
Dear Editor, 
 

 
We are grateful for having been granted another chance to improve our ms based on the referee's 
comments. The main changes are as follows: 
 
* We have modified the sentence about the contribution by Calel & Stainforth (2017) according to the 
suggestion by the referee. 
 
* We have made the discussion of emulator quality clearer throughout the ms. 
 
* We have implemented all the technical corrections suggested by the referee. 
 
We would be delighted to see that this version of the ms, upgraded along the suggestions of the 
referee, is found suitable for publication in ESD. 

 

Sincerely yours, 

Mohammad Khabbazan and Hermann Held 
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Reply on referee report regarding ‘On the Future Role of the Most Parsimonious Climate 
Module in Integrated Assessment’ 

 
We would like to thank the referee for another thorough review. It helped improving our 
manuscript (ms). Please find our detailed comments below. The referee’s remarks are highlighted 
by italic font, while ours are left in roman font. 
 

General comments 
Repeating my comments from the second round review, Khabbazan and Held’s 
paper highlights the nuances which must be considered when using a one box 
energy balance model for climate projections (the form they focus on is the 
one presented by Petschner-Held (1999), herein PH99, but any similar one-box 
model would exhibit the same behaviour). Their major conclusion is captured 
in the last paragraph of the paper, specifically that callibrating PH99 is ‘much 
more involved than previously assumed’ and hence ‘future users should carefully 
consider whether they actually want to use PH99, or whether they prefer a less 
parsimonious solution’. On top of this, they also present a lovely bit of analysis 
which shows why a one box model must use a lower ECS than a two-box model 
if the two are going to respond similarly to a strong mitigation radiative forcing 
scenario over an ~200 year timescale. 
 
We agree. 
 
 
My major concerns now focus on making the discussions of emulator quality 
quantitative, in particular removing vague terms, and the representation of one 
key reference. 
The paper presents some very interesting and pertinent results and so, subject 
to revisions to fix the concerns above, would recommend it for publication. 
 
Major concerns 
 

1. I am happy to be corrected on this, but I don’t think the representation 
of Calel & Stainforth (2017) in line 27 of page 2 is fair. The authors 
say that ‘Calel & Stainforth (2017) highlighted the potential future role 
of PH99, however if and only is users invested in an application-specific 
re-callibration of PH99 as a valid future approach to emulation.’ I cannot 
work out where this comes from. As far as I can tell, Calel & Stainforth 
highlight differences in the uses of PH99 in different IAMs and reveal 
how to resolve them but I can’t see any comment about the need for 
‘application-specific re-callibration’. Perhaps something like this would be 
a solution, ‘Calel & Stainforth highlighted the potential future role of 
PH99 and hence further validation of its behaviour is warranted.’ 
 
Done. 
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2. The discussion of emulator quality is somewhat varied. In places, the authors 
have been very careful and ensure that they quantified the meaning 
of terms such as ‘a good emulator’ or ‘a sufficiently accurate’ emulator but 
in other places these terms remain vague. Making sure that the meaning 
of all such ‘quality’ terms was clear would help make the point being made 
clearer to the reader, I feel. 
 
Done. We have made quality terms clear throughout the ms. 

 
 
Specific comments 
 

1. The difference between your result and the Van Vuuren et al. (2011) result 
is still not that clear to me (i.e. why do you find the climate components 
responding too strongly whilst they found them responding too weakly). 
Is it simply because Van Vuuren et al. (2011) considered emissions driven 
results whilst you are considering forcing driven results and the emissions 
to radiative forcing steps are outweighing the forcing to temperature step? 
Or something else? Making some comment on possible reasons for the 
difference would help place this article in the context of other work. 
 
We are grateful for this hint. We added a paragraph at the beginning of our discussion 
section and also sharpened our abstract accordingly. 
 
 
2. The introduction is quite long, is it possible to split it or cut it somehow 
(some sections might be better included in the discussion rather than in 
the introduction)? 
 
Thanks for your comment. However, we feel that the introduction would lose some 
important introductory messages if we make it shorter or transfer some sections to 
discussion. 
 
 
3. A quick check over your treatment of acronyms would be a nice improvement. 
Sometimes you introduce the term first, and the acronym next e.g. 
‘integrated assessment models (IAMs)’ whilst other times you introduce 
the acronym first, and the term next, e.g. ‘RCPs (representative concentration 
pathways)’. This is somewhat confusing and it would be nice to 
make it uniform. 
 
Thanks for your suggestion. We now follow the standard of introducing the term first and 
the acronym next. 
 
 
4. Do you have any intention to make your analysis code available? 
 
We indicate that the analysis code will be available subject to request from the authors. 
However, notice that the data availability are not authors’ property right. 
 
 

Technical corrections 
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page 1, line 14: ‘emulator (accurate to within 0.1K for mitigation scenarios and 
the baseline scenarios RCP4.5 and RCP6.0) of these AOGCMs’ → ‘emulator of 
these AOGCMs (accurate to within 0.1K for RCP2.6, RCP4.5 and RCP6.0)’ 
 
Done. 
 
 
page 1, line 15: ‘time horizon’ → ‘time horizon (on the order of the time to 
peak radiative forcing)’ or something which quantifies which time horizon you’re 
talking about 
 
Done. 
 
 
page 1, line 16: ‘We offer a method to re-interpret already published works 
based on the 1-box model accordingly.’ → ‘Accordingly, we offer a method to 
re-interpret already published works based on the 1-box model.’ 
 
Done. 
 
 
page 1, line 18: ‘claimed’ → ‘intented’ (if that’s what you actually mean) 
 
Done (intended). 
 
 
page 1, line 22: ‘would comply’ → ‘comply’ 
 
Done. 
 
 
page 1, line 23: ‘the most sophisticated’ → ‘sophisticated’ (Earth System Models 
are arguably more sophisticated) 
 
Done. 
 
 
page 1, line 25: ‘foster’ → ‘offer’ 
 
Done. 
 
 
page 2, line 3: ‘Van Vuuren’ → ‘In previous work, Van Vuuren’ 
 
Done. 
 
 
page 2, line 26-27: adjust comment about Calel & Stainforth 
 
Done, as the referee suggested above. 
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page 2, line 29: ‘correctly’ is vague, although given it’s in an overarching question 
perhaps ok (as long as you define the term later) 
 
Right after that question we added: ‘(Hereby ‘correctly’ refers to an accuracy on the order 
of magnitude of the standard deviation of natural variability.)’ 
 
 
page 2, line 32: ‘2target’ → ‘well below 2target’ (although not being a lawyer, 
I might be wrong on this one) 
 
Done. 
 
 
page 3, line 5: quantify ‘for years’ or use another term 
 
Phrase eliminated.  
 
 
page 3, line 7: ‘- inadequate’ → ‘- as inadequate’ (although the massive break 
with the dashes makes it hard to see exactly how the sentence is meant to fit 
together, perhaps re-write the whole sentence) 
 
We agree that the whole sentence reads somewhat convoluted. We re-organized the 
whole paragraph.  
 
 
page 3, line 8: ‘sufficient’ → ‘0.1K’ (is this what you actually mean by ‘sufficient’?) 
 
Done. 
 
 
page 3, line 13: ‘but likely not beyond it’, can you check? 
 
We omitted the phrase. Note that we do not have data for checking it. 
 
 
page 3, line 21: add comma after ‘For that reason’ 
 
Done. 
 
 
page 3, line 28: ‘the former’ → ‘(ii)’ (or do you mean (i) and (ii)) 
 
Done. 
 
 
page 4, line 1: quantify the size of the error 
 
page 4, line 6: ‘model market.’ → ‘model market’. 
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Done. 
 
 
page 4, line 14-16: ‘Among others, one of the most extensively used most parsimonious 
climate emulators is the 1-box global energy balance 15 model, Eq. (1), 
introduced by Petschel-Held et al. (1999), which projects the atmospheric GMT 
anomaly compared to its preindustrial level.’ → ‘PH99 projects the atmospheric 
GMT anomaly compared to its preindustrial level.’ 
 
Done. 
 
 
page 4, line 28: ‘propose the 3-step’ → ‘propose a 3-step’ 
 
Done. 
 
 
page 5, line 1: ‘good’ is vague, quantify or re-word 
 
Done. 
 
 
page 5, line 5: ‘such scenarios are not available for’ → ‘AOGCMs have not been 
run for 2-target-compatible scenarios for’ 
 
Done. 
 
 
page 6, line 7-11: just to check, the reason you don’t use the historical period 
for validation is that you want to focus on purely projection emulation, not 
model validity in a range of forcing scenarios? This seems slightly odd to me, 
especially given you can always chose to compare temperature perturbations 
between convenient reference periods in later quantifications. 
 
Yes. Also, the available data were not compatible for all AOGCM models. Finally, it is 
current practice to initialize the SCM at the very period which is of interest in the 
assessment – see e.g. Kriegler & Bruckner, 2004, as well as most integrated assessment 
studies as assembled in IPCC AR5 WGIII. 
 
 
page 6, line 29-31: great bit of sensitivity analysis 
 
Thanks! 
 
 
page 7, line 6: ‘the RCP2.6’ → ‘RCP2.6’ 
 
Done. 
 
 
page 7, line 10-13: comments about Paris Agreement and relevance of 0.5K 
difference could come out much earlier than Results. Perhaps introducing this 
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earlier would help you set out what acceptable ‘error thresholds are’ and make 
the scales you’re talking about throughout the paper clearer 
 
We agree. We removed that comment in that section and added it in the introduction, in the 
same paragraph where we pose our research question.  
 
 
page 7, line 23: ‘whereby’ → ‘where’ 
 
Done. 
 
 
page 7, line 24: ‘so’ → ‘sufficiently’, delete ‘suitably’ (as you quantify later 
anyway) 
 
Done.  
 
 
page 7, line 25: ‘0.14’ → ‘0.14K’ 
 
Done. 
 
 
page 8, line 1-2: ‘Before diving into our suggestions, it might be worthwhile 
to first take a look at one of the existing options. (However, a reader mainly 
interested in our improved method of utilizing PH99 might directly move on to 
Subsection 4.2.)’ → ‘Before diving into our suggestions, we examine one of the 
existing options (a reader solely interested in our improved method of utilizing 
PH99 can move straight onto Subsection 4.2.)’ 
 
Done.   
 
 
page 8, line 4: ‘the ECS’ → ‘ECS’ 
 
Done. 
 
 
page 8, line 11-17: Can you make some comment on how the TCR is calculated 
using the Lorenz approach, do you just leave it constant? 
 
Please notice that here there is no need to calculate TCR. However, we added “Notice that 
TCR can readily be calculated using Eq. 3.” 
 
 
page 8, line 19: heading has typo, ‘AOGMC’ → ‘AOGCM’ 
 
Done. 
 
 
page 9, line 11: ‘better’ → ‘best’ 
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Done. 
 
 
page 9, line 17: ‘Please note’ → ‘Note’ 
 
Done. 
 
 
page 9, line 26-27: Delete ‘Hereby we presuppose that a 2-box model emulates 
an AOGCM qualitatively better than a 1-box model.’ I don’t think it adds 
anything here and you have good discussions elsewhere which explain why you 
are using a 2-box model at all. 
 
We deleted this sentence. 
 
 
page 10, line 6: ‘perspective on’ → ‘projections under’ 
 
Done. 
 
 
page 10, line 11: ‘find a’ → ‘approximate a’ 
 
Done. 
 
 
page 10, line 14: ‘both summing up to’ → ‘sum equal to’ 
 
Done. 
 
 
page 11, line 14: ‘resulting in’ → ‘where’ 
 
Done. 
 
 
page 12, line 2: what does ‘exact’ refer to here, do you mean ‘2-box’? 
 
We omitted “exact”. 
 
 
page 12, line 18-19: ‘In Section 5.1 we derived an analytic explanation why a 
naïve transfer of an AOGCM’s ECS and TCR to PH99 leads to a too large 
maximum GMT when driven by a mitigation forcing scenario.’ → ‘In Section 
5.1 we derived an analytic explanation for why a naïve transfer of an AOGCM’s 
ECS and TCR to PH99 results in a maximum GMT which is too large when 
driven by a mitigation forcing scenario.’ 
 
