The Potential of using Remote Sensing data to estimate Air-Sea CO$_2$ exchange in the Baltic Sea.

Gaëlle Parard1,3, Anna Rutgersson1, Sindu Raj Parampil1, and Anastase Alexandre Charantonis2

1Department of Earth Sciences, Uppsala University, Uppsala, Sweden,
2École nationale supérieure d’informatique pour l’industrie et l’entreprise, Evry, France
3AGO-GHER-MARE, University of Liège, Allée du Six Aout, 17, Sart Tilman, Liège 4000, Belgium

Correspondence to: Gaëlle Parard (parard.gaelle@gmail.com)

Abstract. In this article, we present the first climatological map of air–sea CO$_2$ flux over the Baltic Sea, based on remote-sensing data: satellite imaging derived estimates of pCO$_2$ using self-organizing maps classifications along with class-specific linear regressions (SOMLO methodology) and remote-sensed wind estimates. The estimates have a spatial resolution of 4-km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO$_2$ fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude fluxes estimations.

Furthermore, the CO$_2$ fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009), i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally resulting in higher-amplitude fluxes. The seasonal variation in fluxes reflects the seasonal variation in pCO$_2$ and is similar over the whole Baltic Sea, with high winter CO$_2$ emissions and high eCO$_2$ uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m$^{-2}$ d$^{-1}$ for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m$^{-2}$ d$^{-1}$) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m$^{-2}$ d$^{-1}$) than does the open sea (-4 mmol m$^{-2}$ d$^{-1}$). In this study, we find that the Baltic Sea acts as a small source of 1.2 mmol m$^{-2}$ d$^{-1}$ on average and that annual uptake has increased from 1998 to 2012.

Introduction

From the early 2000 and onwards, there has been a more active attempt to investigate, understand, and quantify the global carbon cycle by the scientific community, since the greenhouse gas carbon dioxide (CO$_2$) plays a key role in controlling Earth’s climate. The oceanic uptake of anthropogenic CO$_2$ helps regulate atmospheric CO$_2$ through air–sea exchange. Coastal and marginal seas represent nutrient-rich areas with strong biological activity and are influenced by various anthropogenic factors. As the oceans take up a major part of the anthropogenic emissions of CO$_2$, many oceanic regions are experiencing ongoing acidification. There are still major uncertainties in assessing the oceanic uptake of anthropogenic CO$_2$ during 2005–2014 it was estimated to 2.6 GtC yr$^{-1}$, an estimated 26% of the total anthropogenic CO$_2$ emissions (Le Quéré et al., 2015). One reason for
this uncertainty is the lack of reliable information on the coastal seas, which have so far barely been considered in the oceanic and global carbon budgets. The coastal ocean’s role in terms of carbon export and relative productivity is disproportionately large in respect to its total surface area, when compared with the open ocean (Bourgeois et al., 2016). As the annual amplitude of air–sea pCO$_2$ difference is significantly larger in coastal regions than open ocean (Rödenbeck et al., 2013), the variability of the exchange is high.

Various methods, both direct and indirect, are used to determine the air–sea flux of CO$_2$ (FCO$_2$) (e.g. Smith et al., 1996; McGillis et al., 2001; Krasakopoulou et al., 2009). Both direct and indirect measures of FCO$_2$ were used in this study (McGillis et al., 2001; Rutgersson and Smedman, 2009; Gutiérrez-Loza and Ocampo-Torres, 2016).

Other studies have calculated FCO$_2$ across climate databases (Takahashi et al., 2002) or biogeochemical numerical models (Lenton et al., 2013; Arruda et al., 2015). These calculations, however, have failed to provide outputs covering the global coastlines. This is primarily due to the sparseness of the temporal and spatial data-sets (such as pCO$_2$ of the surface ocean or wind fields). The wide range of values of in situ coastal FCO$_2$ entails even wider uncertainties in global estimates of FCO$_2$, as there is the potential to under- or overestimate FCO$_2$ when performing a spatio-temporal integration (Wollast, 1991; Takahashi et al., 2009; Ribas-Ribas et al., 2011). A better comprehension of the local processes controlling FCO$_2$ along each coastal setting of continental margins will therefore lead to a better constrained set of global FCO$_2$ estimates. Since the year 2000, many different FCO$_2$ estimates and measurements have been reported for various near-shore, coastal, and inner-shelf environments. These range from -5.1 to 5.1 mol m$^{-2}$ y$^{-1}$ for continental shelves (Bates, 2006) and from 3.9 to 76 mol m$^{-2}$ y$^{-1}$ for coastal embayments and estuaries (Koné et al., 2009; Frankignoulle et al., 1998). The spread of these values is a result of the heterogeneous and coupled biogeochemical processes in near-shore and coastal systems (Laruelle et al., 2010).

