

1 **Responses to the comments on “Contrasting terrestrial carbon cycle responses to**
2 **the two strongest El Niño events: 1997–98 and 2015–16 El Niños”**

3
4 Dear Referees and Editor,

5 Thank you very much for your efforts to deal with our manuscript and provide
6 constructive comments. We have tried our best to re-summarize the results, and modify
7 this manuscript accordingly. We also have our manuscript polished by the native
8 English-speaking expert. The following is our point-by-point reply to the comments.

9

10 **Reply to Referee #1**

11 1) Introduction: While the literature review is comprehensive and the introduction
12 clearly describes the problem and the state of the science, the novelty of this research
13 needs to be more clearly stated in the introduction. I suggest including a sentence ex-
14 plicitly stating how this research is novel compared to previous studies up front so the
15 reader can better understand how this research is set apart from other studies.

16 Reply: Thanks very much for your suggestions. We have added a sentence “Therefore,
17 it is important to have clear insight into the impacts of ENSO events on the terrestrial
18 carbon cycle, and this is best achieved through representative case studies.” in the
19 introduction to illustrate the importance of the comparison in the impacts between
20 1997/98 and 2015/16 El Niño events.

21

22 2) Conclusions and Discussion: The conclusions are clearly outlined and are consistent
23 with the interpretation of the results. However, this section seems to be more conclusion,
24 and is lacking in discussion. This left me interested with many questions that should be
25 added after the conclusions, such as the caveats of this study (model, datasets, etc.),
26 implications of the research (i.e., how does this research advance our science), and what,
27 if any, future research may be done to build on the conclusions established (i.e.,
28 additional model/data analysis, additional El Niño years analyzed, etc.). More dis-
29 cussion would tie the manuscript and the state of the science in better, and will give a
30 better big picture view.

31 Reply: Thanks very much for your suggestions. We have added some discussions after
32 conclusions according to your suggestions. Part of them is as below: “*It is important to*
33 *keep in mind that the responses of the terrestrial carbon cycle to the El Niño events in*
34 *this study were simulated using an individual DGVM (VEGAS), which, whilst highly*
35 *consistent with the variations in the CGR and inversion results, carries uncertainties in*
36 *terms of the regional responses because of, for example, its model structure, biological*
37 *processes considered, and parameterizations. Of course, uncertainties exist in all of the*
38 *state-of-the-art DGVMs. Fang et al. (2017) recently suggested that none of the 10*
39 *contemporary terrestrial biosphere models captures the ENSO-phase-dependent*
40 *responses. If possible, we will quantify the inter-model uncertainties in regional*
41 *responses of the terrestrial carbon cycle to El Niño events when the new round of*
42 *TRENDY simulations (1901–2016) becomes available. Although we used three*
43 *inversion datasets as reference for the VEGAS simulation in this study, they cover*
44 *different periods. Importantly, there are also large uncertainties between the different*
45 *atmospheric CO₂ inversions because of their different prescribed priors, a priori*
46 *uncertainties, inverse methods, and observational datasets (Peylin et al., 2013). Future*
47 *atmospheric CO₂ inversions may produce more accurate results based on more*
48 *observational datasets, including surface and satellite-based observations. ... ”. Details*
49 *can be seen in the context.*

50
51 References:
52 (1) Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T.,
53 Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-
54 Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an
55 ensemble of atmospheric CO₂ inversions, Biogeosciences, 10, 6699-6720, 2013.
56 (2) Fang, Y., Michalak, A. M., Schwalm, C. R., Huntzinger, D. N., Berry, J. A., Ciais,

57 P., Piao, S. L., Poulter, B., Fisher, J. B., Cook, R. B., Hayes, D., Huang, M. Y., Ito,
58 A., Jain, A., Lei, H. M., Lu, C. Q., Mao, J. F., Parazoo, N. C., Peng, S. S., Ricciuto,
59 D. M., Shi, X. Y., Tao, B., Tian, H. Q., Wang, W. L., Wei, Y. X., and Yang, J.:
60 Global land carbon sink response to temperature and precipitation varies with
61 ENSO phase, Environ. Res. Lett., 12, 064007, 2017.

62

63 **Technical Corrections:**

64 1) Line 16: It is not clear what CO₂ variability is being addressed. Perhaps, specify
65 “The large interannual atmospheric CO₂ variability. . .”

66 **Reply:** Thanks very much. We have modified it accordingly.

67

68 2) Line 21: Same comment as above, “Mauna Loa atmospheric CO₂ concentration. . .”

69 **Reply:** Thanks very much. We have modified it.

70

71 3) Line 42: “. . .opposing to the cooler in. . .” would read better as “opposing the
72 cooling in. . .”

73 **Reply:** Thanks very much. We have modified.

74 4) Line 68: for consistency and clarity, the variable “C_{fire}” should have a written
75 definition included like the other variables, such as “carbon flux from fire”.

76 **Reply:** Thanks. We have added the definition of “C_{fire}” according to your suggestion
77 in the context.

78

79 5) Line 73: “. . .involved in TRENDY project. . .” reads better as “involved in the
80 TRENDY project. . .”

81 **Reply:** Thanks for your suggestion. We have modified.

82

83 6) Line 80: a comma is needed before “respectively”, “. . . 56 and 44% respectively”

84 [Reply: Thanks very much. We have modified.](#)
85
86 7) Line 101: “. . .in 2015-16 years” reads better as “. . .in years 2015-16”
87 [Reply: Thanks very much. We have modified.](#)
88
89 8) Line 104: “. . .El Niños in 1997-98 years and 2015-16 years. . .” reads better as “. . .El
90 Niños in years 1997-98 and 2015-16. . .”
91 [Reply: Thanks very much. We have modified.](#)
92
93 9) Lines 119-120: Since more than one international project is listed, “. . .participated
94 in the international carbon modelling project...” should read “...participated in inter-
95 national modelling projects. . .”
96 [Reply: Thanks very much. We have modified.](#)
97
98 10) Line 123: “The detailed descriptions on its model structure. . .” reads better as “A
99 detailed description of its model structure. . .”
100 [Reply: Thanks very much. We have modified accordingly.](#)
101
102 11) Line 129: no space is needed before the comma after the reference in “. . .Anglia
103 Climatic Research Unit et al., 2014), NOAA’s. . .”
104 [Reply: Thanks very much. We have modified accordingly.](#)
105
106 12) Lines 149-150: Capitalize the expansion of the MACC acronym (e.g.,
107 “. . .Atmospheric Composition & Climate. . .”
108 [Reply: Thanks very much. We have modified accordingly.](#)
109
110 13) Line 168: Unit (K) is needed for temperature anomaly of 2.0
111 [Reply: Thanks very much. We have modified accordingly.](#)

112

113 14) Line 168: “El Niño event tends to. . .” reads better as “An El Niño event tends to. . .”

114 **Reply: Thanks very much. We have modified accordingly.**

115

116 15) Line 170: “growth rate” should be plural, “growth rates”

117 **Reply: Thanks very much. We have modified accordingly.**

118

119 16) Line 173: Remove extraneous period after Mount.

120 **Reply: Thanks very much. We have modified accordingly.**

121

122 17) Line 173: “...during 1982-83 El Niño event” reads better as “...during the 1982-83

123 El Niño event”

124 **Reply: Thanks very much. We have modified accordingly.**

125

126 18) Line 315: “...tropics, opposing to composite and. . .” reads better as “...tropics, as
127 opposed to the composite and...”

128 **Reply: Thanks very much. We have modified accordingly.**

129

130 19) Line 325: “...anomalously higher, opposing to the cooler during...” reads better as
131 “...anomalously higher, as opposed to the cooling during...”

132 **Reply: Thanks very much. We have modified accordingly.**

133

134 20) Line 331: “...more attentions have been paid on SIF..” reads better as “...more
135 attention has been paid to SIF”

136 **Reply: Thanks very much. We have modified accordingly.**

137

138 21) Line 338: “...increased over America, Southern South America...”. The location
139 needs to be better described. Perhaps change, “America” to “North America”.

140 [Reply: Thanks very much. We have modified accordingly.](#)
141
142 22) Line 339: "...but decreases" should be changed to past tense like the rest of the
143 sentence, "...but de- creased"
144 [Reply: Thanks very much. We have modified accordingly.](#)
145
146 23) Lines 340-341: "...anomalies were well corresponding to simulated. . ." reads
147 better as "...anomalies corresponded well to simulated. . ."
148 [Reply: Thanks very much. We have modified accordingly.](#)
149
150 24) Line 344: "add a comma after "disturbances for FTA,"
151 [Reply: Thanks very much. We have modified accordingly.](#)
152
153 25) Line 346: "Globally" should be lowercase
154 [Reply: Thanks very much. We have modified accordingly.](#)
155
156 26) Line 390: "...El Niño episode, opposing to GPP..." reads better as "...El Niño
157 episode, as opposed to GPP. . ."
158 [Reply: Thanks very much. We have modified accordingly.](#)
159
160 27) Line 393: The word "the" is not needed in the phrase "air temperature over the
161 North America"
162 [Reply: Thanks very much. We have modified accordingly.](#)
163
164 28) Lines 395-396: "...higher, oppos- ing the cooler in. . ." reads better as "...higher,
165 as opposed to the cooling in. . ."
166 [Reply: Thanks very much. We have modified accordingly.](#)
167

168 29) Line 400: “the” is needed in the phrase “. . .frequently happening in the tropics”
169 **Reply: Thanks very much. We have modified accordingly.**
170
171 30) Line 456: A period is needed after the reference for consistency
172 **Reply: Thanks very much. We have modified accordingly.**
173
174 31) Line 539: Randerson et al. reference does not follow alphabetical order. It should
175 be moved before Schwalm in line 531.
176 **Reply: Thanks very much. We have modified accordingly.**
177
178 32) Line 583: “a It represents. . .” the word “It” is not needed
179 **Reply: Thanks very much. We have modified accordingly.**
180
181 33) Line 593: MLO should be defined in the caption like the other acronyms are
182 **Reply: Thanks very much. We have modified accordingly.**
183
184 34) Line 607: “And the arrows” reads better as “The arrows”
185 **Reply: Thanks very much. We have modified accordingly.**
186
187 35) Line 609: “And the purple” reads better as “The purple”
188 **Reply: Thanks very much. We have modified accordingly.**
189
190 36) Line 609: “denotes result” reads better as “denotes the result”
191 **Reply: Thanks very much. We have modified accordingly.**
192
193 37) Line 613: the lat/lon coordinates for extratropical NH and tropics should be defined
194 in the caption so the reader doesn’t have to skim through the text when looking at the
195 figure.

196 Reply: Thanks very much. We have modified accordingly.

197

198 38) Line 622: the lat/lon coordinates for extratropical NH and tropics should be defined
199 in the caption so the reader doesn't have to skim through the text when looking at the
200 figure.

201 Reply: Thanks very much. We have modified accordingly.

202

203 39) Line 635: Figure 6 colorbar values are too small to read. Perhaps, include only 1
204 larger bar for each variable on the figure, rather than 3 small colorbars.

205 Reply: Thanks for your suggestions. We have tried our best to zoom in the colorbars. It
206 looks better now.

207

208

Reply to Referee #2

210 (1) But my major concern regarding this paper is the data constraints they applied. The
211 authors need to confirm their readers that atmospheric CO₂ growth rate can provide
212 constraint on a single event, and on small regional scales. The authors have shown
213 that VEGAS is highly correlated with atmospheric CO₂ growth rate, however, this
214 does not ensure that VEGAS can capture net CO₂ flux anomalies from a single
215 event. For example, a recent study on ERL by Fang et al. found that mechanistic
216 models can capture ENSO response fairly well when all years are considered,
217 however, they all have some issues when considering only El Nino or La Nina years.
218 It is ok to use VEGAS to explore the driving mechanisms; however, some caveats
219 are needed.

220 Reply: Thanks very much for your suggestions. I totally agree with you that there are
221 biases in all of the state-of-the-art model simulations (Piao et al., 2013; Sitch et al.,
222 2015; Wang et al., 2016). Also, the atmospheric CO₂ growth rate indeed cannot provide
223 any constraint on regional scales. So we take some recent datasets including three
224 inversions (MACC, CAMS, and CarbonTracker) and satellite-based observations (EVI

225 and SIF) as reference for spatial simulations by VEGAS. Of course, uncertainties exist
226 among inversion datasets because of their different prescribed priors, a priori
227 uncertainties, inverse methods, and observational datasets selected (Peylin et al, 2013).
228 Maybe future inversions can give us more accurate results with the increased surface
229 and satellite-based CO₂ observations. Accordingly, we have added some discussions
230 after the concluding remarks to inform readers that model and datasets used all have
231 biases (or uncertainties). There is still a long road to improve DGVMs in modelling
232 community.

233

234

235 (2) I agree with the other reviewer that statistical significance tests for anomalies,
236 composites etc are needed, which may help strengthen the paper (i.e., Figure 2,3,4
237 etc).

238 **Reply:** Thanks very much for your suggestions. We have made the statistical
239 significance tests for composite anomalies based on the bootstrap estimation and
240 Student's *t*-test. You can see them in the modified paper.

241

242 (3) I also agree with the other reviewer that it would be good to check whether
243 seasonal evolution of climatic drivers, GPP and Respiration matter.

244 **Reply:** Thanks very much. In this paper, we mainly focus on the contrasting responses
245 of terrestrial carbon cycle to the two extreme El Ninos (1997/98 and 2015/16) during
246 the whole El Nino period. Also, we covered some information of seasonal evolutions
247 in total C flux anomaly section (seen in Figure 2-4). The spatial seasonal evolutions
248 during the El Nino events are also a good topic. Actually, we also want to present the
249 seasonal evolutions during the 2015/16 El Nino with temperature and precipitation
250 regional contributions by model sensitivity experiments in another paper.

251

252 (4) My other comment is about the fire emissions. The authors mentioned that FTA
253 anomaly is 1.95 Pg C per yr during 1997-1998, while is 0.8 Pg C per yr during
254 2015- 2016 (that is, 1.1 Pg C per yr difference between two events). In their paper,
255 they showed that the difference of fire emission of CO2 from GFED is 0.82 Pg C
256 per yr between these two events, so fire emissions only can explain 70% of the
257 difference between two ENSO events, is this correct? Is it fair to conclude that fire
258 emission dominates the difference and thus explore why fire emission differs in
259 the paper?

260 **Reply:** Thanks very much. But I disagree with you.

261 First, according to $\delta F_{TA} \cong \delta TER - \delta GPP + \delta C_{fire}$, we can get $\delta F_{TA} = 1.14 \text{ Pg C yr}^{-1}$
262 1 , $\delta TER = -1.14 \text{ Pg C yr}^{-1}$, $\delta GPP = -1.9 \text{ Pg C yr}^{-1}$, and $\delta C_{fire} = 0.38 \text{ Pg C yr}^{-1}$ between
263 1997/98 and 2015/16 El Ninos simulated by VEGAS, respectively. So F_{TA} difference
264 between two events is largely determined by differences in TER and GPP. Of course,
265 fire emissions simulated by VEGAS was underestimated in 1997/98 (Table 2).

266 Second, GFED fire emission datasets used here only covers the period from 1997
267 through 2014 (Randerson et al., 2015). So we only have the Cfire anomaly with the
268 value of 0.82 Pg C yr⁻¹ in 1997/98 without the values in 2015/16. We cannot say “the
269 difference of fire emission of CO2 from GFED is 0.82 Pg C per yr between these two
270 events”. So It is wrong that fire emissions can explain 70% of the difference between
271 two ENSO events. We need more up-to-date observations to quantify the difference in
272 fire emissions between two extreme El Ninos.

273

274 **Detailed comments:**

275 (1) abstract: seems to be too long, and has two paragraphs. Better to shorten it.