Done. 
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page 12, line 19: delete ‘could’ 
 
Done. 
 
 
page 12, line 20: ‘good’ is vague, quantify/reference somewhere else/make 
clearer 
 
Done. 
 
 
page 12, line 25: ‘a order-of-magnitudes’ → ‘an order-of-magnitude’ or → ‘an 
orders-of-magnitude’ 
 
Done. 
 
 
page 13, line 1: ‘Quite’ → ‘On’ 
 
Done. 
 
 
page 13, line 9: this is fine for exploration but a fairly brute force way of making 
the models agree as far as I can tell 
 
It is common practice in integrated assessment modelling to initialize all components not in 
the pre-industrial phase (for which no adequate economic data exist) but ‘present-day’ (for 
the MIND model either 1995, 2010 or 2015). The equation the referee is referring to is then 
the exact method of initialization within the framework of linear differential equations.  
 
 
page 13, line 13: ‘an as’ → ‘a’ 
 
Done. 
 
 
page 13, line 14: ‘We cannot’ → ‘Hence we cannot’ 
 
Done. 
 
 
page 13, line 23: ‘t1’ → ‘t1, i.e. on the order of the time to peak forcing’ (remind 
the reader what t1 means) 
 
Done. 
 
 
page 14, line 1: delete ‘would like to focus on our main finding and’. If you want 
to make this the main finding, I think you need to re-structure the article as 
at the moment the main finding is definitely the improved method to transfer 
AOGCM ECS/TCR onto PH99 ECS/TCR, with this explanation of why such 
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a new method is necessary being a nice bit of supporting analysis. 
 
Done. 
 
 
page 14, line 8: delete ‘i.e. for the upcoming 200 years vs. the time horizon 
thereafter’, it adds nothing 
 
Done. 
 
 
page 14, line 12-15: nice quantification 
 
Thanks! 
 
 
page 14, line 28: ‘utilizig’ → ‘utilizing’ (probably worth checking whether you 
are using American or English spelling throughout, if English then ‘utilizing’ → 
‘utilising’) 
 
Done. 
 
 
page 14, line 34: delete ‘even’ 
 
Done. 
 
 
page 15, line 2: missing bracket after ‘2014’ 
 
Done. 
 
 
page 15, line 18: delete ‘a first version of’ 
 
Done. 
 
 
page 15, line 20-21: ‘1-box-based model. (Hereby we assume that a 2-box 
model mimics an AOGCM better than a 1-box model.)’ → ‘1-box-based model 
(assuming that a 2-box model mimics an AOGCM better than a 1-box model).’ 
 
Done. 
 
 
page 15, line 24: ‘sensible’ → ‘useful’ (the irony of me correcting this is not 
lost given I wrote sensible in my previous review, I just think that in the paper 
useful, or even applicable, fits better) 
 
Done. 
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page 15, line 28: ‘the explanation of which’ → ‘for which the explanation’ 
 
Done. 
 
 
page 15, line 30: ‘equivalennt’ → ‘equivalent’ 
 
Done. 
 
 
page 15, line 1: delete ‘rather would like to’ 
 
Done (page 16). 
 
 
page 15, line 4-7: perhaps switch full stops for semi-colons in your numbered 
phrases i..e ‘we propose the following steps: (i) By comparison with more sophisticated, 
multi-box climate modules it should be tested again whether the effect 
of a transient climate sensitivity (and TCR) alone could explain our observed 
PH99- AOGCM discrepancy. (ii) Future discussions with the AOGCM community 
should illuminate to what extent the further explanations we suggested 
might also apply, thereby potentially reducing the need to correct for PH99. 
(iii) An’ → ‘we propose the following steps: (i) By comparison with more sophisticated, 
multi-box climate modules it should be tested again whether the 
 
effect of a transient climate sensitivity (and TCR) alone could explain our observed 
PH99- AOGCM discrepancy; (ii) Future discussions with the AOGCM 
community should illuminate to what extent the further explanations we suggested 
might also apply, thereby potentially reducing the need to correct for 
PH99; (iii) An’ 
 
Done (page 16). 
 
 
page 17, line 13: ‘insure’ → ‘ensure’ 
 
Done. 
 
 
page 25, line 1: I think you could combine Figures 3 and 4 
page 30, line 1: I think you could simply reference this figure rather than including 
it in full 
page 35, line 1: I think you could simply reference this figure rather than including 
it in full 
page 36, line 1: could you combine this with Figures 3 and 4 
 
In the previous stage of preparation of the ms, we tried to combine Figures 3, 4, and 14 
into one figure. However, we were not satisfied that the combined figure is clearer enough 
and more informative. Also, we think that Figures 8 and 13 are important in the context of 
our ms and should be ready for an interested reader. 
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On the Future Role of the Most Parsimonious Climate Module in 
Integrated Assessment 
Mohammad M. Khabbazan and Hermann Held 

Research Unit Sustainability and Global Change, Center for Earth System Research and Sustainability, Universität Hamburg, 
Grindelberg 5, 20144 Hamburg, Germany 5 

Correspondence to: Mohammad M. Khabbazan (mohammad.khabbazan@uni-hamburg.de) 

Abstract. In the following, we test the validity of a 1-box climate model as an emulator for Atmosphere-Ocean General 

Circulation Models (AOGCMs). The 1-box climate model is currently employed in the integrated assessment models FUND, 

MIND and PAGE, widely used in policy making. Our findings are two-fold. Firstly, when directly prescribing AOGCMs’ 

respective equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) to the 1-box model, global mean 10 

temperature (GMT) projections are generically too high by 0.5 K at peak temperature. for peak-and-decline forcing scenarios 

compatible with a maximum global warming of 2 K. Accordingly, corresponding integrated assessment studies might tend to 

overestimate mitigation needs and costs. We semi-analytically explain this discrepancy as resulting from the information loss 

resulting from the reduction of complexity. Secondly, the 1-box model offers a good emulator of these AOGCMs (accurate to 

within 0.1K for mitigation scenarios and the baseline scenariosrepresentative concentration pathways (RCPs), namely RCP2.6, 15 

RCP4.5, and RCP6.0) of these AOGCMs,), provided their ECS and TCR values are universally mapped onto effective 1-box 

counterparts and a certain time horizon (on the order of the time to peak radiative forcing) is not exceeded. WeAccordingly, 

we offer a method to re-interpret already published works based on the 1-box model accordingly. Results that are based on the 

model and have already been published are still just as informative as intended by their respective authors; however, they 

should be re-interpreted as being influenced by a larger climate response to forcing than claimedintended.    20 

Keywords: climate sensitivity, emulator, integrated assessment, mitigation scenarios, reduced climate models 

1 Introduction 

Climate-economy integrated assessment models (IAMs) are used to derive welfare-optimal climate policy scenarios 

(Kunreuther et al., 2014) or constrained welfare-optimal scenarios that would comply with a prescribed policy target (Clarke 

et al., 2014). Most of them employ relatively simple climate modules emulating the most sophisticated climate models, 25 

Atmosphere-Ocean General Circulation Models (AOGCMs). These climate modules (hereafter: ‘simple climate models’ 

(SCMs)) fosteroffer computational efficiency and hence allow researchers to project a broader set of scenarios in orders of 

magnitude less time. For IAMs based on a decision-analytic framework involving intertemporal welfare optimization, SCMs 
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are in fact indispensable, as these IAMs’ numerical solvers may need to access the climate module anywhere from ten to one 

hundred thousand times before numerical convergence is flagged.  

The need to qualify the degree of accuracy with which SCMs mimic AOGCMs or properly represent ensembles of AOGCMs 

is increasingly being recognized (Calel & Stainforth, 2017; van Vuuren et al., 2011a), as this aspect might have immediate 

monetary consequences in connection with derived policy scenarios (Calel & Stainforth, 2017). In previous work, Van Vuuren 5 

et al. (2011a) found that IAMs tend to underestimate the effects of greenhouse gas emissions.  

Due to the centennial-scale quasi-linear properties of AOGCMs’ global mean temperature (GMT) dynamics, SCMs have 

proven capable of emulating AOGCMs’ behavior regarding GMT change, deviations being a function of spread of forcing, 

SCM complexity (Meinshausen et al., 2011a) and quality of SCM calibration. The climate component of MAGICC 

(Meinshausen et al., 2011a) represents the most complex SCM currently in use. In some sense one could even call MAGICC 10 

an Earth System Model of Intermediate Complexity. It has demonstrated its capacity to emulate all AOGCMs’ GMT even 

more precisely than the standard deviation of interannual GMT variability (Meinshausen et al., 2011a), with a fixed set of 

parameters, utilized for the whole range of RCPs (representative concentration pathways, (RCPs) (see van Vuuren et al., 

2011b). This represents the current gold standard of AOGCM emulation using SCMs.    

The most extreme opposite end of the scale of complexity within the model category of SCMs is provided by the 1-box model 15 

as introduced by Petschel-Held et al. (1999) (hereafter: ‘PH99’), converting a radiative forcing time series into a GMT time 

series. The current role of this model as assessed in the literature is as follows: by fitting PH99 to GMT time series, it can be 

used as a diagnostic instrument, as Andrews & Allen (2008) have done. However, its main application is as an emulator of 

AOGCMs. In conjunction with the most parsimonious carbon cycle model (described in Petschel-Held et al. (1999) as well), 

PH99 has been used to derive ‘admissible’ greenhouse gas emission scenarios in view of prescribed GMT targets (Bruckner 20 

et al., 2003; Kriegler & Bruckner, 2004). Furthermore, the following climate-economic IAMs are currently utilizing PH99: 

FUND (Anthoff & Tol, 2014), MIND (Edenhofer et al., 2005) and PAGE (Hope, 2006) – the last of which was used in the 

‘Stern Review’ to the UK government (Stern, 2007). While MIND has since been succeeded by the IAM REMIND (Luderer 

et al., 2011) when it comes to spatial resolution or representing the energy sector by dozens of technologies, it currently serves 

as a state-of-the-art IAM for decision-making under uncertainty (Held et al., 2009; Lorenz et al., 2012; Neubersch et al., 2014; 25 

Roth et al., 2015) or joint mitigation-solar radiation management analyses (Roshan et al., 2018; Stankoweit et al., 2015).  

Kriegler and Bruckner (2004) validated PH99 in conjunction with a simple carbon cycle model. When diagnosing the effect 

of the IS92a emissions scenario (Kattenberg et al., 1996) on GMT, they demonstrated deviations of less than 0.2 K for the 21st 

century (see their Fig.5). Recently, Calel & Stainforth (2017) highlighted the potential future role of PH99, however if and 

only if users invested in an application-specific re-calibrationhence further validation of PH99 as a valid future approach to 30 

emulationits behavior is warranted. 

In this article, we ask: ‘By what calibration procedure is PH99’s temperature equation able to correctly map globally averaged 

radiative forcing anomalies onto GMT anomalies?’ Hereby ‘correctly’ refers to an accuracy on the order of magnitude of the 

standard deviation of natural variability, i.e. ~0.1 K. Quite the contrary, in the context of this article we would judge a deviation 
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of 0.5 K as inacceptable, because a proclaimed goal of the 2015 Paris Agreement (UNFCCC, 2016) is ‘…holding the increase 

in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature 

increase to 1.5°C above pre-industrial levels…’ Hence in the policy domain, a difference in terms of 0.5 K does matter. In fact 

we believe that further validation is both necessary and possible at a higher level of consistency. Firstly, the respective GMT 

time series as checked in Kriegler and Bruckner (2004) is convexly increasing. However in the context of scenario generation 5 

in keeping with the well-below 2° target (UNFCCC, 2016), validation along GMT stabilization or even peaking scenarios is 

crucial, displaying a qualitatively different shape from IS92a. Secondly, in Kattenberg et al. (1996) the forcing was 

reconstructed by the additional assumption that non-CO2 greenhouse gas forcing approximately balances aerosol cooling.  

