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Abstract. End-users studying impacts and risks caused by human-induced climate change are often presented with large

multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versa-

tile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has

been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the

equally-weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded5

as independent estimates due to the presence of duplicated code and shared development history.

Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with im-

proved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing

the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments.

This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depend-10

ing on the focus of different users. The technique is useful for a range of applications that, for example, minimise present

day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good

performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble character-

istics, or optimize several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric,

observational product and pre-processing steps used.15

1 Introduction

Multi-model ensembles are an indispensable tool for future climate projection and the quantification of its uncertainty. How-

ever, due to a paucity of guidelines in this area, it is unclear how best to utilise the information from climate model ensembles

consisting of multiple imperfect models with a varying number of ensemble members from each model. Heuristically, we un-20

derstand that the aim is to optimise the ensemble performance and reduce the presence of duplicated information. For such an

optimisation approach to be successful, metrics that quantify performance and duplication have to be defined. While there are

examples of attempts to do this (see below), there is little understanding of the sensitivity of the result of optimisation to the
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subjective choices a researcher needs to make when optimising.

As an example, the equally-weighted multi-model mean (MMM) is most often used as a “best” estimate for variable av-

erages (Knutti, 2010), as evidenced by its ubiquity in the Fifth Assessment Report of the United Nations Intergovernmental

Panel on Climate Change (IPCC, 2014). In most cases, the MMM – which can be regarded as an estimate of the forced cli-5

mate response – performs better than individual simulations. It has increased skill, consistency and reliability (Reichler, 2008;

Gleckler, 2008) as errors tend to cancel (Knutti, 2010), although part of that effect is the simple geometric argument of averag-

ing (Annan, 2011). However, model democracy (“one model, one vote”) (Knutti, 2010) does not come without limitations. A

lack of independence in contributions to the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor, 2012) archive

(Masson, 2011; Knutti, 2013), where research organisations simply submit as many simulations as they are able to (thus often10

referred to as “ensemble of opportunity” (Tebaldi, 2007)), means that it is extremely unlikely that the MMM is in any way opti-

mal. Different research groups are known to share sections of code (Pincus, 2008), literature, parametrizations in their models,

or even whole model components, so that at least heuristically, we understand that individual model runs do not necessarily

represent independent projection estimates (Abramowitz, 2010, 2015; Sanderson, 2015a). Ignoring the dependence of models

might lead to a false model consensus, poor accuracy and poor estimation of uncertainty.15

Instead of accounting for this dependence problem, most studies use whatever models and ensembles they can get and solely

focus on selecting ensemble members with high individual performance (e.g., Grose (2014)). They assume that if individual

members of an ensemble perform well, then the mean of this ensemble will also have high skill. As we demonstrate later, this

is not always the case, and can potentially be highly problematic.

20

Given that climate models developed within a research group are prone to share code and structural similarities, having more

than one of those models in an ensemble will likely lead to duplication of information. Institutional democracy as proposed by

Leduc (2016) can be regarded as a first proxy to obtain an independent subset. However, in this case dependence essentially

reflects an a priori definition of dependence that may not be optimal for the particular use case (e.g., variable, region, metric,

observational product). There are also a few cases in which a model is shared across institutes and thus this approach would25

fail (e.g. NorESM is built with key elements of CESM1), or at least need to evolve over time.

Only a few studies have been published that attempt to account for dependence in climate model ensembles. A distinc-

tion can be made between approaches that select a discrete ensemble subset and those that assign continuous weights to the

ensemble members. For example, Bishop (2013) proposed a technique in which climate model simulations undergo a linear30

transformation process to better approximate internal climate system variability, so that models and observations were samples

from a common distribution. This weighting and transformation approach was based on a mean square difference adherence to

an observed product over time and space within the observational period, with ensemble spread at an instant in time calibrated

to estimate internal variability. The same process was also used for future projections, with the danger of over-fitting mitigated

through out-of-sample performance in model-as-truth experiments (Abramowitz, 2015).35
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Another method also using continuous weights was proposed by Sanderson (2015a), based on dimension reduction of the

spatial variability of a range of climatologies of different variables. This resulted in a metric to measure the distance between

models, as well as models and observational products, in a projected model space (Abramowitz (2008) is another example of

an attempt to do this). Knutti (2017) aims to simplify the approach by Sanderson (2015a), where models which poorly agree

with observations are down-weighted, as are very similar models that exist in the ensemble, based on RMSE distance. Projec-5

tions of the Arctic sea ice and temperatures are provided as a case study. Perhaps not surprisingly, the effect of weighting the

projections is substantial, and more pronounced on the model spread than its best estimate.