276 **Reply:** Thanks for your suggestions. We have tried our best to make the abstract clear
277 and concise.

278

279 (2) I wonder if “two strongest El Nino events” used in the title and through- out the
280 paper is appropriate. First, two strongest events are defined only since 1980, right?
281 So it is not in history. Second, how to define how strong an El Nino is depends on
282 which aspects you talked about. I would probably just use two strong El Nino
283 events or two extreme El Nino events instead to make the statement more
284 accurate.

285 **Reply:** Thanks for your constructive suggestions. We have modified “two strongest El
286 Nino events” into “the extreme El Nino events” throughout the paper.

287

288 (3) Explain somewhere early in the paper that positive sign of the carbon fluxes
289 discussed here means to the atmosphere.

290 **Reply:** Thanks for your suggestions. We have added this information in the second
291 paragraph in Introduction as follows “Directly, land-atmosphere C flux (F_{TA} , positive
292 sign meaning a flux into the atmosphere) is mainly attributable to the imbalance
293 between the gross primary productivity (GPP) and terrestrial ecosystem respiration
294 (TER)…”

295

296 (4) Introduction: There are actually more observation-based studies that argue
297 temperature is more important driver. While many of the paper cited here in Line
298 78 are mostly model-based results, and models have been shown to over- estimate
299 the role of precipitation (see, Piao et al., 2013 and Fang et al. 2017)

300 **Reply:** Thanks very much for your suggestions. We have added some paper such as
301 Clark et al., 2003, Doughty et al., 2008 in Introduction to illustrate the observation-
302 based evidence for temperature dominance.

303

304 (5) Introduction: line 86, here “sensitivity analysis” is not the right word and is
305 misleading for this paper (wang et al., 2013), I think this number is the slope
306 based on regression analysis.

307 **Reply:** Thanks very much. We have modified “sensitivity analysis” into “regression
308 analysis” according to your suggestions.

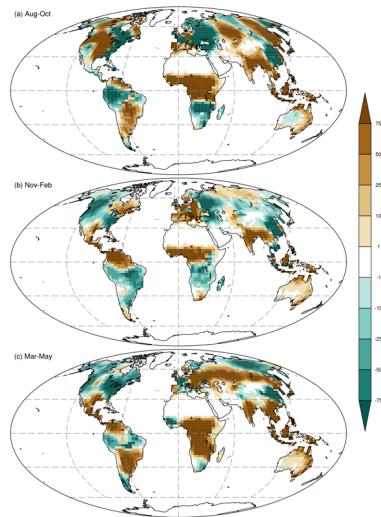
309

310 (6) Results: Line 184-185: it is true that models can capture the general re- sponse to
311 ENSO with a moderate correlation coefficient. However, a recent ERL study
312 shows they have problem in capturing response to El Nino vs Response to La
313 Nina.

314 **Reply:** Thanks very much. DGVM models can well capture the response to ENSO with
315 significant correlation coefficients (In this paper and Figure 5 in Wang et al., 2016) in
316 long time series on interannual time scales. We also agree that there are biases in certain
317 El Nino or La Nina event, about which we have added some discussions. We also added
318 Fang et al. (2017) study result in the discussion to inform that state-of-the-art DGVMs
319 may still have some problem in capturing response to El Nino vs Response to La Nina.
320 In this paper, we also used three inversion results as references for VEGAS simulations.
321 The spatial anomaly of F_{TA} in VEGAS in 2015/16 is consistent with that in
322 CarbonTracker. This consistency gives us some confidence in model simulation results.

323

324 (7) Results: line 196-197, why use the mean of CAMs and MACC?


325 **Reply:** Thanks very much. These two inversion datasets (CAMS and MACC,
326 Chevallier, 2013) have similar results on the interannual time scales (Figure 1). So we
327 take the mean of them as one reference dataset in the study.

328

329 (8) Figure 2c and 3d, why there appears to be two strong peaks for the inversion?

330 **Reply:** It’s a good question. Comparing Figure 2c and 3d, we can know the two peaks
331 mainly come from the tropical anomalies. We here present evolution of the spatial
332 anomalies in CAMS and MACC during 1997/98 (Figure R.1). We can clearly see that
333 strong positive anomalies occurred over the Indonesia, South Asia, Africa, part of
334 Amazon, and Southern South America in tropics during the two peak periods (Aug-Oct

335 1997 and Mar-May 1998). In contrast, strong negative anomalies occurred over
336 southern Africa and southern South America during the low period (Nov 1997 to Feb
337 1998).

338
339 Figure R.1. F_{TA} evolutions in CAMS and MACC during 1997/98 El Nino.

340

341 **Reference:**

342 (1) Chevallier, F.: On the parallelization of atmospheric inversions of CO_2 surface
343 fluxes within a variational framework, *Geosci Model Dev*, 6, 783-790, 2013.

344 (2) Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B.: Tropical rain forest tree
345 growth and atmospheric carbon dynamics linked to internnual tempreature variation
346 during 1984-2000, *P. Natl. Acad. Sci. USA*, 100, 5852-5857, 2003.

347 (3) Doughty, C. E., and Goulden, M. L.: Are tropical forests near a high temperature
348 threshold?, *J. Geophys. Res.*, 113, G00B07, 2008.

349 (4) Fang, Y., Michalak, A. M., Schwalm, C. R., Huntzinger, D. N., Berry, J. A., Ciais,
350 P., Piao, S. L., Poulter, B., Fisher, J. B., Cook, R. B., Hayes, D., Huang, M. Y., Ito,
351 A., Jain, A., Lei, H. M., Lu, C. Q., Mao, J. F., Parazoo, N. C., Peng, S. S., Ricciuto,

352 D. M., Shi, X. Y., Tao, B., Tian, H. Q., Wang, W. L., Wei, Y. X., and Yang, J.: Global
353 land carbon sink response to temperature and precipitation varies with ENSO phase,
354 Environ. Res. Lett., 12, 064007, 2017.

355 (5) Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T.,
356 Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx,
357 I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble
358 of atmospheric CO₂ inversions, Biogeosciences, 10, 6699-6720, 2013.

359 (6) Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A.,
360 Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P.
361 E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter,
362 B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial
363 carbon cycle models for their response to climate variability and to CO₂ trends,
364 Global Change Biology, doi: 10.1111/gcb.12187, 2013. 2117–2132, 2013.

365 (7) Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J. and Kasibhatla, P.
366 S.:Global Fire Emissions Database, Version 4, (GFEDv4). ORNL DAAC, Oak
367 Ridge, Tennessee, USA. <http://dx.doi.org/10.3334/ORNLDaac/1293>, 2015.

368 (8) Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G.,
369 Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy,
370 P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,
371 G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin,
372 P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and
373 drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-
374 679, 2015.

375 (9) Wang, J., Zeng, N., and Wang, M.: Interannual variability of the atmospheric CO₂
376 growth rate: roles of precipitation and temperature, Biogeosciences, 13, 2339-2352,
377 2016.

378 **Contrasting terrestrial carbon cycle responses to the 1997/98 and**
379 **2015/16 extreme El Niño events**

删除的内容: two strongest El Niño events: 1997-98 and
2015-16 El Niños

380 Jun Wang^{1,2}, Ning Zeng^{2,3}, Meirong Wang⁴, Fei Jiang¹, Hengmao Wang¹, and Ziqiang
381 Jiang¹

382 ¹International Institute for Earth System Science, Nanjing University, Nanjing, China

383 ²State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid
384 Dynamics, Institute of Atmospheric Physics, Beijing, China

385 ³Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary
386 Center, University of Maryland, College Park, Maryland, USA

387 ⁴Collaborative Innovation Center on Forest and Evaluation of Meteorological Disasters/Key
388 Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of
389 Information Science & Technology, Nanjing, China

390 Correspondence to: J. Wang (wangjun@nju.edu.cn)

391

392 **Abstract**

393 Large interannual atmospheric CO₂ variability is dominated by the response of the
394 terrestrial biosphere to El Niño–Southern Oscillation (ENSO). However, the behavior
395 of terrestrial ecosystems differs during different El Niños in terms of patterns and
396 biological processes. Here, we comprehensively compare two extreme El Niños
397 (2015/16 and 1997/98) in the context of a multi-event ‘composite’ El Niño. We find
398 large differences in the terrestrial carbon cycle responses, even though the two events
399 were of similar magnitude.

400

401 More specifically, we find that the global-scale land–atmosphere carbon flux (F_{TA})
402 anomaly during the 1997/98 El Niño was 1.64 Pg C yr⁻¹ but half that quantity during
403 the 2015/16 El Niño (at 0.73 Pg C yr⁻¹). Moreover, F_{TA} showed no obvious lagged

删除的内容: The 1

删除的内容: -

删除的内容: s

删除的内容: in different El Niño events.

删除的内容: we conduct a comprehensive comparison of the two strongest El Niño events in history, namely, the recent 2015-16 event, and the earlier 1997-98 event in the context of multi-event ‘composite’ El Niño.

删除的内容: We analyze Mauna Loa CO₂ concentration, surface carbon fluxes from three atmospheric inversions, and a mechanistic carbon cycle model VEGAS.

删除的内容: the

删除的内容: the two El Niño events

删除的内容: are

删除的内容: We

删除的内容: -

删除的内容: in

删除的内容: -

删除的内容: 95

删除的内容: -

删除的内容: globally

删除的内容: two times smaller

删除的内容: -

删除的内容: 9

删除的内容: -

删除的内容: We also find that

删除的内容: had

433 response during the 2015/16 El Niño, in contrast to that during 1997/98. Separating the
434 global flux by geographical regions, the fluxes in the tropics and extratropical northern
435 hemisphere were 1.70 and -0.05 Pg C yr⁻¹ during 1997/98, respectively. During
436 2015/16, they were 1.12 and -0.52 Pg C yr⁻¹, respectively. Analysis of the mechanism
437 shows that, in the tropics, the widespread drier and warmer conditions caused a
438 decrease in gross primary productivity (GPP, -0.73 Pg C yr⁻¹) and an increase in
439 terrestrial ecosystem respiration (TER, 0.62 Pg C yr⁻¹) during the 1997/98 El Niño. In
440 contrast, anomalously wet conditions occurred in the Sahel and East Africa during
441 2015/16, which caused an increase in GPP, compensating for its reduction in other
442 tropical regions. As a result, the total 2015/16 tropical GPP and TER anomalies were
443 -0.03 and 0.95 Pg C yr⁻¹. GPP dominance during 1997/98 and TER dominance during
444 2015/16 accounted for the phase difference in their F_{TA} . In the extratropical northern
445 hemisphere, the large difference occurred because temperatures over Eurasia were
446 warmer during the 2015/16, as compared with the cooling seen during the 1997/98 and
447 the composite El Niño. These warmer conditions enhanced GPP and TER over Eurasia
448 during the 2015/16 El Niño, while these fluxes were suppressed during 1997/98. The
449 total extratropical northern hemisphere GPP and TER anomalies were 0.63 and 0.55 Pg
450 C yr⁻¹ during 1997/98 and 1.90 and 1.45 Pg C yr⁻¹ during 2015/16, respectively.
451 Additionally, wildfires played a less important role during the 2015/16 than during the
452 1997/98 El Niño.

删除的内容: in ...uring the 2015-...16 El Niño, in contrast to that during in ...997-...98 El Niño... Separating the global flux by major...geographical regions, during 1997-98,...the fluxes in the tropics and extratropical northern hemisphere were 1.7098
[... [1]]

删除的内容: 4...Pg C yr⁻¹... during 1997/98, respectively. During 2015-...16, these ...hey were 1.1207
[... [2]]

删除的内容: 4...Pg C yr⁻¹... respectively. Analysis of the mechanism shows that, in the tropics, the widespread drier and warmer conditions caused the ... decrease in gross primary productivity (GPP);
[... [3]]

删除的内容: 1.11... Pg C yr⁻¹...) and an increase in terrestrial ecosystem respiration (TER, ...0.62.49...Pg C yr⁻¹) during thein...1997/-...8 El Niño. During 2015-16, i...n contrast, anomalously wet conditions occurred in the Sahel and East Africa during 2015/16, that ...hich caused an increase in GPP, compensating for its decrease ...eduction in over ...ther tropical regions. As a result, the total 20[... [4]]

删除的内容: 2...39...and 0.951.23...Pg C yr⁻¹... GPP dominance during 1997-...98 and TER dominance during 2015-...16 accounted for the phase difference in their F_{TA} . In the extratropical northern hemisphere, the we find that temperature was warmer both in 1997-98 and 2015-16 El Niños over North America, contributing to enhancements in GPP and TER. However, ...arge difference occurred because temperatures over Eurasia was ...ere warmer in ...uring the 2015-...16 El Niño... opposing ...s compared with to ...he cooler ...ooling seen in ...uring the 1997-...98 and the composite El Niño El Niño events... This ...hese warmer conditions enhanced GPP and TER over the ...urasia in ...uring the 2015-...6 El Niño, compared to their suppressions...hile these fluxes were suppressed in ...uring 1997-...98 El Niño... The total extratropical northern hemisphere GPP and TER anomalies were 0.6386...and 0.5574...Pg C yr⁻¹ in ...uring 1997-...98 El Niño ... and 1.908...and 1.457...Pg C yr⁻¹ in ...uring 2015-...16 El Niño... respectively. Additionally, we find that ...ildfires played a less important roles ...in ...uring the 2015-...6 El Niño...than in ...uring the 1997-...
[... [5]]

562 1 Introduction

563 The atmospheric CO₂ growth rate has significant interannual variability, greatly
564 influenced by the El Niño–Southern Oscillation (ENSO) (Bacastow, 1976; Keeling et
565 al., 1995). This interannual variability primarily stems from terrestrial ecosystems
566 (Bousquet et al., 2000; Zeng et al., 2005). There is also a general consensus that the
567 tropical terrestrial ecosystems account for the terrestrial carbon variability (Cox et al.,
568 2013; Peylin et al., 2013; Wang et al., 2016; Wang et al., 2013; Zeng et al., 2005). They
569 tend to release anomalous levels of carbon flux during El Niño episodes, and take up
570 carbon during La Niña events (Wang et al., 2016; Zeng et al., 2005). Recently, Ahlstrom
571 et al. (2015) further suggested that ecosystems in semi-arid regions dominated the
572 terrestrial carbon interannual variability with a 39% contribution.

573 The terrestrial dominance primarily results from the drive-response mechanisms in
574 climate variability (especially in temperature and precipitation) caused by ENSO and
575 plant/soil physiology (Jung et al., 2017; Tian et al., 1998; Wang et al., 2016; Zeng et al.,
576 2005). The land–atmosphere carbon flux (F_{TA} – positive sign meaning a flux into the
577 atmosphere) can mainly be attributed to the imbalance between the gross primary
578 productivity (GPP) and terrestrial ecosystem respiration (TER), according to $F_{TA} \equiv$
579 $TER - GPP + C_{fire}$, where the carbon flux from wildfires (C_{fire}) is generally much
580 smaller than the GPP or TER. Therefore, variations in each or both result in the
581 changes in F_{TA} .
582 Based on a dynamical global vegetation model (DGVM), Zeng et al. (2005) found that
583 net primary productivity (NPP) contributed to almost three quarters of the tropical F_{TA}
584 interannual variability. Multi-model simulations involved in the TRENDY project and
585 CMIP5 have consistently suggested that NPP or GPP dominate the terrestrial carbon
586 variability (Ahlstrom et al., 2015; Kim et al., 2016; Piao et al., 2013; Wang et al., 2016).