Here we employ recently diagnosed forcings for 14 CMIP5-AOGCMs by Forster et al. (2013). As a main finding we diagnose 

current practices – directly prescribing equilibrium climate sensitivity (that in the context of 2° stabilization scenarios, it would 10 

be necessary to implement a smaller ECS) value in PH99 compared to the ECS value of the very AOGCM which PH99 is 

supposed to emulate. Hence previous work based on PH99 (see Hope (2006) or), Anthoff & Tol (2014); prescribing the value 

of 3°C, which was generally considered to be the ‘best estimate’ for years;) and all the MIND-based work on decision-making 

under ECS uncertainty (see citations above)); and using a second, time-scale-relevant property to calibrate PH99 (see e.g. 

Anthoff & Tol (2014)) – ‘inadequate’ in the context of 2° stabilization scenarios. In this regard, ‘inadequate’ implies that PH99 15 

cannot emulate an AOGCM with similar ECS and transient climate response (TCR) to )) might require a sufficient degree of 

accuracyre-interpretation. Needless to say, we are not claiming that the previously published IAM-based work mentioned 

above is ‘worthless’; rather. Rather, we argue that the parameters and probability density distributions need to be re-interpreted 

as transformed ones, essentially because a response has been sampled which is higher than that of the corresponding AOGCM. 

Hence we propose calibrating PH99 by mapping AOGCMs’ ECS and TCR to respective effective values, which are suitable 20 

for a centennial time horizon (but likely not beyond it),, before using them in PH99. 

In this way, PH99 could complement the use of increasingly complex climate modules, ranging from DICE’s 2-box model 

(Nordhaus, 2013) to the complex upwelling-diffusion climate module used in MAGICC (Meinshausen et al. (2011a)). The 

potential benefits of doing so are two-fold: firstly, the most parsimonious SCM, PH99, ensures maximum comprehensibility. 

Secondly, in the context of numerically solving decision-making under climate response uncertainty (Kunreuther et al., 2014), 25 

having to simultaneously deal with dozens, hundreds or even thousands of alternate climate ‘states of the world’ (the 

economist’s term for the uncertain system property) poses a significant challenge for numerical solvers and memory. In this 

regard, PH99 appears particularly attractive. Keeping the state space as slim as possible proves particularly relevant for 

decision-making under uncertainty with endogenous learning. For that reason, Traeger (2014) utilizes a 1-box rather than a 2-

box model, however with an exogenously given time series somewhat mimicking the existence of a deep ocean layer.  30 

Finally, our article represents a warning: if PH99 is to be used in the future, it should be done in a re-scaled manner, adjusted 

to the time horizon under investigation.  

This article is organized as follows. Section 2 introduces the data-based part of our analysis. We call for a 3-step procedure, 

including: (i) a conventional, though not naïve calibration of PH99 with regard to climate sensitivity and transient climate 
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response (i.e. the GMT change in response to a 1%/yr. increase in the CO2 concentration until doubling compared to the pre-

industrial value); (ii) an AOGCM-specific calibration; and (iii) the validation of the former.(ii). In SectionSect. 3 we first 

demonstrate that (i) would lead to emulation errors of up to 0.5 K for scenarios approximately compatible with the 2° target. 

We then show that this emulation error can generically be reduced to 0.1 K when choosing AOGCM-specific calibrations of 

PH99. This calibration is subsequently validated by independent scenarios. Note that, in Sect. 3, we focus on only RCP2.6 5 

scenario for calibration and use RCP4.5 and RCP8.5 for validation and leave further analyses, which show that PH99 can be 

generally calibrated to and validated by a variety of scenarios, for the sake of brevity, to Appendix 2. In SectionSect. 4 we 

present a scheme of how to calibrate PH99 for a given ECS, thereby avoiding AOGCM-specific calibrations. This results in a 

larger emulation error than achieved in SectionSect. 3, but one that would nevertheless suffice for most applications. In Section 

5 we explain the observed discrepancy between PH99 and AOGCMs as reported for step one of SectionSect. 2 by pursuing a 10 

semi-analytical, physically-based approach. In SectionSect. 6 we discuss the implications of our findings for the integrated 

assessment community, while SectionSect. 7 presents our conclusions and outlines further research needs. 

Before we proceed, a brief note on the role of AOGCM data in our article is in order. We compare PH99 to AOGCM data 

because we utilize AOGCMs here as the entities closest to ‘reality’ available on the ‘model market.’market’. We do not, 

however, claim that IAM modelers were using them or should be using them. AOGCM data is used to demonstrate how ECS 15 

and TCR data can skew the calibration of PH99, and how it should be corrected. The same correction should in principle be 

used for ECS data inferred from any source, e.g. abstract distributions such as those presented in Bindoff et al. (2013). 

Mirroring PH99 in AOGCM data, however, is currently the most direct way to infer the quality of a (not) re-calibrated PH99. 

2 Method 

This Sectionsection introduces the analytic structure of PH99, relates it to ECS and TCR, to then describe a three-step scheme 20 

for a PH99 / AOGCM intercomparison.  

Among others, one of the most extensively used most parsimonious climate emulators is the 1-box global energy balance 

model, Eq. (1), introduced by Petschel-Held et al. (1999), whichPH99 projects the atmospheric GMT anomaly compared to 

its preindustrial level. Petschel-Held et al. (1999) specified the model for a CO2-only forcing scenario and accordingly PH99 

reads  25 
d𝑇𝑇
d𝑡𝑡

=  µ ln(𝑐𝑐) −  𝛼𝛼 𝑇𝑇 .           (1) 

Here T denotes the GMT anomaly, c is the CO2 concentration in units of its pre-industrial level, and α and µ are constant 

tuning parameters.   

From Eq. (1) we can readily read the ECS, the equilibrium temperature anomaly in response to a doubling of the CO2 

concentration compared to its pre-industrial value:  30 

𝐸𝐸𝐸𝐸𝐸𝐸 =  µ
𝛼𝛼

 ln(2)                                              (2) 
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also in line with Petschel-Held et al. (1999) and Kriegler and Bruckner (2004). In Appendix 1 we briefly derive the TCR 

(GMT) from a stylized experiment after the CO2 concentration has been exponentially increased with the rate γ (of 1%/yr.) 

until the concentration has doubled for this model: 

𝑇𝑇𝐸𝐸𝑇𝑇 =  µγ
𝛼𝛼2
�−1 + 2−

 𝛼𝛼
γ + 𝛼𝛼

γ
ln (2)� = γ 𝐸𝐸𝐸𝐸𝐸𝐸

𝛼𝛼 ln (2)
�−1 + 2−

 𝛼𝛼
γ + 𝛼𝛼

γ
ln (2)�                      (3) 

In the following we propose thea 3-step validation approach to clarify PH99’s range of applicability.  5 

2.1 Step One 

We first check whether simply calibrating PH99 from AOGCM-specific ECS and TCR data would deliver good emulations 

(i.e. accurate to within 0.1K) for 2°-target-compatible scenarios. After a technical derivation, we summarize this method of 

mapping AOGCMs’ ECS and TCR onto PH99’s two parameters.  

Some difficulty arises due to the fact that suchAOGCMs have not been run for 2°-target-compatible scenarios are not available 10 

for CO2-only forcing, but solely for a plethora of simultaneous forcings that would add up to a total forcing. Hence we 

generalize Eq. (1) to its total-forcing counterpart (see Eqs. (4)-(7)) to be driven by total forcing time series as reconstructed in 

Forster et al. (2013). Accordingly, we utilize scenarios generated by 14 AOGCMs (see Table 1) from CMIP5. From Forster et 

al. (2013), we also take the ECS and TCR for these 14 models to derive model-specific α and µ, utilizing Eq. (2) and Eq. (3).  

 15 

In order to generalize Eq. (1), we recall its derivation from an energy balance approach, as summarized in Kriegler and 

Bruckner (2004), allowing for a physical interpretation of the model. We start by introducing the general energy balance 

equation, expressing the change in oceanic heat content as the difference of ingoing (F) and outgoing  (λ 𝑇𝑇) radiative flux 

while h denotes the constant effective oceanic heat capacity (see also Geoffroy et al., 2013, Eqs. 1-4). 

ℎ d𝑇𝑇
d𝑡𝑡

 = 𝐹𝐹(𝑡𝑡) − λ 𝑇𝑇(𝑡𝑡)                (4) 20 

F also represents the total radiative forcing as applied in Forster et al. (2013). However the equation could still not be integrated 

as h and λ are yet to be determined. In order to solve the posed problem (CO2-only versus total forcing) we note that h and λ 

represent universal parameters of PH99 in the sense that their numerical values would not depend on the mix of substances 

(i.e. CO2, other greenhouse gases, aerosols, etc.) causing the total radiative forcing. Therefore, h and λ  can be determined by 

considering the CO2-only case and, hence, by tracing them back to the already determined α and µ . For the CO2-only case, 25 

Eq. (4) reads   

ℎ d𝑇𝑇
d𝑡𝑡

 = −λ𝑇𝑇(𝑡𝑡)  +  𝑄𝑄2
ln 𝑐𝑐(𝑡𝑡) 
ln 2

                           (5) 

Q2 denotes the additional forcing from the doubling of the CO2 concentration compared to its pre-industrial value and is listed 

for all of the AOGCMs (see Forster et al., 2013, Table 1). 

If we then divide by h, we obtain: 30 
d𝑇𝑇
d𝑡𝑡

 = − λ
ℎ
𝑇𝑇(𝑡𝑡)  +   𝑄𝑄2

ℎ
ln 𝑐𝑐(𝑡𝑡) 
ln 2

                           (6) 
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A comparison with Eq. 1 readily reveals  

𝛼𝛼 = λ
ℎ
     and     µ = 𝑄𝑄2

ℎ ln 2
 .                         (7) 

These equations would allow for determining h = Q2 / (µln2) and λ =αh. Utilizing these equations and Eq. (4), we generate 

PH99’s temperature response to the total radiative forcing as specified in Forster et al. (2013).   

  5 

The derivation displayed so far can be summarized in terms of the following recipe to generate PH99’s parameters on the basis 

of AOGCMs’ ECS and TCR:  

1. Set PH99’s ECS and TCR equal to the selected AOGCM’s ECS and TCR.  

2. Numerically invert Eq. (3), right-hand side expression, to find α (no analytic expression possible). 

3. Invert Eq. (2) to find µ.   10 

4. Derive h and λ  from Eqs. (7), then utilize Eq. (4), divided by h. 

Finally, to avoid differences occurring over the historical period (pre-2006 for the RCPs), we need to initialize PH99 with each 

AOGCM’s 2006 temperature anomaly with respect to the pre-industrial value. To do this, for each AOGCM we calculate the 

mean temperature over the period 1881-1910 and set this as the pre-industrial value. We then calculate the mean temperature 

over the period 1991-2020 and use this as an indicator for the 2006 temperature level. The difference between these two values 15 

is fixed as the initial temperature anomaly for PH99. 

Each temperature trajectory should be compared to the temperature data from the corresponding AOGCM. As for GMT-target-

constrained economic optimizations (Clarke et al., 2014; Edenhofer et al., 2005), the maximum GMT (rather than the whole 

time series) is of special importance. Hence we use the difference between the respective 2071-2100 GMT time averages of 

PH99 and the AOGCM as an error metric. If the deviations are tolerable (accurate to within 0.1K), the climate module is 20 

validated; if they are intolerable, we proceed with steps two and three. 

2.2 Step Two 

For each AOGCM, α and µ are tuned such that the difference between PH99 and the AOGCM GMT anomaly for the RCP2.6 

scenario in the period 2006-2100 is minimized using a least squares approach. For further diagnostics we then determine the 

new ‘effective’ ECS and TCR from Eq. (2) and Eq. (3). As in step one, the deviations in 2071-2100 means of GMT between 25 

PH99 and the respective AOGCM are determined as an accuracy check. 

2.3 Step Three 

Lastly, we validate the PH99 model versions generated in step two. For this purpose, independent temperature and forcing 

paths must be run as a nontrivial test to check whether the trained climate module can accurately project other temperature 

data trajectories. To do so, the values for α and µ determined in step two are implemented in PH99, the latter then being driven 30 
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by the total climate forcing of the RCP4.5 and RCP8.5 scenarios. Similar to steps one and two, the deviations in 2071-2100 

means of GMT between PH99 and the respective AOGCM are determined as an accuracy check. 

