21%

37

9

| Mode: | Similarity | Report | ۷ |
|-------|------------|--------|---|
|-------|------------|--------|---|

paper text:

The Potential of using Remote Sensing data

to estimate Air-Sea CO2 exchange in the

Baltic Sea. Gaëlle Parard1,3, Anna Rutgersson1, Sindu Raj Parampil1, and Anastase Alexandre Charantonis2 1Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 2École nationale supérieure d'informatique pour l'industrie et l'entreprise, Evry, France 3AGO-GHER-MARE,

| University of Liège, Allée du | Six | Aout, | 17, Sart Tilman, | Liège | 4000, | Belgium | 11 |
|-------------------------------|-----|-------|------------------|-------|-------|---------|----|
|                               |     |       |                  |       |       |         |    |

Correspondence to: Gaëlle Parard (parard.gaelle@gmail.com) Abstract. In this article, we present the first climatological map

| ea CO2 flux over the Baltic So | Sea, |
|--------------------------------|------|
|--------------------------------|------|

based on remote- sensing data: satellite imaging derived estimates of pCO2 using self-organizing maps classifications along with class-specific linear regressions (SOMLO methodology) and remote-sensed wind estimates. The estimates have a spatial resolution of 4-km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude fluxes estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009), i.e. reanalysis winds and satellite wind products, the higher-resolution in fluxes reflects the seasonal variation in pCO2 and

is similar over the whole Baltic Sea, with high winter CO2 emissions and

high cCO2 uptakes. All basins

of 1. 6 mmol m-2 d-1 for the South Basin and

0.9 for the Central Basin) than in the northern regions (mean source of 0.1

```
mmol m-2 d-1) and the coastal areas act as a larger sink
```

(annual uptake of -4.2

mmol m-2 d-1) than does the open sea (-4 mmol m-2 d-1). In this

study, we find that the Baltic Sea acts as

a small source of 1.2 mmol m-2 d-1

on average and that annual uptake has increased from 1998 to 2012. ir-sea CO2 flux, Baltic Sea, neural method, climatology. 1 Introduction From the early 2000 and onwards, there has been a more active attempt

to investigate, understand, and quantify the global carbon cycle by the

scientific community,

since the greenhouse gas carbon dioxide (CO2) plays a key role in controlling Earth's climate.

The oceanic uptake of anthropogenic CO2 helps regulate atmospheric CO2 through air-sea exchange. Coastal and marginal seas represent nutrient-rich areas with strong biological activity and are influenced by various anthropogenic factors. As the oceans take up a major part of the anthropogenic emissions of CO2, many oceanic regions are experiencing ongoing acidification. There are still major uncertainties in assessing the oceanic uptake of anthropogenic CO2 during 2005–2014 it was estimated to 2.6 GtC yr-1, an estimated 26% of the total anthropogenic CO2 emissions (Le Quéré et al., 2015). One reason



27

19

23

7

4

ocean's role in terms of carbon export and relative productivity is disproportionately large in respect to its total surface area, when compared with the open ocean (Bourgeois et al., 2016). As the annual amplitude of air-sea pCO2 difference is significantly larger in coastal regions than open ocean (Rödenbeck et al., 2013), the variability of the exchange is high. Various methods, both direct and indirect, are

| used to determine the air-sea flux                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| of CO2 (FCO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| (e.g. Smith et al., 1996; McGillis et al., 2001; Krasakopoulou et al.,                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                              |
| 2009). Both direct and indirect measures of FCO2 were used in this study                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| (McGillis et al., 2001; Rutgersson and Smedman,                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                              |
| 2009; Gutiérrez-Loza and Ocampo-Torres, 2016). Other studies have calculated FCO2                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| across ocean basins using climate databases (Takahashi et al., 2002)                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                               |
| or biogeochemi- cal numerical models (Lenton et al., 2013; Arruda et al., 2015). These calculations, however, have for outputs covering the global coastlines. This is primarily due to the sparseness of the temporal and spatial data-sets the surface ocean or wind fields). The wide range of values of in situ coastal FCO2 entails even wider uncertainties estimates of FCO2, as there is the potential to under- or overestimate FCO2 when performing a spatio-temporal inter- | s (such as pCO2 of<br>in global |
| (Wollast, 1991; Takahashi et al., 2009; Ribas-Ribas et al., 2011). A better comprehension of the                                                                                                                                                                                                                                                                                                                                                                                       | 3                               |
| local processes controlling FCO2 along each coastal setting of continental margins will therefore lead to a better co<br>global FCO2 estimates. Since the year 2000, many different FCO2 estimates and measurements have been                                                                                                                                                                                                                                                          | onstrained set of               |
| reported for various near-shore, coastal, and inner-shelf environments.                                                                                                                                                                                                                                                                                                                                                                                                                | 3                               |
| These range from                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| -5.1 to 5.1 mol m−2 y−1 for continental shelves (Bates, 2006)                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                               |

| 3.9 to 76 mol m-2 y-1 for coastal embayments and estuaries (Koné et al., 2009; | Frankignoulle | et al., 1998). | 3 |  |
|--------------------------------------------------------------------------------|---------------|----------------|---|--|
| The spread of these values is a result of the heterogeneous and                |               |                |   |  |
|                                                                                |               |                |   |  |

| coupled biogeochemical processes in near-shore and coastal | systems (Laruelle | et al., 2010). | It is necessary 3 |
|------------------------------------------------------------|-------------------|----------------|-------------------|
| to                                                         |                   |                |                   |

3

increase our comprehension of the

ocean carbon cycle and the air-sea exchange of CO2 along the continental margins (Alin et al., 2012),

due to their high social and ecological impact (Vargas et al., 2012).

 High biological activity causes high
 CO2
 fluxes between the coastal and marginal seas and between the
 5

 atmosphere and adjacent open oceans, respectively. Considering
 their combined
 surface area, coastal seas

may contribute disproportionately

| to the open-ocean storage of  | C02 | (Thomas et al., | 2004) | via a mechanism called the continental shelf | 4 |   |
|-------------------------------|-----|-----------------|-------|----------------------------------------------|---|---|
| pump (Tsunogai et al., 1999). |     |                 |       |                                              |   | - |

In recent

| years, detailed field studies    | f CO2 fluxes have been initiated | l in a few areas, such as th | ne East China S      | sea, 4         |
|----------------------------------|----------------------------------|------------------------------|----------------------|----------------|
| North- west European Shelf, Ba   | tic Sea, and North Sea (Chen and | Wang, 1999; Thomas et al     | l., 1999; Thom       | as and         |
| Schneider, 1999; Frankignoulle a | d Borges, 2001; Borges and Franl | kignoulle, 2002; Borges      | et al., <b>2003;</b> | Thomas et al., |

2003, 2004; Omstedt et al., 2014). However,

only limited information is available on a global scale about these CO2 fluxes (Liu et al., 2000a, b; Cai 4 et al., 2003; Chen et al., 2003;

(Meier et al., 2014) which

| has been     | relatively   | well studied (e.g. Omstedt et al., 2004; Hjalmarsson et al., 2008; Backer and Leppänen, |
|--------------|--------------|-----------------------------------------------------------------------------------------|
| 2008; Wessla | ander, 2011) | ) and monitored, and                                                                    |

can be used in developing

new methods for monitoring coastal seas.