删除的内容: a

删除的内容: -

删除的内容: Further, t

删除的内容: anomalously

删除的内容: C

删除的内容: uptake

删除的内容: in

删除的内容: episodes

删除的内容: over the

删除的内容: its

删除的内容: s

删除的内容: Directly,

删除的内容: -

删除的内容: C

删除的内容: is

删除的内容: attributable

删除的内容: ,

删除的内容: =

删除的内容: (

删除的内容:)

删除的内容: So

删除的内容: of them

删除的内容: variations

删除的内容: pointed

删除的内容: out

删除的内容: fourth

删除的内容: Later,

删除的内容: m

删除的内容: d

616 These biological process analyses suggest that precipitation variation is the dominant
617 climate factor in controlling F_{TA} interannual variability (Ahlstrom et al., 2015; Qian et
618 al., 2008; Tian et al., 1998; Wang et al., 2016; Zeng et al., 2005). Qian et al. (2008)
619 calculated the contributions of tropical precipitation and temperature as 56% and 44%,
620 respectively, based on model sensitivity experiments. Eddy covariance network
621 observations have suggested that the interannual carbon flux variability over tropical
622 and temperate regions is controlled by precipitation, while boreal ecosystem carbon
623 fluxes are more affected by temperature and radiation (Jung et al., 2011). At the same
624 time, there is a significant positive correlation between the atmospheric CO_2 growth
625 rate and mean tropical land temperature (Anderegg et al., 2015; Cox et al., 2013; Wang
626 et al., 2013; Wang et al., 2014). Regression analysis indicates an anomaly of
627 approximately 3.5 Pg C yr^{-1} in the CO_2 growth rate with a 1°C increase in tropical land
628 temperature, whereas a weaker interannual coupling exists between the CO_2 growth
629 rate and tropical land precipitation (Wang et al., 2013). Clark et al. (2003) and Doughty
630 et al. (2008) also concluded, based on in-situ observations, that warming anomalies can
631 reduce tropical tree growth and CO_2 uptake. Therefore, considering this strong
632 emergent linear relationship, these studies (Anderegg et al., 2015; Cox et al., 2013;
633 Clark et al., 2003; Doughty et al., 2008; Wang et al., 2013; Wang et al., 2014) have
634 suggested that temperature dominates the interannual variability of the F_{TA} or CO_2
635 growth rate. To reconcile these contradictory reports, Jung et al. (2017) showed that the
636 temporal and spatial compensatory effects in water availability link the yearly global
637 F_{TA} variability to temperature. Fang et al. (2017) suggested an ENSO-phase-dependent
638 interplay between water availability and temperature in controlling the tropical
639 terrestrial carbon cycle response to climate variability.

640 Apart from these long-term time series studies on the interannual F_{TA} or CO_2 growth

删除的内容: inferred

删除的内容: was

删除的内容: Quantitatively,

删除的内容: illustrated

删除的内容: the

删除的内容: were

删除的内容: the

删除的内容: C

删除的内容: the

删除的内容: was

删除的内容: C

删除的内容: were

删除的内容: subject to

删除的内容: was

删除的内容: Sensitivity

删除的内容: indicated

删除的内容: about

删除的内容: -

删除的内容:

删除的内容: anomaly

删除的内容: $^\circ\text{C}$

删除的内容: only

删除的内容: existed

带格式的: 下标

删除的内容: the

删除的内容: dominance

删除的内容: in

删除的内容: interannual variations, considering this strong emergent linear relationship.

删除的内容: Recently, in order to

删除的内容: illustrated

删除的内容: linked

rate variability, we should keep in mind that the terrestrial carbon cycle responds in a unique way in terms of its strength, spatial patterns, biological processes, to every El Niño/La Niña event (Schwalm, 2011). For example, wildfires played an important role in the F_{TA} anomalies during the 1997/98 El Niño (van der Werf et al., 2004). Therefore, it is important to have clear insight into the impacts of ENSO events on the terrestrial carbon cycle, and this is best achieved through representative case studies. Recently, one of the three extreme El Niño events in recorded history occurred in 2015/16 (<https://www.esrl.noaa.gov/psd/enso/current.html>). Because of the interference of the El Chichón eruption during the extreme El Niño case in 1982/83, we chose to compare in detail the response of terrestrial ecosystems in the other two extreme El Niño events, i.e., in 1997/98 and 2015/16, in the context of a multi-event ‘composite’ El Niño, based on the VEGAS DGVM in its near-real-time framework and inversion datasets [Copernicus Atmosphere Monitoring Service (CAMS), Monitoring Atmospheric Composition & Climate (MACC), and CarbonTracker]. The purpose is to clarify the different responses of biological processes in these two extreme events.

The paper is organized as follows: Section 2 describes the mechanistic carbon cycle model used, its drivers, and reference datasets. Section 3 presents the results of the total terrestrial carbon flux anomalies and spatial patterns, along with their mechanisms. Finally, a discussion and concluding remarks are provided in Section 4.

2 Model, datasets and Methods

2.1 Mechanistic carbon cycle model and its drivers

We used the state-of-the-art VEGAS DGVM, version 2.4, in its near-real-time framework, to investigate the responses of terrestrial ecosystems to El Niño events. VEGAS has been widely used to study the terrestrial carbon cycle on its seasonal cycle,

删除的内容: response of

删除的内容: n

删除的内容: has its unique behaviors such as in the strength, spatial pattern, biological process, and so on

删除的内容: the

删除的内容: -

删除的内容: strongest

删除的内容: -

删除的内容: years

删除的内容: Given the disturbance of

删除的内容: in 1982-83 El Niño episode

删除的内容: we here attempt to comprehensively compare the responses of terrestrial ecosystems to the two strongest El Niños in 1997-98 and 2015-16 years in the context of multi-event ‘composite’ El Niño, based on DGVM VEGAS in its Near-Real Time framework,

删除的内容: (CAMS, MACC, and CarbonTracker) and so on

删除的内容: Our

删除的内容: distinctions in

删除的内容: This

删除的内容: about

删除的内容: C

删除的内容: s

删除的内容: illustrated in Sect.

删除的内容: and

删除的内容: In this study, w

删除的内容: Near

删除的内容: Real

删除的内容: T

727 interannual variability, and long-term trends (Zeng et al., 2005; Zeng et al., 2004; Zeng et al., 2014). The model has also extensively participated in international carbon
728 modelling projects, such as the Coupled Climate–Carbon Cycle Model Intercomparison
729 Project (C⁴MIP) (Friedlingstein et al., 2006), the TRENDY project (Sitch et al., 2015)
730 and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)
731 (Huntzinger et al., 2013). A detailed description of the model structure and biological
732 processes can be found in the appendix of Zeng et al. (2005). We ran VEGAS at the
733 0.5°×0.5° horizontal resolution from 1901 until the end of 2016, and focused on the
734 period from 1980 to 2016.

735 The climate fields used to force VEGAS were:

736 (1) Precipitation datasets generated by combining the Climatic Research Unit (CRU)
737 Time-series (TS) Version 3.22 (University of East Anglia Climatic Research Unit et al.,

738 2014), NOAA's Precipitation Reconstruction over Land (PREC/L) (Chen et al., 2002),
739 and the NOAA–NCEP Climate Anomaly Monitoring System–Outgoing Longwave
740 Radiation Precipitation Index (CAMS-OPI) (Janowiak and Xie, 1999).

741 (2) Temperature data from the CRU TS3.22 before the year 2013, and generated by
742 combining the CRU 1981–2010 climatology and the Goddard Institute for Space
743 Studies (GISS) Surface Temperature Analysis (GISTEMP) (Hansen et al., 2010) after
744 2013.

745 (3) Downward shortwave radiation from the driver datasets in MsTMIP (Wei et al.,
746 2014) before 2010, with the value of the year 2010 repeated for subsequent years.

747 (4) The gridded cropland and pasture land use datasets integrated from the History
748 Database of the Global Environment (HYDE) (Klein Goldewijk et al., 2011) with an
749 linear extrapolation in 2016.

750

删除的内容: And it

删除的内容:

删除的内容: participated

删除的内容: the

删除的内容: -

删除的内容:)

删除的内容: (

删除的内容: The detailed descriptions on

删除的内容: its

删除的内容: ,

删除的内容: , and so on

删除的内容: referred to

删除的内容: in

删除的内容: on

删除的内容: 1

删除的内容: year

删除的内容: are as follows

删除的内容: are

删除的内容:

删除的内容: PRECipitation

删除的内容: REConstruction

删除的内容:

删除的内容: climate

删除的内容: anomaly

删除的内容: monitoring

删除的内容: system

删除的内容: outgoing

删除的内容: longwave

删除的内容: radiation

删除的内容: precipitation

删除的内容: i

删除的内容: is adopted

删除的内容: -

删除的内容: is retrieved

删除的内容: the year

删除的内容: and repeated the value of the year 2010 after it

删除的内容: Additionally,

删除的内容: t

删除的内容: are

791 **2.2 Reference datasets**

792 We selected a series of reference datasets to compare to the VEGAS simulation. The
793 atmospheric CO₂ concentrations were from the monthly in-situ CO₂ datasets at the
794 Mauna Loa Observatory, Hawaii (Keeling et al., 1976). The Niño 3.4 (120°W–170°W,
795 5°S–5°N) sea surface temperature anomaly (SSTA) data were from the NOAA's
796 Extended Reconstructed Sea Surface Temperature (ERSST) dataset, version 4 (Huang
797 et al., 2015), with a three-month running average. We compared the CAMS (1980–
798 2015) and MACC (1980–2014) inversion results (Chevallier, 2013), and the
799 CarbonTracker2016 (2000–2015) with the CarbonTracker near-real time results from
800 2016 (Peters et al., 2007) with VEGAS. The F_{TA} in CarbonTracker was calculated by
801 the sum of the posterior biospheric flux and its imposed fire emissions. The Satellite-
802 based fire emissions were from the Global Fire Emissions Database, Version 4
803 (GFEDv4) from 1997 through 2014 (Randerson et al., 2015). Owing to the high
804 correlation between the solar-induced chlorophyll fluorescence (SIF) and terrestrial
805 GPP (Guanter et al., 2014), we selected the monthly satellite SIF from the GOME2_F
806 version 26 from 2007 to 2016 (Joiner et al., 2012). We also compared the Enhanced
807 Vegetation Index (EVI) from MODIS MOD13C2 (Didan, 2015) with the simulated leaf
808 area index (LAI) anomalies.

809
810 **2.4 Methods**

811 To calculate the anomalies during the El Niño events, we first removed the long-term
812 climatology in each dataset for getting rid of seasonal cycle signals. We then detrended
813 them based on the linear regression, because the trend was mainly caused by long-term
814 CO₂ fertilization and climate change. We used these detrended monthly anomalies to
815 investigate the impacts of El Niño events on the terrestrial carbon cycle.

删除的内容: here take
删除的内容: as a
删除的内容: comparison
删除的内容: with
删除的内容: simulation of
删除的内容: are
删除的内容: anomalies
删除的内容: are
删除的内容: adopted
删除的内容: 3
删除的内容: take
删除的内容: Copernicus Atmosphere Monitoring Service (CAMS)
删除的内容: ,
删除的内容: , Monitoring atmospheric composition & climate (MACC)
删除的内容: ,
删除的内容: ,
删除的内容: 01
删除的内容: 12
删除的内容: Near
删除的内容: Real
删除的内容: T
删除的内容: in
删除的内容: to compare
带格式的: 下标
删除的内容: F
删除的内容: come
删除的内容: take
删除的内容: till
删除的内容: Another, w
删除的内容: adopt
删除的内容: to compare

带格式的: 字体: (默认) Times New Roman, 粗体
删除的内容: In order to get
删除的内容: the
删除的内容: ,
删除的内容: and then
删除的内容: is not caused by the interannual variability
带格式的: 下标

854 **3 Results**855 **3.1 Total terrestrial carbon flux anomalies**

856 Three extreme El Niño events (1982/83, 1997/98, and 2015/16) occurred from 1980 to
 857 2016, with their maximum SST As above 2.0 K (Fig. 1a). An El Niño event tends to
 858 anomalously increase the atmospheric CO₂ growth rate (Fig. 1b); therefore, there are
 859 two significant anomalous increases in CO₂ growth rate that correspond to the 1997/98
 860 and 2015/16 El Niño events, although the maximum increase in 2015/16 was slightly
 861 less than that in 1997/98. Because of the diffuse light disturbance (Mercado et al., 2009)
 862 of the Mount El Chichón eruption during the 1982/83 El Niño on the canonical coupling
 863 between the anomalies of the CO₂ growth rate anomalies and El Niño events, we mainly
 864 focused on the 1997/98 and 2015/16 El Niño events in this study. The interannual
 865 variability of the atmospheric CO₂ growth rate principally originates from the terrestrial
 866 ecosystems (Fig. 1c). The correlation coefficient between the CO₂ growth rate
 867 anomalies and the global F_{TA} simulated by VEGAS was 0.60 ($p < 0.05$). In order to
 868 evaluate the performance of the VEGAS simulation on the interannual time scale, we
 869 also present CAMS, MACC and CarbonTracker inversion results. The CAMS and
 870 MACC inversions were nearly the same, with a correlation coefficient of approximately
 871 0.60 ($p < 0.05$) with VEGAS. From 2000 to 2016, CarbonTracker was highly correlated
 872 with VEGAS ($r = 0.67$, $p < 0.05$). These high correlation coefficients between VEGAS
 873 and the reference datasets indicate that VEGAS can capture the terrestrial carbon cycle
 874 interannual variability well.

875 There were 10 El Niño events from 1980 to 2016, each with a different duration and
 876 strength (Table 1). According to the definition of El Niño, these 10 events can be

删除的内容: C

删除的内容: strongest ...xtreme El Niño events (1982...83, 1997...98, and 2015...16) occurred from 1980 to 2016, with their maximum SST anomalies...s above 2.0 K (Fig. 1a). An El Niño event tends to make the atmospheric CO₂ growth rate anomalously increase

[6]

删除的内容:so ...herefore, there are two significant anomalously...increases ind...CO₂ growth rate that corresponding ...orrespond to the 1997...98 and 2015...16 El Niño events ...Though ...although the maximum increase in 2015...16 is ...as a little...ightly smaller ...ess than that in 1997...98. Owing to...cause of the diffuse light disturbance (Mercado et al., 2009) of the eruption of ...ount...El Chichón eruption during the 1982...83 El Niño event ...n the canonical coupling between the anomalies of the CO₂ growth rate anomalies and El Niño events, we mainly focused on the 1997...98 and 2015...16 El Niño events in this study. The interannual variability of the atmospheric CO₂ growth rate principally originates from the terrestrial ecosystems (Fig. 1c). The correlation coefficient between the CO₂ growth rate anomalies and the global F_{TA} simulated by VEGAS is ...as 0.64 ...0 ($p < 0.05$). In order to evaluate the performance of the VEGAS simulation on the interannual time scale, we at the same time...lso present CAMS, MACC and CarbonTracker inversion results. We find that...he CAMS and MACC inversions are ...er nearly the same, both having the...ith a correlation coefficient of about ...pproximately 0.60 ($p < 0.05$) with VEGAS. From 2000 through ...o 2016, CarbonTracker is ...as highly correlated with VEGAS ($r = 0.71...7$, $p < 0.05$). These high correlation coefficients between VEGAS and the reference datasets underscore ...indicate that VEGAS can well ...apture the terrestrial carbon cycle interannual variability w...