 

One might be interested in seeing if the calibrated module is capable of mimicking other scenarios such as RCP6.0 or what if 

PH99 was calibrated to RCP4.5 or others. Stating that, in general, the procedure outlined above brings about similar results, 5 

for the sake of brevity of the main text, we present the respective results in Appendix 2. 

3 Results 

Table 1 shows the calculated α and µ together with the feedback response time 1/α in step one. For all of the indicators we 

also compute the mean values and standard deviations of the samples. The mean value of the ECS for GCM data is 3.35 K, 

with a minimum and maximum of 2.11 K and 4.67 K, respectively. The mean value of the time scales is roughly 35 years. 10 

Figure 1 represents the projected PH99 temperature evolution for the scenario RCP2.6 of each GCM in 2006-2100, using the 

data from Table 1 and the RCP2.6s’ forcings. PH99 clearly overestimates the temperature anomaly for all GCMs, especially 

over the last 30 years. The absolute values of the deviations of mean temperature over the last 30 years (hereafter: MTD) from 

the AOGCM data are shown in Figure 2. The MTD ranges from 0.22 K for MRI-CGCM3 to approximately 0.79 K for 

HadGEM2-ES. On average, the deviations are ca. 0.45 K. This is clearly a large error, both in units of annual GMT standard 15 

deviation as well as the climate policy dimension. A proclaimed goal of the 2015 Paris Agreement (UNFCCC, 2016) is 

‘…holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts 

to limit the temperature increase to 1.5°C above pre-industrial levels…’ Hence a difference in 0.5 K does matter. Accordingly, 

we must proceed with step two.   

In step two, for each of the GCMs, we tune α and µ such that the GMT deviations for the whole period 2006-2100 are 20 

minimized in a least squares manner as represented in Figure 3 and Figure 4. From the thereby adjusted α and µ we derive the 

ECS and TCR, which are presented in Table 2. MTDs for the various AOGCMs are shown in Figure 2. 

The results tell us three main things. Firstly, the average of the absolute values of deviations is significantly reduced when α 

and µ are tuned. Indeed, the MTD average drops to below 0.02 K. Secondly, while the average ECS decreases by 0.9 K (from 

3.35 K to 2.46 K), the average TCR increases by 0.14 K (from 1.90 K to 2.04 K). Thirdly, the mean value of feedback response 25 

times decreases significantly, from roughly 35 years to less than 12 years. 

For validation we move on to step three. We utilize the RCP4.5 temperature and forcing data as provided by Forster et al. 

(2013). In Figure 3 and Figure 4 the respective GMT trajectories for any AOGCM are contrasted with the PH99-generated 

ones, wherebywhere 𝛼𝛼 and µ are fixed to their values as determined in step two. The MTDs are shown in Figure 2. The results 

confirm that the climate module is sosufficiently well trained in the second step that it can suitably mimic the actual 30 

temperatures (accurate to within 0.1K) for RCP4.5 and RCP8.5. As shown, the average MTD is approximately 0.05 K for 
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RCP4.5 and about 0.1414K for RCP8.5. For RCP4.5, the deviations for three of the GCMs, namely CCSM4, CNRM-CM5 

and NorESM1-M, are even better than those diagnosed for RCP2.6 in step two. See Appendix 2 for further analyses. 

4 A mapping of ECS onto their PH99-specific counterparts α and µ  

Finally, we attempt to abstract from fitting PH99 to individual AOGCMs and provide an approximate way to calibrate PH99 

within the cloud of AOGCMs simply by knowing the ECS. Then PH99 could be utilized for any ECS in analyses where the 5 

ECS is uncertain.  

 

4.1 An existing mapping for PH99 

Before diving into our suggestions, it might be worthwhile to first take a look atwe examine one of the existing options. 

(However,  (a reader mainlysolely interested in our improved method of utilizing PH99 might directlycan move on tostraight 10 

onto Subsection 4.2.) ). We inspect the curve suggested by Lorenz et al. (2012), which correlates α and µ to the ECS. Using a 

sample from Frame et al. (2005) and assuming a strict relationship between 1/µ and ECS, Lorenz et al. (2012) suggest the 

following approximation: 
1
µ

≈ 1
µ
− 10 exp(−0.5 𝐸𝐸𝐸𝐸𝐸𝐸)                (8) 

where µ is the mean value of µ in the sample (see Fig.7 in Lorenz et al., 2012, all quantities measured in the units utilized in 15 

Kriegler & Bruckner, 2004). Knowing µ, Eq. (2) is used to determine α. In turn, Eq. (2) and Eq. (8) have been repeatedly used 

in studies employing MIND and concerning uncertainties and ECS (Neubersch et al., 2014; Roshan et al., 2018; Roth et al., 

2015). 

We employ Eq. (2) and Eq. (8) for all ECSs from Table 1 and show the MTDs for the RCP2.6 scenario in Figure 5. Notice 

that TCR can readily be calculated using Eq. 3. Clearly, on average, employing Lorenz’s curve does not result in a better 20 

situation than step one. However, this might not necessarily be a case of comparing like with like. At the time of Frame et al. 

(2005), the two-dimensional uncertainty information was obtained by reconstructing the 20th century’s warming signal from 

fingerprinting by means of a single AOGCM and then using this observational data as a constraint. It is well known that 

observational constraints may lead to different distributions than ensembles of AOGCMs do (Andrews & Allen, 2008). 

Nevertheless we include this piece of information here for the sake of completeness. 25 

 

4.2 A multiple AOGMCAOGCM-based mapping for PH99 

Given the inferred estimates in Table 2, one can directly relate α and µ to the ECS. To do so, we generate polynomial fits (of 

orders 2 and 3) of α and µ against all AOGCMs’ ECSs. Predicting a two-dimensional manifold from ECS alone implicitly 

exploits the fact that AOGCMs’ TCRs can be predicted well using ECSs (see e.g. Meinshausen et al., 2009) in a statistical 30 

sense. Another option would be to derive α and µ analytically (like in the first step) when the inferred ECS and TCR are 

correlated to the ECS and TCR of AOGCMs. 
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Figure 6 relates α and µ (from Table 2) to the ECS (from Table 1), using linear, quadratic and cubic polynomial approximations. 

For the case of a linear approximation, we put the model GISS_E2_R out as an outlier. Figure 5 indicates that on average all 

approximations mimic the actual temperature paths better than a non-fitted one. The cubic estimation projects significantly 

smaller deviations compared to the quadratic approximation and slightly smaller deviations compared to the linear 

approximation. The maximum MTD in the cubic approximation is 0.3 K for IPSL-CM5A-LR, which is roughly a third of the 5 

maximum in the quadratic approximation that is revealed for CSIRO-Mk3-6-0. 

We also consider alternative ways to map ECS and TCR from the 14 utilized AOGCMs onto PH99-intrinsic properties, going 

beyond the scheme displayed in Figure 6. As one option, shown in Figure 7, we linearly regress the ECS and TCR values 

inferred from step two against their original AOGCM counterparts respectively and obtain 

𝐸𝐸𝐸𝐸𝐸𝐸PH99≈ 𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸AOGCM + 𝑏𝑏                (9)  10 

with a= 0.5846, b= 0.5095 K, and R2 =0.8158, as long as ECSPH99  < ECSAOGCM 
 

and 

𝑇𝑇𝐸𝐸𝑇𝑇PH99≈ 𝑐𝑐 𝑇𝑇𝐸𝐸𝑇𝑇AOGCM + 𝑑𝑑                 (10)  

with c= 0.9763, d= 0.1829 K, and R2 =0.667. 

The other option consists in using Eq. (9) along with a linearly regressed 𝑇𝑇𝐸𝐸𝑇𝑇PH99 over 𝐸𝐸𝐸𝐸𝐸𝐸AOGCM, that is 15 

𝑇𝑇𝐸𝐸𝑇𝑇PH99≈ 𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸AOGCM + 𝑛𝑛                (11)  

with m= 0.4582, n= 0.5044 K, and R2 =0.7876. 

The respective MTDs are shown in Figure 5. Although both approximations mimic the actual temperature paths better than a 

non-fitted one, regressing both the inferred effective ECS and TCR solely against AOGCMs’ ECS (hereafter: ETE) clearly 

offers the betterbest overall approximation. 20 

Using the ETE has four major advantages over all other options dealt with here, especially for the IAM community. Firstly, 

its approximation is better than all options but the cubic fit. Secondly the ETE still has an advantage over the cubic fit because 

one can easily use a broader range of climate sensitivities, for example, from 1 K to 9 K, which may not be accurately 

determined by the cubic fit. Even though the cubic fit may yield a better approximation, in our analysis it is only better by 0.03 

K at the expense of a non-intuitive shape that might result in even worse deviations for out of sample data. Thirdly, prior 25 

knowledge regarding the TCR is no longer a decisive factor. Please noteNote that prior knowledge regarding the TCR can 

make approximations better. However, as we tested, for example, in the case of linearly regressing both the inferred effective 

ECS and TCR against both AOGCMs’ ECS and TCR, the R-squares for Eq. (9) and Eq. (11) only improve by 6% and 7% 

respectively, and the MTD is no better than the ETE. Finally, in the case of ETE, we do not need to re-evaluate our sample 

and possibly drop any model as an outlier. Given the explorations already done and their performance, we leave explorations 30 

beyond the linear approximation for future research. 
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5 An analytic interpretation of the AOGCM-PH99 intercomparison 

In the following, we explain why PH99 systematically overestimates maximum GMT for peaking scenarios when fitted for 

exponentially growing scenarios. As an AOGCM is analytically not accessible, we investigate an intermediate step of model 

replacement by moving from a 1-box to a 2-box SCM (as utilized in DICE (Nordhaus, 2013)). Hereby we presuppose that a 

2-box model emulates an AOGCM qualitatively better than a 1-box model. In fact we qualitatively trace back the effects 5 

reported so far to the information loss incurred by replacing a 2-box SCM with a 1-box SCM like PH99. We then also 

investigate the quality of alternative fitting schemes based on our semi-analytic analysis, which complements our previously 

mentioned AOGCM-based validation.  

Following Geoffroy et al. (2013) we introduce a 2-box SCM as a more universal emulator of AOGCMs’ mapping from 

radiative forcing onto temperature.  10 

𝐸𝐸 d𝑇𝑇2B
d𝑡𝑡

= 𝐹𝐹 − λ2B𝑇𝑇2B − 𝛿𝛿(𝑇𝑇2B − 𝑇𝑇0)          (12) 

𝐸𝐸0  d𝑇𝑇0
d𝑡𝑡

=                            𝛿𝛿(𝑇𝑇2B − 𝑇𝑇0)  

T2B denotes the 2-box analogue of the 1-box temperature T in Eq. (1). The upper and the lower equation represent the upper 

and the lower ocean, respectively. 

In order to contrast PH99 with this 2-box model, we search for analytic approximations of generic shapes of the forcing F(t) 15 

and examine the long-term perspective onprojections under various RCPs as depicted in Meinshausen et al. (2011b) – an 

excerpt is included in Figure 8 for the reader’s convenience. Particularly in view of the peaking, mitigation-oriented lowest 

forcing scenario, we approximate forcing paths in three phases: zero forcing, linear increase, and linear decrease, under a 

continuity assumption. 

𝐹𝐹(𝑡𝑡) = �
0                         for 𝑡𝑡 < 0

         𝑘𝑘1𝑡𝑡                       for 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1 
𝑘𝑘2(𝑡𝑡 − 𝑡𝑡1) + 𝑘𝑘1𝑡𝑡1 for 𝑡𝑡 > 𝑡𝑡1  

         (13) 20 

We approximately identify t1 with the year 2035 and t=0 with 100 years earlier, i.e. we assume a ramp-up time t1 for the forcing 

of roughly 100 years. Furthermore, k2<0 and |k2 / k1| =: ε ≪ 1. From Figure 8 we findapproximate a generic value of ε=0.2. 