Sanderson (2015b) proposes a method that finds a diverse and skillful subset of model runs that maximises inter-model dis-

tances, using a stepwise model elimination procedure. Similar to Sanderson (2015a), this is done based on uniqueness and

model quality weights.10

Sanderson (2016) applied a similar continuous weighting scheme to climatological mean state variables and weather extremes

in order to constrain climate model projections. Only a moderate influence of model skill and uniqueness weighting on the pro-

jected temperature and precipitation changes over North America was found. As under-dispersion of projected future climate

is undesirable, only a small reduction in uncertainty was achieved.

15

In the previous paragraph we discussed approaches that assign continuous weights to model runs. Regional dynamical down-

scaling presents a slightly different problem to the one stated above, as the goal is to find a small subset that reproduces certain

statistical characteristics of the full ensemble. In this case the issue of dependence is critical, and binary weights are needed,

since computational resources are limited. Such an approach is presented in Evans (2013), where independence was identified

to be central for creating smaller ensembles.20

The problem of defining and accounting for dependence is made more challenging by the fact that there is no uniformly

agreed definition of dependence. A canonical statistical definition of independence, that two events A and B are considered to

be independent if the occurrence of B does not affect the probability of A, P(A), so that P(A|B)=P(A). As discussed by Annan

(2017), there could, however, be many approaches to applying this definition to the problem of ensemble projection that could25

potentially yield very different results. An appropriate course of action regarding what to do if two models are identified to be

co-dependent does not follow directly from this usual definition of independence.

One disadvantage of many of these studies is that they are technically challenging to implement and therefore discourage

frequent use. Further, the sensitivity of each approach to the choice of metrics used, variables included and uncertainties in30

observational products is largely unexplored. This leads to a lack of clarity and consensus on how best to calibrate an ensemble

for a given purpose.

Here, we present a novel approach that selects an optimal subset from a larger ensemble archive in a computationally ef-

fective way. The meaning of “optimal” can vary depending on the aim of the study. As an example, we will choose a subset35
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of the CMIP5 archive that minimises regional biases in present day climatology, based on RMSE over space using a single

observational product. The resulting ensemble subset will be optimal in the sense that its ensemble mean will give the lowest

possible RMSE against this observational product of any possible combination of model runs in the archive. The more inde-

pendent estimates we have, the more errors tend to cancel. This results in smaller biases in the present day which reduces the

need for bias correction. Such an approach with binary rather than continuous weights is desired to obtain a smaller subset5

that can drive regional models, as this is otherwise a computationally expensive task. Out-of-sample skill of the optimal subset

mean and spread is tested using model-as-truth experiments. The distribution of projections using model runs in the optimal

subset is then assessed.

We then examine the sensitivity of this type of result to choices of the cost function, variable and constraining data set. We10

argue that optimally selecting ensemble members for a set of criteria of known importance to a given problem is likely to lead

to more robust projections for use in impact assessments, adaptation and mitigation of climate change.

In the next section, we introduce the model data and observational products used for this study. Section 3 contains a descrip-

tion of the method used, which includes the pre-processing steps and three sub-sampling strategies, one of which is the novel15

approach. In section 4 we examine the results by first giving the most basic example of the optimisation problem. We then

expand on this example by highlighting the method’s flexibility and before applying the novel approach to the future, we test

out-of-sample skill with model-as-truth experiments. Finally, section 5 contains the discussions and conclusions.

2 Data

We use 81 CMIP5 model runs from 38 different models and 21 institutes which are available in the historical period (1956–20

2013; RCP4.5 after 2005) and RCP4.5, RCP8.5 period (2006–2100) (see Table 1 in the Supplementary Information (SI)). We

examine gridded monthly surface air temperature (variable: tas) and total monthly precipitation (variable: pr). Results shown

here are based on raw model data (absolute values), although repeat experiments using anomalies (by subtracting the global

mean climatological value from each grid cell) were also performed (not shown here).

25

Multiple gridded observation products for each variable were considered with each having different regions of data avail-

ability (see Table 2 and additional results in the SI). Model and observation data were remapped using a first order conservative

remapping procedure (Jones, 1999), to either 2.5◦ or 5◦ spatial resolution, depending on the resolution of the observational

product (see SI Table 2). For the projections, the model data was remapped to a resolution of 2.5◦. For observational products

whose data availability at any grid cell changes with time, a minimal two-dimensional mask (which does not change over time)30

was used. The remaining regions were masked out for both the observational product and the model output.
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3 Method

We first illustrate the technique by considering absolute surface air temperature and total precipitation climatologies (time-

means at each grid-cell), based on 1956–2013. The land-only observational product CRUTS, version 3.23 (Harris, 2014) is

used for both variables and model data is remapped to the same spatial resolution and masked based on data availability in this

product.5

Next, we select an ensemble subset of size K from the complete pool of 81 CMIP5 simulations, using three different ap-

proaches:

Random ensemble: As the name implies, the random selection consists of randomly selected model runs from the pool of 8110

without repetition. This procedure is repeated 100 times for each ensemble size in order to gauge sampling uncertainty.