It is characterized by river runoff (Bergstrom, 1994) as well as by the importance upwelling variability (Norman et al., 2013a;

Myrberg and Andrejev, 2003; Lehmann and Myrberg, 2008;

Sproson and Sahlée, 2014). In the Baltic Sea, (Siegel and Gerth, 2012) shows that decomposition of organic matter and 35 biological production controlled the biogeochemical processes. They are controlled by nutrient and carbon distribution in the water column,

| as well as | light availability. | In the Baltic sea, | the former | factors are | affected | by | 8 |
|------------|---------------------|--------------------|------------|-------------|----------|----|---|
|            |                     |                    |            |             |          |    |   |

physical constraints such as the stratification of the water, the salinity and temperature profiles as well as the sea currents. In recent years, the Baltic Sea has also been paid more attention as a coastal system affecting both the uptake/release of anthropogenic CO2 and the natural CO2 cycle ( (Thomas and Schneider, 1999; Lansøet al., 2015)). Between 1994 and 2008 direct CO2 measurements from a cargo ship has been mesured at monthly resolution

| The net annual air-sea exchange of | CO2 in | the central Baltic Sea and the Kattegat varied both | regionally | 2 |
|------------------------------------|--------|-----------------------------------------------------|------------|---|
| and inter-annually.                |        |                                                     |            |   |

In the examined period, the Kattegat sea was, on average, a sink of CO2 while the

East Gotland and Bornholm seas were sources. The

2

2

1

1

1

| more pronounced in winter periods than in the summer periods. This indicates the interannua |
|---------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------|

| variability in the annual net flux                                                                                                                                                                                                                                                                      | 2            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| mainly controlled by the winter conditions (Wesslander et al., 2010). The balance between mineralization and product<br>ne depth of the mixed-layer in the different oceanic zones examined were shown to be the main drivers of their respect<br>purce distributions (Wesslander et al., 2010). In the |              |
| central Baltic Sea, where the mixed-layer depth is 60 m, CO2-enriched water mixes with water up                                                                                                                                                                                                         | 2            |
| to the surface in winter. The central Baltic Sea also receives large amounts of organic material from river water inflow; this may give rise to a heterotrophic system,                                                                                                                                 | 2            |
| aking the central Baltic a net CO2 source.                                                                                                                                                                                                                                                              |              |
| This is not the case in the Kattegat, which is highly influenced by oceanic conditions. In this                                                                                                                                                                                                         | 2            |
| udy, the                                                                                                                                                                                                                                                                                                |              |
| air sea CO2 flux is estimated, with the ocean-surface pCO2 in the                                                                                                                                                                                                                                       | 22           |
| altic Sea estimate from satellite-data derived products in (Parard et al., 2015, 2016) where                                                                                                                                                                                                            |              |
| we used the self-organizing multiple linear output (SOMLO) method (Sasse et al., 2013). The                                                                                                                                                                                                             | 1            |
| utputs of the method                                                                                                                                                                                                                                                                                    |              |
| have a horizontal resolution of 4 km and cover the period                                                                                                                                                                                                                                               | 1            |
| om 1998 to 2011. Previous studies of the net uptake or release of CO2 in the Baltic Sea have produced a wide range o                                                                                                                                                                                    | f results, w |

net exchange varying between -3.6 and +2.9 mol CO2 m-2 y-1 in different time periods between 1994 and 2009 (Norman et al., 2013b). The goal of the present study is to develop an air-sea CO2 flux climatology based on remote-sensing products with a monthly time resolution and 4° spatial resolution. In addition, we will further describe the processes and air-sea fluxes of CO2 from 1998 to 2011 in the entire

# Baltic Sea. The study is structured in four sections. Section 2 presents the data and method used in this work. Section 3 presents the

wind products used to estimate the exchange (based on satellite data and reanalysis data). In Section 4, we analyze the wind products' quality, as well as various aspects of the estimated fluxes, and in Section 5 we present our conclusions. 2 Data and method 2.1 Wind products In this study We used wind products to calculate the transfer velocity, based on a meso-scale reanalysis product. 30 The wind product is based on a meso-scale modeling reanalysis product. A reanalysis is a combination of measurements and a model in which the available data are assimilated into a high-quality modeling system. The reanalysis used here is from the

## Swedish Meteorological and Hydrological Institute (SMHI) with the

High-Resolution-Limited Area Model (HIRLAM) geometry (22-km horizontal grid spacing and 60 levels in the vertical; the model top is at 10 hPa) (Soci et al., 2011). HIRLAM is downscaled and dynamically adapted to a higher resolution (5-km grid) with a simplified HIRLAM called the Dynamic Adaptation Model (DYNAM). The observations of 10-m winds assimilated into the system are from four databases: the Inte- grated Surface Database Station History (ISH) database maintained by NOAA's National Climatic Data Center (NCDC), the MARS archive at ECMWF, the European Climate Assessment & Dataset (ECA&D) used as input for E-OBS version 6.0, and the national climate databases of SMHI and Météo France (MF). The temporal resolution is of 6 hours. In the following, this product will be referred to as SMHIp. The method requires for the explicative data to stay coherent in terms of resolution, and as such we chose a temporal and spatial resolution of monthly, 4 x 4 km pCO2 pixels. 2.2 Calculation of CO2 flux The flux of CO2 (FCO2) from sea to air (positive value) or air to sea (negative value) is often calculated using the

| difference | <b>in</b> 10 | the partial pressure of CO2 between the | surface water | and the | atmosphere | 18 |  |
|------------|--------------|-----------------------------------------|---------------|---------|------------|----|--|
| (∆pCO2).   | Here,        | the                                     |               |         |            |    |  |

atmospheric pCO2

was estimated using the method from Rutgersson et al. (2009)

and the sea-surface pCO2 concentrations are reconstructed with the SOMLO methodology (Sasse et al., 2013), as done

by Parard et al. (2015, 2016). The SOMLO methodology combines two statistical approaches: self-organizing maps (SOMs) (Kohonen, 1990) and linear regression.

15 In addition, the exchange efficiency was required, which was expressed

in terms of a transfer velocity, k. The

1

1

1

flux was then calculated according to: F C O2 = kK0  $\Delta$ pC O2 (1) where K0 is the salinity- and temperature-dependent solubility constant (Weiss et al., 1982). The gas transfer velocity was computed using the parameterization from (Wanninkhof et al., 2009): 20 k = 660 (3 + 0.1U + 0.064U 2 + 0.011U 3) (2)  $\sqrt{Sc}$ 

11

11

8

8

where U is the wind velocity

at a reference height of 10 m and Sc is the

solubility-dependent Schmidt number. Daily values of k were computed with a 6-h frequency for SMHIp; Eq. 2 is valid for all wind speed ranges. This method will be define as Method 1. We compare the results with another method to compute the transfer velocity k from Rutgersson and Smedman (2009) 25 k =  $0.24 \times U 2 + (3022 \times W - 20)$  (3) where w is the water-side convection this is estimated from the model used in Norman et al. (2013b). This method will be defined as Method 2.3 Results 3.1 Analysis of the wind products 3.1.1 Validation of the wind product To validate our wind product, we compare the SMHI product with one based on remote-sensing data at daily scale 10 m wind 5 data are reprocessed QuikSCAT (QSCAT) and ASCAT data (Bentamy and Croizé-Fillon, 2013) with a spatial resolution of 25x 25 km here called SATp. The two products are quite coherent when compared to all the station data used here, though SMHIp seems better, having a higher average correlation coefficient, i.e. R = 0.84 versus 0.67 for the remote sensing data wind (we chose not to show here). This is to be expected, as SATp has a much coarser spatial resolution (25 km) than SMHIp does (5 km). In the following we decided to used the SMHI product to compute the transfer velocity. 10 The wind product SMHIp used here to compute the air-sea CO2 flux was compared with wind-tower data available from 24 stations in the Baltic Sea, including data from the Östergarnsholm measurement site Högström (2008); Rutgersson et al. (2008). Here, a micro-meteorological tower, situated at 57.42°N, 18.99°E, has been running since 1995, making high-quality wind speed measurements at five heights. To validate the satellite data, we used measurements made 12 m above mean sea level in the 1995-2002 and 2005-2009 periods. In addition, we validated the winds using synoptic station data from SMHI for 15 21 sites along the coast of Sweden. The wind product SMHIp agree quite well with the station data (Table 1). Most of the synoptic stations are very close to the coast, so there might be a bias due to land influence. The correlation coefficient (R) is quite high (0.66-0.91). The root-mean-square differences (RMSDs) is given in Table 1. The SMHIp have a quite high average correlation coefficient, i.e. R = 0.84 (Table 1). This is to be expected given that the 20 spatial resolution is quite high for SMHIp (5 km). We increase the resolution of the wind products by means of linear interpolation to compute the air-sea CO2 flux. This was done to provide coherency between our datasets. 3.1.2 Wind