For 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1we draw on Geoffroy et al. (2013 – see their Eq. (14)) 

𝑇𝑇2B(0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1) = 𝑘𝑘1
λ2B

�𝑡𝑡 − 𝜏𝜏f𝑎𝑎f �1 − e
− 𝑡𝑡
𝜏𝜏f� − 𝜏𝜏s𝑎𝑎s �1 − e−

𝑡𝑡
𝜏𝜏s��       (14) 

This represents two linear modes of amplitudes af and as (with both summing upsum equal to 1), delayed by the characteristic 25 

time scales of a fast and a slow mode, τf and τs, respectively, and continuously matched to the initial condition ‘0’ by an 

exponential. In Geoffroy et al. (2013) the 2-box model is fitted to 16 AOGCMs. After having reviewed their results for our 

order-of-magnitude estimates of PH99’s accuracy, we can make the following two simplifying assumptions: (i) both 

amplitudes af and as approximately equal 1/2 (see their Fig. 3a – amplitudes range from 0.35 to 0.65), (ii) τf ≈0 (values range 

from 1 yr. to 5.5 yrs., see their Table 4; for centennial effects, this mode would nearly match the equilibrium response). 30 
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Furthermore we can see that τs ranges from 100 yrs. to 300 yrs. for 15 out of 16 AOGCMs. Hence the 2-box model is 

characterized by a marked time-scale separation between the two linear modes. With the aid of these two approximations, the 

last equation can be simplified to 

𝑇𝑇2B(0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1) ≈ 𝑘𝑘1
λ2B

�𝑡𝑡 − 𝜏𝜏
2
�1 − e−

𝑡𝑡
𝜏𝜏�� with τ :=τs.         (15) 

We then extend the analytic range of that formula, given the two approximations above, for t > t1 (for a derivation, see Appendix 5 

3): 

𝑇𝑇2B(𝑡𝑡 > 𝑡𝑡1) ≈ 𝑘𝑘1
λ2B

�−𝜀𝜀𝑡𝑡+(1 + 𝜀𝜀)𝑡𝑡1 + 𝜏𝜏
2
�𝜀𝜀 + e−

𝑡𝑡
𝜏𝜏 − (1 + 𝜀𝜀)e−

(𝑡𝑡−𝑡𝑡1)
𝜏𝜏 ��        (16) 

The analogous expressions for the 1-box model read 

𝑇𝑇(0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1) = 𝑘𝑘1
λ
�𝑡𝑡 − 𝜃𝜃 �1 − e−

𝑡𝑡
𝜃𝜃�� , 𝜃𝜃 ≔ 1

𝛼𝛼
,     λ from Eqs. (7),       (17) 

and 10 

𝑇𝑇(𝑡𝑡 > 𝑡𝑡1) = 𝑘𝑘1
λ
�−𝜀𝜀(𝑡𝑡 − 𝜃𝜃)+(1 + 𝜀𝜀)𝑡𝑡1 + 𝜃𝜃 �e−

𝑡𝑡
𝜃𝜃 − (1 + 𝜀𝜀)e−

(𝑡𝑡−𝑡𝑡1)
𝜃𝜃 ��.       (18) 

5.1 Explaining the PH99-AOGCM discrepancy for equal ECS and TCR values 

We are now prepared to mimic Step One in Section 2: we calibrate the 1-box model such that it is characterized by the same 

ECS and TCR as the 2-box model. As λ=Q2/ECS2B , equal ECS values for both models deliver λ=λ2B. 

Determining the second degree of freedom of PH99 (e.g. as expressed by θ ) from some transient property proves more 15 

intricate. We request 

𝑇𝑇(𝑡𝑡TCR) = 𝑇𝑇2B(𝑡𝑡TCR)            (19) 

whereby we introduce tTCR as the moment in time when T needs to be evaluated in order to determine TCR. In Appendix 1 we 

note, by definition, that tTCR= (ln2)/γ ≈70yrs for a growth rate γ=1%/yr of the carbon dioxide concentration, hence 0<tTCR<t1. 

Therefore, when exploiting Eq. 19, Eqs. 15 and 17 (rather than 16 and 18) apply and result in the expression  20 

ℎ � 𝜃𝜃
𝑡𝑡TCR

� = 1
2
ℎ � 𝜏𝜏

𝑡𝑡TCR
�           (20) 

with h denoting the auxiliary function (see Figure 9) 

ℎ(𝑥𝑥) ≔ �1 − e−
1
𝑥𝑥� 𝑥𝑥,                                          (21) 

resulting inwhere       

lim
𝑥𝑥→0

ℎ(𝑥𝑥) = 0, lim
𝑥𝑥→∞

ℎ(𝑥𝑥) = 1,    ℎ(𝑥𝑥) ≈ 𝑥𝑥 for 𝑥𝑥 ≪ 1.         (22) 25 

From this, we can already get a first impression of the scale of θ, prior to numerical inversion: as τ is generically markedly 

larger than tTCR, the right-hand side of the defining equation above approximates ½. Further, if we boldly assume a slight time-
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scale separation between θ and tTCR, the former being smaller than the latter, then the linear approximation of h would apply 

and θ ≈ tTCR/2≈35 yrs. For a centered value of τ=250 yrs, this approximation is confirmed in a direct numerical treatment of 

Eq. (20).  

Hence from the twin time-scale separation of ‘the 1-box model mode,’ ‘defining time scale for TCR,’ and the ‘slow mode of 

the 2-box model’ we have explained why TCR-oriented fitting exercises of the 1-box model would generically result in time 5 

scales of roughly 30 to 40 years (see e.g. Anthoff & Tol, 2014; Kriegler & Bruckner, 2004). The factor ½ between the 1-box 

model’s time scale and the TCR-defining time scale goes back to Geoffroy et al.’s (2013) observation that the fast and the 

slow mode both enter the superposition result with approximately equal weights of ½. The slow mode is then too slow to be 

of much relevance for TCR – a phenomenon not revealed by the 1-box model. 

We are now equipped to compare the two models’ temperature projections and apply the 3-phase forcing as defined above for 10 

ε=0.2. a1/λ is chosen such that peak temperatures enter the 2° regime for illustrative purposes. We exploit the coincidence that 

tTCR just happens to approximately correspond to our starting year 2006 for PH99 (because 2035-100+70=2005). Hence the 

formulas for the 1-box model do not need to be adapted for an explicit initial condition for this purpose. Figure 10 shows that 

by construction, both temperature responses match at tTCR ≈ 70 yrs., although the 1-box model’s maximum exceeds the exact 

maximum by 0.5 K. This phenomenon can be explained as follows. As the 1-box model responds with a finite time scale, its 15 

derivative must be continuous in response to a continuous forcing. Hence the leading term is quadratic when the forcing starts. 

In contrast, the 2-box model contains a virtually degenerate time scale (the fast one); hence its leading term is linear. If the two 

curves are to nevertheless match at tTCR, the 1-box model’s derivative at tTCR must transcend the 2-box model’s derivative. 

This, together with the right-bending kink in the 2-box model’s response at t1, leads to a larger maximum in the 1-box model. 

In summary, on time-scales much smaller than the slow mode, the slow mode, compared to the fast mode, cannot develop yet; 20 

hence the fast mode will dominate the slow mode. As such, fitting a 1-modal model in a convex regime is likely to yield poor 

predictions of a temperature maximum for mitigation-based forcings.  

This explains the discrepancies found in our PH99-AOGCM comparison when directly transferring AOGCMs’ ECS and TCR 

onto PH99. Figure 10 further suggests that if PH99 were used to predict correct maxima and emulate AOGCMs in this time 

regime, it would need to be used with a markedly smaller time scale. However, a simple reduction in time scale would lead to 25 

a new inter-model discrepancy before the kink; hence the overall amplitude of PH99’s response would need to be reduced as 

well. The latter scales with the ECS; hence the ECS must be reduced by a certain factor towards a new ‘effective ECS,’ which 

could also be called a ‘transient climate sensitivity.’  

5.2 Testing the validity of a recalibrated PH99 for a 2-box model 

In SectionSect. 5.1 we derived an analytic explanation for why a naïve transfer of an AOGCM’s ECS and TCR to PH99 leads 30 

toresults in a too large maximum GMT which is too large when driven by a mitigation forcing scenario. However we could 

show in Sections 3 and 4 that PH99 in fact is a good emulator of an AOGCM within 0.1K if it either were directly fitted to 
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that AOGCM or if the AOGCM’s ECS and TCR were transformed into effective quantities for PH99. Hereby ‘good emulator’ 

expresses the fact that the same parameter set can be utilized for any RCP (2.6, 4.5, 6.0, 8.5). From a practical point of view, 

we could stop our analysis here and suggest that this type of validation might be sufficient to generate trust in PH99 as an 

emulator for any forcing scenario.   

However for further validation, in this Subsection we would like to exploit the fact that for a 2-box / 1-box intercomparison 5 

we can validate PH99 for aan order-of magnitudesmagnitude larger set of forcing scenarios (again presupposing that a 2-box 

model would emulate an AOGCM qualitatively better than a 1-box model). We systematically test the previously suggested 

adjustment formulas Eqs. (9) to (11) for a range of t1 and ε values, hence varying mitigation scenarios, given alternative ECS 

and slow mode’s time scale τ for the 2-box model. We find numerically that θ is on the order of 10 years, and the ECS needs 

to be reduced by 1/4 to 1/3. We test for the centred ECS values of 3 K and 4 K and a slow mode’s time scale, which generically 10 

ranges from 100 yrs. to 300 yrs (see Geoffroy et al., 2013).  

In principle, for any forcing scenario characterized by varying t1 and ε , we would need to compare GMT as calculated by Eqs. 

(17)-(18) vs. Eqs. (15)-(16). However any of these Eqs. derive GMT for the boundary condition of zero temperature at t=0. 

QuiteOn the contrary, our validation scheme as utilized in Sections 3-4 would fix PH99 to the AOGCM at the year 2006. The 

latter point in time we denote by t0 (≈tTCR). Having transformed ECS and TCR according to Eqs. (9)-(11) we cannot expect 15 

any longer T(t0)=T2B(t0). Therefore we have to force the solution of PH99 to the solution of the 2-box model at t0 and call the 

thereby initialized solution of PH99 ‘Tinit’: 

Tinit(t0)=T2B(t0).             (23) 

We generate Tinit(t) from T(t) (see Eqs. 17 and 18) by adding a suitably scaled solution of the homogenous counterpart of Eq. 

4: 20 

𝑇𝑇init(𝑡𝑡 ≥ 𝑡𝑡0) = 𝑇𝑇(𝑡𝑡) + �𝑇𝑇2B(𝑡𝑡0) − 𝑇𝑇(𝑡𝑡0)�e−
(𝑡𝑡−𝑡𝑡0)
𝜃𝜃 .            (24) 

 

Figure 11 shows the relative deviations of the GMT maxima of the 1-box and the 2-box model for the extrapolation scheme 

ETE (Eqs. (9) and (11)). In a certain regime, the extrapolation delivers sufficiently accurate results, however, not everywhere. 

When utilizing the mapping scheme represented by Eqs. (9) and (10), the results look similar. The overall impression is that 25 

the mapping removes the bias. However, it does not deliver an asa universal correction as found for the direct intercomparison 

between PH99 and AOGCMs. WeHence we cannot exclude the possibility that AOGCMs are easier to emulate as they contain 

many more time scales than the 2-box model and their effects might in part cancel. 

While we observe a qualitative gain, Figure 11 reveals there is still room for improvement. Accordingly, we further transform 

the ECS to request perfect matching for t1=100 yrs, ε=0.2; the results can be seen in Figure 12. The fit is much further improved 30 

such that a major fraction of (t1, ε) values would lead to a relative error of <5%, and another large fraction to a relative error 

of <10%. As the standard deviation of annual GMT is between 0.1°C and 0.2°C and a typical application might be a cost-

effectiveness analysis of the 2°C target, such errors might still seem tolerable. However we observe structural problems for 
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very small values of ε, the latter implying very late assumption of a maximum. In this case, the slow mode becomes more 

relevant, and hence the quality of the calibration deteriorates. The calibration is valid for a time horizon on the order of t1 to 2 

t1., i.e. on the order of the time to peak forcing.  