[7]

带格式的: 下标

删除的内容: are altogether...ere 10 El Niño events from 1980 through ...o 2016, each with a different duration and strength (Table 1). According to the El Niño ...efinition,...of El Niño, we can find that ...hese 10 El Niño

[8]

962 categorized into ~~two~~ weak (with a 0.5 to 0.9 SSTA), ~~three~~ moderate (1.0 to 1.4), ~~two~~
963 strong (1.5 to 1.9), and ~~three~~ very strong (≥ 2.0) events. ~~During the~~ 1997/98 El Niño,
964 the positive SSTA lasted from April 1997 to June 1998, while ~~the~~ positive SSTA
965 ~~occurred~~ in winter 2014, and extended to June 2016 in ~~the~~ 2015/16 El Niño (Fig. 2a).
966 However, every El Niño event always peaks in winter (November or December, Fig.
967 2a). Considering this phase-lock phenomenon in ~~the~~ El Niño events, we ~~produced~~ a
968 composite analysis (~~excluding~~ 1982/83 and 1991/92, because of the diffuse radiation
969 disturbances) as the background responses of ~~the~~ terrestrial carbon cycle to El Niño
970 events.

971 ~~The evolution of the~~ F_{TA} anomalies in VEGAS, ~~the~~ mean of CAMS and MACC, and
972 CarbonTraker in ~~the~~ composite, 1997/98, and 2015/16 El Niño events, are closely
973 consistent with ~~the~~ Mauna Loa CGR anomalies (Figs. 2b-d). ~~The~~ peaks of ~~the~~ F_{TA} and
974 ~~the~~ Mauna Loa CGR anomalies in ~~the~~ 1997/98 and 2015/16 El Niño events ~~were~~ much
975 stronger than those in ~~the~~ composite analysis. Importantly, there were significant
976 terrestrial lagged responses in ~~the~~ composite and 1997/98 El Niño events, with the peak
977 of ~~the~~ F_{TA} anomaly ~~occurring from~~ March to April in ~~the~~ El Niño decaying year (Figs.
978 2b and c), consistent with previous studies (Qian et al., 2008; Wang et al., 2016).

979 ~~However~~, this lagged terrestrial response disappeared in ~~the~~ Mauna Loa CGR, VEGAS
980 and CarbonTracker in ~~the~~ 2015/16 El Niño (Fig. 2d). ~~In~~ June 2016, the F_{TA} anomaly of
981 VEGAS and CarbonTracker ~~reduced~~ significantly (~~the~~ sign changed), ~~whereas~~ the
982 Mauna Loa CGR ~~reduced only slightly~~ (no sign change, Fig. 2d). ~~A~~ similar
983 phenomenon also occurred earlier, from April to July 2015. In addition, ~~the~~ anomalous
984 ~~carbon~~ release caused by ~~the~~ El Niño ~~lasted~~ from approximately July in the El Niño
985 developing year to October in the El Niño decaying year (Figs. 2b-d). For simplicity,
986 we calculated ~~the~~ total anomalies ~~of~~ all El Niño events ~~during this period in the next~~

删除的内容: 2

删除的内容: 3

删除的内容: 2

删除的内容: 3

删除的内容: in

删除的内容: -

删除的内容: happened

删除的内容: -

删除的内容: ()

删除的内容: make

删除的内容: getting rid of

删除的内容: -

删除的内容: -

删除的内容: We can easily find that

删除的内容: s

删除的内容: -

删除的内容: -

删除的内容: , c, and

删除的内容: -

删除的内容: P

删除的内容: -

删除的内容: -

删除的内容: are

删除的内容: -

删除的内容: in

删除的内容: But

删除的内容: -

删除的内容: Further, i

删除的内容: dropped

删除的内容: but

删除的内容: dropped

删除的内容: a little

删除的内容: d()

删除的内容: Similar

删除的内容: we can know that t

删除的内容: C

删除的内容: lasts

删除的内容: about

删除的内容: , c, and

删除的内容: in next context during this period for

删除的内容: ,

1028 context, taking the terrestrial lagged responses into account (Wang et al., 2016).
1029 Based on the major geographical regions, we separated global F_{TA} anomaly into the
1030 extratropical northern hemisphere (23°N–90°N), tropical regions (23°S–23°N), and
1031 extratropical southern hemisphere (60°S–23°S). Because the F_{TA} anomaly over the
1032 extratropical southern hemisphere is generally smaller, we mainly present the
1033 evolutions of the F_{TA} over the extratropical northern hemisphere and the tropical regions
1034 in Fig. 3. Comparing the global and tropical F_{TA} anomalies, the F_{TA} anomalies in the
1035 tropical regions dominated the global F_{TA} during these El Niño events (Figs. 3b, d and
1036 f), in accordance with previous conclusions (Peylin et al., 2013; Zeng et al., 2005). The
1037 F_{TA} anomalies over the extratropical northern hemisphere were nearly neutral in
1038 VEGAS for the composite and the 1997/98 El Niño events (Figs. 3a and c). However,
1039 there was clear anomalous uptake from April to September in 2016 simulated by
1040 VEGAS (Fig. 3e), compensating for the carbon release over the tropics (Fig. 3f). This
1041 anomalous uptake caused the globally negative F_{TA} anomalies that occurred from May
1042 to September in 2016 (Fig. 2d). Similar anomalous uptake also occurred over the
1043 extratropical northern hemisphere from April to July 2015. This anomalous uptake in
1044 VEGAS was to some extent consistent with the results from CarbonTracker, and
1045 accounted for the global F_{TA} reduction mentioned above during these periods.
1046 Comparing the behaviors between the Mauna Loa CGR and the F_{TA} anomalies, the
1047 Mauna Loa CGR, which originates from a tropical observatory, does not reflect the
1048 signals over the extratropical northern hemisphere in time (Figs. 2d and 3e).
1049 Because F_{TA} mainly stems from the difference between TER and GPP, we present the
1050 TER and GPP anomalies in Fig. 4 to clearly explain the F_{TA} anomalies. Anomalously
1051 negative GPP dominated the F_{TA} anomaly in the tropics in the composite and the
1052 1997/98 El Niño episodes, with the significant lagged responses (peak at approximately

删除的内容: According to

删除的内容: we find that

删除的内容: in

删除的内容: Additionally,

删除的内容: are

删除的内容: during

删除的内容: -

删除的内容: But

删除的内容: we find that

删除的内容: were

删除的内容: obvious

删除的内容: s

删除的内容: These

删除的内容: s

删除的内容: made

删除的内容: happened

删除的内容: earlier

删除的内容: These

删除的内容: s

删除的内容: are

删除的内容: in

删除的内容: well

删除的内容: drops

删除的内容: in

删除的内容: we can now clearly find that

删除的内容: coming

删除的内容: the

删除的内容: Fig.

删除的内容: in order to wel

删除的内容: 1

删除的内容: We find that a

删除的内容: during

删除的内容: -

删除的内容: about

1087 May of the El Niño decaying year (Figs. 4b and d). Furthermore, clear positive TER
1088 anomalies occurred from October 1997 to April 1998 (Fig. 4d), contributing to the
1089 tropical carbon release during this period (Fig. 3d). In contrast, anomalously positive
1090 TER dominated the F_{TA} anomaly in the tropics during the 2015/16 El Niño, without
1091 clear lags (Fig. 4f), accounting for the disappearance of the terrestrial F_{TA} lagged
1092 response (Fig. 2d). In the extratropical northern hemisphere, the increased GPP and
1093 TER from April to October were nearly identical in the composite and in 1998 (Figs.
1094 4a and c), causing neutral F_{TA} anomalies (Figs. 3a and c). However, the increased GPP
1095 was stronger than the increased TER from April to July 2015 and from April to
1096 September 2016 (Fig. 4e), resulting in the anomalous uptake in F_{TA} (Figs. 2d and 3e).

1097 We calculated the total carbon flux anomalies from July in the El Niño developing year
1098 to October in the El Niño decaying year. The composite global F_{TA} anomaly during the
1099 El Niño events in VEGAS was approximately $0.60 \text{ Pg C yr}^{-1}$, dominated by tropical
1100 ecosystems with $0.61 \text{ Pg C yr}^{-1}$ (Table 2). These anomalies were comparable to the
1101 mean of the CAMS and MACC inversion results at 0.92 ± 0.01 globally and 0.66 ± 0.03
1102 Pg C yr^{-1} in the tropics. In these two extreme cases, a strong anomalous carbon release
1103 occurred during the 1997/98 El Niño, with a value of $1.64 \text{ Pg C yr}^{-1}$, which was less
1104 than the $2.57 \text{ Pg C yr}^{-1}$ in the CAMS and MACC inversions, while only $0.73 \text{ Pg C yr}^{-1}$
1105 was released during the 2015/16 El Niño, which was comparable to the $0.82 \text{ Pg C yr}^{-1}$
1106 in CarbonTracker. However, the F_{TA} anomalies in the tropical regions dominated the
1107 global F_{TA} anomalies in both cases, with values of 1.70 and $1.12 \text{ Pg C yr}^{-1}$ in VEGAS,
1108 respectively. Furthermore, anomalous carbon uptake simulated by VEGAS over the
1109 extratropical northern hemisphere cancelled out the $0.52 \text{ Pg C yr}^{-1}$ anomalous release
1110 in the tropics during the 2015/16 El Niño, whereas it was neutral ($-0.05 \text{ Pg C yr}^{-1}$) in
the 1997/98 El Niño. The F_{TA} anomaly was relatively smaller in the extratropical

删除的内容: in...El Niño decaying year (... Figs. 4b and d). Besides...urthermore, obvious ...lear positive TER anomalies occurred from October 1997 to April 1998 (Fig. 4d), contributing to the tropical C ...arbon release during...this period (Fig. 3d). In contrast, we find that a...nomalously positive TER dominated the F_{TA} anomaly in the tropics during the 2015/...6 El Niño episode... without obvious ...lear lags (Fig. 4f), accounting for the disappearance of the terrestrial F_{TA} lagged response (Fig. 2d). In the extratropical northern hemisphere, the increased GPP and TER from April to October in composite and 1998 ...ere nearly identical in the composite and in 1998 (Figs. 4a and c), making ...ausing neutral F_{TA} anomalies (Figs. 3a and c). However, But ...he increased GPP was stronger than the increased TER from April to July 2015 and from April to September 2016 (Fig. 4e), resulting in the anomalous uptake in F_{TA} (Figs. 2d and Fig. 3e). [9]

删除的内容: Quantitatively, w...e calculated the total C ...arbon flux anomalies from July in the El Niño developing year till ...o October in the El Niño decaying year. The composite global F_{TA} anomaly during the El Niño events in VEGAS is ...as approximately about... $0.71 \text{ ...0 Pg C yr}^{-1}$, dominated by tropical ecosystems with $0.74 \text{ ...1 Pg C yr}^{-1}$ (Table 2). These anomalies are ...ere comparable to the mean of the CAMS and MACC inversion results... [10]

删除的内容: ... in the tropics. In these two extreme cases, a very ...trong anomalous C ...arbon release occurred in ...uring the 1997/...98 El Niño episode... with a value of $1.93 \text{ ...4 Pg C yr}^{-1}$, which was close to...ess than the $2.57 \text{ Pg C yr}^{-1}$ in the CAMS and MACC inversions, ... while only $0.79 \text{ ...3 Pg C yr}^{-1}$ was released during the 2015/...16 El Niño episode... which was comparable to the $0.82 \text{ Pg C yr}^{-1}$ in CarbonTracker. But ...ever, the F_{TA} anomalies in the tropical regions dominated the global F_{TA} anomalies in both cases, with respective ...lues of $1.98 \text{ ...0 and } 1.07 \text{ ...2 Pg C yr}^{-1}$ in VEGAS, respectively. Moreover...urthermore, anomalous C ...arbon uptake simulated by VEGAS over the extratropical northern hemisphere cancelled out the $0.5240 \text{ ...Pg C yr}^{-1}$ anomalous release in the tropics in ...uring the 2015/...16 El Niño... [11]

删除的内容: 04 ...5 Pg C yr^{-1}) in the 1997/...98 El Niño. And t [12]

1212 southern hemisphere.

1213 In terms of the biological processes, the GPP ($-0.73 \text{ Pg C yr}^{-1}$) and TER ($0.62 \text{ Pg C yr}^{-1}$) in the tropics together drove the anomalous F_{TA} during 1997/98, while the TER (0.95 Pg C yr $^{-1}$) mainly drove the anomalous F_{TA} during 2015/16, with a near neutral
1214
1215 GPP of $-0.03 \text{ Pg C yr}^{-1}$ (Table 2). These data confirmed that the GPP played a more
1216 important role in the 1997/98 event, while TER was dominant during the 2015/16 El
1217 Niño. In the extratropical northern hemisphere, GPP and TER cancelled each other out.
1218 They were 0.13 and 0.08 Pg C yr $^{-1}$ in the composite analysis, and 0.63 and 0.55 Pg C
1219 yr $^{-1}$ in the 1997/98 El Niño, respectively, causing the near neutral F_{TA} anomaly in that
1220 region. However, the GPP and TER in the 2015/16 El Niño were much stronger than
1221 those in the composite or the 1997/98 El Niño. Importantly, the GPP ($1.90 \text{ Pg C yr}^{-1}$)
1222 was stronger than the TER ($1.45 \text{ Pg C yr}^{-1}$) in the 2015/16 El Niño, causing the
1223 significant carbon uptake. The F_{TA} anomaly caused by wildfires also played an
1224 important role during the 1997/98 El Niño, with a global value of $0.42 \text{ Pg C yr}^{-1}$ in
1225 VEGAS, which was consistent with the GFED fire data product ($0.82 \text{ Pg C yr}^{-1}$). The
1226 effect of wildfires on the F_{TA} anomaly during the 1997/98 El Niño episode has been
1227 previously suggested by van der Werf et al. (2004), whereas it was close to zero (0.05
1228 Pg C yr $^{-1}$) during the 2015/16 El Niño.

1231 3.2 Spatial features and its mechanisms

1232 The regional responses of terrestrial ecosystems to El Niño events are inhomogeneous,
1233 principally due to the anomalies in climate variability. In the composite El Niño analysis
1234 (Fig. 5a), land consistently released carbon flux in the tropics, while there was an
1235 anomalous carbon uptake over the North America as well as the central and eastern
1236 Europe. These regional responses were generally consistent with the CAMS and

删除的内容: 1.11...73 Pg C yr $^{-1}$) and TER (0.6249...Pg C yr $^{-1}$) in the tropics together drove the anomalous F_{TA} in ...uring 1997/...8, while the TER (1.23...95 Pg C yr $^{-1}$) partly cancelled by GPP (0.29 Pg C yr $^{-1}$)...ainly drove the anomalous F_{TA} in ...uring 2015-... [13]

删除的内容: the ... more important role in the 1997...98 event, while TER dominance occurred...as dominant during thei...2015/...6 El Niño episode... In the extratropical northern hemisphere, GPP and TER cancelled each other out. They had respective...ere 0.20 ...3 and 0.12 ...8 Pg C yr $^{-1}$ in the composite analysis, and 0.86 ...3 and 0.74 ...5 Pg C yr $^{-1}$ in the 1997/...8 El Niño, respectively, making ...ausing the nearly...neutral F_{TA} anomaly in that regionthere... But ...owever, the GPP and TER in the 2015/16 El Niño were much stronger than those in the composite or the 1997/98 El Niño. Importantly, the GPP ($1.80 \dots 0 \text{ Pg C yr}^{-1}$) was stronger than the TER ($1.47 \dots 5 \text{ Pg C yr}^{-1}$) in the 2015...16 El Niño, causing the significant C ...arbon uptake. Additionally...he F_{TA} anomaly caused by wildfires also played an important role in ...uring the 1997/...8 El Niño episode... with a global value of ...only...0.46 ...2 Pg C yr $^{-1}$ in VEGAS, which was consistent with the GFED fire data product ($0.82 \text{ Pg C yr}^{-1}$). The effect of wildfires on the F_{TA} anomaly in ...uring the 1997/...98 El Niño episode has been previously suggested by van der Werf et al. (2004). But... whereas it was close to zero ($0.08 \dots 5 \text{ Pg C yr}^{-1}$) in ...uring the 2015...16 El Niño episod... [14]