Performance ranking ensemble: This ensemble consists of the “best” performing model runs from the ensemble in terms of

their RMSE (based on climatology — time means at each grid-cell). Individual model runs are then ranked according to their

performance and only the best K model runs are chosen to be part of the subset.15

Optimal ensemble: In this case we find the ensemble subset whose mean minimises RMSE, out of all possible K-member

subsets. This is non-trivial – there are 2.12 · 1023 possible ensembles of size 40, for example, so that a “brute-force” approach

is simply not possible. Instead, we use a state-of-the-art mathematical programming solver (Gurobi (2015)). It minimises the

MSE between the mean of K model runs and the given observational product, by selecting the appropriate K model runs. Here-20

inafter we refer to the ensembles (one obtained for each K) derived from this approach as “optimal ensembles” and the optimal

ensemble with the overall lowest RMSE as the “optimal subset”. The problem itself is a mixed integer quadratic programming

problem because the decisions are binary (that is: model run is in the set or not), the cost function is quadratic (see Eq. (1)),

and the constraint is linear. Such a problem is solved using a branch-and-cut algorithm (Mitchell, 2002).

25

In the following section, we compare these three subsampling strategies with the benchmark, which is the simple unweighted

multi-model mean (MMM) of all 81 runs. We then examine the sensitivity of results to observational product, cost function

and other experimental choices.

4 Results

Figure 1 displays the area-weighted root mean square error (RMSE) of the subset mean and RMSE improvement relative to30

the MMM of all 81 model runs (solid horizontal line) as a function of ensemble size for the three different methods used to

select subsets. The RMSE is calculated based on the climatological fields of pre-processed model output and observations.

Results based on CRUTS3.23 as the observational product are shown for both surface air temperature (a) and precipitation

5

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2017-28, 2017
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 3 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



(b). We focus on panel (a) for now. Each marker represents the RMSE of an ensemble mean, except for ensemble size one,

which refers to the single best performing model run in terms of RMSE. Blue markers are used for the random ensemble, with

the error bar indicating the 90% confidence interval (from 100 repetitions). The performance ranking ensemble is shown in

green. For ensemble sizes one to four, the RMSE of the performance ranking ensemble increases. This is because multiple

initial condition ensemble members of the same model (MPI-ESM) are ranked high, and averaging across those leads to higher5

dependence within the subset and thus less effective cancelling out of regional biases. Interestingly, the performance-based

ensemble sometimes even performs worse than the mean of the random ensemble, which can be observed across multiple

observational products and across the two variables (see SI). This is a clear example of the potential cost of ignoring the

dependence between ensemble simulations. Selecting skillful but similar simulations can actively degrade the present-day cli-

matology of the ensemble mean.10

For the optimal ensemble (black circles), RMSE is initially large, the value representative of the single best performing

model run (black dot being behind the green one). The RMSE of the ensemble mean rapidly decreases when more model

runs are included until it reaches a minimum (red circle indicates the optimal subset over all possible ensemble sizes). That is,

the RMSE improvement relative to the MMM (solid horizontal line) is largest at this ensemble size. As more model runs are15

included in the ensemble, the RMSE increases again. This is expected as worse performing and more dependent model runs are

forced to be included. The MMM generally outperforms every individual model run (green, black and blue dots at subset size

one being above the solid horizontal line). The optimal ensemble curve in the vicinity of the lowest RMSE is often rather flat,

so different ensembles with similarly low RMSE could be chosen instead if, for example, a given model is required to be part

of the subset. A flat curve is also of advantage in the case when computational resources are limited and thus a small ensemble20

size has to be chosen (for example when global model boundary conditions are being chosen for a downscaling experiment).

Here, however, we always consider the ensemble with the overall smallest RMSE (red circle) as our optimal subset even if

ensembles of similar sizes are not much worse. We will discuss the black triangle markers and other horizontal lines in a later

section.

25

Of the three sub-sampling approaches, it is evident that the optimal ensemble mean is the best performing one for all en-

semble sizes if the bias of the model subset average should be minimized – essentially indicating that the solver is working as

anticipated. Regional biases in different models cancel out most effectively using this approach. Across different observational

products, we observe an improvement in RMSE relative to the MMM of between 10–20% for surface air temperature, and

around 12% for total precipitation (see Figure S1 and S2). The size of the optimal subset is significantly smaller than the total30

number of model runs considered in this study (see red text in Figure 1). For surface air temperature we obtain an optimal

ensemble range between six to ten members and for precipitation around twelve members. This suggests that many model runs

in the archive are very similar.

We achieve similar RMSE improvement if we exclude closely related model runs a priori and start off with a more independent
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set of model runs (one model run per institute), see Figure S3.