It is necessary to increase our comprehension of the ocean carbon cycle and the air–sea exchange of CO$_2$ along the continental margins (Alin et al., 2012), due to their high social and ecological impact (Vargas et al., 2012).

High biological activity causes high CO$_2$ fluxes between the coastal and marginal seas and between the atmosphere and adjacent open oceans, respectively. Considering their combined surface area, coastal seas may contribute disproportionately to the open-ocean storage of CO$_2$ (Thomas et al., 2004) via a mechanism called the continental shelf pump (Tsunogai et al., 1999). In recent years, detailed field studies of CO$_2$ fluxes have been initiated in a few areas, such as the East China Sea, Northwest European Shelf, Baltic Sea, and North Sea (Chen and Wang, 1999; Thomas et al., 1999; Thomas and Schneider, 1999; Frankignoule and Borges, 2001; Borges and Frankignoule, 2002; Borges et al., 2003; Thomas et al., 2003, 2004; Omstedt et al., 2014). However, only limited information is available on a global scale about these CO$_2$ fluxes (Liu et al., 2000a, b; Cai et al., 2003; Chen et al., 2003; Omstedt et al., 2009; Norman et al., 2013b).

The Baltic Sea is a semi-enclosed sea in Northern Europe (Meier et al., 2014) which has been relatively well studied (e.g. Omstedt et al., 2004; Hjalmarssson et al., 2008; Backer and Leppänen, 2008; Wesslander, 2011) and monitored, and can be used in developing new methods for monitoring coastal seas. It is characterized by river runoff (Bergstrom, 1994) as well as by the importance upwelling variability (Norman et al., 2013a; Myrberg and Andrejev, 2003; Lehmann and Myrberg, 2008; Sproson and Sahlée, 2014). In the Baltic Sea, (Siegel and Gerth, 2012) shows that decomposition of organic matter and biological production controlled the biogeochemical processes. They are controlled by nutrient and carbon distribution in the
water column, as well as light availability. In the Baltic sea, the former factors are affected by physical constraints such as the stratification of the water, the salinity and temperature profiles as well as the sea currents.

In recent years, the Baltic Sea has also been paid more attention as a coastal system affecting both the uptake/release of anthropogenic CO$_2$ and the natural CO$_2$ cycle ((Thomas and Schneider, 1999; Lansø et al., 2015)). Between 1994 and 2008 direct CO$_2$ measurements from a cargo ship have been measured at monthly resolution. The net annual air–sea exchange of CO$_2$ in the central Baltic Sea and the Kattegat varied both regionally and inter-annually. In the examined period, the Kattegat sea was, on average, a sink of CO$_2$ while the East Gotland and Bornholm seas were sources. The air–sea exchange of CO$_2$ and gas transfer velocity interannual variations were more pronounced in winter periods than in the summer periods. This indicates the interannual variability in the annual net flux is mainly controlled by the winter conditions (Wesslander et al., 2010).

The balance between mineralization and production, as well as the depth of the mixed-layer in the different oceanic zones examined were shown to be the main drivers of their respective sink / source distributions (Wesslander et al., 2010). In the central Baltic Sea, where the mixed-layer depth is 60 m, CO$_2$-enriched water mixes with water up to the surface in winter. The central Baltic Sea also receives large amounts of organic material from river water inflow; this may give rise to a heterotrophic system, making the central Baltic a net CO$_2$ source. This is not the case in the Kattegat, which is highly influenced by oceanic conditions.

In this study, the air sea CO$_2$ flux is estimated, with the ocean-surface pCO$_2$ in the Baltic Sea estimate from satellite-data derived products in (Parard et al., 2015, 2016) where we used the self-organizing multiple linear output (SOMLO) method (Sasse et al., 2013). The outputs of the method have a horizontal resolution of 4 km and cover the period from 1998 to 2011. Previous studies of the net uptake or release of CO$_2$ in the Baltic Sea have produced a wide range of results, with net exchange varying between −3.6 and +2.9 mol CO$_2$ m$^{-2}$ y$^{-1}$ in different time periods between 1994 and 2009 (Norman et al., 2013b). The goal of the present study is to develop an air–sea CO$_2$ flux climatology based on remote-sensing products with a monthly time resolution and 4$^\circ$ spatial resolution. In addition, we will further describe the processes and air–sea fluxes of CO$_2$ from 1998 to 2011 in the entire Baltic Sea.