variability over the Baltic Sea. We examine the

annual and monthly mean wind speeds and wind variability

for the entire Baltic Sea (Figs. 1) for the

twelve 25 month during 13 years from 1998 to 2011. Fig. 1 shows the wind speed in colors and the annual wind variability in contours at the seasonal time scale. The mean winds are higher in the

i.e. about 7-7

.4 m s-1 versus 5 -6 m s-1.

The wind pattern agrees qualitatively with those in previous studies. In terms of variability, the wind can vary by as much as 1.5-2.1 m s-1 in both CB and 1.4-1.9 m s-1 in GB. On the monthly scale, high mean winds (8-9 m s-1) are seen in the Baltic Sea from November to February (Fig. 1). Of the four regions, CB experiences the highest winds in 30 winter months. March and September are transition months with winds generally between 7 and 8 m s-1. May and June are the months when the winds are generally low, 4-5 m s-1. The largest variability in the winds, as represented by the contours (Figure 1), is observable from September to December. The variability remains strong from December to February (1.2 - 2.4 m s-1) in all the basins, while the lowest variability is observed in July (< 0.8 m s-1). 3.2 Air-sea CO2 flux 3.2.1

| Air-sea CO2 flux | estimation | and | variabilitv 5 | The air-sea CO2 flux | estimations are shown | in | 9 |
|------------------|------------|-----|---------------|----------------------|-----------------------|----|---|
|                  |            |     |               |                      |                       |    |   |

Figure 2, fluxes are computed using the SMHIp wind data and figures represent the time period from 1998 to 2011. Figures 2 and 3 show the seasonal cycle, we observed the same patterns reflecting the surface pCO2 partial pressure (the air-sea difference in partial pressure) previously seen in (Parard et al., 2014). April to August represents an uptake and October to February an outgassing. The interannual variability is slightly larger during the spring possibly indicating the large interannual variability on the onset of biological activities. Spatial differences are larger 10 during the biologically active region, in April the northern basins are source areas and southern basins represents an uptake of the atmospheric CO2. There are also spatial differences within the different basins, in particular between coastal areas and open sea (also discussed later). Transfer velocity is largest in the southern basin and during winter following the wind-speed pattern. In Figure 3 the annual mean concentrations are shown. The flux displays high seasonal and spatial variability,

|        | ranging from  | -11     | to  | 27 | mmol m-2 d-1. | On average | from | 1998 to 2011, | the | 13 |
|--------|---------------|---------|-----|----|---------------|------------|------|---------------|-----|----|
| entire | e Baltic      |         |     |    |               |            |      |               |     |    |
|        | Sea acts as a | sink of | -1. |    |               |            |      |               |     | 2  |
| 2      |               |         |     |    |               |            |      |               |     |    |



32

14

remote sensing products are in agreement with those from other studies, indicating that the Baltic Sea can be a small source on average or a small sink of CO2. Most previous research results concerning the carbon budget cover shorter periods, indicating a range between -1.16 and 2.9 mol m-2 y-1 (Wesslander, 2011; Kulinski and Pempkowiak, 2012, e.g.), though the maximum values reported in these studies are all found in the same one or two years (Algesten et al., 2006). Half of the studies demonstrate that Baltic Sea or certain basins of it act as sources, while the others 20 demonstrate that it acts as a sink for the atmosphere (Norman et al., 2013a). The

### Baltic Sea is divided into four regions; the

annual mean values for transfer velocity, pCO2 and fluxes for these four regions are presented in Fig 2. During all the study period, the Central Basin acts as a source except for 4 years 2003,2004, 2009 and 2010 with a lower value in 2009 (-0.8

mmol m-2 d-1); the Gulf of Finland acts as a

source of the same order of magnitude as the Central Basin 25 with 4 years as a sink 2005,2007,2008 and 2009 with a lower value in 2009

| (—0.8 mmol m-2 d-1); while the South Basin acts as a                                                                           | 19 |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| source in all the years except 2010 with a low sink                                                                            |    |
| (-0.01 mmol m-2 d-1) as the Gulf of                                                                                            | 30 |
| Bothnian with a lower sink in 2009 (-0                                                                                         |    |
| .4 mmol m-2 d-1); The interannual variability is the same order                                                                | 6  |
| of magnitude for all the basins but the largest variability is seen in the Gulf of Bothnia, acting as a source up to 2008 (>1. | 7  |

| mmol m-2 d-1) | and | а | smaller | source | afterwards (< | 0. | 8 | mmol m-2 d-1). | 7 |
|---------------|-----|---|---------|--------|---------------|----|---|----------------|---|
|               |     |   |         |        |               |    |   |                |   |

The seasonal cycle do not show different patterns for the different basins, the southern basins (SB and 30 CB) show a larger outgassing during summer. The seasonal cycle is smaller for the northernmost basin (GB) (Figure 3). Betwwen 1998 and 2011, the

1

always positive (Figure 3) but we observed higher flux before 2003 and after 2007. The four basins display a decrease in the flux from 1998 to 2011 (Figure 3). The decrease is larger in the Gulf of Bothnia, after 2008 the value are less than the half than the value before. A smaller decrease is observed

#### in the Gulf of Finland. A decreasing trend

|--|--|

can be explained by transfer velcity or pCO2, but the decreasing pattern in the flux is not really reflected in the annual values of these parameters. The trend can also be explained changes in seasonal distribution of parameters. The seasonal cycle shows a shift in time when comparing the first five years (1998 to 2002) compared to the last five years (2007 to 2011) in (Figure 4). In all the basins the uptake is larger and April and May for the later period, the differences is particularly large in the basins most influenced by ice cover (GB and GF). There is also an indication in GB and GF for a reduced outgassing in early winter. As the data is not entirely homogeneous (different satellite products are used in the beginning and ending of the studied period) one should not draw too far conclusions from the suggested trend. It could, however, be related to the higher pCO2 concentrations in the atmosphere due to anthropogenic emissions, the corresponding increase in CO2 concentration in the atmosphere during this period is 23.7 µatm. As the trend to a large extent is explained by an earlier onset of spring-time uptake differences in temperature and ice cover might be a more likely explanation. The

