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Abstract. Groundwater closely interacts with surface water and even climate systems in most hydro-climatic 

settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological 10 

processes by considering potential temporal long-range dependence and scaling crossovers in the 

groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations of 

confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended 

fluctuation analysis (DFA) was utilized to quantify the monofractality; and Multifractal detrended fluctuation 

analysis (MF-DFA) and Multiscale Multifractal Analysis (MMA) were employed to examine the multifractal 15 

behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown 

that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time 

series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be 

partially due to a broad probability density distribution with infinite moments. Furthermore, it is 

demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian 20 

characteristics which may be fitted by the Lévy stable distribution or Gaussian characteristics depending on 

the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an 

appropriate model to characterize groundwater level fluctuation is Gaussian with finite moments. Therefore, 

fBm may be inadequate for the description of physical processes with infinite moments, such as the 

groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing 25 

equations of groundwater flow processes, which can model both the long-memory behavior as well as the 

Brownian finite-memory behavior. 

1 Introduction 

Groundwater in both confined and unconfined aquifers is usually a complex and dynamic system which 

highly interacts with surface water and even climate systems in most hydro-climatic settlings, due to its 30 

discharge to rivers and streams, and its recharge that is affected by various related physical processes, such 

as precipitation, evapotranspiration and infiltration (Green et al., 2011; Joelson et al., 2016; Li and Zhang, 

2007; Rakhshandehroo and Amiri, 2012; Taylor et al., 2013). These processes, which take place over various 

spatiotemporal scales, add further complexity to groundwater systems. Groundwater level fluctuations 
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dynamically reflect the responses of an aquifer to its diverse inputs and outputs. Consequently, groundwater 

level fluctuations are often non-stationary, rendering variabilities over different spatial and temporal scales 

and resulting in no dependence on single representative spatial and temporal scales. Therefore, groundwater 

level fluctuations are often characterized as scale-free processes and modeled as fractional Brownian motion 

(Hardstone et al., 2012; Yu et al., 2016).  Not necessarily totally random, groundwater level fluctuations may 5 

demonstrate long-range dependence through time, implying a power-law relationship over a variety of time 

scales, which can be represented by fractals (Yu et al., 2016).  

Fractal analysis of both persistent and anti-persistent behavior has been extensively utilized to investigate 

possible relationships in variability among various scales (Blöschl and Sivapalan, 1995). Temporal fractal 

scaling analysis of groundwater dynamics can be essential to a better understanding of the modeling of 10 

hydrological processes by considering the temporal correlations and scaling cascading issues, since 

groundwater closely links to surface water in hydrological modeling and hydrological models are built upon 

certain temporal and spatial scales (Blöschl and Sivapalan, 1995; Yu et al., 2016). Hence, fractal scaling 

analysis of groundwater level fluctuations can guide more representative modeling in hydrological models, 

and in coupled land-atmosphere models. In fact, groundwater dynamics was found to provide a positive 15 

feedback to the memory of land surface hydrological processes in the climate systems, and enhanced 

knowledge of the fractal behavior in subsurface hydrological processes can help improve weather forecast 

and climate prediction on different temporal scales (Lo and Famiglietti, 2010). Furthermore, fractal scaling 

analysis of groundwater level fluctuations may help investigate extreme events and anthropogenic forcing in 

earth system (Yu et al., 2016). 20 

Detrended Fluctuation Analysis (DFA), originally used to analyze long-range power-law correlations (i.e., 

persistent fractal scaling behavior) of time series, is considered a more powerful method to quantify the 

scaling parameter or the Hurst exponent for its capacity in detecting nonstationarities and distinguishing 

seasonal oscillations from intrinsic fluctuations, compared with conventional methods, such as R/S analysis 

or the variation method (Dubuc et al., 1989; Hardstone et al., 2012; Shang and Kamae, 2005). In order to 25 

characterize multifractal structures within complex nonlinear heterogeneous processes, Multifractal 

Detrended Fluctuation Analysis (MF-DFA (Kantelhardt et al., 2002) was developed on the framework of 

DFA, which is mostly used to quantify monofractality.  DFA and MF-DFA have been widely applied to 

evaluate fractal scaling properties of rainfall and streamflow time series in hydrology (Kantelhardt et al., 

2002; Koscielny-Bunde et al., 2006; Labat et al., 2011; Livina et al., 2003; Matsoukas et al., 2000; Zhang et 30 

al., 2008).  