删除的内容: R...gional responses of terrestrial ecosystems to El Niño events are inhomogeneous, principally according ...ue to the anomalies in climate variability. In the composite El Niño analysis (Fig. 5a), land consistently releases ...eleased C ...arbon flux in the tropics, while it ...here was an anomalously...uptakes C flux...arbon uptake over the North America as well as the central and eastern Europe. These regional responses are ... [15]

1331 MACC inversion results (Fig. 5d).

1332 ~~During the 1997/98 El Niño episode, the tropical responses were analogous to the~~
1333 ~~composite results, except for stronger carbon releases. North America and central and~~
1334 ~~eastern China had stronger carbon uptake, whereas Europe and Russia had stronger~~
1335 ~~carbon release (Fig. 5b). However, during the 2015/16 El Niño, anomalous carbon~~
1336 ~~uptake occurred over the Sahel and East Africa, compensating for the carbon release~~
1337 ~~over the other tropical regions (Fig. 5c). This made the total F_{TA} anomaly in the tropics~~
1338 ~~in 2015/16 less than that in 1997/98 (Figs. 3d and f, and Table 2). North America had~~
1339 ~~anomalous carbon uptake, similar to that in the composite and the 1997/98 El Niño,~~
1340 ~~while central and eastern Russia had anomalous carbon uptake during the 2015/16 El~~
1341 ~~Niño (Fig. 5c), which was opposite to the carbon release in the composite and the~~
1342 ~~1997/98 El Niño. This opposite behavior of the boreal forests over the central and~~
1343 ~~eastern Russia clearly contributed to the total uptake over the extratropical northern~~
1344 ~~hemisphere (Table 2). Moreover, these regional responses during the 2015/16 El Niño~~
1345 ~~were significantly consistent with the CarbonTracker result (Fig. 5f).~~

1346 ~~To better explain these regional carbon flux anomalies, we present the main climate~~
1347 ~~variabilities of soil wetness (mainly caused by precipitation) and air temperature, and~~
1348 ~~the biological processes of GPP and TER in Fig. 6. In the composite analyses, the soil~~
1349 ~~wetness is generally reduced in the tropics (Fig. 6a), causing the widespread decrease~~
1350 ~~in GPP (Fig. 6b), which has been verified by model sensitivity experiments (Qian et al.,~~
1351 ~~2008). At the same time, air temperature was anomalously warmer, contributing to the~~
1352 ~~increase in TER. However, the drier conditions in the semi-arid regions, such as the~~
1353 ~~Sahel, South Africa, and Australia, restricted this increase in TER induced by warmer~~
1354 ~~temperatures (Fig. 6d). Higher air temperatures over the North America largely~~
1355 ~~enhanced the GPP and TER, while cooler conditions over the Eurasia reduced them~~

删除的内容: In ...uring the 1997/-... 8 El Niño episode, the tropical responses were analogous to the composite results, except for the ...tronger carbon releases. North America and central and eastern China had stronger C ...arbon uptake, whereas Europe and Russia had stronger C ...arbon release (Fig. 5b). However, in ...uring the 2015/-... 16 El Niño episode... anomalous C ...arbon uptake happened ...ccurred over the Sahel and east ...ast Africa, compensating for the C ...arbon release over the other tropical regions (Fig. 5c). It ...his made the total F_{TA} anomaly in...n the ...ropics in 2015/-... 16 smaller ...ess than that in 1997/-... 98 (Figs. 3d and f, ... and Table 2). North America had anomalous C ...arbon uptake, similar to that in the composite and the 1997/-... 8 El Niño, while central and eastern Russia also ...ad anomalous C ...arbon uptake in ...uring the 2015/-... 16 El Niño (Fig. 5c), opposing ...hich was opposite to the carbonC...release in the composite and the 1997/-... 8 El Niño. This opposing ...posite behavior of the boreal forests over the central and eastern Russia clearly contributed to the total uptake over the extratropical northern hemisphere (Table 2). Moreover, we can clearly find that ...hese regional responses in ...uring the 2015/-... 6 El Niño episode are

... [16]

删除的内容: In order to ...o better make the explanations on... xplain these regional C ...arbon flux anomalies, we present the main climate variabilities of soil wetness (mainly caused by precipitation) and air temperature, as well as...nd the biological processes of GPP and TER in Fig. 6. In the composite analyses, the soil wetness is generally reduced in the tropics (Fig. 6a), making ...ausing the widespread decrease in GPP (Fig. 6b), which has been verified by model sensitivity experiments (Qian et al., 2008). At the same time, air temperature is ...as anomalously warmer, contributing to the enhancement ...ncrease in TER. Bu...owever,.., the drier conditions in the semi-arid regions, such as the Sahel, South Africa, and Australia, restricted the ...his increase in TER induced by warmer temperatures (Fig. 6d). Higher air temperatures over the North America largely enhances ...nhanced the GPP and TER, while cooler conditions over the Eurasia will...

... [17]

1441 (Figs. 6b–d). Wetter conditions over parts of North America and Eurasia also increased
1442 the GPP and TER to some extent (Fig. 6a).

删除的内容: to some extent benefit

1443 Comparing the composite results (Figs. 6a–d) and the 1997/98 El Niño (Figs. 6e–h), the
1444 regional patterns were almost identical, except for the difference in magnitude. In
1445 contrast, there were some differences in the 2015/16 El Niño. Over the Sahel and East
1446 Africa, the soil wetness increased due to the higher precipitation (Fig. 6i), dynamically
1447 cooling the air temperature (Fig. 6k). These wetter conditions largely benefit GPP (Fig.
1448 6j), compensating for the reduced GPP over the other tropical regions. This caused GPP
1449 near neutral in the tropics, as compared to the composite and the 1997/98 El Niño (Table
1450 2). Higher soil moisture also contributed to increased TER over the Sahel (Fig. 6l),
1451 contrary to that in the 1997/98 El Niño (Fig. 6h). This spatial compensation in GPP,
1452 together with the widespread increase in TER, accounted for the TER dominance in the
1453 tropics during the 2015/16 El Niño. Furthermore, the higher GPP resulted in the
1454 anomalous carbon uptake in that region (Fig. 5c), which partly compensated for the
1455 anomalous carbon release over the other tropical regions. This in part caused the smaller
1456 tropical F_{TA} during the 2015/16 El Niño, compared with that during 1997/98. Another
1457 clear difference occurred over the Eurasia, with almost opposite signals during the
1458 1997/98 and 2015/16 El Niño events. During the 2015/16 El Niño, over the Eurasia, air
1459 temperature was anomalously higher compared with the cooling in the composite and
1460 during the 1997/98 El Niño (Figs. 6c, g, and k). This warmth enhanced the GPP and
1461 TER (Figs. 6j and l), as compared with the reduced levels in the composite and during
1462 the 1997/98 El Niño (Figs. 6b, d, f, and h). This phenomenon explains the stronger GPP
1463 and TER anomalies, and the anomalous carbon uptake over the whole of the
1464 extratropical northern hemisphere (Table 2).

删除的内容: -...8 El Niño episode ...Figs.6e–h), we can easily find that ...he regional patterns are ...ere almost identical, except for the difference in magnitude. In contrast, there are ...ere some differences in the 2015/...6 El Niño episode... Over the Sahel and East Africa, the soil wetness increased induced by...ue to the higher more ...recipitation (Fig. 6i), dynamically making the air temperature cooler...ooling the air temperature (Fig. 6k). This ...hese wetter conditions largely benefit GPP (Fig. 6j), compensating for the decreased ...duced GPP over the other tropical regions. It ...his caused in total...PP near neutral the increased GPP ...n the tropics, opposing ...s compared to the composite and the 1997/...98 El Niño episode ...Table 2). More ...igher soil moisture also contributed to increase in ...T...TER over the Sahel (Fig. 6l), contrary to that in the 1997/...98 El Niño episode... (Fig. 6h). This spatial compensation in GPP, together with the widespread increase in ...TER well... accounted for the TER dominance in the tropics during the 2015/...16 El Niño episode... Besides...urthermore, the increased ...igher GPP resulted in the anomalous C ...arbon uptake here ...n that region (Fig. 5c), ...hich partly compensated for the anomalous C ...arbon release over the other tropical regions. It in some degree...his in part made ...ased the smaller tropical smaller ...TA in ...uring the 2015/...16 El Niño episode than...compared with that in ...uring 1997/...8 El Niño episode... Another obvious ...lear difference happened ...ccurred over the Eurasia, with almost opposite signals in ...uring the 1997/...8 and 2015/...6 El Niño episodes...vents. Air temperature d...uring the 2015/...6 El Niño episode...over the Eurasia, air temperature was anomalously higher, opposing to...compared with the cooler ...ooling during ...n the composite and during the 1997/...8 El Niño (Figs. 6c, g, and k). This warme...hr...condition ...nhanced the GPP and TER (Figs. 6j and l), contrary to their...s compared with the suppressions ...duced levels in the composite and during the 1997/...8 El Niño (Figs. 6b, d, f, and h). This phenomenon explained ...xplains the stronger GPP and TER anomalies, and the anomalous C

... [18]

1465 Recently, more attention has been paid to SIF as an effective indicator of GPP (Guanter

删除的内容: s have...has been paid on ...o SIF as an effective indicator for

... [19]

1576 et al., 2014). Therefore, we compared the simulated GPP and SIF variabilities on the
1577 interannual time scale. Although noisy signals in SIF occurred, it was anomalously
1578 positive over the USA, parts of Europe, and East Africa, and negative over the Amazon
1579 and South Asia, during the 2015/16 El Niño, corresponding to increased and decreased
1580 GPP, respectively (Figs. 7a and c). The match over other regions was not significant.
1581 In addition, MODIS EVI increased anomalously over the North America, southern
1582 South America, parts of Europe, the Sahel, and East Africa, but reduced over the
1583 Amazon, northern Canada, central Africa, South Asia, and northern Australia (Fig. 7d).
1584 These EVI anomalies corresponded well with the simulated LAI anomalies (Fig. 7b).
1585 The good match between the simulated GPP (LAI) and SIF (EVI) gives us more
1586 confidence in the VEGAS simulations.

删除的内容: here try to make a comparison...compared between ...he simulated GPP and SIF variabilities on the interannual time scale. AltT...ough there are ...oisy signals in SIF occurred, we can find that SIF...t was anomalously positive over the USA, parts of Europe, and East Africa, and negative over the Amazon and South Asia, during the 2015/...6 El Niño episode... corresponding to the...increased and decreased GPP, respectively (Figs. 7a and c). The correspondences... he match over the ...ther regions were ...as not significant. In addition, MODIS EVI anomalously ...ncreased anomalously over the North America, Southern ...outhern South America, parts of Europe, the Sahel, and East Africa, but decreases ...duced over the Amazon, Northern ...orthern Canada, central Africa, South Asia, and Northern ...orthern Australia (Fig. 7d). These EVI anomalies were well ...rresponding...d well to ...ith the simulated LAI anomalies (Fig. 7b). These ...he good correspondences

... [20]

1587 Finally, wildfires as important disturbances for F_{TA} always release carbon flux.
1588 Although the F_{TA} anomalies caused by wildfires were generally smaller than the GPP
1589 or TER anomalies, they played an important role during the 1997/98 El Niño, (globally
1590 0.42 Pg C yr⁻¹ in VEGAS and 0.82 Pg C yr⁻¹ in GFED, Table 2), which is consistent
1591 with previous work (van der Werf et al., 2004). The F_{TA} anomalies caused by wildfires
1592 are shown in Fig. 8. The correlation coefficients between the simulated global F_{TA}
1593 anomalies caused by wildfires and the GFED fire data product was 0.46 (unsmoothed)
1594 and 0.63 (smoothed; Fig. 8a), confirming that VEGAS has certain capability in
1595 simulating this disturbance. During the 1997/98 El Niño, satellite-based GFED data
1596 show that the F_{TA} anomalies caused by wildfires mainly occurred over the tropical
1597 regions, such as the Amazon, central Africa, South Asia, and Indonesia (Fig. 8d).
1598 VEGAS also simulated the positive F_{TA} over these tropical regions (Fig. 8b). The total
1599 tropical F_{TA} anomalies caused by fires were 0.37 Pg C yr⁻¹ in VEGAS and 0.72 Pg C
1600 yr⁻¹ in GFED (Table 2). During the 2015/16 El Niño, wildfires also resulted in positive

删除的内容: At last

删除的内容: C ...arbon flux. Though ...lthough the F_{TA} anomalies caused by wildfires were... generally smaller than the GPP or TER anomalies, they played an important role in ...uring the 1997/...8 El Niño episode... (gG...obally, 0.46 ...2 Pg C yr⁻¹ in VEGAS and 0.82 Pg C yr⁻¹ in GFED) (... Table 2), which is consistent with the ...revious study ...ork (van der Werf et al., 2004). Here we show t...he F_{TA} anomalies caused by wildfires are shown in Fig. 8. The correlation coefficients between the simulated global F_{TA} anomalies caused by wildfires and the GFED fire data product are ...as 0.40 ...6 (unsmoothed) and 0.61 ...3 (smoothed) (... Fig. 8a), confirming that VEGAS has certain capability simulating this disturbance. In ...uring the 1997/...98 El Niño episode... satellite-based GFED data showed... that the F_{TA} anomalies caused by wildfires mainly happened ...ccurred over the tropical regions, such as the Amazon, Central ...entral Africa, South Asia, and Indonesia (Fig. 8d). VEGAS also simulated the positive F_{TA} over these tropical regions (Fig. 8b). The total tropical F_{TA} anomalies caused by fires were 0.39 ...7 Pg C yr⁻¹ in VEGAS and 0.72 Pg C yr⁻¹ in GFED (Table 2). In ...uring the 2015/...6 El Niño episode

... [21]

带格式的: 非 上标/ 下标

1694 F_{TA} anomalies over the Amazon, South Asia, and Indonesia, however, their magnitudes
1695 were smaller than those during the 1997/98 El Niño, because it was much drier during
1696 the 1997/98 event than the 2015/16 one (Figs. 6e and i). In addition, the wetter
1697 conditions over East Africa during the 2015/16 El Niño suppressed the occurrences of
1698 wildfires with the negative F_{TA} anomalies (Fig. 8c). The total tropical F_{TA} anomaly was
1699 $0.11 \text{ Pg C yr}^{-1}$ in VEGAS (Table 2). Therefore, wildfires played a less important role
1700 during the 2015/16 event than during the 1997/98 one. The F_{TA} anomalies caused by
1701 wildfires over the extratropics were much weaker than those over the tropics, and the
1702 match between VEGAS and GFED was poorer (Table 2, Figs. 8b and d).