| coastal region is defined by a distance of 0.5 $^\circ$ in latitude and longitude from the coast. Farther than | 1  |
|----------------------------------------------------------------------------------------------------------------|----|
| 0.5° in latitude and longitude from the closest coast                                                          | 1  |
| is defined as the open sea. The CO2 flux from the                                                              |    |
| coastal region is lower in winter and higher in                                                                | 1  |
| summer than it is from the open sea (Fig. 5). The average difference in CO2 flux is $-0.5$                     |    |
| mmol m-2 d-1 with a variability of                                                                             | 6  |
| between -5.5 and 2.5                                                                                           |    |
| mmol m-2 d-1. The higher difference (-1. 6 mmol m-2 d-1)                                                       | 17 |

coastal region. Annually, there are three periods when we observe a greater difference, i.e. February–March, June–July, and October (Fig. 5). The biological activity is one of an explanation

| of the lower air-sea CO2 in the coastal region in   | 21 |
|-----------------------------------------------------|----|
| March–April and October compare to the open ocean   |    |
| region. The biological activity is higher along the | 1  |

coast at these times (Schneider, 2011) due to upwelling near the coast (Omstedt et al., 2009; Norman et al., 2013a); this has the effect of reducing the CO2 emitted to the atmosphere. In the coastal region we observed a change in the sink between the first five years between 1998 and 2002 and the last five years between 2007 and 2011 (Figure 6), The lower

| air-sea CO2 flux are observed during the last years and the | 9  |
|-------------------------------------------------------------|----|
| the minimum                                                 |    |
| of the air-sea CO2 flux is in April and May. It is          | 31 |

correlate with the observation in the Figure 4. The sink increase in April from -2.9

mmol m-2 d-1 and in May from -1 .8 mmol m-2 d-1. The

monthly difference is small compared with that observed at the seasonal scale, though we may be underestimating the effect of the upwelling at the monthly scale. A review of Baltic Sea upwelling (Lehmann and Myrberg, 2008) demonstrates that the typical upwelling lasts from several days to one month at a horizontal scale of 10–20 km offshore. It is therefore possible that the effect of the upwelling may be underestimated. 3.2.2 Uncertainty analysis The difference between the phase before 2003 and after 2007 could be explained by the repartition of the data used to calculate our results. In order to understand if this repartition of the initial data is responsible for the phase difference, we studied the representation of the data along the different years for each neuron of the SOM maps in each basin (Figure 7). For the three first basins (Figure 7,a.,b.,c.), all the years are present at least in part, even if some classes seem to be solely composed from data measured before 2002, in particular in the Southern regions (the blue trend color classes). In the Gulf of Finland there is no data before 2008 so the results that we show can be affected by this lack of data, yet is coherent with the other basins. The distribution of the data is well spread (Figure 7,e.,f.,g.,h.) throughout the classes. Two tests were performed in order

21

with SATp wind product and one with the air-sea flux estimations method Rutgersson et al. (2009) describe in eq. . This results are presented in Figure 8. The two air-sea CO2 flux estimations are computed using the two sets of wind data, the SMHIp and SATp datasets. The CO2 flux computed using SMHIp wind data is available from 1998 to 2011 and using SATp wind data from 2000 to 2011. We compared the two products from 2000 and 2011. the two flux estimation from the wind product have the order of magnitude. Nevertheless, the seasonal cycle from air-sea CO2 flux using SATp product is larger,

| with lower | value    | in summer and higher in winter. | we observe | the | maximum difference | in | 1 |
|------------|----------|---------------------------------|------------|-----|--------------------|----|---|
|            | <u> </u> |                                 |            |     |                    |    |   |

January (when the flux using SMHIp winds is higher) and in September (when the flux using SATp winds is higher). The monthly variability of the flux using SMHIp winds is 8.7-11

.4 mmol m-2 d-1 versus 3. 4-13.4 mmol m-2 d-1

using SATp winds. High variability in January using the SATp wind product can be explained by the lack of satellite data during for this month. In addition, there are also interannual variations. In most years, the Baltic Sea acts as a sink: using the SMHIp winds, the exchange ranges from -2.9 to 0.6

mmol m-2 d-1 with an average of -1.6 mmol m-2 d-1; using the

SATp winds, the annual uptake is larger, being between -3.9 and 0.3



trend is the same for both products, with a decrease in the flux and an increase in the absorption of pCO2 from the atmosphere. The average difference between the wind from satellite and the wind from SMHI give a value of 0.98 m s-2 and have an influence of 0.34

mmol m-2 d-1 on the air-sea CO2 flux.

Our method to recompute the pCO2 give a root mean square between 19.5 and 38.5 µatm in function of the bassin, this has an effect on the

air-sea CO2 flux of -1.2 mmol m-2 d-1. The two methods to compute the

33

25

10

10

16

22

(Wanninkhof et al., 2009) where the results are described above, the second from Rutgersson et al. (2009). The second one used the water-side convection from a model Norman (2013). The mean difference between the two products are

| 1.2 mmol m-2 d-1. The higher difference is observed                                                                                                                    | 7      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| in 1999 (3.2                                                                                                                                                           |        |
| mmol m-2 d-1) and in 2006 (2.6 mmol m-2 d-1). The                                                                                                                      | 16     |
| difference from the coefficient exchange is 0.088. At seasonal scale the difference on the two methods are higher in sprin<br>summer (April to August) range between 4 | ng and |
| mmol m-2 d-1 in April and 10 mmol m-2 d-1) in June. In winter, the                                                                                                     | 6      |
| difference is                                                                                                                                                          |        |
| <b>between 0.</b> 2 and 2. 0 mmol m-2 d-1.                                                                                                                             | 6      |
| 3.2.3                                                                                                                                                                  |        |
| Air-sea CO2 flux climatology 25 The climatology of the                                                                                                                 | 9      |
| flux displays high seasonal and spatial variability,                                                                                                                   |        |
| ranging from -13. to 10 mmol m-2 d-1. On average from 1998 to 2011, the                                                                                                | 13     |
| entire Baltic Sea acts is a source of 1                                                                                                                                |        |
| .2 mmol m−2 d−1 (1.4 mmol m−2 y −1                                                                                                                                     | 26     |

using SATp winds) (Fig. 9). The values observed are in agreement with those from other studies, indicating that the Baltic Sea can be a small source on average or a small sink of CO2. Most previous research results concerning the carbon budget cover shorter periods, indicating a range between -1.16 and 2.9 mol m-2 y-1)(e.g. Wesslander et al., 2010; Kulinski and Pempkowiak, 2012), though the maximum values reported in these studies are all found in the same one or two years Algesten et al. (2006). Half of the studies demonstrate that Baltic Sea or certain basins of it act as sources, while the others demonstrate that it acts as a sink for the atmosphere (Norman et al., 2013a). 4 Discussion and Conclusions Canadell (2003) explain that it is really challenging to estimate precisely the variation of the pCO2 over marginal seas. This is due to several aspects but

7

| mainly due to the lack of data in space and                                                                           | 7         |
|-----------------------------------------------------------------------------------------------------------------------|-----------|
| time.                                                                                                                 |           |
| Remote sensing using applicable algorithms could certainly be an important approach, complementing                    | 1         |
| ship-board observations as well as in situ buoy and wind-tower 5 measurements. Using our method, we present the first | estimated |
| CO2 flux climatology based on remote sensing for the                                                                  | 9         |
| Baltic Sea. This gives an estimated annual mean                                                                       |           |
| air-sea CO2 flux of 1. 2 ± 0. 8 mmol m-2 d-1 and a seasonal variability of                                            | 24        |
| between -13. to 10                                                                                                    |           |
| mmol m-2 d-1. The interannual variability is an order of magnitude lower,                                             | 10        |
| being                                                                                                                 |           |
| between 0. 01 and 3. 1917 mmol m-2 d-1.                                                                               | 29        |
|                                                                                                                       |           |

Several studies have estimated the

last decade; most of these examine specific regions, but only a few treat the entire Baltic Sea. Kulinski and Pempkowiak (2012) demonstrate that the Baltic Sea 10 was

#### a source of CO2 for the atmosphere

between 2002 and 2008, but they use data from several time periods and sources. Using a biogeochemical model covering the 1960–2009 period, Norman et al. Norman et al. (2013b) suggest

that the entire Baltic Sea acts as a net sink of

between -0. 22 and -0. 17 mol m-2 yr-1, in

agreement with our

value of -0. 6 mol m-2 yr-1. In the

Central Basin, Schneider et al. (2014) demonstrate that in four selected years (i.e. 2003,2004, 2009, and 2010), the surface water acts as a sink for the atmosphere, as found in our study, the value of the uptake rates

ranging between -0. 04 and 15 -0. 3 mol m-2 yr-1.