More specifically, in subsurface hydrology DFA was first adopted by Li and Zhang (2007)  to systematically 

evaluate fractal dynamics of groundwater systems. They analyzed four years of  continuous hourly data from 

seven wells and found groundwater level flucutations are likely to follow fractional Brownian motion (fBm), 

and temproal scaling crossovers exist in the fluctuations. These findings were later confirmed by Little and 35 

Bloomfield (2010), Rakhshandehroo and Amiri (2012) and Yu et al. (2016) with the application of DFA on 

hourly or in 15-minute interval data for up to 5 years from 7 wells, daily data for 6 years from 2 wells, and 
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daily data from 22 wells that have more than 2,500 records, respectively. Rakhshandehroo and Amiri (2012) 

further utilized MF-DFA to evaluate the multifractality of groundwater level fluctuations and concluded the 

extent of multifractality in groundwater level fluctuations is stronger than that in river runoffs. 

Unlike the general finding of fBm type behavior in groundwater level fluctuations (Li and Zhang, 2007; Little 

and Bloomfield, 2010; Rakhshandehroo and Amiri, 2012; Yu et al., 2016), Joelson et al. (2016) found 5 

persistent scaling behavior in the analysis of hourly groundwater level fluctuation time series for 14 months 

duration, and fit the fluctations data with the Lévy stable distribution to account for the observed non-

Gaussian heavy tailed behavior. 

Multiscale Multifractal Analysis (MMA) was proposed on the basis of MF-DFA, which normally analyzes 

time series with crossovers only on a predefined large or small scale, to obtain the generalized Hurst surface, 10 

which simultaneously provides local fractal properties at various scale ranges (Gierałtowski et al., 2012; 

Wang et al., 2014).  To the best of our knowledge, MMA has not yet been applied to analyze time series in 

hydrology or subsurface hydrology. 

In this paper, DFA, MF-DFA and MMA are applied to systematically evaluate the temporal fractal scaling 

properties (monofractatility and multifractality) of groundwater level fluctuations in two confined aquifer 15 

wells with daily data of 70 and 80 years in Texas, USA. Long-term groundwater level data are used, since 

the Hurst exponent estimated by a larger number of data points tends to be more stable (Weron, 2002). We 

also check the variation of the estimated Hurst exponent by DFA with different lengths of data and variable 

time intervals, which is largely unexplored in the aforementioned studies. The possible explanation of the 

existence of multifractality is studied by MF-DFA and MMA. Furthermore, we investigate the groundwater 20 

level fluctuation probability distribution by fitting the data with the 𝛼 -stable distribution and other 

distributions, such as Gaussian distribution, Gamma distribution, Lognormal distribution, to check if fBm 

identified in previous studies is adequate of characterizing groundwater level fluctuations. Additionally, we 

compare the Hurst exponent from fractal analysis with that from the stability index of the fitted 𝛼-stable 

distribution, since the stability index and the Hurst exponent are related under certain conditions (Taqqu et 25 

al., 1997). 

2 Methodology 

Since the pioneering work of Hurst (1951) on long memory behavior (or persistent fractal) of storage capacity 

of reservoirs in the Nile River, the Hurst exponent has been regarded as the best-known estimator indicating 

the magnitude of long-range dependence in  time series, and has been widely used to study fractal scaling 30 

behavior in geophysical sciences, specifically  for river flows and turbulence (Nordin et al., 1972; Szolgayova 

et al., 2014; Vogel et al., 1998), porosity and hydraulic conductivity in sub-surface hydrology (Molz and 

Boman, 1993), climate variability(Bloomfield, 1992; Franzke et al., 2015; Koutsoyiannis, 2003), and sea 

level fluctuations (Barbosa et al., 2006; Ercan et al., 2013).The Hurst exponent H may be defined as follows: 

𝜙(𝑐𝑡)
𝑑
⇒ 𝑐𝐻𝜙(𝑡), ∀𝑡 ≥ 0, ∀𝑐 > 0 

(1) 
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where 𝜙 is a given stochastic process, and t is time, and c is a positive constant, and d is the finite dimension 

of the time series data. 0 < 𝐻 < 0.5  demonstrates anti-persistent behavior and H=0.5 corresponds to 

uncorrelated noise.  0.5 < 𝐻 < 1 indicates long-range dependence (i.e. persistent behavior) and H=1 is for 

pink noise. 

