. (2014) argued and Kim et al. (2014) have shown by numerical simulations that non-Fickian 

behavior in solute transport can also be obtained if the underlying flow field has long-memory, which can be 

described by a fractional governing equation of the specific flow field.  Ercan and Kavvas (2014) and Ercan 

and Kavvas (2016) have shown by numerical simulations that it is possible to obtain long waves in time and in 

space by means of the fractional governing equations of unsteady open channel flow.  5 

8. Conclusion 

In this study, a dimensionally-consistent continuity equation for transient groundwater flow in 

multi-fractional, multi-dimensional confined aquifers in fractional time was developed. It was then shown that 

as the fractional powers of time and space derivatives approach unity, the time-space fractional continuity 

equation approaches the conventional continuity equation for transient groundwater flow in a confined aquifer. 10 

For the motion equation of confined groundwater flow, or the equation of water flux within a multi-fractional 

multi-dimensional confined aquifer, a dimensionally consistent equation was also developed. It was shown that 

as the fractional powers of the spatial derivatives approach unity, the fractional water flux equation approaches 

the conventional Darcy's equation for groundwater specific discharge. 

The governing equation of transient groundwater flow in multi-fractional, multi-dimensional confined 15 

aquifers and in fractional time was then obtained by combining the fractional continuity and water flux 

equations. It was then shown that as the fractional powers of time and space derivatives approach unity, the 

time-space fractional governing equation of transient confined groundwater flow approaches the conventional 

governing equation with integer derivatives for transient groundwater flow in an anisotropic confined aquifer.  

To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, 20 

a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem 

was also performed. The modeling results indicate that the proposed governing equations may help explain the 

nonlocal effects in groundwater flow and may further help illustrate the associated non-Fickian transport in 

groundwater flow. 
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Figure 1. The control volume for the three-dimensional groundwater flow in confined aquifers. 
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Figure 2.  The reservoir example modified based on Wang and Anderson (1995) 

 

Figure 3. Non-dimensional groundwater hydraulic heads through time at       when fractional 

space and time derivatives are                 , where L is the length of the aquifer,    5 

and   are the fractional orders in space and time respectively. 

 