6 Discussion 

The previous section offers a key mechanism to explain why, for given ECS and TCR, GMT scenarios generated by PH99 are 5 

biased towards higher temperatures. Oneresponses generated by PH99 in response to peak-and-decline forcing scenarios are 

biased towards higher temperatures. How does this relate to the observation that PH99 tend to underestimate the effect of 

greenhouse gas emissions (van Vuuren et al. (2011a)) as mentioned in our introduction? In fact, van Vuuren et al. (2011a) 

describe a different forcing experiment: a step-function in the course of time (see their Fig. 3). Here FUND, based on PH99, 

displayes a GMT lower than that of MAGICC-4 by more than 0.8 K at certain times during the most transient phase, although 10 

both models share the same ECS. This can be explained by the lack of time scales faster than 35 yrs (the latter characterizing 

PH99 in standard calibrations) within PH99. Whether PH99 over- or underestimates GMT is hence a strong function of the 

functional shape of forcing. Our article highlights the effects of a naively calibrated PH99 on mitigation scenarios. 

However, one should not forget about potential additional mechanisms. Firstly, the statistical errors in determining AOGCMs’ 

ECS, TCR and Q2 may lead, mediated through the nonlinear mapping on PH99’s parameters, to an overall bias in PH99’s 15 

GMT. Furthermore, diagnosing the total radiative forcing active in an AOGCM is a complex undertaking (see e.g. Meinshausen 

et al., 2011a, for a discussion). A bias to the high end here would also result in inaccurately large GMT responses by PH99.  

However, in the context of this article, we would like to focus on our main finding and contend that the information loss when 

moving from a 2-box to a 1-box model is the key source of the observed discrepancy – last but not least, we find Figure 10 

compelling in this regard. Complying with the latter interpretation raises a key question: Can PH99 be seen as a ‘physical 20 

model’ and if so, what are the implications for users? It is readily apparent that a 1-box model cannot mimic a 2-box model, 

characterized by a marked time-scale separation for all forcings at all times. However it is equally clear that the simplest 

temperature equation is in fact the one that treats the ocean as a single box. It would still explain warming with forcing in a 

quasi-linear manner, though with some delay. If we are willing to accept that the calibration of PH99 is time-horizon-specific, 

i.e., for the upcoming 200 years vs. the time horizon thereafter, then PH99 still holds some semi-physical meaning. If, however, 25 

this is seen as unacceptable, then we would have to recognize that PH99 is more an efficient emulator than a physical model. 

In this context we would like to recall that virtually every model has a limited range of validity – and as such, PH99 is no 

different from most other models.  

When investigating the 1-box / 2-box-models’ differences, our research also suggests that within the class of peak-and-decline 

scenarios PH99 provides a good emulation (accurate to within 0.2 K for a generic AOGCM setting such as ECS=4 K, a peaking 30 

of forcing between 2020 and 2100, and a ratio of slopes of pre- and post-peaking forcing of 0.1 to 0.4). For the AOGCM/PH99 

intercomparison, PH99 performs even better: for RCP2.6, 4.5, 6.0 (~0.1K) and, to a lesser extent, 8.5.  
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What are the ramifications of our findings for previous publications based on PH99? Those authors who claimed to have 

worked with PH99 in conjunction with ECS=3°C have effectively worked with a more complex model in conjunction with 

ECS≈4°C for the centennial time horizon. Much of the work done based on MIND in conjunction with PH99 and the log-

normal distribution for ECS by Wigley & Raper (2001), has essentially been based on a log-normal distribution shifted to 

larger ECS values. The 5%, 50% and 95% quantiles of the log-normal distribution by Wigley & Raper (2001) are 1.2 K, 2.6 5 

K and 5.8 K, respectively. When interpreting these values as PH99 values, as they have in fact been utilized in PH99 for the 

MIND model since Lorenz et al. (2012), in the sense of a rough estimate one could ask what were the corresponding effective 

ECS values of a more complex model according to our Figure 7. The respective values are 1.2 K, 3.6 K and 9.0 K. From Figure 

13, which reflects IPCC AR5’s synopsis of current knowledge regarding ECS (Bindoff et al., 2013), we can see that these are 

still in line with the range spanned by instrumental studies. Hence the results obtained by PH99 in conjunction with the 10 

distribution by Wigley & Raper (2001) are not erroneous, but simply need to be re-interpreted as rather high-end 

representatives within the collection of ranges as seen in IPCC AR5.  

For future applications we can conclude that PH99 must be applied and interpreted with greater care – utilizigutilizing 

transformed values for ECS and TCR – than in the past, if it is not to be replaced by at least a 2-box model as suggested by 

Geoffroy et al. (2013) and implemented in DICE (Nordhaus, 2013). 1-box models like PH99 can be crucial for modelling 15 

decision-making under uncertainty and anticipated future learning. As an illustration, execution of the MIND model currently 

demands between hours and days for 20 different values of climate sensitivity in conjunction with one learning step (E. Roshan, 

pers. comm.). The execution time needed will grow exponentially with the number of learning steps and at least linearly with 

the number of state variables influenced by uncertainty. For endogenous learning in a recursive design, computation time even 

scales factorially with the numerical resolution per state variable. The change from a 1-box to a 2-box model might hence 20 

imply an order of magnitude larger execution time (C... Traeger, pers. comm. in conjunction with Traeger (2014).)). So a 1-

box model will remain an attractive alternative in numerical applications addressing decision-making under anticipated future 

learning. Users who would like to go that road might, however, also consider the augmented 1-box model by Traeger (2014) 

as an alternative to PH99, employing an additional exogenous forcing of that single box to somewhat emulate two boxes.  

7 Summary and Conclusion 25 

We utilize recent data on total radiative forcing (Forster et al., 2013) from 14 state-of-the-art CMIP5 Atmosphere Ocean 

General Circulation Models (AOGCMs) in order to test the validity of the 1-box climate module by Petschel-Held (1999, 

‘PH99’) for scenarios approximately compatible with the 2° target. PH99 is currently utilized within the integrated assessment 

models FUND, MIND and PAGE.  

We find that when prescribing the equilibrium climate sensitivity (ECS) and transient climate response (TCR) of these 30 

AOGCMs to the emulator PH99, global mean temperature (GMT) is generically projected 0.5 K higher. In contrast, by directly 

fitting PH99 to the RCP2.6 time series and validating with the RCP4.5 and RCP6.0 series, we find that PH99 can emulate 
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AOGCMs to a degree of accuracy better than 0.1 K. Even for RCP8.5 the error is on the same order of magnitude, although 

somewhat larger (up to 0.2 K). 

We numerically demonstrate that PH99 can be used to excellently emulate AOGCMs (accurate to within 0.1 K on average) 

within centennial-scale integrated assessment of the 2° target, provided its ECS and TCR are re-interpreted as effective values 

and mapped from original ECS and TCR values. We suggest a first version of such a mapping.  5 

Furthermore we explain the observed discrepances and the need to reduce PH99’s ECS compared to the AOGCM’s ECS as 

being due to the information loss produced by approximating a 2-box-based energy balance model with a 1-box-based model. 

(Hereby we assume (assuming that a 2-box model mimics an AOGCM better than a 1-box model.)). The key point is that 

PH99 has a fundamentally different response shape to an AOGCM and hence ECS alone does not allow one to easily move 

between the two. The transformation we propose adjusts PH99’s ECS, sacrificing agreement in the long-term response in order 10 

to gain agreement in the centennial response (which is sensibleuseful given it is more often than not the timescale of interest).  

In fact the slow mode of the 2-box model is so slow that in a climate-policy-relevant context it can unfold only up to a relatively 

small extent; hence for practical purposes the 2-box model’s ECS cannot fully develop. Accordingly, adjusting the ECS to 

lower values also proves to be compatible with reducing PH99’s response time. When comparing PH99 and AOGCMs, the 

match is even better – a phenomenon for which the explanation of which is beyond the scope of this article. 15 

Hence older work based on PH99, executed within FUND, MIND and PAGE, may need to be re-interpreted in the sense that 

a response had been sampled which is higher than that of the corresponding AOGCM. This effect, in turn, proves 

equivalenntequivalent to utilzing higher ECS values in the more complex model. Even when having dealt with distributions 

of ECS as for the MIND model, ECS values re-interpreted in that sense are still within the range outlined by IPCC AR5 (see 

Figure 13). Hereby we see this ‘re-interpretation’ as a mere numerical fix. In terms of the underlying physics, we rather would 20 

like to stress that using ECS alone to characterise climate response on a few hundred year timescale is fundamentally flawed, 

given that ECS takes on the order of a thousand years to emerge. 

For future work, we propose the following steps: (i) By comparison with more sophisticated, multi-box climate modules it 

should be tested again whether the effect of a transient climate sensitivity (and TCR) alone could explain our observed PH99-

AOGCM discrepancy.; (ii) Future discussions with the AOGCM community should illuminate to what extent the further 25 

explanations we suggested might also apply, thereby potentially reducing the need to correct for PH99.; (iii) An AOGCM- and 

scenario class-independent, yet centennial time-scale-specific two-dimensional mapping from ECS/TCR onto ECS/TCR and 

designed for PH99 should be derived in conjunction with two-dimensional distributions inferred from observations as done in 

Frame et al. (2005). The IAM community could then be offered both options for emulation: the one presented here, trained by 

AOGCMs, and one based on observational data and mediated by more complex SCMs. 30 

In summary, PH99 could continue to be used as the most parsimonious emulator of AOGCMs, and is especially efficient for 

decision-making under climate response uncertainty. However its calibration proves to be much more involved than previously 

assumed. Future users should carefully consider whether they actually want to use PH99, or whether they prefer a less 

parsimonious solution.  
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Appendix 1: An Analytic Expression of TCR in PH99 

We rearrange Eq. (1) as  

�̇�𝑇 =  µ ln(𝑐𝑐) −  𝛼𝛼 𝑇𝑇                   (A1) 

TCR is defined as the temperature change in response to a 1%/yr. increase in CO2 concentration, starting from preindustrial 

conditions. Hence the concentration, expressed in units of the pre-industrial concentration, reads 5 

𝑐𝑐 = exp(γ 𝑡𝑡)                  (A2) 

with γ  denoting the above rate of change. As Eq. (A1) represents a linear ordinary differential equation with constant 

coefficients, and the initial temperature anomaly is to vanish, its solution reads 

𝑇𝑇 =  µγ exp(−α 𝑡𝑡)∫ 𝑡𝑡 exp(α 𝑡𝑡)d𝑡𝑡  =  exp(−α 𝑡𝑡) µγ (1 + exp(α 𝑡𝑡).(−1+α 𝑡𝑡))
α2

              (A3) 

Temperature should be evaluated at t2 when the concentration is doubled. t2 is determined by c(t2)=2 ⇒ t2=ln2/γ. From this 10 

and Eq. (A3) we conclude Eq. (3).  (In fact we find the same result using an expression provided in Andrews & Allen, 2008, 

when we plug in our expression for t2 into theirs, which is phrased in terms of ECS.) 

Appendix 2: Further Analysis on Calibration and Validation 

As further validation of the trained PH99 calibrated to RCP2.6, Figure 14 shows the respective GMT trajectories of AOGCMs 

for RCP6.0 scenario contrasted with its respective PH99-generated ones where 𝛼𝛼 and µ are fixed to their value as determined 15 

in step two. MTDs are shown in the 3rd columns of Table 3. The missing models are due to either lack of temperature trajectories 

for AOGCM or lack of total forcing. Notice that 1st, 2nd, and 4th columns are exactly the numbers related to the Figure 2. The 

results confirm that the climate module is so well trained in the second step that it can appropriately mimic the actual 

temperatures (accurate to within 0.1K) for RCP6.0. As shown, the average value of MTD is about 0.06 K for RCP6.0. 

Column 5 thereafter in Table 3 show MTDs in the situations when PH99 is calibrated to the other RCP scenarios and is 20 

validated as against the others.  

Appendix 3: Derivation of Eqs. (16)-(18) 

We start by rewriting Eq. (14) in a way that it is most consequently decomposed into the contributions from the two modes i 

∈ {f , s} (for ‘slow’ and ‘fast’ mode, respectively).  