Figure 1 solely looks at the performance of the ensemble mean. A characterisation of the relationship between model

simulation similarity and performance in these ensembles is shown in Figure 2. Simulation performance (in terms of RMSE)

is plotted against the simulation dependence (expressed as average pairwise error correlation across all possible model pairs in5

the ensemble) for the three sampling techniques (3 colors). As before, CRUTS3.23 was used as the observational product, but

this figure looks very similar across different variables and observational products. Circular markers are used for the average of

individual members of the subset ensemble of any given size and diamond markers are used for ensemble mean. The darker the

color, the larger the ensemble size. Members of the optimal ensemble (black markers) are more independent than members of

other ensembles, at least in terms of pairwise error correlation. Members of the performance-ranking ensemble (green markers)10

however show high error correlations as closely related model runs are likely to be part of the ensemble. We thus conclude that

the optimal ensemble has favourable properties in terms of low ensemble mean RMSE and low pairwise error correlation of

their members. We will therefore focus on this the ability of this sampling technique for the remainder of the paper.

4.1 Sensitivity of results

We now develop this optimisation example to highlight the flexibility of the method. In doing so, it should become clear that15

calibration for performance and dependence is necessarily problem dependent. A graphical representation of the experimental

choices we explore is shown in Figure 3. We explore different aspects of this flowchart below.

Choice of observational product. The ensembles in the previous subsection were calibrated on a single observational product

(depicted in green in Figure 3). Observational uncertainty can be quite large depending on the variable and can thus result in20

a different optimal subset. Figure 1 for different observational products (and varying observational data availability) can be

found in the supplementary material (Figure S1 and S2). Moreover, observational uncertainty within one observational product

(instead of across the products) should also be considered to test the stability of the optimal subset. This has not been done

here, but could certainly be investigated in future studies. Lastly, if multiple observational products per variable are available

and all equally credible, finding a subset that is optimal using all of them is also a possibility.25

Here, we only optimise our ensemble to one observational product at a time and investigate how sensitive the optimal subset is

to that choice.

Variable choice. The selection of the variable has a profound influence on the resulting optimal subset. This was already briefly

highlighted in Figure 1, where the optimal subsets for surface air temperature (a) and total precipitation (b) consist of rather30

different ensemble members. Generally, the optimal ensemble size for precipitation tends to be larger. Similar to the discussion

above for the sensitivity to observational products, one might consider optimising the subset across multiple variables. This

is particularly important if physical consistency across variables needs to be ensured. This could most simply be done using

a single cost function that consists of a sum of standardised terms for different variables. One might calibrate the ensemble

7
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on multiple variables using a pareto solution set, similar to what has been done in Gupta (1998) for hydrological models and

Gupta (1999) for land surface schemes. An important characteristic of such a problem is that it does not have a unique solution,

as there is a trade-off between the different and non-commensurate variables. When improving the subset for one variable (i.e.,

RMSE reduced), we observe a deterioration of the subset calibrated on the other variable.

5

Absolute values vs. anomalies. Results presented in this study are all based on absolute values rather than anomalies. Whether

or not bias-correction is required depends on the variable and the aim of the study. To study the Arctic sea ice extent for ex-

ample, absolute values are a natural choice as there is a clear threshold for near ice-free September conditions. An example

of where bias-correction is necessary is in the field of extreme weather. For example, mean biases between datasets must be

removed before exceedance probabilities beyond some extreme reference anomaly can be calculated.10

Alternatives to climatology. As part of the data pre-processing step, we computed climatologies for the model output and

observational dataset. In addition to climatologies (time-means at each grid cell), we will later look at linear trends and 10-year

running means (hereafter referred to as “space+time”). Subsection 4.2.1 shows (based on a model-as-truth experiment) how

sensitive the ensemble can be to the quantity of a variable (mean, trend, or variability) chosen in pre-processing.15

Defining the benchmark. To assess whether our optimal subset has improved skill, we need to define a benchmark. In Figure

1, we used the MMM of 81 model runs as our benchmark (solid line). However, other benchmarks could be used. The three

horizontal lines in Figure 1 refer to three different baselines that could be used to compare against subset performance. The

solid line is the MMM of all available model runs. For the dashed line, we first aggregated across the ensemble members from20

each climate model and then average across all 38 models. The dotted line is the ensemble mean when only allowing one run

per institute to be part of the ensemble. Interestingly, the dotted line is very often the highest one and the solid line has the

lowest RMSE. One likely explanation is that the original CMIP5 archive is indirectly already slightly weighted due to a higher

replication of well-performing models (Sanderson, 2015b). By eliminating those duplicates, our ensemble mean gets worse

because regional biases do not cancel out as effectively. For the model-as-truth experiment described in subsection 4.2.1, our25

benchmark was also obtained by selecting one model run per institute.