One study explain that the rates is the one which explain the enhance carbon in the sediments (Schneider et al., 2014). Our study of 2005, 2008, and 2009 finds an uptake value

between -0. 9 and -1 .0 mol m-2 yr-1,

slightly higher than that reported Schneider et al. (2014), who use boat-line data. This could be because of the spatial resolution of our product, which includes the entire Central Basin. Our mean value for the Central Basin indicates that it is a sink for the atmosphere. This is in contrast to the findings of Wesslander et al. (2010), who demonstrate that, for a slightly different period (i.e. 1994 to 20 2008), the Central Basin acts as a source for the atmosphere of 1.64

38

2

15

15



17

12

lowest source of CO2 from the atmosphere

| (0.2 mol m-2 yr-1), | 12 |
|---------------------|----|
| which ranges        |    |

```
between -0.3 to 0. 9 mol m-2 yr-1.
```

These lowest value are observed in 2005 and 2007 to 2009: during this period it is actually a sink for the atmosphere. The gulf of Bothnia is a sink in 2009 in our study but this value decreases from 1998 to 2009. This flux has

|       | a value of | 0.5  | mmol m-2 yr     | -1 in  | 2002, lower than      | the        | 28 |
|-------|------------|------|-----------------|--------|-----------------------|------------|----|
| value | of 2.9     |      |                 |        |                       |            |    |
|       | mol m-2    | yr – | 1 from Algesten | et al. | (Algesten <b>et a</b> | I., 2006). | 3  |

25 This estimation is based on a few days of measurements from a few stations in the Gulf of Bothnia. Our results indicating a small source are in agreement with those of the study demonstrating a larger sink in the Bothnian Sea (-0.73

| mol m-2 yr-1) and a   | smaller | source | 15 |
|-----------------------|---------|--------|----|
| in Bothnian Bay (0.14 |         |        |    |

| mol m−2 yr−1) | between 1999 | and |  | 36 |
|---------------|--------------|-----|--|----|
|               |              |     |  |    |

2009; this finding could explain why the entire Gulf of Bothnia region is a small sink or small source on average. Using remote sensing data to compute the FCO2 gives good spatial and temporal resolutions compared with those of mea- 30 surements from ships or wind-towers. The satellite data give information on pCO2 variability and on FCO2. The first estimates of Baltic Sea air-sea exchange based on remote-sensing products display reasonably good agreement with previous estimates and indicate a negative trend, with annual uptake changing from 0.6 to -2.8 mol

.8 mol m-2 yr-1). The

pCO2 flux product depends on the wind product and on the CO2 product but also on the water convection. For winds, the higherresolution product gives larger flux amplitudes, and for pCO2, chlorophyll and CDOM are essential inputs. The air-sea CO2 flux is sensitive to different parameters as wind product

35

8

9

1

in the Baltic Sea and the northern Baltic Sea. In the Gulf of Bothnia, the

wind plays affect the inter-annual variation in

air-sea CO2 flux which is higher than in the

other basins. On average, the Central Basin near the South Basin is the region with the highest uptake of CO2. The coastal region has a slightly higher uptake than does the open-sea region. Acknowledgements. We thank Dr. Tiit Kutser and Dr. Melissa Chierici for their help. We would also like to show our gratitude to the Prof. Sylvie Thiria for sharing their pearls of wisdom with us during the course of this research. This research was supported by

Swedish National Space Board (grant no. 120/11:3).