Here, the Hurst exponent was adopted to quantify the scaling properties of groundwater level fluctuation time 5 

series.  Many methods for the estimation of the Hurst exponent are used in the literature, and different 

methods may provide significantly different estimates. Detrended fluctuation analysis is chosen here due to 

its superior performance compared to conventional methods in detecting evolving nonstationarities which 

can be very useful to investigate fractal behavior of time series dataset with different time intervals and in 

differentiating seasonal trends from the inherent fluctuations of time series (Yu et al., 2016). 10 

2.1 Detrended Fluctuation Analysis 

Detrended fluctuation analysis (DFA), also known as variance of the regression residuals, was proposed by 

Peng et al. (1994). The method is briefly summarized as follows: 

Firstly the original time series {𝑥𝑡}, 𝑡 = 1,2, ⋯ , 𝑛, are converted to corresponding sums as: 
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Then {𝑋𝑡} is divided into m (m=n/l) non-overlapping blocks {𝑌𝑗} of size l, and a least-squares fit (or the local 15 

trend) is performed by calculating the variance for each block: 
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where 𝑌𝑙(𝑗) is the local fitted polynomial trend of first-order, second-order or any other higher order. Finally, 

the root-mean-square over all blocks is calculated, yielding the "fluctuation": 
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Fitting a linear line of log (𝐹(𝑙)) against log (𝑙) would indicate the presence of power-law scaling as: 

F(l) µ la  (5) 

For fractional Gaussian noise (FGN),𝛼 = 𝐻, where H is the Hurst exponent. For non-stationary processes 20 

(e.g. fractional Brownian motion) 𝛼 = 𝐻 + 1 (Heneghan and McDarby, 2000). In this study, the local trend 

is fitted by a linear line. The DFA method does not assume stationarity in advance. Moreover, it is less 

sensitive to trends within the data than other approaches, such as the R/S, since a linear regression fit is 

applied locally in each block. 

2.2 Multiscale Multifractal Analysis 25 
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Multiscale Multifractal Analysis (MMA) is a generalization of Multifractal Detrended Fluctuation Analysis 

(MF-DFA) which is developed from DFA(Gierałtowski et al., 2012). In contrast to MF-DFA, which requires 

presumption of scaling ranges, MMA is capable of concurrently characterizing different fractal properties 

(monofractality or multifractality) of time series over a wide range (both small and large) of temporal scales. 

MMA can be specified as follows: 5 

Based on DFA, the qth order fluctuation is calculated as (Kantelhardt et al., 2002): 
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If long-range power-law correlation exists in the time series, then 𝐹𝑞(𝑙)   for large values of l yields 

(Kantelhardt et al., 2002), 

   h q

qF l l  
 (7) 

where ℎ(𝑞) is the generalized Hurst exponent and values of ℎ(𝑞) can be interpreted as follows:ℎ ∈ (0,0.5)  

indicates anti-persistent behavior of the time series, h=0.5 denotes uncorrelated noise, ℎ ∈ (0.5,1) indicates 10 

persistent behavior of the time series, h=1.5 corresponds to Brownian motion, and ℎ ≥ 2 indicates black 

noise. ℎ(𝑞) yields the classical Hurst exponent H when 𝑞 = 2 for stationary time series and 𝐻 = ℎ(2) − 1 

for non-stationary time series. ℎ(𝑞) is independent of  for monofractal data and strongly depends on  for 

time series showing persistent multifractal behavior.  

The strength of multifractality may be further measured by the Hölder spectrum or singularity spectrum 15 

(Feder, 1988). The Hölder exponent 𝛼𝑞  and the Hölder spectrum (singularity spectrum) 𝑓(𝛼𝑞)  can be 

computed as follows (Kantelhardt et al., 2002): 

  , q

q q
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qh q
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   and  q q qf q     

(8) 

where 𝜏𝑞 is the classical multifractal scaling exponent.  The strength of multifractality in a time series can be 

estimated by the width of 𝑓(𝛼𝑞) , which can be illustrated by the range of 𝛼𝑞  as ∆𝛼𝑞 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛  

(Koscielny-Bunde et al., 2006).  20 

The above estimators show the formulation of MF-DFA. After the calculation of all  𝐹𝑞(𝑙) by MF-DFA, a 

moving fitting time window, which completely sweeps through the range of scale l along 𝐹𝑞(𝑙), is used to 

study quasicontinuous changes between ℎ(𝑞)  dependence and the range of scale l. The fitting procedure is 

as follows: 
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where  𝑓𝑖 is a fitting window ( 1,2, ,i n ) and ℎ𝑓𝑖
 is the local scaling exponent in 𝑓𝑖 . For a fixed q, the 25 

spectrum of scaling exponents over the whole range of scale l is obtained by  
1 2

( , ) , , ,
nf f fh q l h h h . 

q q
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After plotting the results of ℎ(𝑞, 𝑙) for all the q, the Hurst surface ℎ(𝑞, 𝑙), which simultaneously provides the 

generalized Hurst exponent for multiple scales and q, is obtained (Wang et al., 2014).  