The study is structured in four sections. Section 2 presents the data and method used in this work. Section 3 presents the wind products used to estimate the exchange (based on satellite data and reanalysis data). In Section 4, we analyze the wind products’ quality, as well as various aspects of the estimated fluxes, and in Section 5 we present our conclusions.

2 Data and method

2.1 Wind products

In this study we used wind products to calculate the transfer velocity, based on a meso-scale reanalysis product.

The wind product is based on a meso-scale modeling reanalysis product. A reanalysis is a combination of measurements and a model in which the available data are assimilated into a high-quality modeling system. The reanalysis used here is from the Swedish Meteorological and Hydrological Institute (SMHI) with the High-Resolution-Limited Area Model (HIRLAM) geometry (22-km horizontal grid spacing and 60 levels in the vertical; the model top is at 10 hPa) (Soci et al., 2011). HIRLAM
is downscaled and dynamically adapted to a higher resolution (5-km grid) with a simplified HIRLAM called the Dynamic Adaptation Model (DYNAM). The observations of 10-m winds assimilated into the system are from four databases: the Integrated Surface Database Station History (ISH) database maintained by NOAA’s National Climatic Data Center (NCDC), the MARS archive at ECMWF, the European Climate Assessment & Dataset (ECA&D) used as input for E-OBS version 6.0, and the national climate databases of SMHI and Météo France (MF). The temporal resolution is of 6 hours. In the following, this product will be referred to as SMHIp. The method requires for the explicative data to stay coherent in terms of resolution, and as such we chose a temporal and spatial resolution of monthly, 4 x 4 km pCO₂ pixels.

2.2 Calculation of CO₂ flux

The flux of CO₂ (FCO₂) from sea to air (positive value) or air to sea (negative value) is often calculated using the difference in the partial pressure of CO₂ between the surface water and the atmosphere (ΔpCO₂).

Here, the atmospheric pCO₂ was estimated using the method from Rutgersson et al. (2009) and the sea-surface pCO₂ concentrations are reconstructed with the SOMLO methodology (Sasse et al., 2013), as done by Parard et al. (2015, 2016). The SOMLO methodology combines two statistical approaches: self-organizing maps (SOMs) (Kohonen, 1990) and linear regression.

In addition, the exchange efficiency was required, which was expressed in terms of a transfer velocity, k. The flux was then calculated according to:

\[
FCO₂ = kK₀ΔpCO₂ \tag{1}
\]

where \(K₀\) is the salinity- and temperature-dependent solubility constant (Weiss et al., 1982). The gas transfer velocity was computed using the parameterization from (Wanninkhof et al., 2009):

\[
k = \sqrt{\frac{660}{Sc}}(3 + 0.1U + 0.064U² + 0.011U³) \tag{2}
\]

where \(U\) is the wind velocity at a reference height of 10 m and Sc is the solubility-dependent Schmidt number. Daily values of \(k\) were computed with a 6-h frequency for SMHIp; Eq. 2 is valid for all wind speed ranges. This method will be define as Method 1.

We compare the results with another method to compute the transfer velocity \(k\) from Rutgersson and Smedman (2009)

\[
k = 0.24 \times U² + (3022 \times w - 20) \tag{3}
\]

where \(w\) is the water-side convection this is estimated from the model used in Norman et al. (2013b). This method will be defined as Method 2.
3 Results

3.1 Analysis of the wind products

3.1.1 Validation of the wind product

To validate our wind product, we compare the SMHI product with one based on remote-sensing data at daily scale 10 m wind data are reprocessed QuikSCAT (QSCAT) and ASCAT data (Bentamy and Croizé-Fillon, 2013) with a spatial resolution of 25x 25 km here called SATp. The two products are quite coherent when compared to all the station data used here, though SMHIp seems better, having a higher average correlation coefficient, i.e. $R = 0.84$ versus 0.67 for the remote sensing data wind (we chose not to show here). This is to be expected, as SATp has a much coarser spatial resolution (25 km) than SMHIp does (5 km). In the following we decided to used the SMHI product to compute the transfer velocity.

The wind product SMHIp used here to compute the air–sea CO$_2$ flux was compared with wind-tower data available from 24 stations in the Baltic Sea, including data from the Östergarnsholm measurement site Högström (2008); Rutgersson et al. (2008). Here, a micro-meteorological tower, situated at 57.42°N, 18.99°E, has been running since 1995, making high-quality wind speed measurements at five heights. To validate the satellite data, we used measurements made 12 m above mean sea level in the 1995–2002 and 2005–2009 periods. In addition, we validated the winds using synoptic station data from SMHI for 21 sites along the coast of Sweden.