References Algesten, G., Brydsten, L., Jonsson, P., Kortelainen, P., Löfgren, S., Rahm, L., Räike, A., Sobek, S., Tranvik, L., and Wikner, J.: Organic carbon budget for the Gulf of Bothnia, Journal of Marine Systems, 63, 155-161, 2006. Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R.: Robust empirical relationships for estimating the carbonate system in the southern California System and application to CalCOFI hydrographic cruise data (2005–2011), J. Geophys. Res, 117, C05 033, 2012. Arruda, R., Calil, P. H., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G.: Air-sea CO 2 fluxes and the controls on ocean surface pCO 2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study, Biogeosciences, 12, 5793-5809, 2015. Backer, H. and Leppänen, J.-M. . M.: The HELCOM system of a vision, strategic goals and ecological objectives: implementing an ecosystem approach to the management of human activities in the Baltic Sea, Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 321– 334, doi:HELCOM, 2008. Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean, Journal of Geophysical Research: Oceans (1978-2012), 111, 2006. 15 Bentamy, A. and Croizé-Fillon, D.: Reprocessing Daily QuikSCAT Surface Wind Fields., Tech. rep., Ifremer, Brest, 2013. Bergstrom, S.: River runoff to the Baltic Sea: 1950-1990, Ambio, 23, 280-287, 1994. Borges, A. V. and Frankignoulle, M.: Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast, Biogeochemistry, 59, 41–67, 2002. Borges, A. V., Djenidi, S., Lacroix, G., Théate, J., Delille, B., and Frankignoulle, M.: Atmospheric CO2 flux from mangrove surrounding 20 waters, Geophysical Research Letters, 30, 2003. Bourgeois, T., Orr, James, C., Resplandy, L., Ethé, C., Gehlen, M., and Bopp, L.: Coastalocean uptake of anthropogenic carbon, Biogeo- sciences Discussion, doi:10.5194/bg-2016-57, 2016, 2016. Cai, W.-J. . J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the landsea interface and the ocean, Geophysical Research Letters, 30, 2003. 25 Canadell, J. G.: Global Carbon Project: The Science Framework and Implementation, Global Carbon Project, 2003. Chen, C.-T. A. . T. A. and Wang, S.-L. . L.: Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf, Journal of Geophysical Research: Oceans (1978–2012), 104, 20 675–20 686, 1999. Chen, C.-T. A., T. A., Liu, K.-K., K., and Macdonald, R.: Continental margin exchanges, in: Ocean biogeochemistry, pp. 53–97, Springer, 2003. 30 Frankignoulle, M. and Borges, A. V.: European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochemical Cycles, 15, 569-576, 2001. Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., and Theate, J. M.: Carbon dioxide emission from european estuaries, Science, 282, 434-6, 1998. Gutiérrez-Loza, L. and Ocampo-Torres, F. J.: Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México, 35 in: IOP Conference Series: Earth and Environmental Science, vol. 35, p. 012012, IOP Publishing, 2016. Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., and Mintrop, L.: Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea, Continental Shelf Research, 28, 593-601, 2008. Högström, U.: Momentum fluxes and wind gradients in the marine boundary layer-a multi-platform study, Boreal environment research, 13, 475-502, 2008. Kohonen, T.: The self-organizing map, Proceedings of the IEEE, 78, 1464–1480, 1990. Koné, Y. J.-M. . M., Abril, G., Kouadio, K. N., Delille, B., and Borges, A. V.: Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa), Estuaries and Coasts, 32, 246–260, 2009. Krasakopoulou, E., Rapsomanikis, S., Papadopoulos, A., and Papathanassiou, E.: Partial pressure and air-sea CO 2 flux in the Aegean Sea during February 2006, Continental Shelf Research, 29, 1477-1488, 2009. Kulinski, K. and Pempkowiak, J.: Carbon cycling in the Baltic Sea, vol. 6, Springer, 2012. Lansø, A. S., Bendtsen, J., Christensen, J. H., Sörensen, L. L., Chen, H., Meijer, H. A. J., and Geels, C.: Sensitivity of the air-sea CO2 10 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability, Biogeosciences, 12, 2753–2772, 2015. Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves, Geophysical Research Letters, 37, doi:10.1029/2010GL043691, 2010. Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., and Boden, T. A.: Global Carbon Budget 2015, Earth System Science Data, 7, 349–396, 2015. 15 Lehmann, A. and Myrberg, K.: Upwelling in the Baltic Sea a review, Journal of Marine Systems, 74, S3-S12, 2008. Lenton, A., Tilbrook, B., Law, R., Bakker, D., Doney, S. C., Gruber, N., Hoppema, M., Ishii, M., Lovenduski, N. S., and Matear, R. J.: Sea-air CO2 fluxes in the Southern Ocean for the period 1990–2009, Biogeosciences, 10, 4037–4054, doi:10.5194/bg-10-4037-2013, 2013, 2013. Liu, K. K., Iseki, K., and Chao, S. Y.: Continental margin carbon fluxes, The changing ocean carbon cycle: a midterm synthesis of the Joint Global Ocean Flux Study, 5, 187, 2000a. 20 Liu, K.-K. . K., Atkinson, L., Chen, C. T. A., Gao, S., Hall, J., Macdonald, R. W., McManus, L. T., and Quinones, R.: Exploring continental margin carbon fluxes on a global scale, Eos, Transactions American Geophysical Union, 81, 641– 644, 2000b. McGillis, W. R., Edson, J. B., Ware, J. D., Dacey, J. W., Hare, J. E., Fairall, C. W., and Wanninkhof, R.: Carbon dioxide flux techniques performed during GasEx-98, Marine Chemistry, 75, 267–280, 2001. Meier, H. E. M., Rutgersson, A., and Reckermann, M.: An Earth System Science Program for the Baltic Sea Region, Eos, Transactions 25 American Geophysical Union, 95, 109–110, 2014. Myrberg, K. and Andrejev, O.: Main upwelling regions in the Baltic Sea-a statistical analysis based on three-dimensional modelling, Boreal Environment Research, 8, 97–112, 2003. Norman, M.: Air-Sea Fluxes of CO2: Analysis Methods and Impact on Carbon Budget, 2013. Norman, M., Raj Parampil, S., Rutgersson, A., and Sahlée, E.: Influence of coastal upwelling on the air-sea gas exchange of CO 2 in a Baltic 30 Sea Basin, Tellus B, 65, 2013a. Norman, M., Rutgersson, A., and Sahlée, E.: Impact of improved air-sea gas transfer velocity on fluxes and water chemistry in a Baltic Sea model, Journal of Marine Systems, 111, 175–188, doi:10.1016/j.jmarsys.2012.10.013, 2013b. Omstedt, A., Elken, J., Lehmann, A., and Piechura, J.: Knowledge of the Baltic Sea physics gained during the BALTEX and related pro- grammes, Progress in Oceanography, 63, 1–28, 2004. 35 Omstedt, A., Gustafsson, E., and

gained during the BALI EX and related pro- grammes, Progress in Oceanography, 63, 1–28, 2004. 35 Omstedt, A., Gustafsson, E., and Wesslander, K.: Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Continental Shelf Research, 29, 870–885, 2009. Omstedt, A., Humborg, C., Pempkowiak, J., Perttilä, M., Rutgersson, A., Schneider, B., and Smith, B.: Biogeochemical control of the coupled CO2–O2 system of the Baltic Sea: A review of the results of Baltic-C, Ambio, 43, 49–59, 2014. Parard, G., Charantonis, A. A., and Rutgerson, A.: Remote sensing algorithm for sea surface CO2 in the Baltic Sea, Biogeoscience Discuss., 11, 12 255–12 294, doi:10.5194/bgd-11-12255-2014, 2014. Parard, G., Charantonis, A. A., and Rutgerson, A.: Remote sensing the sea surface CO 2 of the Baltic Sea using the SOMLO methodology, Biogeosciences, 12, 3369-3384, 2015. Parard, G., Charantonis, A. A., and Rutgersson, A.: Using satellite data to estimate partial pressure of CO2 in the Baltic Sea, Journal of Geophysical Research: Biogeosciences, 121, 1002–1015, 2016. Ribas-Ribas, M., Gómez-Parra, A., and Forja, J. M.: Air-sea CO 2 fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula), Marine Chemistry, 123, 56–66, 2011. Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean pCO2 and seaair 10 CO2 flux variability from an observation-driven ocean mixed-layer scheme, Ocean Science, 9, 193-216, doi:10.5194/os-9-193-2013, 2013. Rutgersson, A. and Smedman, A.: Enhanced airsea CO2 transfer due to water-side convection, Journal of Marine System, 80, 125–134, doi:10.1016/j.jmarsys.2009.11.004, 2009. Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., and Sahlée, E.: The annual cycle of carbon dioxide and parameters influencing 15 the air-sea carbon exchange in the Baltic Proper, Journal of Marine Systems, 74, 381-394, doi:10.1016/j.jmarsys.2008.02.005, 2008. Rutgersson, A., Norman, M., and Aström, G.: Atmospheric CO2 variation over the Baltic Sea and the impact on air-sea exchange, Boreal environment research, 14, 238-249, 2009. Sasse, T. P., McNeil, B. I., and Abramowitz, G.: A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks, Biogeosciences, 10, 4319–4340, 2013. 20 Schneider, B.: The CO2 system of the Baltic Sea: Biogeochemical control and impact of anthropogenic CO2, in: Global Change and Baltic Coastal Zones, pp. 33–49, Springer, 2011. Schneider, B., Gülzow, W., Sadkowiak, B., and Rehder, G.: Detecting sinks and sources of CO 2 and CH 4 by ferrybox-based measurements in the Baltic Sea: Three case studies, Journal of Marine Systems, 140, 13-25, 2014. Siegel, H. and Gerth, M.: Baltic Sea environment fact sheet Sea Surface Temperature in the Baltic Sea in 2011, HELCOM Baltic Sea 25 Environment Fact Sheets [online], http://www.helcom.fi/balticsea-trends/environment-fact-sheets/, 2012. Smith, S. D., Fairall, C. W., Geernaert, G. L., and Hasse, L.: Air-sea fluxes: 25 years of progress, Boundary-Layer Meteorology, 78, 247–290, 1996. Soci, C., Landelius, T., Bazile, E., Undén, P., Mahfouf, J. F., Martin, E., and Besson, F.: EURO4M Project-REPORT, 2011. Sproson, D. and Sahlée, E.: Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer, Tellus A, 66, 2014. 30 Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., et al.: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Research Part II: Topical Studies in Oceanography, 49, 1601–1622, 2002. Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. . C. . E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., 35 Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A. O., Tilbrook, B., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R. . R., and De Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep-Sea Research Part II, 56, 554-577, doi:10.1016/j.dsr2.2008.12.009, 2009. Thomas, H. and Schneider, B.: The seasonal cycle of carbon dioxide in Baltic Sea surface waters, Journal of Marine Systems, 22, 53–67, doi:10.1016/S0924-7963(99)00030-5, 1999. Thomas, H., Ittekkot, V., Osterroht, C., and Schneider, B.: Preferential recycling of nutrientsthe ocean's way to increase new production and to pass nutrient limitation?, Limnology and Oceanography, 44, 1999. Thomas, H., Pempkowiak, J., Wulff, F., and Nagel, K.: Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: A paradox or a buffer for eutrophication?(DOI 10.1029/2003GL017937), GEOPHYSICAL RESEARCH LETTERS, 30, OCE-8, 2003. Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W.: Enhanced open ocean storage of CO2 from shelf sea pumping., Science, 304, 1005-8, doi:10.1126/science.1095491, 2004. Tsunogai, S., Watanabe, S., and Sato, T.: Is there a continental shelf pump for the absorption of atmospheric CO2?, Tellus B, 51, 701–712, 10 1999. Vargas, R., Loescher, H. W., Arredondo, T., Huber-Sannwald, E., Lara-Lara, R., and Yépez, E. A.: Opportunities for advancing carbon cycle science in Mexico: Toward a continental scale understanding, Environmental Science & Policy, 21, 84–93, 2012. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.: Advances in quantifying air-sea gas exchange and environmental forcing., Ann Rev Mar Sci, 1, 213-44, doi:10.1146/annurev.marine.010908.163742, 2009. 15 Wanninkhof, R., Park, G.-H. . H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y.,