Sensitivity to the underlying cost function. An essential part of the optimisation problem is the cost function. Comparison of

all the sensitivities mentioned above is made possible only because our subsets are truly optimal with respect to the prescribed

cost function. For the results above the cost function f(x) being minimised by the Gurobi solver was:30

f(x) = f1(x) =MSE

(( 1
|x|
∑

i∈x

mi

)
,y

)
. (1)

Here, x denotes the optimal subset (with |x| being the subset size), y is the pre-processed observational product and mi is

model simulation i. MSE stands for the area-weighted mean squared error function. Of course this cost function can be

adjusted depending on the aim of the study, as long as the expressions are either linear or quadratic. To illustrate this idea, we
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add two new terms to the cost function above that account for different aspects of model interdependence:

f(x) =
f1(x)−µ1

σ1
+
f2(x)−µ2

σ2
− f3(x)−µ3

σ3
(2)

Here, minimising f(x) will involve minimising the first and second terms in Equation (2) and maximising the third term (note

the minus sign in front of term 3). To ensure that the three terms all have a similar magnitude and variability, we subtract the5

mean (µ) and divide by the standard deviation (σ) derived from 100 random ensembles of a given ensemble size.

The function f1(x) is the same as in Eq. (1). It minimises the MSE between the subset mean of a given size and the observational

product y. The second and third terms can be written as follows:

f2(x) =
1
|x|
∑

i∈x

MSE(mi,y) (3)

10

f3(x) =
2

|x| · (|x| − 1)

∑

i 6=j∈x

MSE(mi,mj)
1
2

(
MSE(mi,y) +MSE(mj ,y)

) (4)

The function f2(x) in the second term ensures that the mean MSE between each ensemble member and the observational

product is minimised. So, this term is related to the performance of the individual ensemble members — we want to avoid very

poorly performing members being in the final ensemble. The function f3(x) averages the pairwise MSE distances between

all ensemble members and then divides by the mean performance. This should be maximised and helps to avoid clustering by15

ensuring that the ensemble members are not too close to each other relative to their distance to the observational product. This

is a way to address dependence in ensemble spread. Sanderson (2016) used a similar idea of calculating pairwise area-weighted

root mean square differences over the domain to obtain an inter-model distance matrix. This matrix is then normalised by the

mean inter-model distance to obtain independence weights as a measure of model similarity.

20

Based on the climatological metric, Gurobi can solve Eq. (2) within a few seconds for any given subset size. Finding an

optimal solution without this solver would have been impossible within a reasonable amount of time. Results show that the

RMSE of the optimal ensemble mean based on eq. (2) is almost as low as for eq. (1), see Figure 1 (black circles for eq. (1)

and triangles for eq. (2)). However, the members of the optimal ensemble seem to have a better average performance and are

slightly more independent. This might be of advantage if end users want to avoid having multiple ensemble members from the25

same model in the optimal subset. Term 3 in Eq. (2) will take care of that. Moreover, term 2 will make sure that bad performing

model runs are excluded from the optimal subset. In other words, explicitly considering single model performance and elim-

inating obvious duplicates does not significantly penalize the ensemble mean performance. The magnitude of the three terms

in eq. (2) as a function of the ensemble size are shown in Figures S8 and S9.

30

For those concerned about overconfidence of the ensemble projections (due to the “unknown unknowns”), one could add

another term which maximises future spread. This would result in an ensemble which allows to explore the full range of model
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responses. It is also possible to start weighting the terms of the cost function differently depending on what seems more impor-

tant.

4.2 Application to the future

4.2.1 Testing out-of-sample skill5

The optimal selection approach is clearly successful at cancelling out regional biases in the historical period. To investigate

if regional biases persist into the future, and determine whether the approach is fitting short term variability, model-as-truth

experiments are conducted. This should give an indication of whether sub-selecting in this way is likely to improve future

predictability or if we are likely to be overconfident with our subset. For this purpose, one simulation per institute is considered

to be the “truth” as though it were observations, and then the optimal subset from the remaining 20 runs (one-per-institute) is10

determined for the in-sample period (1956–2013), based on the cost function in Eq. (1). The optimal ensemble’s ability can then

be tested in the out-of-sample 21st century, since we now have “observations” for this period. Results are then collated over

all possible simulations playing the role of the “truth”. In all our model-as-truth experiments, near relatives were excluded as

truth, because members from the same model are likely to be much closer to each other than to the real observational product.

This subscription to institutional democracy is consistent with what was found by Leduc (2016) to prevent overconfidence in15

climate change projections. Sanderson (2016) also removed immediate neighbours of the truth model from the perfect model

test when deriving the parameters for their weighting scheme.