删除的内容: , but... however, their magnitudes were smaller than those during the in...1997/...8 El Niño episode... because it was much drier in ...uring the 1997/...8 El Niño episode...ven than in ...he 2015/...6 El Niño episode...ne (Figs. 6e and i). In addition, the wetter conditions over the...East Africa in ...uring the 2015/...16 El Niño episode...depressed ...uppressed the occurrences of wildfires with the negative F_{TA} anomalies (Fig. 8c). The total tropical F_{TA} anomaly in total ... as $0.13 \dots 1 \text{ Pg C yr}^{-1}$ in VEGAS (Table 2). Therefore, we can find that...wildfires played a less important roles...during the in ...015/...6 event than during thein...1997-98 El Niño episode...ne. The F_{TA} anomalies caused by wildfires over the extratropics were...much weaker than those over the tropics, and their correspondences...he match between VEGAS and GFED are ...as poorer (Table 2 and

... [22]

1703 4 Conclusions and Discussion

1704 The magnitudes and patterns of climate anomalies caused by different El Niño events
1705 differ...Therefore, the responses of terrestrial carbon cycle to different El Niño episodes
1706 remain uncertain (Schwalm, 2011). In this study, we compared in detail the impacts of
1707 two extreme El Niño events in recorded history (namely, the recent 2015/16, and earlier
1708 1997/98 events) on the terrestrial carbon cycle in the context of a multi-event
1709 'composite' El Niño. We used VEGAS in its near-real-time framework, along with
1710 inversion datasets. The main conclusions can be summarized as follows:

删除的内容: Climate anomalies in...he magnitudes and patterns of climate anomalies caused by different El Niño events differ...inconsistent...so ...herefore, the responses of terrestrial ecosystems ...arbon cycle remain uncertain ...o different El Niño events ...isodes remain uncertain (Schwalm, 2011). In this study, w...n this study, we e comprehensively ...ompared in detail the impacts of the ...wo strongest ...xtreme El Niño events in recorded history (, ...amely, the recent 2015/...6, and earlier 1997/...8 events) on the terrestrial carbon cycle in the context of a multi-event 'composite' El NiñoNino on the terrestrial carbon cycle... We used...relying on ...EGAS in its Near...ear-Real ...eal-Time ...ime framework, along with inversion datasets and so on ... The m...in conclusions can be summarizedare drawn

... [23]

1711 (1) The simulations indicated that the global-scale F_{TA} anomaly during the 2015/16 El
1712 Niño was $0.73 \text{ Pg C yr}^{-1}$, which was nearly two times smaller than that during the
1713 1997/98 El Niño ($1.64 \text{ Pg C yr}^{-1}$), and was confirmed by the inversion results. The
1714 F_{TA} had no obvious lagged response during the 2015/16 El Niño, in contrast to that
1715 during the 1997/98 El Niño. Separating the global fluxes, the fluxes in the tropics
1716 and the extratropical northern hemisphere were 1.12 and $-0.52 \text{ Pg C yr}^{-1}$ during
1717 the 2015/16 El Niño, respectively, whereas they were 1.70 and $-0.05 \text{ Pg C yr}^{-1}$

删除的内容: S...mulations indicated that the global-scale F_{TA} anomaly in ...uring the 2015/...16 El Niño episode ...as globally ...79 ...3 Pg C yr^{-1} , which was nearly two times smaller than that in ...uring the 1997/...98 El Niño ($1.95 \dots 4 \text{ Pg C yr}^{-1}$), and was confirmed by the inversion results. We also find that...he F_{TA} had no obvious lagged response during the in...2015/...16 El Niño, in contrast to that in ...uring the 1997/...98 El Niño. Separating the global fluxes, we find that...he fluxes in the tropics and the extratropical northern hemisphere were 1.07

... [24]

删除的内容: 4 ...2 Pg C yr^{-1} during the 2015/...16 El Niño, episode ...espectively, while these ...hereas they were 1.98

删除的内容: 04 ...5 Pg C yr^{-1}

... [25]

... [26]

1843 during the 1997/98 event. Tropical F_{TA} anomalies dominated the global F_{TA}
1844 anomalies during both extreme El Niño events.

删除的内容: ...8 event. Tropical F_{TA} anomalies dominated the global F_{TA} anomalies in
... [27]

1845 (2) Mechanistic analysis indicates that anomalously wet conditions occurred over the
1846 Sahel and East Africa during the 2015/16 El Niño, resulting in the increase in GPP,
1847 which compensated for the reduction in GPP over the other tropical regions. In total,
1848 this caused a near neutral GPP in the tropics ($-0.03 \text{ Pg C yr}^{-1}$), compared with the
1849 composite analysis ($-0.54 \text{ Pg C yr}^{-1}$) and the 1997/98 El Niño ($-0.73 \text{ Pg C yr}^{-1}$).
1850 The spatial compensation in GPP and the widespread increase in TER (0.95 Pg C
1851 yr^{-1}) explained the dominance of TER during the 2015/16 El Niño, compared with
1852 the GPP dominance during the 1997/98 event. The different biological dominance
1853 accounted for the phase difference in the F_{TA} responses during the 1997/98 and
1854 2015/16 El Niño events.

删除的内容: ter...conditions happened ...ccurred over the
Sahel and East Africa during the 2015...16 El Niño
episode... resulting in the increase of ...n GPP, which
compensated for the reduction of ...n GPP over the other
tropical regions. In total, It ...his caused in total the ...
increased
... [28]

删除的内容: 29... Pg C yr^{-1}), compared with
... [29]

删除的内容: 80 ...4 Pg C yr^{-1}) and the 1997- ... [30]
删除的内容: 1.11...73 Pg C yr^{-1}). Spatial ...he spatial
compensation in GPP and the widespread
increased ...ncrease in TER (1.23...95 Pg C yr^{-1})
well ...xplained the TER ...ominance of TER in ...uring the
2015/...6 El Niño episode... compared with the opposing
to...GPP dominance in ...uring the 1997...98 event. The
d...fferent biological dominance accounted for the phase
difference in the F_{TA} responses in ...uring the 1997...98
and 2015...16 El Niño events
... [31]

1855 (3) Higher air temperatures over North America largely enhanced the GPP and TER
1856 during the 1997/98 and 2015-16 El Niño events. However, the air temperatures
1857 during the 2015/16 El Niño over the Eurasia were anomalously higher, compared
1858 with the cooling during the 1997/98 El Niño episode. These warmer conditions
1859 benefited the GPP and TER, accounting for the stronger GPP ($1.90 \text{ Pg C yr}^{-1}$) and
1860 TER ($1.45 \text{ Pg C yr}^{-1}$) anomalies and anomalous carbon uptake ($-0.52 \text{ Pg C yr}^{-1}$)
1861 over the extratropical northern hemisphere during the 2015/16 El Niño.

删除的内容: the ...orth America largely enhanced the GPP
and TER both i...uring the n ...997-...98 and 2015-16 El
Niño events episodes... However, the air temperatures
during the 2015...16 El Niño episode...over the Eurasia
was ...re anomalously higher, compared
with...the cooling...in ...uring the 1997-...98 El
Niño episode. This ...hese warmer conditions benefited the
GPP and TER, well...accounting for the stronger GPP
($1.80 \dots 0 \text{ Pg C yr}^{-1}$) and TER ($1.47 \dots 5 \text{ Pg C yr}^{-1}$)
anomalies and anomalous C
... [32]

删除的内容: 40 ...2 Pg C yr^{-1}) over the extratropical
northern hemisphere during the 2015/...
... [33]

删除的内容: ly...happening ...n the tropics, played an
important role in the F_{TA} anomalies during the 1997/...8 El
Niño episode, confirmed by the VEGAS simulation and the
satellite-based GFED fire product. But ...owever, the
VEGAS simulation showed indicates...that the tropical F_{TA}
caused by wildfires during the 2015...16 El Niño
episode...was relatively smaller than that during the
1997/...8 El Niño episode... This result was mainly
because the tropical weather was much drier in ...uring the
1997/...8 El Niño...ent than that in
... [34]

1980 one.

删除的内容: El Niño

1981 It is important to keep in mind that the responses of the terrestrial carbon cycle to the
1982 El Niño events in this study were simulated using an individual DGVM (VEGAS),
1983 which, whilst highly consistent with the variations in the CGR and inversion results,
1984 carries uncertainties in terms of the regional responses because of, for example, its
1985 model structure, biological processes considered, and parameterizations. Of course,
1986 uncertainties exist in all of the state-of-the-art DGVMs. Fang et al. (2017) recently
1987 suggested that none of the 10 contemporary terrestrial biosphere models captures the
1988 ENSO-phase-dependent responses. If possible, we will quantify the inter-model
1989 uncertainties in regional responses of the terrestrial carbon cycle to El Niño events
1990 when the new round of TRENDY simulations (1901–2016) becomes available.
1991 Although we used three inversion datasets as reference for the VEGAS simulation in
1992 this study, they cover different periods. Importantly, there are also large uncertainties
1993 between the different atmospheric CO₂ inversions because of their different prescribed
1994 priors, *a priori* uncertainties, inverse methods, and observational datasets (Peylin et al.,
1995 2013). Future atmospheric CO₂ inversions may produce more accurate results based on
1996 more observational datasets, including surface and satellite-based observations.
1997 Recently, more studies have pointed out that the 1997/98 El Niño evolved following
1998 the eastern Pacific El Niño dynamics, which depends on basin-wide thermocline
1999 variations, whereas the 2015/16 event involves additionally the central Pacific El Niño
2000 dynamics that relies on the subtropical forcing (Paek et al., 2017; Palmeiro et al., 2017).
2001 Therefore, it is necessary to investigate the different impacts of the eastern and central
2002 Pacific El Niño types (Ashok et al., 2007) on the terrestrial carbon cycle in the future.
2003 This may give us an additional insight into the contrasting responses of the terrestrial
2004 carbon cycle to the 1997/98 and 2015/16 El Niño events. We believe that doing so will

带格式的: 正文, 无项目符号或编号

带格式的: 下标

带格式的: 下标

2006 contribute greatly to deepening our knowledge of present and future carbon cycle
2007 variations on the interannual time scales.

带格式的: 字体: (默认) Times New Roman

2008

2009 Data Availability

2010 In this study, all the datasets can be freely accessed. The Mauna Loa monthly CO₂
2011 records are available at <https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html>. The
2012 ERSST4 Niño3.4 index can be accessed from
2013 <http://www.cpc.ncep.noaa.gov/data/indices/ersst4.nino.mth.81-10.ascii>. The CAMS
2014 and MACC inversions are available at <http://apps.ecmwf.int/datasets/>. The
2015 CarbonTracker datasets can be found at
2016 <https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/>. The GFEDv4 global fire
2017 emissions are downloaded at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1293.

2018 Satellite SIF datasets are retrieved from
2019 http://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/MetOp-A/level3/.
2020 MODIS enhanced vegetation index (EVI) datasets are downloaded from
2021 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13c2_v00

2022 6.

2023

2024 Acknowledgements:

2025 We gratefully acknowledge the ESRL for the use of their Mauna Loa atmospheric CO₂
2026 records and CarbonTracker datasets. NOAA for the ERSST4 ENSO index. LSCE-IPSL
2027 for the CAMS and MACC inversion datasets. the Oak Ridge National Laboratory
2028 Distributed Active Archive Center for the GFEDv4 global fire emissions. NASA
2029 Goddard Space Flight Center for the SIF datasets. and the Land Processes Distributed
2030 Active Archive Center for the MODIS EVI datasets. This study was supported by the

删除的内容: appreciate

删除的内容: ,

删除的内容: ,

删除的内容: ,

删除的内容: ,

删除的内容: ,

2037 [National Key R&D Program of China \(Grant No. 2016YFA0600204\) and the Natural
2038 Science Foundation for Young Scientists of Jiangsu Province, China \(Grant No.
2039 \[BK20160625\\).\]\(#\)](#)

2040

2041 **References**

2042 Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M.,
2043 Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B.,
2044 Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.:
2045 The dominant role of semi-arid ecosystems in the trend and variability of the land CO₂
2046 sink, *Science*, 348, 895-899, 2015.

2047 Anderegg, W. R., Ballantyne, A. P., Smith, W. K., Majkut, J., Rabin, S., Beaulieu, C.,
2048 Birdsey, R., Dunne, J. P., Houghton, R. A., Myneni, R. B., Pan, Y., Sarmiento, J. L.,
2049 Serota, N., Shevliakova, E., Tans, P., and Pacala, S. W.: Tropical nighttime warming as
2050 a dominant driver of variability in the terrestrial carbon sink, *Proc Natl Acad Sci U S
2051 A*, 112, 15591-15596, 2015.

2052 [Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and
2053 its possible teleconnection, *J. Geophys. Res.*, 112, C11007, 2007.](#)

2054 Bacastow, R. B.: Modulation of atmospheric carbon dioxide by the Southern Oscillation,
2055 *Nature*, 261, 116-118, 1976.

2056 Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., and Tans, P. P.:
2057 Regional changes in carbon dioxide fluxes of land and oceans since 1980, *Science*, 290,
2058 1342-1346, 2000.

2059 Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global Land Precipitation: A 50-yr
2060 Monthly Analysis Based on Gauge Observations, *Journal of Hydrometeorology*, 3, 249-
2061 266, 2002.

2062 Chevallier, F.: On the parallelization of atmospheric inversions of CO₂ surface fluxes
2063 within a variational framework, Geosci Model Dev, 6, 783-790, 2013.

2064 [Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B.: Tropical rain forest tree](#)
2065 [growth and atmospheric carbon dynamics linked to internnual tempreature variation](#)
2066 [during 1984-2000, P. Natl. Acad. Sci. USA, 100, 5852-5857, 2003.](#)

2067 Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D.,
2068 and Luke, C. M.: Sensitivity of tropical carbon to climate change constrained by carbon
2069 dioxide variability, Nature, 494, 341-344, 2013.

2070 Didan, K.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg
2071 CMG V006. NASA EOSDIS Land Processes DAAC.
2072 <https://doi.org/10.5067/MODIS/MOD13C2.006>, 2015.

2073 [Doughty, C. E., and Goulden, M. L.: Are tropical forests near a high temperature](#)
2074 [threshold?, J. Geophys. Res., 113, G00B07, 2008.](#)

2075 [Fang, Y., Michalak, A. M., Schwalm, C. R., Huntzinger, D. N., Berry, J. A., Ciais, P.,](#)
2076 [Piao, S. L., Poulter, B., Fisher, J. B., Cook, R. B., Hayes, D., Huang, M. Y., Ito, A., Jain,](#)
2077 [A., Lei, H. M., Lu, C. Q., Mao, J. F., Parazoo, N. C., Peng, S. S., Ricciuto, D. M., Shi,](#)
2078 [X. Y., Tao, B., Tian, H. Q., Wang, W. L., Wei, Y. X., and Yang, J.: Global land carbon](#)
2079 [sink response to temperature and precipitation varies with ENSO phase, Environ. Res.](#)
2080 [Lett., 12, 064007, 2017.](#)

2081 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P.,
2082 Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya,
2083 M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C.,
2084 Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa,
2085 C., and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the C⁴MIP
2086 model intercomparison, Journal of Climate, 19, 3337-3353, 2006.

2087 Guanter, L., Zhang, Y. G., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C.,
2088 Huete, A. R., Zarco-Tejada, P., Lee, J. E., Moran, M. S., Ponce-Campos, G., Beer, C.,
2089 Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M.,
2090 and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with
2091 chlorophyll fluorescence, PNAS, doi: 0.1073/pnas.1320008111, 2014. E1327–E1333,
2092 2014.

2093 Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature Change,
2094 Reviews of Geophysics, 48, 2010.

2095 Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith,
2096 T. M., Thorne, P. W., Woodruff, S. D., and Zhang, H.-M.: Extended Reconstructed Sea
2097 Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons,
2098 Journal of Climate, 28, 911-930, 2015.

2099 Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y.,
2100 Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito,
2101 A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X.,
2102 Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon
2103 Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1:
2104 Overview and experimental design, Geosci Model Dev, 6, 2121-2133, 2013.

2105 Janowiak, J. E. and Xie, P.: CAMS-OPI: A Global Satellite-Rain Gauge Merged
2106 Product for Real-Time Precipitation Monitoring Applications, J. Clim., 12, 3335-3342,
2107 1999.

2108 Joiner, J., Yoshida, Y., Vasilkov, A. P., Middleton, E. M., Campbell, P. K. E., Yoshida,
2109 Y., Kuze, A., and Corp, L. A.: Filling-in of near-infrared solar lines by terrestrial
2110 fluorescence and other geophysical effects: simulations and space-based observations
2111 from SCIAMACHY and GOSAT, Atmospheric Measurement Techniques, 5, 809-829,

2112 2012.

2113 Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M.
2114 A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J. Q., Gianelle, D., Gobron, N., Kiely,
2115 G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L.,
2116 Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns
2117 of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from
2118 eddy covariance, satellite, and meteorological observations, *J Geophys Res-Biogeo*,
2119 116, 2011.