The capability of MMA, which is inherited from DFA and MF-DFA, is that it can effectively detect 

observational noise and nonstationarities in time series.  Similar to MF-DFA, the results of ℎ(𝑞, 𝑙)  in MMA 

characterize large fluctuations in the fragments of data for 𝑞 > 0, while the results of ℎ(𝑞, 𝑙) correspond to 5 

small fluctuations for 𝑞 < 0.  

2.3 Alpha-Stable Distributions 

 
The 𝛼-stable distributions, introduced by Lévy (1925), represent a class of stable laws determined by four 

parameters: the stability index 𝛼, the skewness parameter 𝛽, the scale parameter 𝛾 and the location parameter 10 

𝛿. Therefore, the 𝛼-stable distribution of a random variable X is usually denoted by 𝑋~𝑆𝛼(𝛽, 𝛾, 𝛿). No closed 

forms exist for the 𝛼-stable distributions, except for the following three distributions: Gaussian, Cauchy and 

Lévy. The 𝛼-stable distribution of a random variable, X~𝑆𝛼(𝛽, 𝛾, 𝛿), can be described by the following 

characteristic function (Samoradnitsky and Taqqu, 1994): 
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where  15 

1, 0

( ) 0, 0

1, 0

if t

sign t if t

if t




 
 

  

The stability index 𝛼 is also known as the characteristic exponent and is in the interval of 𝛼 ∈ (0,2]. The 

distribution becomes normal distribution when 𝛼 = 2. The skewness parameter satisfies −1 ≤ 𝛽 ≤ 1 . The 

location parameter 𝛿 indicates the shift of the peak of the distribution and it is undefined unless 𝛼 > 1. The 

distribution is symmetric around 𝛿  if 𝛽 = 0 . The scale parameter 𝛾  measures the dispersion of the 20 

distribution and is always positive (𝛾 > 0). 

Stable distributions are heavy-tailed, and tails of these distributions demonstrate asymptotical power law 

behavior with 0 < 𝛼 < 2 and  −1 < 𝛽 < 1. One important property of the 𝛼-stable distribution is that there 

is a possible link between the stable distribution and self-affine behavior, according to the generalized central 

limit theorem(Gnedenko and Kolmogorov, 1956). To be more specific, approximation of the tail of the stable 25 

distribution 𝑋~𝑆𝛼(𝛽, 𝛾, 𝛿) may be shown (Samoradnitsky and Taqqu, 1994): 
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where  
1

sin
2

c





 
  

 
 . This behavior indicates that 𝛼 -stable distributions can be well 

accommodated to model self-similar processes. The distribution with 1 < 𝛼 < 2 is of significant interest to 

researchers as the mean of the distribution can be defined and the variance is infinite. The non-integer 𝛼 in 

this range, which is capable of characterizing processes with infinite variance, is related to Hurst exponent 

H, presenting long-range dependence and statistical self-similarity properties, as follows (Taqqu et al., 1997): 5 

3 2H  

 

(12) 

Since the Lévy 𝛼-stable distribution is 1/𝛼-self-similar, the following equation is also used to describe the 

relationship between the stability index and the Hurst exponent (Peters, 1994): 

1

H
    

(13) 

3 Data Analysis 

Two confined aquifer wells with long groundwater level records (70 and 80 years long) were chosen in this 

study to perform fractal scaling analysis (see Appendix A for the selection procedure). Groundwater level 10 

time series data of the two wells were obtained from the Water Data for Texas website 

(http://waterdatafortexas.org/groundwater/). These two wells are both located at Edwards (Balcones Fault 

Zone) aquifer, which primarily consists of partially dissolved limestone. Geophysical properties and basic 

statistics of the groundwater levels of the two wells are listed in Table 1. Based on the data availability, the 

study period was chosen from January 1, 1945 to December 31, 2014 for Well1, and from January 1, 1935 15 

to December 31, 2014 for Well2. The missing groundwater level data of the two wells were obtained by 

linear interpolation. The total daily records used in this study are 25,567 and 29,220, for Well 1 and Well 2 

respectively (Fig.1).  

The autocorrelation function (ACF) in Fig.2 shows very slow decay in both datasets, and the dataset of Well1 

decays more slowly than that of Well2. In fact, it takes several years (more than 1000 days) for Well1 to 20 

become decorrelated while it takes a couple of years (more than 500 days) for Well2.  Moreover, the ACF 

plots greatly vary in different 20-year intervals of the two datasets (bottom left and right figures of Fig. 2), 

which may imply that the long-range dependence characteristics of the two wells would vary through time. 

The power spectra of Well1 (1945-2014) and Well2 (1935-2014) groundwater levels are presented in Fig. 3. 