Gruber, N., Doney, S. C., McKinley, G. A., and Lenton, A.: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 9, 10 961–11 012, doi:10.1007/s10236-010-0337-8, 2013. Weiss, R. F., Jahnke, R. A., and Keeling, C. D.: Seasonal effects of temperature and salinity on the partial pressure of CO2 in seawater, Nature, 300, 511–513, 1982. 20 Wesslander, K.: The carbon dioxide system in the Baltic Sea surface waters, Ph.D. thesis, University of Gothenburg, 2011. Wesslander, K., Omstedt, A., and Schneider, B.: Inter-annual variation of the air-sea CO2 balance in the southern Baltic Sea and the Kattegat, Continental Shelf Research, 30, 1511–1521, doi:10.1016/j.csr.2010.05.014, 2010. Wollast, R.: The coastal organic carbon cycle: fluxes, sources and sinks, Ocean margin processes in global change, pp. 365–381, 1991. Table 1. RMS, bias, and correlation coefficients for in situ data from SMHI, Östergarnsholm wind-tower, and satellite products. Tower SMHIp Bias RMS R TOTAL 0.67 2.49 0.84 ÖSTERGARNSHOLM 2.42 3.15 0.74 FALSTERBO 1.70 2.27 0.86 HELSINGBORG -0.88 1.65 0.85 HANÖ 3.64 4.07 0.88 ÖLAND SÖDRA 0.62 1.70 0.86 HOBURG -1.05 1.91 0.88 NIDINGEN A 3.68 4.17 0.85 VINGA 3.33 3.84 0.88 ÖLAND NORRA -0.29 1.52 0.87 VISBY -1.88 2.56 0.87 MASESKAR 3.82 4.29 0.91 NORDKOSTER 2.87 3.30 0.88 HARSTENA -0.33 1.45 0.86 LANDSORT 1.73 2.41 0.83 GOTSKA -1.60 2.20 0.91 SVENSKA HÖGARNA 1.57 2.31 0.8 ÖRSKÅR 1.07 2.02 0.86 KUGGÖREN -0.52 1.90 0.79 BRÅMÖN 0.29 1.86 0.78 SKAGSUDDE -0.37 1.78 0.79 HOLMOGADD -0.60 1.85 0.82 HOLMÖN -0.75 2.13 0.78 BJURÖKLUBB 0.13 2.16 0.75 LULEÅAIRPORT -2.32 3.17 0.68 Figure 1. Monthly mean wind speed (indicated by colour bar) and annual variability (indicated by contours). Figure 2. Evolution annual of the a.) Transfert velocity based on Wanninkhof et al. (2009). b.) PCO2 and c.) air-sea CO2 flux based on the SMHIp wind product for each bassin. Figure 3. Evolution annual of the a.) Transfert velocity based on Wanninkhof et al. (2009). b.) PCO2 and c.) air-sea CO2 flux based on the SMHIp wind product for each bassin. Figure 4. Seasonal cycle of air-sea CO2 flux for a) Gulf of Bothnia, b) Central Baltic c) Gulf of Finland and d) Southern Baltic. Solid lines represent the average for the full period (1998 to 2011), dotted lines with markers are for the first 5 years (1998-2002) and dashed lines are for the last five years (2007 to 2011). Figure 5. Average, 1998–2011, a) of the air-sea CO2 flux and b) of the difference between the coastal region and open sea. Figure 6. Seasonal cycle of air-sea CO2 flux for Baltic Sea. Solid line represent the average for the pull period (1998–2011), dotted linewith marker is for the first 5 years (1998-2002) and dashed line is for the last fiver year (2007 to 2011). Figure 7. a., b.c. and d. are the distribution of the years of each data in each class for each basin SOM e., f., g. and h. are the percentage of the total data present in each class of the different basins' SOM. The size of the circles in the top figures is also representative of the percentage of the total data present in each class of the different basins' SOM. Figure 8. The air-sea CO2 flux estimate evolution with method 1 and the SATp product (Blue); method 2 and the SMHIp product (Red); method 1 and the SMHIp product (Yellow). a. for a year b. in average for all the year. Figure 9. Temporal evolution of the air-sea CO2 flux between 1998 and 2011 based on SMHIp data. 5 10 15 20 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 30 5 10 15 20 30 5 5 10 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

# sources: 216 words / 4% - Crossref 1 Parard, Gaëlle, Anastase Charantonis, and Anna Rutgersson. "Using satellite data to estimate partial pressure of CO2 in the Baltic Sea : PARTIAL PRESSURE OF CO2 VARIABILITY", Journal of Geophysical Research Biogeosciences, 2016. 107 words / 2% - Crossref 2 Wesslander, K.. "Inter-annual and seasonal variations in the air-sea CO"2 balance in the central Baltic Sea and the Kattegat", Continental Shelf Research, 20100815 105 words / 2% - Internet from 14-Apr-2016 12:00AM 3 udel.edu 103 words / 2% - Crossref 4 H. Thomas. "The carbon budget of the North Sea", Biogeosciences Discussions, 08/17/2004 63 words / 1% - Internet from 16-Mar-2016 12:00AM 5 www.biogeosciences.net