The wind product SMHIp agree quite well with the station data (Table 1). Most of the synoptic stations are very close to the coast, so there might be a bias due to land influence. The correlation coefficient (R) is quite high (0.66–0.91).

The root-mean-square differences (RMSDs) is given in Table 1.

The SMHIp have a quite high average correlation coefficient, i.e. $R = 0.84$ (Table 1). This is to be expected given that the spatial resolution is quite high for SMHIp (5 km).

We increase the resolution of the wind products by means of linear interpolation to compute the air–sea CO$_2$ flux. This was done to provide coherency between our datasets.

3.1.2 Wind variability over the Baltic Sea.

We examine the annual and monthly mean wind speeds and wind variability for the entire Baltic Sea (Figs. 1) for the twelve month during 13 years from 1998 to 2011. Fig. 1 shows the wind speed in colors and the annual wind variability in contours at the seasonal time scale. The mean winds are higher in the Central Basin (CB) than the Gulf of Bothnia (GB), i.e. about 7–7.4 m s$^{-1}$ versus 5–6 m s$^{-1}$. The wind pattern agrees qualitatively with those in previous studies. In terms of variability, the wind can vary by as much as 1.5–2.1 m s$^{-1}$ in both CB and 1.4–1.9 m s$^{-1}$ in GB. On the monthly scale, high mean winds (8–9 m s$^{-1}$) are seen in the Baltic Sea from November to February (Fig. 1). Of the four regions, CB experiences the highest winds in winter months. March and September are transition months with winds generally between 7 and 8 m s$^{-1}$. May and June are the months when the winds are generally low, 4–5 m s$^{-1}$. The largest variability in the winds, as represented by the contours
3.2 Air–sea CO₂ flux

3.2.1 Air–sea CO₂ flux estimation and variability

The air–sea CO₂ flux estimations are shown in Figure 2, fluxes are computed using the SMHIp wind data and figures represent the time period from 1998 to 2011. Figures 2 and 3 show the seasonal cycle, we observed the same patterns reflecting the surface pCO₂ partial pressure (the air-sea difference in partial pressure) previously seen in (Parard et al., 2014). April to August represents an uptake and October to February an outgassing. The interannual variability is slightly larger during the spring possibly indicating the large interannual variability on the onset of biological activities. Spatial differences are larger during the biologically active region, in April the northern basins are source areas and southern basins represents an uptake of the atmospheric CO₂. There are also spatial differences within the different basins, in particular between coastal areas and open sea (also discussed later). Transfer velocity is largest in the southern basin and during winter following the wind-speed pattern. In Figure 3 the annual mean concentrations are shown. The flux displays high seasonal and spatial variability, ranging from −11 to 27 mmol m⁻² d⁻¹. On average from 1998 to 2011, the entire Baltic Sea acts as a sink of −1.2 mmol m⁻² d⁻¹ (Figure 2). The values estimated from the remote sensing products are in agreement with those from other studies, indicating that the Baltic Sea can be a small source on average or a small sink of CO₂. Most previous research results concerning the carbon budget cover shorter periods, indicating a range between -1.16 and 2.9 mol m⁻² y⁻¹ (Wesslander, 2011; Kulinski and Pempkowiak, 2012, e.g.), though the maximum values reported in these studies are all found in the same one or two years (Algesten et al., 2006). Half of the studies demonstrate that Baltic Sea or certain basins of it act as sources, while the others demonstrate that it acts as a sink for the atmosphere (Norman et al., 2013a).

The Baltic Sea is divided into four regions; the annual mean values for transfer velocity, pCO₂ and fluxes for these four regions are presented in Fig 2. During all the study period, the Central Basin acts as a source except for 4 years 2003,2004, 2009 and 2010 with a lower value in 2009 (−0.8 mmol m⁻² d⁻¹); the Gulf of Finland acts as a source of the same order of magnitude as the Central Basin with 4 years as a sink 2005,2007,2008 and 2009 with a lower value in 2009 (−0.8 mmol m⁻² d⁻¹); while the South Basin acts as a source in all the years except 2010 with a low sink (−0.01 mmol m⁻² d⁻¹) as the Gulf of Bothnian with a lower sink in 2009 (-0.4 mmol m⁻² d⁻¹); The interannual variability is the same order of magnitude for all the basins but the largest variability is seen in the Gulf of Bothnia, acting as a source up to 2008 (>1.7 mmol m⁻² d⁻¹) and a smaller source afterwards (<0.8 mmol m⁻² d⁻¹). The seasonal cycle do not show different patterns for the different basins, the southern basins (SB and CB) show a larger outgassing during summer. The seasonal cycle is smaller for the northernmost basin (GB) (Figure 3).