Figure 4 shows the results of the model-as-truth experiment for surface air temperature for the climatological field, the lin-

ear trend and space + time, as described above. Panel (a) shows global absolute mean temperature time series for the in- and20

out-of-sample periods. The in-sample period, in which the optimal subset is found for each model as truth is 1956–2013. For

the climatological metric and the space + time metric, the same subset was tested out-of-sample in 2071–2100 using the same

truth as in the in-sample period. The out-of-sample period for the trend metric is 2006–2100, as 30 years are not long enough

to calculate a linear trend at each grid-cell without internal variability potentially playing a role. Both in- and out-of-sample

data undergo the same pre-processing steps. The mask which was used for those calculations is shown in the lower right corner25

of panel (a).

Figures 4b–d show the RMSE improvement of the optimal subset for a given size relative to the mean of all remaining 20

simulations for each simulation as truth. The black curve is the in-sample improvement and the blue curve is the out-of-sample

improvement for RCP8.5 averaged across all truths. The shading represents the spread around the mean. Results for RCP4.5

look very similar and are therefore not shown here.30

It is evident that both the climatological metric and the space + time metric have improved skill out-of-sample compared to

simply taking the mean of all available runs. We observe an RMSE improvement almost as big as the in-sample improvement,

in which we conducted the optimisation. This primarily shows the persistence of the climatological bias. The trend metric
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is different, however. To be clear, here we obtain the optimal subset based on a two-dimensional field with linear (58-year)

trends at each grid-cell in the in-sample period. We then use this subset trained on trend values to predict the out-of-sample

trend field (using the same simulation as “truth” as in the in-sample period). The RMSE improvement presented in panel

(d) is calculated from the “true” RCP8.5 trend field and the predicted trend derived from the optimal subset. We see a large

in-sample improvement, but out-of-sample this skill quickly disappears. We thus conclude that the magnitude and nature of5

trends within individual models do not persist into the future and a subset based on this metric will not have any improved skill

out-of-sample. Figure S5 shows the very weak correlation between in- and out-of-sample trend very clearly. This highlights

the difficulty of finding an appropriate metric which constrains future projections. Results for precipitation can be found in the

SI (Figure S6).

10

Figure 4 shed light on the increased skill of the optimal ensemble compared to the simple MMM, at least for the mean signal.

We have not yet investigated the spread of the ensemble, which is as least as important, especially for impact and risk related

fields. As an example, the potential danger of having a too narrow ensemble spread (overconfident projections) by neglecting

important uncertainties is highlighted in Keller (2015).

Results for the ensemble spread are shown in Figure 5 for surface air temperature. Panel (a) explains how the spread of the15

ensemble is quantified. We calculate how often the truth lies within the 10th to 90th percentile of the optimal ensemble for a

given ensemble size. We derive the percentiles from a normal distribution, whose mean and standard deviation were calculated

from the optimal ensemble (for a given truth and ensemble size) during the in-sample, or training period. This is done for every

grid cell and each model as truth. The curves shown in Figures 5b–d are the average of the fractions of “truth” values that

lie within this range, across all grid cells and truths plotted against the subset size for the climatological field (b), the space +20

time (c) and linear trend (d). We would expect the truth to lie within the 10th to 90th percentile of the ensemble at least 80%

of the time to avoid overconfidence. Black is used for the in-sample fraction and the two shades of blue for RCP4.5 (light

blue) and RCP8.5 (dark blue). The fraction for an ensemble consisting of all 20 model runs — the benchmark in this case —

is shown with a horizontal line. The ensembles obtained based on the climatological metric and the space + time metric are

slightly over-dispersive both in- and out-of-sample, which suggests the optimal ensemble should not result in overconfidence in25

ensemble spread, relative to the entire ensemble. An ensemble that is overconfident can lead to projections whose uncertainty

range is too narrow and thus misleading. This is the case for the trend metric, at least for smaller ensemble sizes.

Such a model-as-truth experiment can also assist with the choice of an optimal subset size for the application to projections. It

does not necessarily have to be the same as the in-sample ensemble size, as aspects like mean skill improvement and reduction

of the risk of underdispersion have to be considered.30

Can a subset calibrated on absolute historical temperature constrain temperature changes in the future, as opposed to just

minimising bias in the ensemble mean? This anomaly skill in the out-of-sample test is depicted in Figure 6. The setup is similar

to Figure 4, but here we are predicting regional temperature change from mean values in 2006–2035 to those in 2071–2100.

The optimal subset is still derived using either the climatological (b), space + time (c), or trend metric (d). The only thing that35
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has changed is what is being predicted is now out-of-sample. The curves are the RMSE improvement relative to the MMM

of 20 model runs averaged across all truths for RCP4.5 (light blue) and RCP8.5 (dark blue). Shading indicates the spread

(one standard deviation) across the different truths. Results for regional precipitation change are shown in Figure S7. Panel (b)

shows that there is very little to be gained by constraining the climatology in terms of out-of-sample skill. Across all metrics and

variables, the subsets show hardly any RMSE improvement compared to the MMM of the 20 model runs, which is consistent5

with Sanderson (2016). This result is partly about the discrepancy between the metric used to derive the optimal ensemble and

that used to evaluate it, and reinforces how sensitive this type of calibration exercise is to the somewhat subjective choices

faced by a researcher trying to post-processes climate projections. It is an important limitation that should be kept in mind

when using this sampling strategy to constrain future projections.