2120 Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlstrom, A.,
2121 Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K.,
2122 Kato, E., Papale, D., Poulter, B., Raduly, B., Rodenbeck, C., Tramontana, G., Viovy,
2123 N., Wang, Y. P., Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link
2124 yearly global land CO₂ sink changes to temperature, *Nature*, 541, 516-520, 2017.

2125 Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R.,
2126 Waterman, L. S., and Chin, J. F. S.: Atmospheric Carbon-Dioxide Variations at Mauna-
2127 Loa Observatory, Hawaii, *Tellus*, 28, 538-551, 1976.

2128 Keeling, C. D., Whorf, T. P., Wahlen, M., and Vanderplicht, J.: Interannual Extremes in
2129 the Rate of Rise of Atmospheric Carbon-Dioxide since 1980, *Nature*, 375, 666-670,
2130 1995.

2131 [Kim, J. S., Kug, J. S., Yoon, J. H., and Jeong, S. J.: Increased atmospheric CO₂ growth](#)
2132 [rate during El Niño driven by reduced terrestrial productivity in the CMIP5 ESMs](#),
2133 [Journal of Climate](#), 29, 8783-8805, 2016.

2134 Klein Goldewijk, K., Beusen, A., Van Drecht, G., and De Vos, M.: The HYDE 3.1
2135 spatially explicit database of human-induced global land-use change over the past
2136 12,000 years, *Global Ecology and Biogeography*, 20, 73-86, 2011.

2137 Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and
2138 Cox, P. M.: Impact of changes in diffuse radiation on the global land carbon sink, *Nature*,
2139 458, 1014-U1087, 2009.

2140 [Paek, H., Yu, J.-Y., and Qian, C.: Why were the 2015/16 and 1997/1998 extreme El](#)
2141 [Niño different?, *Geophys. Res. Lett.*, 44, 18848-1856, 2017.](#)

2142 [Palmeiro, F. M., Iza, M., Barriopedro, D., Calvo, N., and Garcia-Herrera, R.: The](#)
2143 [complex behavior of El Niño winter 2015-2016, *Geophys. Res. Lett.*, 44, 2902-2910,](#)
2144 [2017.](#)

2145 Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K.,
2146 Miller, J. B., Bruhwiler, L. M., Petron, G., Hirsch, A. I., Worthy, D. E., van der Werf,
2147 G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric
2148 perspective on North American carbon dioxide exchange: CarbonTracker, *Proc Natl*
2149 *Acad Sci U S A*, 104, 18925-18930, 2007.

2150 Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa,
2151 Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and
2152 Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric
2153 CO₂ inversions, *Biogeosciences*, 10, 6699-6720, 2013.

2154 Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav,
2155 A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J.,
2156 Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z.,
2157 Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle
2158 models for their response to climate variability and to CO₂ trends, *Global Change*
2159 *Biology*, doi: 10.1111/gcb.12187, 2013. 2117–2132, 2013.

2160 Qian, H., Joseph, R., and Zeng, N.: Response of the terrestrial carbon cycle to the El
2161 Nino-Southern Oscillation, *Tellus Series B-Chemical and Physical Meteorology*, 60,

2162 537-550, 2008.
2163 Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J. and Kasibhatla, P.
2164 S.:Global Fire Emissions Database, Version 4, (GFEDv4). ORNL DAAC, Oak Ridge,
2165 Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAAC/1293, 2015.
2166 Schwalm, C. R.: Does terrestrial drought explain global CO₂ flux anomalies induced
2167 by El Nino?, *Biogeosciences*, 8, 2493-2506, 2011.
2168 Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström,
2169 A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas,
2170 M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L.,
2171 Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le
2172 Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional
2173 sources and sinks of carbon dioxide, *Biogeosciences*, 12, 653-679, 2015.
2174 Tian, H. Q., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich, J. V. K., Moore,
2175 B., and Vorosmarty, C. J.: Effect of interannual climate variability on carbon storage in
2176 Amazonian ecosystems, *Nature*, 396, 664-667, 1998.
2177 University of East Anglia Climatic Research Unit, Harris, I.C., Jones, P.D.: CRU
2178 TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High
2179 Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec.
2180 2013). NCAS British Atmospheric Data Centre, 2014.
2181 van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S.,
2182 Arellano, A. F., Jr., Olsen, S. C., and Kasischke, E. S.: Continental-scale partitioning of
2183 fire emissions during the 1997 to 2001 El Nino/La Nina period, *Science*, 303, 73-76,
2184 2004.
2185 Wang, J., Zeng, N., and Wang, M.: Interannual variability of the atmospheric CO₂
2186 growth rate: roles of precipitation and temperature, *Biogeosciences*, 13, 2339-2352,

已移动(插入) [1]

删除的内容: .

已上移 [1]: Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J. and Kasibhatla, P. S.:Global Fire Emissions Database, Version 4, (GFEDv4). ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAAC/1293, 2015. .

删除的内容: .

2194 2016.

2195 Wang, W., Ciais, P., Nemani, R., Canadell, J. G., Piao, S., Sitch, S., White, M. A.,
2196 Hashimoto, H., Milesi, C., and Myneni, R. B.: Variations in atmospheric CO₂ growth
2197 rates coupled with tropical temperature, PNAS, 110, 13061-13066, 2013.

2198 Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., Heimann, M.,
2199 Miller, J., Peng, S., Wang, T., Yang, H., and Chen, A.: A two-fold increase of carbon
2200 cycle sensitivity to tropical temperature variations, Nature, 506, 212-215, 2014.

2201 Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm,
2202 C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B.,
2203 Mao, J., and Shi, X.: The North American Carbon Program Multi-scale Synthesis and
2204 Terrestrial Model Intercomparison Project – Part 2: Environmental driver data, Geosci
2205 Model Dev, 7, 2875-2893, 2014.

2206 Zeng, N., Mariotti, A., and Wetzel, P.: Terrestrial mechanisms of interannual CO₂
2207 variability, Global Biogeochemical Cycles, 19, GB1016, 2005.

2208 Zeng, N., Qian, H. F., Munoz, E., and Iacono, R.: How strong is carbon cycle-climate
2209 feedback under global warming?, Geophys Res Lett, 31, 2004.

2210 Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., and Guanter,
2211 L.: Agricultural Green Revolution as a driver of increasing atmospheric CO₂ seasonal
2212 amplitude, Nature, 515, 394-397, 2014.

2213

2214

2215

2216

2217

2218 **Tables and Figures:**2219 **Table 1** Lists of El Niño events from 1980 till 2016.

No.	El Niño Events	Duration (months)	Maximum Niño3.4 Index (°C)
1	Apr1982–Jun1983	15	2.1
2	Sep1986–Feb1988	18	1.6
3	Jun1991–Jul1992	14	1.6
4	Oct1994–Mar1995	6	1.0
5	May1997–May1998	13	2.3
6	Jun2002–Feb2003	9	1.2
7	Jul2004–Apr2005	10	0.7
8	Sep2006–Jan2007	5	0.9
9	Jul2009–Apr2010	10	1.3
10	Nov2014–May2016	19	2.3

2220

2221 **Table 2** Carbon flux anomalies during El Niño events, calculated as the mean from July
2222 in the El Niño developing year to October in [the](#) El Niño decaying year. Flux units are
2223 in Pg C yr⁻¹.

Zones	El Niños	Inversions		VEGAS Model		
		F _{TA} (CAMS+MACC) ^a	F _{TA} (CarbonTracker)	F _{TA}	GPP	TER
Global	composite ^b	0.92±0.01	–	0.60	-0.55	-0.08
	1997/98	2.57±0.04	–	1.64	-0.04	1.28
	2015/16	–	0.82	0.73	1.59	2.24
NH	composite	0.20±0.02	–	-0.06	0.13	0.08
	1997/98	0.40±0.07	–	-0.05	0.63	0.55
	2015/16	–	0.18	-0.52	1.90	1.45
Tropical	composite	0.66±0.03	–	0.61	-0.54	-0.07

删除的内容: -

删除的内容: 71

删除的内容: 76

删除的内容: 20

删除的内容: 15

删除的内容: 93

删除的内容: 11

删除的内容: 36

删除的内容: 46

删除的内容: -

删除的内容: 79

删除的内容: 79

删除的内容: 50

删除的内容: 08

删除的内容: -

删除的内容: 09

删除的内容: 20

删除的内容: 12

删除的内容: 04

删除的内容: 86

删除的内容: 74

删除的内容: 07

删除的内容: -

删除的内容: 40

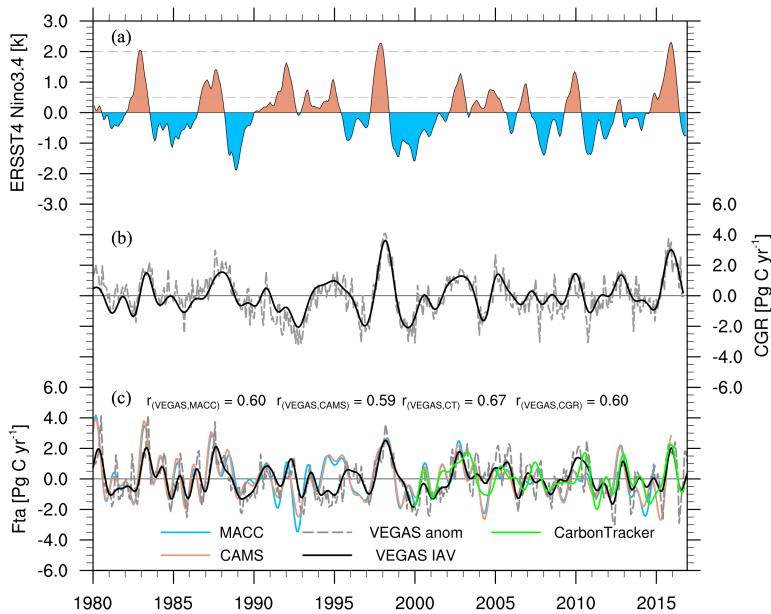
删除的内容: 80

删除的内容: 47

删除的内容: -

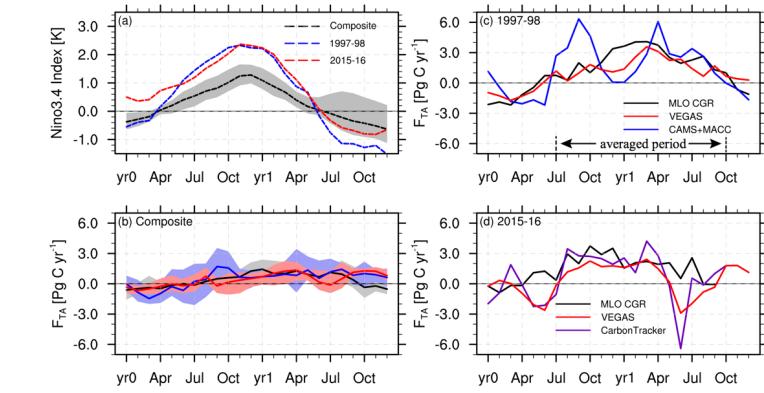
删除的内容: 74

删除的内容: 80


删除的内容: 22

删除的内容: 16

1997/98	2.12 ± 0.14	—	1.70	-0.73	0.62	0.3
2015/16	—	0.53	1.12	-0.03	0.95	0.1
composite	0.07 ± 0.01	—	0.05	-0.14	-0.09	0.0
SH	1997/98	0.05 ± 0.02	—	-0.02	0.14	0.12
	2015/16	—	0.11	0.14	-0.28	-0.16


^arepresents the mean value of the CAMS and MACC inversion results with the uncertainty of their standard deviation.

^bComposite analyses exclude the 1982/83, 1991/92, and 2015/16 El Niño events, because the former two cases were disturbed by the El Chichón and Pinatubo eruptions, and the latter is not covered by the inversion datasets.

Figure 1. Interannual variability (IAV) in the sea surface temperature anomaly (SSTA) and carbon cycle. (a) ERSST4 Niño3.4 Index (units: K) using the 3-month running

237 averaged SST_A for the Niño 3.4 region (5°N – 5°S , 120° – 170°W). (b) IAV in the Mauna
 238 Loa CO₂ growth rate (CGR; units: Pg C yr⁻¹). The CGR is calculated as the difference
 239 between the monthly mean in adjacent years. The dashed line is the detrended monthly
 240 anomaly and the solid line is smoothed by the butterworth filtering. (c) IAV in the land-
 241 atmosphere carbon fluxes (F_{TA} ; units: Pg C yr⁻¹). The blue and orange solid lines are
 242 the smoothed results of the MACC and CAMS inversions, respectively. The gray
 243 dashed line is the detrended anomaly and the black one is the smoothed result from the
 244 VEGAS model simulation. The green solid line is the smoothed CarbonTracker result.
 245

236
 237 **Figure 2.** Evolutions of the global F_{TA} along with the development of El Niño. (a) the
 238 SST_A in the composite (black), 1997/98 (blue), and 2015/16 (red) El Niño events. (b)
 239 The F_{TA} anomalies in the El Niño composite analysis. The black solid line denotes the
 240 Mauna Loa CGR; and the red and blue lines show the VEGAS and mean of the CAMS
 241 and MACC inversions, respectively. The shaded areas in (a) and (b) show the 95%
 242 confidence intervals of the variables in the composite, derived in 1000 bootstrap
 243 estimates. (c) The F_{TA} anomalies during the 1997/98 El Niño events. The arrows
 244 demonstrate the time periods during which we calculate the carbon flux anomalies

删除的内容: anomalous

删除的内容: y

删除的内容: °

删除的内容: °

删除的内容: °

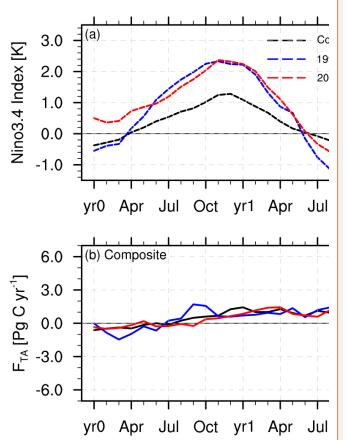
删除的内容: MLO

删除的内容: ,

删除的内容: -

删除的内容: -

删除的内容: -


删除的内容: Blue

删除的内容: -

删除的内容: G

删除的内容: in

带格式的: 字体: (默认) Times New Roman

删除的内容:

删除的内容: shows

删除的内容: in

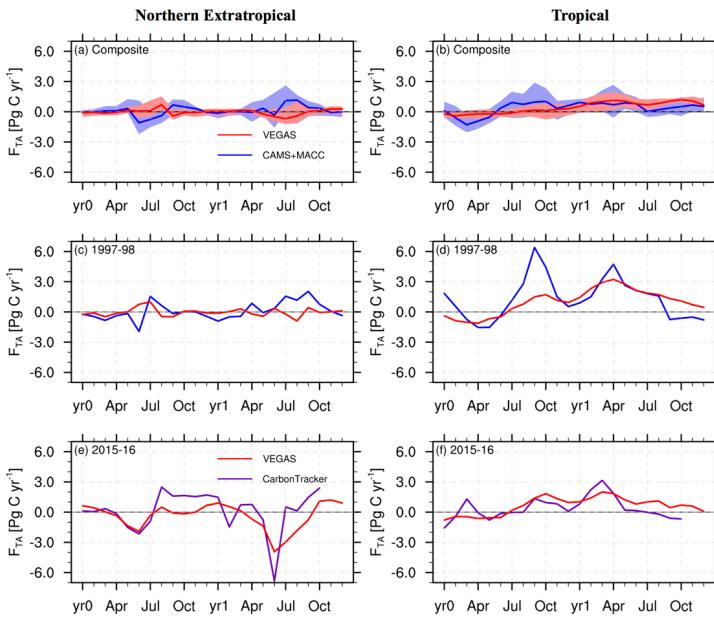
删除的内容: -

删除的内容: in

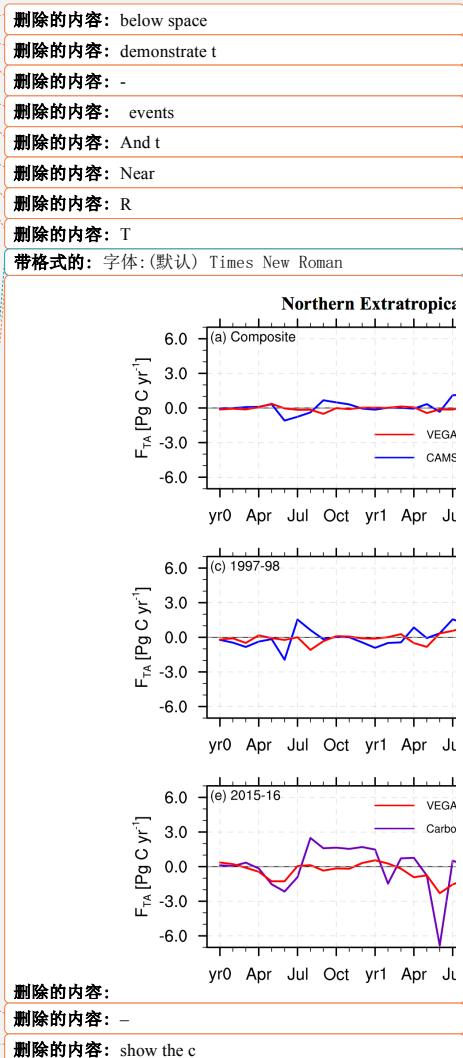
删除的内容: -

删除的内容: in

删除的内容: illustrate


删除的内容: shows t

删除的内容: -


删除的内容: And t

删除的内容: C

2374 listed/presented in the table and figures. (d) The F_{TA} anomalies during the 2015/16 El
 2375 Niño. The purple line denotes the result of the CarbonTracker2016 and CarbonTracker
 2376 near-real-time datasets.