𝑇𝑇2B(0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1) = 𝑘𝑘1
λ2B

∑ 𝑎𝑎𝑖𝑖 �𝑡𝑡 − 𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑖𝑖e
− 𝑡𝑡
𝜏𝜏𝑖𝑖�𝑖𝑖          (A4) 25 

One could derive Eq. (16) from an intuitive perspective by noticing that for any of the modes i, its contribution to the 

temperature response would consist of an equilibrium response, delayed by 𝜏𝜏𝑖𝑖, and a summand of exponential decay which 
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would insureensure continuity with respect to the initial condition. This very principle can be followed again for the time 

horizon beyond t1.  

 

However, for those readers who would like to see a more formal derivation, we provide the following ansatz: For t>t1, we 

decompose T2B into three contributions, according to the superposition principle for linear differential equations: 5 

1. T1, induced by a forcing k2 (t-t1) with T1(t1)=0 . This contribution can be treated analogously to T2B(0<t<t1) when 

noticing the replacements k1→k2, t→t-t1.  From Eq. (A4) we infer 

 𝑇𝑇1(𝑡𝑡 ≥ 𝑡𝑡1) = 𝑘𝑘2
λ2B

∑ 𝑎𝑎𝑖𝑖 �𝑡𝑡 − 𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑖𝑖e
−(𝑡𝑡−𝑡𝑡1)

𝜏𝜏𝑖𝑖 �𝑖𝑖 .                                                                                                     (A5) 

2. T2, induced by a constant forcing k1 t1 with T2(t1)=0 . Also this problem has been solved by Geoffroy et al. (2013) in 

terms of their Eq. (9) which we rewrite in our notation: 𝑇𝑇2(𝑡𝑡 ≥ 𝑡𝑡1) = 𝑘𝑘1𝑡𝑡1
λ2B

∑ 𝑎𝑎𝑖𝑖 �1 − e
−(𝑡𝑡−𝑡𝑡1)

𝜏𝜏𝑖𝑖 �𝑖𝑖 .   (A6) 10 

3. T3 as the decaying initial condition at 𝑡𝑡 = 𝑡𝑡1. For reasons of continuity, this initial condition is identical to the terminal 

condition according to Eq. (A4). Hence, 𝑇𝑇3(𝑡𝑡 ≥ 𝑡𝑡1) = 𝑘𝑘1
λ2B

∑ 𝑎𝑎𝑖𝑖 �𝑡𝑡1 − 𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑖𝑖e
−𝑡𝑡1𝜏𝜏𝑖𝑖� e

−(𝑡𝑡−𝑡𝑡1)
𝜏𝜏𝑖𝑖𝑖𝑖  .                (A7) 

 

 

When we add these three components, we receive 15 

𝑇𝑇2B(𝑡𝑡 ≥ 𝑡𝑡1) = 1
λ2B

�∑ 𝑎𝑎𝑖𝑖 �𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2(𝑡𝑡 − 𝑡𝑡1 − 𝜏𝜏𝑖𝑖) + e
− 𝑡𝑡
𝜏𝜏𝑖𝑖 �𝑘𝑘1𝜏𝜏𝑖𝑖 − e

𝑡𝑡1
𝜏𝜏𝑖𝑖(𝑘𝑘1 − 𝑘𝑘2)𝜏𝜏𝑖𝑖��𝑖𝑖 � .    (A8) 

Allowing for the limit 𝜏𝜏f → 0 and noticing that 𝑘𝑘2 = −𝜀𝜀𝑘𝑘1 we verify Eq. (16) by a summand-by-summand comparison. 

Allowing for 𝜏𝜏f = 𝜏𝜏s = 𝜃𝜃 (i.e. simulating a 1-box setting by a 2-box approach), we obtain Eq. (17) from Eq. (A4) and Eq. (18) 

from Eq. (A8). 

Authors’ Contributions 20 

M.M.K. performed the statistical analysis. H.H. provided the analytic analysis. M.M.K. suggested and developed the 

alternative scheme. Both participated in the writing of the article. 

Competing Interests 

The authors declare that they have no conflicts of interest. 



19 
 

Acknowledgments 

The authors would like to thank J. Marotzke for drawing their attention to the Forster et al. (2013) article, discussing these 

results on total forcing and providing the relevant data. In addition, the authors would like to thank C. Li for supporting the 

data handling process and making the authors aware of Geoffroy et al. (2013), which discusses negligible AOGCM drift. The 

authors are also grateful to E. Roshan for her help with the visualizations and providing quantiles of Wigley’s & Raper’s 5 

(2001) distribution on ECS. We thank M. Fentem for proofreading the second version of our manuscript from a native speaker’s 

perspective, as well as B. Blanz and M. Wifling for further proofreading. All remaining errors are ours. M.M.K. was supported 

by the Cluster of Excellence ‘Integrated Climate System Analysis and Prediction’ (CliSAP, DFG-EXC177). Finally, the 

authors would like to thank three anonymous referees for their valuable criticism and constructive suggestions. 

References 10 

Andrews, D. G. and Allen, M. R.: Diagnosis of climate models in terms of transient climate response and feedback response 

time, Atmospheric Science Letters, 9, 7–12, 2008. 

Anthoff, D. and Tol, R. S. J.: The Climate Framework for Uncertainty, Negotiation and Distribution (FUND): Technical 

description, Version 3.6 (retrieved November, 2016), 2014. 

Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, 15 

S., and others: Detection and attribution of climate change: From global to regional, 2013. 

Bruckner, T., Petschel-Held, G., Leimbach, M., and Toth, F. L.: Methodological aspects of the tolerable windows approach, 

Climatic Change, 56, 73–89, 2003. 

Calel, R. and Stainforth, D. A.: On the Physics of three Integrated Assessment Models, Bull. Amer. Meteor. Soc., 98(6), 1199–

1216 (2017). 20 

Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., 

Löschel, A., and others: Assessing transformation pathways, 2014. 

Edenhofer, O., Bauer, N., & Kriegler, E. (2005). The impact of technological change on climate protection and welfare: 

Insights from the model MIND. Ecological Economics, 54(2-3), 277-292. 

Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., & Zelinka, M. (2013). Evaluating adjusted forcing and 25 

model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research: 

Atmospheres, 118(3), 1139-1150. 

Frame, D. J., Booth, B. B. B., Kettleborough, J. A., Stainforth, D. A., Gregory, J. M., Collins, M., & Allen, M. R. (2005). 

Constraining climate forecasts: The role of prior assumptions. Geophysical Research Letters, 32(9). 

Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., and Tytéca, S.: Transient Climate Response in a 30 

Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM 

Experiments, J. Climate, 26, 1841–1857, doi:10.1175/JCLI-D-12-00195.1, 2013. 



20 
 

Held, H., Kriegler, E., Lessmann, K., & Edenhofer, O. (2009). Efficient climate policies under technology and climate 

uncertainty. Energy Economics, 31, S50-S61. 

Hope, C.: The Marginal Impact of CO2 from PAGE2002: An Integrated Assessment Model Incorporating the IPCC’s Five 

Reasons for Concern, The Integrated Assessment Journal, 6 (1), 19-56, 2006.  

Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. 5 

M.: Climate models—projections of future climate, Climate Change 1995: The Science of Climate Change. Contribution of 

Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, 285–357, 1996. 

Kriegler, E. and Bruckner, T.: Sensitivity analysis of emissions corridors for the 21st century, Climatic Change, 66, 345–387, 

2004. 

Kunreuther, H., Gupta, S., Bosetti, V., Cooke, R., Dutt, V., Ha-Duong, M., Held, H., Llanes-Regueiro, J., Patt, A., Shittu, E., 10 

and others: Integrated risk and uncertainty assessment of climate change response policies, 2014. 

Lorenz, A., Schmidt, M. G. W., Kriegler, E., and Held, H.: Anticipating Climate Threshold Damages, Environ Model Assess, 

17, 163–175, doi:10.1007/s10666-011-9282-2, 2012. 

Luderer, G., Leimbach, M., Bauer, N., and Kriegler, E.: Description of the ReMIND-R model, Potsdam Institute for Climate 

Impact Research. Retrieved from: https://www.pik-potsdam.de/research/sustainable-15 

solutions/models/remind/REMIND_Description.pdf, 2011. 

Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-ocean and carbon cycle models with 

a simpler model, MAGICC6 – Part 1: Model description and calibration, Atmos. Chem. Phys., 11, 1417–1456, 

doi:10.5194/acp-11-1417-2011, 2011a. 

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., ..., and Thomson, A. G. J. M. V.: 20 

The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 109(1-2), 213, 2011b. 

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., and Allen, M. R.: 

Greenhouse-gas emission targets for limiting global warming to 2 C, Nature, 458, 1158–1162, 2009. 

Neubersch, D., Held, H., & Otto, A. (2014). Operationalizing climate targets under learning: An application of cost-risk 

analysis. Climatic Change, 126(3-4), 305-318. 25 

Nordhaus, W. D.: The climate casino: Risk, uncertainty, and economics for a warming world, Yale University Press, 2013. 

Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Toth, F. L., and Hasselmann, K.: The tolerable windows approach: 

Theoretical and methodological foundations, Climatic Change, 41, 303–331, 1999. 

Roshan, E., Khabbazan, M. M., Held, H.,  Cost-Risk Trade-off of Mitigation and Solar Geoengineering – Considering Regional 

Disparities under Probabilistic Climate Sensitivity, Environmental and Resource Economics, online publication 30 

https://link.springer.com/article/10.1007%2Fs10640-018-0261-9 , https://rdcu.be/T5z6 (2018). 

Roth, R., Neubersch, D., Held, H.: Evaluating Delayed Climate Policy by Cost-Risk Analysis, EAERE Helsinki, 24-27 June 

2015. 

Stern, N.: The Stern Review – The Economics of Climate Change, Cambridge, 2007. 

https://www.pik-potsdam.de/research/sustainable-solutions/models/remind/REMIND_Description.pdf
https://www.pik-potsdam.de/research/sustainable-solutions/models/remind/REMIND_Description.pdf


21 
 

Stankoweit, M., Schmidt, H., Roshan, E., Pieper, P., and Held, H.: Integrated mitigation and solar radiation management 

scenarios under combined climate guardrails, in: EGU General Assembly Conference Abstracts, 7152, 2015. 

Traeger, C.: A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change, Environmental and Resource 

Economics, 59:1–37, DOI 10.1007/s10640-014-9776-x, 2014. 

van Vuuren, D. P., Lowe, J., Stehfest, E., Gohar, L., Hof, A. F., Hope, C., Warren, R., Meinshausen, M., and Plattner, G.-K.: 5 

How well do integrated assessment models simulate climate change?, Climatic Change, 104, 255–285, doi:10.1007/s10584-

009-9764-2, 2011a. 

van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K., and Weyant, J.: A special issue on the RCPs, Climatic Change, 

109, 1–4, doi:10.1007/s10584-011-0157-y, 2011b. 

UNFCCC: United Nations Framework Convention on Climate Change. Adoption of the Paris Agreement. Conference of the 10 

Parties on its twenty-first session, 21932, 2016. 

Wigley, T. M. and Raper, S. C.: Interpretation of high projections for global-mean warming, Science (New York, N.Y.), 293, 

451–454, doi:10.1126/science.1061604, 2001.   

  



22 
 

Table 1: PH99 parameters (α and µ) and feedback response times (1/𝜶𝜶) utilizing data (𝑬𝑬𝑬𝑬𝑬𝑬 and 𝑻𝑻𝑬𝑬𝑻𝑻) from AOGCMs. 