4.2.2 Projections10

In earlier sections we presented results based on a single observational product per variable. However, the importance of the

choice of product should not be neglected. The influence of obtaining an optimal subset based on different observational

products can be visualised with maps. To create Figure 7, the temperature change between the 2081–2100 and 1986–2005

climatologies was calculated for the RCP8.5 scenario using the mean of all 81 model runs. Then, the temperature change of the

optimal subset (based on a given observational product), calculated in the same way, was subtracted. The result is a map that15

shows the difference the optimal sampling makes to projected temperature changes. Maps are shown for the optimal subsets

derived from different observations, with grey contours highlighting the area used to derive the subset. The number in brackets

refers to the size of the optimal subset. Despite the maps looking quite different, we can identify some regions with consistent

changes. The Southern Ocean is consistently warmer in the optimal subset and the Arctic is colder than the MMM (except for

BEST, global). Generally, the optimal subset results in a cooler land surface.20

Figure 8 shows the same as 7 but for precipitation change based on three different observational products. They all show an

increase in precipitation in the equatorial Pacific and the western Indian Ocean and a decrease over Indonesia.

5 Discussion and conclusions

We presented a method that selects a CMIP5 model subset which minimises a given cost function in a computationally efficient

way. Such a calibrated smaller ensemble has important advantages compared to the full ensemble of opportunity, in particular25

reduced computational cost when driving regional models, smaller biases in the present day which reduce the need for bias

correction, reduced dependence between the members and sufficient spread in projections. The cost function can be varied

depending on the application. The simplest cost function presented here simply minimises biases of the ensemble mean. We

have shown that this method accounts to some degree for the model dependence in the ensemble by the way it optimizes the

ensemble mean, but closely related models or even initial condition ensemble models of the same models are not penalized and30

can still occur. This optimal subset performs significantly better than a random ensemble or an ensemble that is solely based

on performance. The performance ranking ensemble sometimes even performs worse than the random ensemble in its mean,
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even though of course the individual models perform better. Depending on the application, one of the other will matter more.

We also illustrated the expansion of the cost function to optimise additional criteria, enabling an optimal subset that min-

imises the ensemble mean bias, the individual model biases, and the clustering of the members, or any combination thereof.

One could also, for example, add a term that maximises the ensemble projection spread to avoid overconfidence. The choice5

of what is constrained by the cost function clearly depends on the aim of the study (e.g., present day bias, dependence issue,

future spread). We highlight the importance of testing the sensitivity to the metric and observational product (incl. varying data

availability) used, as they can lead to quite different results.

Model-as-truth experiments were used to investigate the potential for overconfidence, estimate the ensemble spread, and10

test the robustness of emergent constraints. Based on those experiments we learned that absolute present day values constrain

absolute values in the future (due to a persistent bias). However, absolute present day values do not constrain projected changes

relative to a present day state.

There were other pertinent questions we did not address, of course. These include the question of how best to create an15

optimal subset across multiple variables and gridded observational products. This seems especially important if physical con-

sistency across variables should be maintained. Having a pareto set of ensembles (by optimising each variable separately)

rather than a single optimal subset is a potential solution, but is clearly more difficult to work with.

Many of the points raised here are also clearly not restricted to global climate models. The same holds for regional climate

models, hydrological models or perhaps ecological models. We encourage others to apply the same approach to different kinds20

of physically based models.

Critically, we wish to reinforce that accounting for dependence is essentially a calibration exercise, whether through contin-

uous or discrete weights, as was the case here. Depending on the cost function, the data pre-processing and the observational

product one can end up with a differently calibrated ensemble. Depending on the application, bias-correction of the model25

output might be appropriate before executing the calibration exercise. We suggest that the approach introduced in this study is

an effective and flexible way to obtain an optimal ensemble for a given specified use case.

Future research will help to provide confidence in this method and enable researchers to go beyond model democracy or

arbitrary weighting. This is especially important as replication and the use of very large initial condition ensembles will likely30

become a larger problem in the future global ensemble creation exercises. An approach that attempts to reduce regional biases

(and therefore indirectly dependence) offers a more plausible and justifiable projection tool than an approach that simply

includes all available ensemble members.
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6 Code availability

A simplified and easily-adjustable Python code (based on the Gurobi interface) is accessible on a GitHub repository (https:

//github.com/nherger/EnsembleSelection/blob/master/Gurobi_MIQP_random.py). Gurobi is available via a free academic li-

cense.