2378
 2379 **Figure 3.** Evolutions of F_{TA} over the extratropical northern hemisphere (23°N–90°N)
 2380 and tropical regions (23°S–23°N) along with the development of El Niño. (a, b)
 2381 Composite results with the VEGAS simulation (red solid line) and the mean of the
 2382 CAMS and MACC inversions (blue solid line). The shaded areas show the 95%
 2383 confidence intervals of the variables in the composite, derived in 1000 bootstrap
 2384 estimates. (c, d) The F_{TA} anomalies during the 1997/98 El Niño. (e, f) The F_{TA}
 2385 anomalies in the 2015/16 El Niño with VEGAS (red solid line) and CarbonTracker
 2386 (purple solid line).

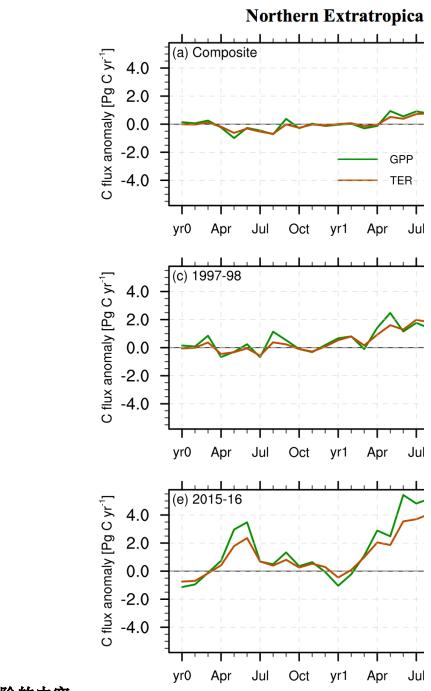
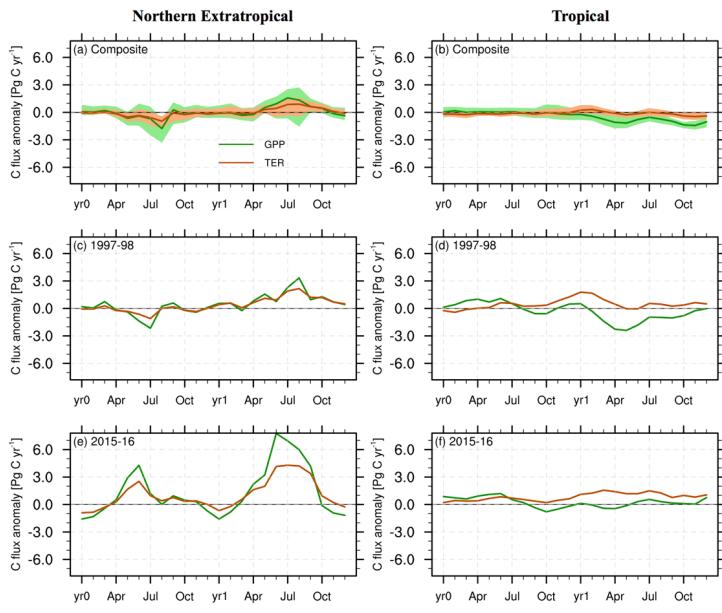



Figure 4. Evolutions of gross primary productivity (GPP, green lines) and terrestrial ecosystem respiration (TER, brown lines) over the extratropical northern hemisphere (23°N – 90°N) and tropical regions (23°S – 23°N) along with the development of El Niño. (a, b) El Niño composite results. The shaded areas show the 95% confidence intervals of the variables in the composite, derived in 1000 bootstrap estimates. (c, d) Results of the 1997/98 El Niño. (e, f) Results of the 2015/16 El Niño.

删除的内容:

带格式的: 字体:(默认) Times New Roman

删除的内容: -

删除的内容: show the

删除的内容: -

删除的内容: show the

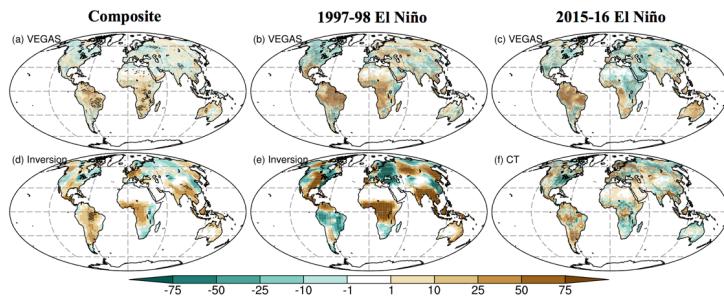
删除的内容: r

删除的内容: in

删除的内容: -

删除的内容: event

删除的内容: And


删除的内容: -

删除的内容: demonstrate the r

删除的内容: in

删除的内容: -

删除的内容: event

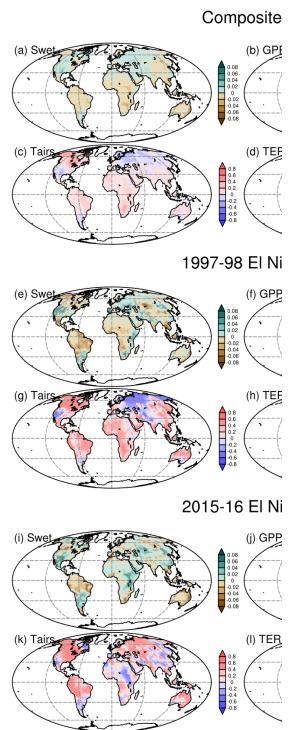
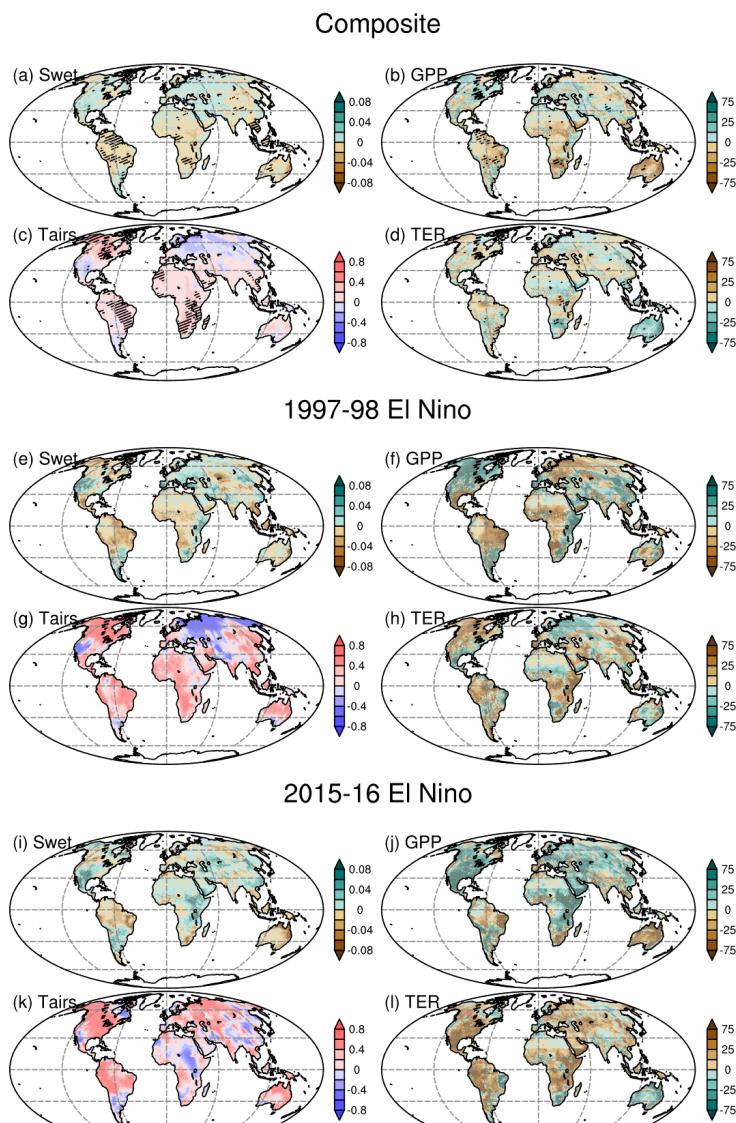


Figure 5. Spatial F_{TA} anomalies calculated from July in the El Niño developing year to October in the El Niño decaying year (units: $\text{g C m}^{-2} \text{yr}^{-1}$). (a–c) Results of the composite, 1997/98, and 2015/16 El Niño events simulated by VEGAS, respectively. (d–e) The averaged results of CAMS and MACC in the composite and 1997/98 El Niños. (f) The 2015/16 El Niño F_{TA} anomaly in CarbonTracker. The stippled areas in (a) and (d) are significant above the 90% level, estimated by Student's *t*-test.

删除的内容：


带格式的: 字体: (默认) Times New Roman, 粗体

删除的内容: P... C m⁻² yr⁻¹). (a), (b), and (...) show the results of the composite, 1997...98, and 2015...16 El Niño events simulated by VEGAS, respectively. (d) and (...) represent the averaged results of CAMS and MACC in the composite and 1997...98 El Niños. (f) shows ...he ... [37]

删除的内容:

带格式的: 字体: (默认) Times New Roman, 粗体

带格式的: 字体: (默认) Times New Roman, 粗体

删除的内容: in

删除的内容: gross primary productivity (

删除的内容：，

删除的内容：

删除的内容:

删除的内容: terrestrial ecosystem respiration (

删除的内容：，

删除的内容:

删除的内容:

2472 Niño decaying year in the composite, 1997/98, and 2015/16 El Niño episodes,
2473 respectively. (a–d) Results of the composite analyses. The stippled areas are significant
2474 above the 90% levels estimated by the Student's *t*-test. (e–h) Anomalies during the
2475 1997/98 El Niño. (i–l) Anomalies during the 2015/16 El Niño.

删除的内容： -

删除的内容： -

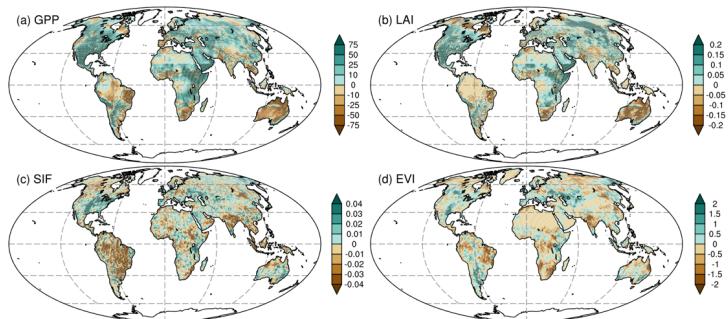
删除的内容: represent t

删除的内容: he r

删除的内容: in

删除的内容: represent the a

删除的内容： -


删除的内容: episode

删除的内容: show

删除的内容： -

删除的内容: episod

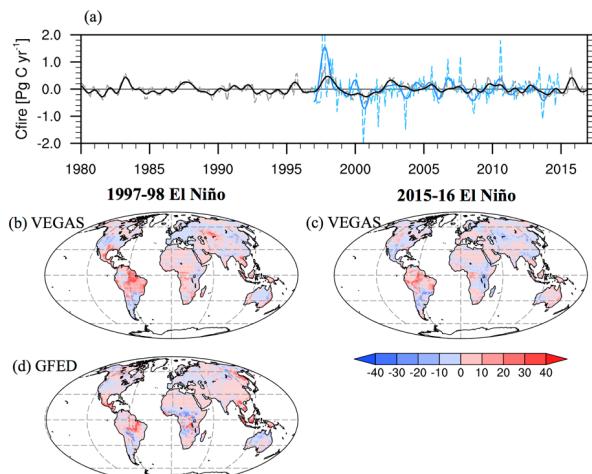
带格式的: 字体: (默认) Times New Roman, 粗体

Figure 7. Spatial anomalies in (a) the simulated GPP by VEGAS (units: $\text{g C m}^{-2} \text{ yr}^{-1}$), (b) the simulated leaf area index (LAI, units: $\text{m}^2 \text{ m}^{-2}$), (c) solar-induced chlorophyll fluorescence (SIF, units: $\text{mW m}^{-2} \text{ nm}^{-1} \text{ sr}^{-1}$), and (d) MODIS enhanced vegetation index (EVI, $\times 10^{-2}$) from July 2015 to October 2016.

删除的内容：

删除的内容：

删除的内容:


删除的内容：

删除的内容：

刪除的內容： -

删除的内容：

www.english-test.net

带格式的: 字体: (默认) Times New Roman

带格式的: 居中

删除的内容: ... [38]
 带格式的: 字体: (默认) Times New Roman, 粗体
 删除的内容: global
 删除的内容: total
 删除的内容: -
 删除的内容: detrended and smoothed by butterworth filtering
 删除的内容: spatial
 删除的内容: -
 删除的内容: -
 删除的内容: in
 删除的内容: -
 删除的内容: episode
 删除的内容: spatial
 删除的内容: in
 删除的内容: -
 删除的内容: episode
 删除的内容: in
 删除的内容: -

2503

2504 **Figure 8.** F_{TA} anomalies induced by wildfires. (a) Total global anomalies ($Pg C yr^{-1}$).

2505 The dashed gray and solid black lines represent the anomalies simulated by VEGAS

2506 detrended and smoothed by Butterworth filtering, respectively. The dashed and solid

2507 blue lines represent the GFED results. (b) Spatial F_{TA} anomaly ($g C m^{-2} yr^{-1}$) during

2508 the 1997/98 El Niño in VEGAS. (c) Spatial F_{TA} anomaly during the 2015/16 El Niño

2509 in VEGAS. (d) GFED anomaly during the 1997/98 El Niño episode.

2510

2511