Between 1998 and 2011, the annual air–sea CO₂ flux in the Baltic Sea is always positive (Figure 3) but we observed higher flux before 2003 and after 2007. The four basins display a decrease in the flux from 1998 to 2011 (Figure 3). The decrease is larger in the Gulf of Bothnia, after 2008 the value are less than the half than the value before. A smaller decrease is observed in
the Gulf of Finland. A decreasing trend can be explained by transfer velocity or pCO2, but the decreasing pattern in the flux is not really reflected in the annual values of these parameters. The trend can also be explained by changes in seasonal distribution of parameters. The seasonal cycle shows a shift in time when comparing the first five years (1998 to 2002) compared to the last five years (2007 to 2011) in Figure 4. In all the basins the uptake is larger and April and May for the later period, the differences is particularly large in the basins most influenced by ice cover (GB and GF). There is also an indication in GB and GF for a reduced outgassing in early winter. As the data is not entirely homogeneous (different satellite products are used in the beginning and ending of the studied period) one should not draw too far conclusions from the suggested trend. It could, however, be related to the higher pCO2 concentrations in the atmosphere due to anthropogenic emissions, the corresponding increase in CO2 concentration in the atmosphere during this period is 23.7 µatm. As the trend to a large extent is explained by an earlier onset of spring-time uptake differences in temperature and ice cover might be a more likely explanation.

The coastal region is defined by a distance of 0.5° in latitude and longitude from the coast. Farther than 0.5° in latitude and longitude from the closest coast is defined as the open sea. The CO2 flux from the coastal region is lower in winter and higher in summer than it is from the open sea (Fig. 5). The average difference in CO2 flux is -0.5 mmol m⁻² d⁻¹ with a variability of between -5.5 and 2.5 mmol m⁻² d⁻¹. The higher difference (-1.6 mmol m⁻² d⁻¹) is observed in 2007 with a lower value for coastal region. The air-sea CO2 fluxes are lower for all the year in the coastal region. Annually, there are three periods when we observe a greater difference, i.e. February–March, June–July, and October (Fig. 5). The biological activity is one of an explanation of the lower air-sea CO2 in the coastal region in March–April and October compare to the open ocean region. The biological activity is higher along the coast at these times (Schneider, 2011) due to upwelling near the coast (Omstedt et al., 2009; Norman et al., 2013a); this has the effect of reducing the CO2 emitted to the atmosphere. In the coastal region we observed a change in the sink between the first five years between 1998 and 2002 and the last five years between 2007 and 2011 (Figure 6). The lower air-sea CO2 flux are observed during the last years and the minimum of the air-sea CO2 flux is in April and May. It is correlate with the observation in the Figure 4. The sink increase in April from -2.9 mmol m⁻² d⁻¹ and in May from -1.8 mmol m⁻² d⁻¹. The monthly difference is small compared with that observed at the seasonal scale, though we may be underestimating the effect of the upwelling at the monthly scale. A review of Baltic Sea upwelling (Lehmann and Myrberg, 2008) demonstrates that the typical upwelling lasts from several days to one month at a horizontal scale of 10–20 km offshore. It is therefore possible that the effect of the upwelling may be underestimated.

3.2.2 Uncertainty analysis

The difference between the phase before 2003 and after 2007 could be explained by the repartition of the data used to calculate our results. In order to understand if this repartition of the initial data is responsible for the phase difference, we studied the representation of the data along the different years for each neuron of the SOM maps in each basin (Figure 7). For the three first basins (Figure 7.a.,b.,c.), all the years are present at least in part, even if some classes seem to be solely composed from data measured before 2002, in particular in the Southern regions (the blue trend color classes). In the Gulf of Finland there is no data before 2008 so the results that we show can be affected by this lack of data, yet is coherent with the other basins. The distribution of the data is well spread (Figure 7.e.,f.,g.,h.) throughout the classes.
Two tests were performed in order to estimate the error on the air-sea CO$_2$ flux. ON with SATp wind product and one with the air-sea flux estimations method Rutgersson et al. (2009) describe in eq. . This results are presented in Figure 8. The two air–sea CO$_2$ flux estimations are computed using the two sets of wind data, the SMHIp and SATp datasets. The CO$_2$ flux computed using SMHIp wind data is available from 1998 to 2011 and using SATp wind data from 2000 to 2011. We compared the two products from 2000 and 2011. the two flux estimation from the wind product have the order of magnitude. Nevertheless, the seasonal cycle from air-sea CO$_2$ flux using SATp product is larger, with lower value in summer and higher in winter. we observe the maximum difference in January (when the flux using SMHIp winds is higher) and in September (when the flux using SATp winds is higher). The monthly variability of the flux using SMHIp winds is 8.7-11.4 mmol m$^{-2}$ d$^{-1}$ versus 3.4-13.4 mmol m$^{-2}$ d$^{-1}$ using SATp winds. High variability in January using the SATp wind product can be explained by the lack of satellite data during for this month. In addition, there are also interannual variations. In most years, the Baltic Sea acts as a sink: using the SMHIp winds, the exchange ranges from -2.9 to 0.6 mmol m$^{-2}$ d$^{-1}$ with an average of -1.6 mmol m$^{-2}$ d$^{-1}$; using the SATp winds, the annual uptake is larger, being between -3.9 and 0.3 mmol m$^{-2}$ d$^{-1}$ with an average for 2000–2011 of -2.1 mmol m$^{-2}$ d$^{-1}$. The trend is the same for both products, with a decrease in the flux and an increase in the absorption of pCO$_2$ from the atmosphere.