5

7 Data availability

CMIP5 data can be obtained from http://cmip-pcmdi.llnl.gov/cmip5/.
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a - Surface Air Temperature

b - Total Precipitation

Figure 1. Size of the CMIP5 subset on the horizontal axis and the resulting RMSE of the ensemble mean and its improvement relative to the

multi-model mean (MMM) on the vertical axes, for surface air temperature (a), total precipitation (b) and three different types of ensembles.

The RMSE was calculated based on the 1956–2013 climatology of the ensemble mean and the observational product CRUTS3.23. Black dots

indicate the values for the optimal ensemble, green dots the ensemble based on performance-ranking of individual members and randomly

selected ensembles in blue. For the random ensemble, the dot represents the mean of 100 samples and the error bar is the 90% confidence

interval. The red circle indicates the optimal subset size with the overall smallest RMSE compared to the observational product. The model

simulations which are part of this optimal subset are listed in red font next to the circle. The black triangles represent the optimal ensembles

for a cost function that consists of three terms (see Eq. (2)). The map shows CRUTS3.23 coverage. The solid horizontal line indicates the

RMSE value for the MMM of all available simulations. For the dashed line, we first aggregate over the members of one model and then

average over all 38 models. The RMSE of the mean of 21 simulations (1 simulation per institute) is represented with the dotted line.
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Figure 2. The dependence (in terms of average pairwise error correlation across all possible model pairs in the ensemble) is plotted against

the performance (in terms of RMSE) for three different sampling techniques. It is based on surface air temperature and CRUTS3.23 is used

as observational product. For the circular markers, the mean of model-observation distances within the ensemble is plotted against the mean

of pairwise error correlations for the individual members within an ensemble for a certain ensemble size. The diamonds are used to show the

RMSE of the ensemble mean (rather than the mean RMSE of the individual members) compared to the observational product. The values on

the vertical axis are the same as for the circular markers. The larger the ensemble size, the darker the fill-color. The red dotted line indicates

the lowest RMSE for the optimal ensemble (based on the ensemble mean).
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Figure 3. Graphical representation of the method for this study and its flexibility. The different colors are used for three sections in this

publication: Data, method and results.
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a - Time Series b - Climatology

c - Space + Time d - Trend

Figure 4. Results of the model-as-truth experiment based on three different metrics (b-d) and 21 model simulations (1 simulation per

institute). a: Time series of surface air temperature averaged over the areas where CRUTS3.23 has data-availability (see map in lower right

corner). The time series of the 21 model simulations which are used for the experiment are plotted slightly thicker. 1956–2013 was used as

in-sample period, in which the optimal subset is derived and 2006–2100 was used as out-of-sample period for the trend metric and 2071–2100

for the remaining two metrics.

b: The RMSE improvement of the optimal subset relative to the MMM is plotted as a function of the subset size for each model simulation

as truth. The subset for each given ensemble size was derived in the in-sample period based on the climatological metric. The curve is the

mean improvement across all the 21 model simulations as “truth” and the shading around it represents the spread. Black was used for the

historical period and dark blue for RCP8.5. c and d show the same as b but for different metrics.
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a - Schematic of Concept
b - Climatology

c - Space + Time d - Trend

Figure 5. The number of times the ’model-as-truth’ is within the 10th-90th percentile of ensemble spread (defined by the optimal subset for

a given size) averaged across all ’truths’ is plotted against the subset size. a: Schematic explaining how the fraction of ’truth’ lying in the

predicted range is obtained. b-d: In- (black) and out-of-sample (blue) curves for three different metrics. Surface air temperature is used as

the variable. The horizontal lines refer to the percentage obtained by using all 21 model simulations.
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a - Time Series b - Climatology

c - Space + Time d - Trend

Figure 6. Similar to Figure 4, but here we are trying to predict the [2071–2100]-[2006–2035] temperature change (a) based on the optimal

subsets obtained with different metrics. For b-d the optimal ensembles obtained in-sample (1956–2013) are used to predict the surface air

temperature change and compared to the “true” temperature change. The same is done with the MMM and then the RMSE improvement of

the optimal subset relative to the one of the MMM is calculated for both RCP4.5 and RCP8.5. The curve is the mean across all models as

truth and the shading is the spread around it.
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a - CRUTEM4 (10 runs) b - BEST, land (6 runs)

c - CRUTS3.23 (8 runs) d - HadCRUT4 (10 runs)

e - BEST, global (6 runs)

Figure 7. The difference between the multi-model mean (81 runs) and the optimal subset is shown for the RCP8.5 surface air temperature

change between [2081–2100] and [1986–2005]. The optimal subset is different depending on which observational product is used. The

grey contours outline the region which was used to obtain the optimal subset in the historical period. The optimal ensemble size for each

observational product is given in the title of each map.
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a - GPCC7 (12 runs) b - PREC/L (11 runs)

c - CRUTS3.23 (12 runs)

Figure 8. Same as Figure 7, but for precipitation change.
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