 PH99 Parameters  Climate Sensitivities  Feedback 
Response Times 

 𝛼𝛼 [1/yrs] µ [K/yrs]  𝐸𝐸𝐸𝐸𝐸𝐸 [K] 𝑇𝑇𝐸𝐸𝑇𝑇 [K]  1/𝛼𝛼 [yrs] 
bcc_csm1_1_m 0.052 0.217  2.87 2.10  19.1 

bcc_csm1_1 0.033 0.132  2.82 1.70  30.8 
CanESM2 0.038 0.204  3.69 2.40  26.1 
CCSM4 0.035 0.145  2.89 1.80  28.7 

CNRM_CM5 0.038 0.177  3.25 2.10  26.5 
CSIRO_Mk3_6_0 0.019 0.111  4.08 1.80  53.2 

GISS_E2_R 0.048 0.147  2.11 1.50  20.8 
HadGEM2_ES 0.027 0.177  4.59 2.50  37.4 

IPSL_CM5A_LR 0.022 0.130  4.13 2.00  45.9 
MIROC5 0.027 0.107  2.72 1.50  36.6 

MIROC_ESM 0.021 0.140  4.67 2.20  48.0 
MPI_ESM_LR 0.027 0.143  3.63 2.00  36.7 
MRI_CGCM3 0.034 0.127  2.60 1.60  29.5 
NorESM1_M 0.023 0.093  2.80 1.40  43.5 

Multimodel Mean 0.032 0.146  3.35 1.90  34.5 
Standard Deviation 0.010 0.036  0.792 0.342  10.350 
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Table 2: PH99 parameters (𝜶𝜶 and µ), climate sensitivities (𝑬𝑬𝑬𝑬𝑬𝑬 and 𝑻𝑻𝑬𝑬𝑻𝑻), and feedback response times (1/𝜶𝜶) after fitting PH99 GMT 
time series to AOGCM RCP2.6 GMT time series. 

 PH99 Parameters  Climate Sensitivities  Feedback 
Response Times 

 𝛼𝛼 [1/yrs] µ [K/yrs]  𝐸𝐸𝐸𝐸𝐸𝐸 [K] 𝑇𝑇𝐸𝐸𝑇𝑇 [K]  1/𝛼𝛼 [yrs] 

bcc_csm1_1_m 0.058 0.199  2.37 1.79  17.20 

bcc_csm1_1 0.080 0.267  2.32 1.90  12.51 

CanESM2 0.093 0.377  2.81 2.37  10.74 

CCSM4 0.082 0.264  2.24 1.85  12.21 

CNRM_CM5 0.084 0.329  2.73 2.26  11.97 

CSIRO_Mk3_6_0 0.079 0.280  2.45 2.00  12.61 

GISS_E2_R 0.345 0.746  1.50 1.44  2.90 

HadGEM2_ES 0.114 0.485  2.94 2.57  8.75 

IPSL_CM5A_LR 0.046 0.201  3.01 2.11  21.58 

MIROC5 0.158 0.455  1.99 1.81  6.32 

MIROC_ESM 0.096 0.478  3.45 2.93  10.41 

MPI_ESM_LR 0.088 0.344  2.70 2.26  11.33 

MRI_CGCM3 0.059 0.178  2.09 1.58  16.93 

NorESM1_M 0.105 0.292  1.92 1.66  9.49 

Multimodel Mean 0.106 0.350  2.46 2.04  11.78 

Standard Deviation 0.074 0.152  0.512 0.409  4.639 
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Figure 1: Comparison of temperature paths [K] projected by PH99 (black curve), calibrated by an AOGCM’s ECS and TCR, to the 
corresponding AOGCM’s temperature paths (red curve). Deviations on the order of 0.5 K for 2100 are observed. 
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Figure 2: Modulus of deviations of GMT [K] mean values of PH99 over the period 2071-2100 from corresponding AOGCM means. 
The red bars show the deviations for RCP2.6 when 𝜶𝜶 and µ are from Table 1 and not fitted. The cyan bars show the deviations in 
RCP2.6 when 𝜶𝜶 and µ are fitted to the AOGCM’s RCP2.6 data. The light blue bars show the deviations for RCP4.5 when 𝜶𝜶 and µ 
are kept at their RCP2.6-fitted values (validation). The dark blue bars show the deviations for RCP8.5 when 𝜶𝜶 and µ are kept at 5 
their RCP2.6 fitted values (validation). 

 



26 
 

 

 
Figure 3: Comparison of temperature evolutions  [K] projected by the climate module PH99 (solid and dotted black curves) to the 
actual AOGCM’s temperature (solid and dotted red curves). 𝜶𝜶 and µ have been tuned to fit the PH99 temperature path (solid 
black curve) to the respective AOGCM’s RCP2.6 temperature path (solid red curve). Using the fitted 𝜶𝜶 and µ, and taking the 5 
forcing reconstructed for RCP4.5 into account, PH99 also reproduces the projected RCP4.5 (dotted black curve). The dotted red 
curve shows the actual RCP4.5 temperatures. 
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Figure 4: Comparison of temperature evolutions [K] projected by the climate module PH99 (black solid curves) in RCP8.5 
scenario to the actual AOGCM’s temperature (red solid curves) in RCP8.5 scenario. α and µ are taken from the second step, 5 
where PH99 is calibrated to RCP2.6 scenario. 
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Figure 5: Modulus of mean temperature deviations [K] over the period 2071-2100 (MTD) for PH99 from AOGCMs when α, µ, 
ECS, and TCR from Table 2 are related to ECS and TCR in Table 1. Using linear (yellow bars), quadratic (light green bars), and 5 
cubic functions (dark green bars), α and µ are related to ECS when outlier is put out for the linear case. Using linear fits, ECS and 
TCR are related to ECS (blue bars). Using linear fits, ECS and TCR are related to ECS and TCR respectively (light blue bars). 
The dark blue bars show the deviations for RCP2.6 when 𝜶𝜶 and µ are from Table 1 and not fitted (the same as Fig.2). The orange 
bars indicate MTD using Lorenz’s curve. 
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Figure 6: Quadratic (up), cubic (middle), and linear (down) relationships of µ (left) and α (right) in Table 2 to ECS in Table 1. 
Notice that in the linear case the model GISS_E2_R (the upper left sample), as an outlier, is out. 
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Figure 7: Inferred effective TCR [K] vs. AOGCMs’ TCR [K] (a), inferred effective ECS [K] vs. AOGCMs’ ECS [K] (b), and 
inferred effective TCR [K] vs. AOGCMs’ ECS [K] (c). While the TCRs differ by less than 0.2 K, the ECSs differ by up to 2 K. This 
opens the door for a discussion as to whether PH99 should be calibrated using scenario-class-adjusted effectively lower ECS 5 
values. 
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Figure 8: Total radiative forcing (anthropogenic plus natural) for RCPs – supporting the original names of the four pathways, as 
there is a close match between peaking, stabilization and 2100 levels for RCP2.6 (also called RCP3-PD), RCP4.5 & RCP6, and 5 
RCP8.5, respectively (taken from Meinshausen et al. (2011b)). 
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Figure 9: The auxiliary function h(x), which links the slow time scale of the 2-box model and the time scale of the 1-box model. 
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Figure 10: 1-box vs. 2-box model in response to kink-linear forcing as a stylized interpretation of mitigation-oriented forcing paths 
and for equal levels of ECS and TCR in both models. Kink-linear curve: 2-box model, smooth curve: 1-box model. The 5 
temperature development of the 1-box model overshoots the maximum of the 2-box model by roughly 50%. 
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Figure 11: : Comparing GMT [K] maxima of the 2-box model and the 1-box model, the latter being adjusted to the former by 5 
prescribing the linearly transformed ECS and TCR according to the scheme ETE. Abscissa: ε, ordinate: changed peaking year t1 , 
however transformed to years, for the 2-box ECS of 3 K and 4 K, and τ=100, 200, 300 yrs, respectively. The relative error (max. 
GMT difference normalized by the max. GMT of the 2-box model) is markedly smaller than for the case of prior adjustment.  
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Figure 12: Similar to the previous figure (relative max. GMT error with abscissa: ε, ordinate: t1 [yrs],), however for a further 
adjusted ECS of the 1-box model, such that perfect matching is achieved for t1=100 yrs, ε=0.2, and a 1-box time scale of 12 yrs. For 5 
most of the parameter settings, the relative error is below 10%.   
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Figure 13: Probability density distributions of ECS according to IPCC AR5 WG-I (Bindoff et al., 2013, Fig. 10.20).  
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Figure 14: The comparison of temperature evolutions projected by the climate module PH99 (black solid curves) in RCP6.0 
scenario to the actual AOGCM’s temperature (red solid curves) in RCP6.0 scenario. 𝜶𝜶 and µ are taken from the second step, 
where PH99 is calibrated to RCP2.6 scenario 5 
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Table 3: Modulus of mean temperature deviations over the period 2071-2100 (MTD) for PH99 from corresponding AOGCM. In the first 4 
columns, PH99 is calibrated to RCP 2.6. In the second 4 columns, PH99 is calibrated to RCP 4.5. 

 Calibrated to RCP 2.6  Calibrated to RCP 4.5 

 MTD 
RCP2.6 

MTD 
RCP4.5 

MTD 
RCP6.0 

MTD 
RCP8.5 

 MTD 
RCP2.6 

MTD 
RCP4.5 

MTD 
RCP6.0 

MTD 
RCP8.5 

 

bcc_csm1_1_m 0.029 0.040  0.236  0.018 0.007  0.154  
bcc_csm1_1 0.009 0.066  0.052  0.064 0.021  0.059  
CanESM2 0.001 0.021  0.043  0.039 0.003  0.018  
CCSM4 0.033 0.003 0.069 0.132  0.024 0.005 0.064 0.128  

CNRM_CM5 0.014 0.001  0.201  0.005 0.012  0.273  
CSIRO_Mk3_6_0 0.036 0.115 0.040 0.063  0.017 0.015 0.168 0.278  

GISS_E2_R 0.008 0.114 0.094 0.144  0.064 0.003 0.027 0.015  
HadGEM2_ES 0.018 0.103 0.036 0.131  0.057 0.020 0.097 0.211  

IPSL_CM5A_LR 0.020 0.043 0.050 0.201  0.121 0.013 0.017 0.033  
MIROC5 0.015 0.044 0.029 0.089  0.032 0.009 0.034 0.106  

MIROC_ESM 0.028 0.104 0.079 0.238  0.140 0.012 0.044 0.241  
MPI_ESM_LR 0.017 0.047  0.119  0.108 0.015  0.060  
MRI_CGCM3 0.015 0.061 0.083 0.208  0.001 0.007 0.004 0.061  
NorESM1_M 0.011 0.000 0.026 0.043  0.024 0.000 0.006 0.082  

Multimodel Mean 0.018 0.054 0.056 0.136  0.035 0.005 0.039 0.078 
Standard Deviation 0.010 0.041 0.025 0.071  0.044 0.006 0.053 0.093 
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Table 3 (continued): Modulus of mean temperature deviations over the period 2071-2100 (MTD) for PH99 from corresponding AOGCM. In the third 4 
columns, PH99 is calibrated to RCP 6.0. In the fourth 4 columns, PH99 is calibrated to RCP 8.5. 

 Calibrated to RCP 6.0  Calibrated to RCP 8.5 

 MTD 
RCP2.6 

MTD 
RCP4.5 

MTD 
RCP6.0 

MTD 
RCP8.5 

 MTD 
RCP2.6 

MTD 
RCP4.5 

MTD 
RCP6.0 

MTD 
RCP8.5 

 

bcc_csm1_1_m      0.287 0.257  0.027  
bcc_csm1_1      0.091 0.008  0.039  
CanESM2      0.008 0.025  0.010  
CCSM4 0.038 0.067 0.018 0.086  0.059 0.004 0.010 0.004  

CNRM_CM5      0.117 0.151  0.005  
CSIRO_Mk3_6_0 0.161 0.199 0.019 0.062  0.119 0.019 0.034 0.015  

GISS_E2_R 0.041 0.037 0.019 0.046  0.045 0.023 0.011 0.001  
HadGEM2_ES 0.146 0.233 0.021 0.063  0.146 0.252 0.073 0.017  

IPSL_CM5A_LR 0.016 0.077 0.001 0.095  0.052 0.078 0.030 0.002  
MIROC5 0.067 0.079 0.011 0.032  0.025 0.006 0.019 0.019  

MIROC_ESM 0.187 0.070 0.005 0.198  0.309 0.235 0.140 0.007  
MPI_ESM_LR      0.011 0.082  0.012  
MRI_CGCM3 0.092 0.068 0.003 0.042  0.008 0.014 0.055 0.027  
NorESM1_M 0.068 0.021 0.016 0.136  0.070 0.055 0.054 0.013  

Multimodel Mean 0.091 0.095 0.007 0.084  0.096 0.086 0.029 0.014 
Standard Deviation 0.060 0.072 0.008 0.053  0.096 0.096 0.041 0.011 
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