| 6  | 53 words / 1% - Internet from 17-Mar-2016 12:00AM<br>www.biogeosciences.net                                                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | 48 words / 1% - Crossref<br>FERIAL LOUANCHI. "Modelled and observed sea surface fCO2 in the southern ocean: a comparative study",<br>Tellus B, 4/1999                                                                                                                                                                  |
| 8  | 48 words / 1% - Crossref<br><u>Regional Climate Studies, 2015.</u>                                                                                                                                                                                                                                                     |
| 9  | 47 words / 1% - Crossref<br>Dong, Fang, Yangchun Li, Bin Wang, Wenyu Huang, Yanyan Shi, and Wenhao Dong. "Global Air–Sea CO2 Flux<br>in 22 CMIP5 Models: Multiyear Mean and Interannual Variability*", Journal of Climate, 2016.                                                                                       |
| 10 | 39 words / 1% - Crossref<br><u>Black, K.S "An autonomous benthic lander:", Continental Shelf Research, 200105/06</u>                                                                                                                                                                                                   |
| 11 | 36 words / 1% - Crossref<br><u>Ocean-Atmosphere Interactions of Gases and Particles, 2014.</u>                                                                                                                                                                                                                         |
| 12 | 35 words / 1% - Crossref<br><u>Alberto V Borges. "Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume", BMC</u><br><u>Ecology, 2008</u>                                                                                                                                                  |
| 13 | 30 words / 1% - Internet from 21-Dec-2015 12:00AM<br>oceanrep.geomar.de                                                                                                                                                                                                                                                |
| 14 | 29 words / < 1% match - Crossref<br>Alberto V. Borges, Cédric Morana, Steven Bouillon, Pierre Servais, Jean-Pierre Descy, François Darchambeau.<br>"Carbon Cycling of Lake Kivu (East Africa): Net Autotrophy in the Epilimnion and Emission of CO2 to the<br>Atmosphere Sustained by Geogenic Inputs", PLoS ONE, 2014 |
| 15 | 28 words / < 1% match - Crossref<br><u>N. GYPENS. "Effect of eutrophication on air-sea CO<sub>2</sub> fluxes in the coastal Southern North Sea: a</u><br>model study of the past 50 years", Global Change Biology, 04/2009                                                                                             |
| 16 | 22 words / < 1% match - Crossref<br>H.E. Laika. "Interannual properties of the CO2 system in the Southern Ocean south of Australia", Antarctic<br>Science, 08/12/2009                                                                                                                                                  |
| 17 | 21 words / < 1% match - Internet from 08-Jan-2016 12:00AM<br>www.biogeosciences.net                                                                                                                                                                                                                                    |
| 18 | 21 words / < 1% match - Crossref<br>SHIN-ICHIRO NAKAOKA. "Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the<br>Greenland Sea and the Barents Sea", Tellus B, 4/2006                                                                                                                          |
| 19 | 20 words / < 1% match - Crossref<br><u>Alfonso Mucci. "CO<sub>2</sub> fluxes across the air-sea interface in the southeastern Beaufort Sea: Ice-</u><br><u>free period", Journal of Geophysical Research, 04/01/2010</u>                                                                                               |

| 20 | 17 words / < 1% match - Crossref<br>Mercedes Paz. "Seasonal variability of surface fCO2 in the Strait of Gibraltar", Aquatic Sciences, 03/2009                                                                                                                                                                                                                                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | 16 words / < 1% match - Crossref<br>ANTOINE CORBIÈRE. "Interannual and decadal variability of the oceanic carbon sink in the North Atlantic<br>subpolar gyre", Tellus B, 4/2007                                                                                                                                                                                                  |
| 22 | 14 words / < 1% match - Crossref<br>Midorikawa, T "Estimation of seasonal net community production and air-sea CO"2 flux based on the carbon<br>budget above the temperature minimum layer in the western subarctic North Pacific", Deep-Sea Research<br>Part I, 200202                                                                                                          |
| 23 | 14 words / < 1% match - Crossref<br>Wang, Xiujun, Raghu Murtugudde, Eric Hackert, Jing Wang, and Jim Beauchamp. "Seasonal to decadal<br>variations of sea surface pCO2 and sea-air CO2 flux in the equatorial oceans over 1984-2013: A basin-scale<br>comparison of the Pacific and Atlantic Oceans : CO2 flux in the equatorial oceans", Global Biogeochemical<br>Cycles, 2015. |
| 24 | 13 words / < 1% match - Crossref<br><u>Quay, P. "Surface layer carbon budget for the subtropical N. Pacific: @d^1^3C constraints at station ALOHA",</u><br><u>Deep-Sea Research Part I, 200309</u>                                                                                                                                                                               |
| 25 | 12 words / < 1% match - Crossref<br>Semiletov, I.P "Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water<br>interfaces in the Arctic Ocean: Pacific sector of the Arctic", Journal of Marine Systems, 200706                                                                                                                                   |
| 26 | 10 words / < 1% match - Internet from 18-Feb-2017 12:00AM<br><u>hal.upmc.fr</u>                                                                                                                                                                                                                                                                                                  |
| 27 | 10 words / < 1% match - Crossref<br>Muller, B "Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a<br>freshwater lake", Water Research, 200311                                                                                                                                                                                          |
| 28 | 9 words / < 1% match - Crossref<br>Gazeau, F "The European coastal zone: characterization and first assessment of ecosystem metabolism",<br>Estuarine, Coastal and Shelf Science, 200408                                                                                                                                                                                         |
| 29 | 9 words / < 1% match - Crossref<br><u>C. Dumousseaud. "Contrasting effects of temperature and winter mixing on the seasonal and inter-annual</u><br><u>variability of the carbonate system in the Northeast Atlantic Ocean", Biogeosciences, 05/11/2010</u>                                                                                                                      |
| 30 | 9 words / < 1% match - Crossref<br><u>Reisdorph, S. C., and J. T. Mathis. "Assessing net community production in a glaciated Alaska fjord",</u><br><u>Biogeosciences Discussions, 2014.</u>                                                                                                                                                                                      |
| 31 | 8 words / < 1% match - Crossref<br>Olsen, A "Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic,<br>1981-2001", Deep-Sea Research Part I, 200310/11                                                                                                                                                                         |
| 32 | 8 words / < 1% match - Crossref<br><u>Xiaomeng Wang. "Late autumn to spring changes in the inorganic and organic carbon dissolved in the water</u><br><u>column at Scholaert Channel, West Antarctica", Antarctic Science, 11/24/2009</u>                                                                                                                                        |

| 33 | 8 words / < 1% match - Crossref<br>Murata, A "Summertime CO"2 sinks in shelf and slope waters of the western Arctic Ocean", Continental Shelf<br>Research, 200305                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34 | 8 words / < 1% match - Crossref<br>Zhang, Jia-Zhong, and Charles J. Fischer. "Carbon dynamics of Florida Bay: spatiotemporal patterns and<br>biological control", Environmental Science & Technology, 2014.                                         |
| 35 | 7 words / < 1% match - Crossref<br><u>Chen, CT. A., TH. Huang, YC. Chen, Y. Bai, X. He, and Y. Kang. "<i>Review article</i> "Air-sea exchanges of<br/><u>CO<sub>2</sub> in world's coastal seas"", Biogeosciences Discussions, 2013.</u></u>        |
| 36 | 6 words / < 1% match - Crossref<br>Shim, J "Seasonal variations in pCO"2 and its controlling factors in surface seawater of the northern East<br>China Sea", Continental Shelf Research, 20071201                                                   |
| 37 | 6 words / < 1% match - Crossref<br>Hull, T., N. Greenwood, J. Kaiser, and M. Johnson. "Uncertainty and sensitivity in optode-based shelf-sea net<br>community production estimates", Biogeosciences Discussions, 2015.                              |
| 38 | 6 words / < 1% match - Crossref<br>Huertas, I.E "Temporal patterns of carbon dioxide in relation to hydrological conditions and primary<br>production in the northeastern shelf of the Gulf of Cadiz (SW Spain)", Deep-Sea Research Part II, 200606 |
| 39 | 6 words / < 1% match - Crossref<br><u>N. R. Bates. "Air-sea CO<sub>2</sub> fluxes on the Bering Sea shelf". Biogeosciences Discussions.</u><br><u>10/05/2010</u>                                                                                    |