The two methods to compute the air-sea CO$_2$ flux have been used, one from (Wanninkhof et al., 2009) where the results are described above, the second from Rutgersson et al. (2009). The second one used the water-side convection from a model Norman (2013). The mean difference between the two products are 1.2 mmol m$^{-2}$ d$^{-1}$. The higher difference is observed in 1999 (3.2 mmol m$^{-2}$ d$^{-1}$) and in 2006 (2.6 mmol m$^{-2}$ d$^{-1}$). The difference from the coefficient exchange is 0.088. At seasonal scale the difference on the two methods are higher in spring and summer (April to August) range between 4 mmol m$^{-2}$ d$^{-1}$ in April and 10 mmol m$^{-2}$ d$^{-1}$ in June. In winter, the difference is between 0.2 and 2.0 mmol m$^{-2}$ d$^{-1}$.

3.2.3 Air–sea CO$_2$ flux climatology

The climatology of the flux displays high seasonal and spatial variability, ranging from –13. to 10 mmol m$^{-2}$ d$^{-1}$. On average from 1998 to 2011, the entire Baltic Sea acts as a source of 1.2 mmol m$^{-2}$ d$^{-1}$ (1.4 mmol m$^{-2}$ y$^{-1}$ using method from Rutgersson et al. (2009) and a source of -1.5 mmol m$^{-2}$ y$^{-1}$ using SATp winds) (Fig. 9). The values observed are in agreement with those from other studies, indicating that the Baltic Sea can be a small source on average or a small sink of CO$_2$. Most previous research results concerning the carbon budget cover shorter periods, indicating a range between –1.16 and 2.9 mol m$^{-2}$ y$^{-1}$)(e.g. Wesslander et al., 2010; Kulinski and Pempkowiak, 2012), though the maximum values reported in these studies are all found in the same one or two years Algesten et al. (2006). Half of the studies demonstrate that Baltic Sea or certain basins of it act as sources, while the others demonstrate that it acts as a sink for the atmosphere (Norman et al., 2013a).
4 Discussion and Conclusions

Canadell (2003) explain that it is really challenging to estimate precisely the variation of the pCO$_2$ over marginal seas. This is due to several aspects but mainly due to the lack of data in space and time. Remote sensing using applicable algorithms could certainly be an important approach, complementing ship-board observations as well as in situ buoy and wind-tower measurements. Using our method, we present the first estimated CO$_2$ flux climatology based on remote sensing for the Baltic Sea. This gives an estimated annual mean air–sea CO$_2$ flux of 1.2 ± 0.8 mmol m$^{-2}$ d$^{-1}$ and a seasonal variability of between -13 to 10 mmol m$^{-2}$ d$^{-1}$. The interannual variability is an order of magnitude lower, being between 0.01 and 3.1917 mmol m$^{-2}$ d$^{-1}$. Several studies have estimated the air–sea CO$_2$ fluxes in the Baltic Sea over the last decade; most of these examine specific regions, but only a few treat the entire Baltic Sea. Kulinski and Pempkowiak (2012) demonstrate that the Baltic Sea was a source of CO$_2$ for the atmosphere between 2002 and 2008, but they use data from several time periods and sources. Using a biogeochemical model covering the 1960–2009 period, Norman et al. (2013b) suggest that the entire Baltic Sea acts as a net sink of between -0.22 and -0.17 mol m$^{-2}$ yr$^{-1}$, in agreement with our value of -0.6 mol m$^{-2}$ yr$^{-1}$.

In the Central Basin, Schneider et al. (2014) demonstrate that in four selected years (i.e. 2003, 2004, 2009, and 2010), the surface water acts as a sink for the atmosphere, as found in our study, the value of the uptake rates ranging between -0.04 and -0.3 mol m$^{-2}$ yr$^{-1}$. One study explain that the rates is the one which explain the enhance carbon in the sediments (Schneider et al., 2014). Our study of 2005, 2008, and 2009 finds an uptake value between -0.9 and -1.0 mol m$^{-2}$ yr$^{-1}$, slightly higher than that reported Schneider et al. (2014), who use boat-line data. This could be because of the spatial resolution of our product, which includes the entire Central Basin. Our mean value for the Central Basin indicates that it is a sink for the atmosphere. This is in contrast to the findings of Wesslander et al. (2010), who demonstrate that, for a slightly different period (i.e. 1994 to 2008), the Central Basin acts as a source for the atmosphere of 1.64 mol m$^{-2}$ yr$^{-1}$.

In the Gulf of Finland, we found the lowest source of CO$_2$ from the atmosphere (0.2 mol m$^{-2}$ yr$^{-1}$), which ranges between -0.3 to 0.9 mol m$^{-2}$ yr$^{-1}$. These lowest value are observed in 2005 and 2007 to 2009: during this period it is actually a sink for the atmosphere. The gulf of Bothnia is a sink in 2009 in our study but this value decreases from 1998 to 2009. This flux has a value of 0.5 mmol m$^{-2}$ yr$^{-1}$ in 2002, lower than the value of 2.9 mol m$^{-2}$ yr$^{-1}$ from Algesten et al. (Algesten et al., 2006). This estimation is based on a few days of measurements from a few stations in the Gulf of Bothnia. Our results indicating a small source are in agreement with those of the study demonstrating a larger sink in the Bothnian Sea (-0.73 mol m$^{-2}$ yr$^{-1}$) and a smaller source in Bothnian Bay (0.14 mol m$^{-2}$ yr$^{-1}$) between 1999 and 2009; this finding could explain why the entire Gulf of Bothnia region is a small sink or small source on average.

Using remote sensing data to compute the FCO$_2$ gives good spatial and temporal resolutions compared with those of measurements from ships or wind-towers. The satellite data give information on pCO$_2$ variability and on FCO$_2$. The first estimates of Baltic Sea air–sea exchange based on remote-sensing products display reasonably good agreement with previous estimates and indicate a negative trend, with annual uptake changing from 0.6 to -2.8 mol m$^{-2}$ yr$^{-1}$) over the 1998–2007 period. After 2007, the decrease is smaller and the flux remains quite stable at around -2.8 mol m$^{-2}$ yr$^{-1}$). The pCO$_2$ flux product depends
on the wind product and on the CO₂ product but also on the water convection. For winds, the higher-resolution product gives larger flux amplitudes, and for pCO₂, chlorophyll and CDOM are essential inputs.

The air–sea CO₂ flux is sensitive to different parameters as wind product in the Baltic Sea and the northern Baltic Sea. In the Gulf of Bothnia, the wind plays affect the inter-annual variation in air–sea CO₂ flux which is higher than in the other basins. On average, the Central Basin near the South Basin is the region with the highest uptake of CO₂. The coastal region has a slightly higher uptake than does the open-sea region.

Acknowledgements. We thank Dr. Tiit Kutser and Dr. Melissa Chierici for their help. We would also like to show our gratitude to the Prof. Sylvie Thiria for sharing their pearls of wisdom with us during the course of this research. This research was supported by Swedish National Space Board (grant no. 120/11:3).
References

Table 1. RMS, bias, and correlation coefficients for in situ data from SMHI, Östergarnsholm wind-tower, and satellite products.

<table>
<thead>
<tr>
<th>Tower</th>
<th>Bias</th>
<th>RMS</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>0.67</td>
<td>2.49</td>
<td>0.84</td>
</tr>
<tr>
<td>ÖSTERGARNSHOLM</td>
<td>2.42</td>
<td>3.15</td>
<td>0.74</td>
</tr>
<tr>
<td>FALSTERBO</td>
<td>1.70</td>
<td>2.27</td>
<td>0.86</td>
</tr>
<tr>
<td>HELSINGBORG</td>
<td>-0.88</td>
<td>1.65</td>
<td>0.85</td>
</tr>
<tr>
<td>HANØ</td>
<td>3.64</td>
<td>4.07</td>
<td>0.88</td>
</tr>
<tr>
<td>ÖLAND SÖDRA</td>
<td>0.62</td>
<td>1.70</td>
<td>0.86</td>
</tr>
<tr>
<td>HOBURG</td>
<td>-1.05</td>
<td>1.91</td>
<td>0.88</td>
</tr>
<tr>
<td>NIDINGEN A</td>
<td>3.68</td>
<td>4.17</td>
<td>0.85</td>
</tr>
<tr>
<td>VINGA</td>
<td>3.33</td>
<td>3.84</td>
<td>0.88</td>
</tr>
<tr>
<td>ÖLAND NORRA</td>
<td>-0.29</td>
<td>1.52</td>
<td>0.87</td>
</tr>
<tr>
<td>VISBY</td>
<td>-1.88</td>
<td>2.56</td>
<td>0.87</td>
</tr>
<tr>
<td>MASESKAR</td>
<td>3.82</td>
<td>4.29</td>
<td>0.91</td>
</tr>
<tr>
<td>NORDKOSTER</td>
<td>2.87</td>
<td>3.30</td>
<td>0.88</td>
</tr>
<tr>
<td>HARSTENA</td>
<td>-0.33</td>
<td>1.45</td>
<td>0.86</td>
</tr>
<tr>
<td>LANDSORT</td>
<td>1.73</td>
<td>2.41</td>
<td>0.83</td>
</tr>
<tr>
<td>GOTSKA</td>
<td>-1.60</td>
<td>2.20</td>
<td>0.91</td>
</tr>
<tr>
<td>SVENSKA HÖGARNA</td>
<td>1.57</td>
<td>2.31</td>
<td>0.8</td>
</tr>
<tr>
<td>ORSKÄR</td>
<td>1.07</td>
<td>2.02</td>
<td>0.86</td>
</tr>
<tr>
<td>KUGGÖREN</td>
<td>-0.52</td>
<td>1.90</td>
<td>0.79</td>
</tr>
<tr>
<td>BRÅMÖN</td>
<td>0.29</td>
<td>1.86</td>
<td>0.78</td>
</tr>
<tr>
<td>SKAGSUDDE</td>
<td>-0.37</td>
<td>1.78</td>
<td>0.79</td>
</tr>
<tr>
<td>HOLMOGADD</td>
<td>-0.60</td>
<td>1.85</td>
<td>0.82</td>
</tr>
<tr>
<td>HOLMÖN</td>
<td>-0.75</td>
<td>2.13</td>
<td>0.78</td>
</tr>
<tr>
<td>BJURÖKLUBB</td>
<td>0.13</td>
<td>2.16</td>
<td>0.75</td>
</tr>
<tr>
<td>LULEÅAIRPORT</td>
<td>-2.32</td>
<td>3.17</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Figure 1. Monthly mean wind speed (indicated by colour bar) and annual variability (indicated by contours).
Figure 2. Evolution annual of the a.) Transfer velocity based on Wanninkhof et al. (2009). b.) PCO$_2$ and c.) air-sea CO$_2$ flux based on the SMHIp wind product for each basin.
Figure 3. Evolution annual of the a.) Transfert velocity based on Wanninkhof et al. (2009). b.) PCO$_2$ and c.) air-sea CO$_2$ flux based on the SMHIp wind product for each bassin.
Figure 4. Seasonal cycle of air-sea CO2 flux for a) Gulf of Bothnia, b) Central Baltic c) Gulf of Finland and d) Southern Baltic. Solid lines represent the average for the full period (1998 to 2011), dotted lines with markers are for the first 5 years (1998-2002) and dashed lines are for the last five years (2007 to 2011).
Figure 5. Average, 1998–2011, a) of the air–sea CO₂ flux and b) of the difference between the coastal region and open sea.

Figure 6. Seasonal cycle of air-sea CO₂ flux for Baltic Sea. Solid line represent the average for the pull period (1998–2011), dotted line with marker is for the first 5 years (1998-2002) and dashed line is for the last five year (2007 to 2011).
Figure 7. a.,b.c. and d. are the distribution of the years of each data in each class for each basin SOM e.,f.,g. and h. are the percentage of the total data present in each class of the different basins’ SOM. The size of the circles in the top figures is also representative of the percentage of the total data present in each class of the different basins’ SOM.
Figure 8. The air-sea CO$_2$ flux estimate evolution with method 1 and the SATp product (Blue); method 2 and the SMHIp product (Red); method 1 and the SMHIp product (Yellow). a. for a year b. in average for all the year.
Figure 9. Temporal evolution of the air–sea CO$_2$ flux between 1998 and 2011 based on SMHIp data.