The power-law exponents are estimated as 2.44 and 2.08 for Well1 and Well2 groundwater levels, 25 

respectively, indicating the existence of fractals in both datasets. Hurst exponents can be deduced from the 

power-law exponents (Heneghan and McDarby, 2000) as 0.72 and 0.54 for Well1 and Well2 groundwater 

levels, respectively. Furthermore, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 

1992) is conducted to test the stationarity of data. The null hypothesis for KPSS test is that a time series is 

stationary and the alternative is that data are non-stationary. The estimates of KPSS statistic are 5.6357 and 30 

1.8012 for Well1 and Well2 groundwater levels respectively, and both reject the null hypothesis at 1% 

http://waterdatafortexas.org/groundwater/
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significance level, which suggests that the two time series are non-stationary. These results provide reference 

for the quantification of the Hurst exponent later by DFA. 

3.1 Monofractal Analysis 

The Hurst exponents of groundwater level fluctuation data, quantified by DFA approach over different time 

intervals are investigated here. The evolution of Hurst exponent H through time is shown in Fig. 4, where the 5 

data were chosen in the original order, moving year by year forward from 1945 to 2014 for Well1 (i.e.. 1945-

1949, 1945-1950,…, 1945-2014) and from 1935 to 2014 for Well2 (i.e.. 1935-1939, 1935-1940,…, 1935-

2014). Figures 4a and 4b clearly show that Hurst exponent varies through time for both Well1 and Well2 

groundwater levels. Boxplots in Fig. 4c demonstrate that the mean and variance of the Hurst exponent 

through time differ noticeably for both Well1 and Well2 groundwater levels. H is 0.73 and 0.51 for Well1 10 

and Well2, respectively, when all the available data are used, which suggests that both datasets indicate long 

memory. These estimates of Hurst exponents are also consistent with the ones that are deduced from the 

power-law exponents in Fig. 3. In general, groundwater level fluctuations of Well1 show persistent fractal 

behavior (𝐻 > 0.5, more specifically 𝐻 > 0.7,) for all investigated time periods, and those of Well2 vary 

between persistent and anti-persistent, even showing uncorrelated behavior at certain times.  15 

The Hurst exponent H for Well1 groundwater levels varies between 0.8 and 0.85 for up to 8 years of daily 

data for end years 1948-1952 (Fig. 4a), and then stabilizes within  values of 0.71 and 0.78 for 9 years and 

longer time durations (for end years greater than 1952 in Fig. 4a). On the other hand, H for Well2 groundwater 

levels varies between 0.53 and 0.6 for up to 7 years of daily data for end years 1939-1941 (Fig. 4b), and then 

stabilizes within 0.46 and 0.53 for longer time durations than 8 years (for end years greater than 1941 in Fig. 20 

4b). As such, fractal behavior of groundwater levels, obtained from short duration data (in this study, less 

than 8 years for Well1 and 7 years for Well2), may not exhibit the stable long-term fractal behavior. These 

results further imply that the length of time series and the time period it covers jointly affect the value of H. 

The Hurst exponents here demonstrate the ability of DFA in distinguishing the seemingly long-range 

correlations caused by external effects (such as seasonal trend) from its intrinsic fluctuations (Yu et al., 2016), 25 

since the ACF plots show very slow decay in both wells (Fig.2). 

Figure 5 presents the Hurst exponents of groundwater level data estimated with different moving time 

windows (5-year, 10-year and 20-year). Daily data were used in different time windows: 5-yr moving window 

(i.e., 1945-1949, 1946-1950, …, 2010-2014), 10-yr moving window (i.e.,1945-1954, 1946-1955, …, 2005-

2014), and 20-yr moving window (i.e., 1945-1964, 1946-1965, …, 1995-2014). Figures 5a and 5b show that 30 

the Hurst exponents vary greatly in different time windows (i.e.. different length  of groundwater level 

fluctuation data), and also do not remain constant even with the same time window when the time window 

moves in time. Moreover, the results in Figures 5a and 5b demonstrate that the Hurst exponent tends to be 

stable as the time window increases, which is consistent with the results in Fig. 4.  

Additionally, the correlation coefficient r is used to investigate the relationship between the Hurst exponent 35 

and the variation in groundwater level fluctuations, which is quantified by the coefficient of variation, 𝑐𝑣 
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(𝑐𝑣 = 𝛿 𝜇⁄ , where 𝛿 is the standard deviation of the data and 𝜇
 
is the corresponding average). From Fig. 5c 

it may be inferred that strong linear correlation exists between 𝑐𝑣  and H ( ), and the correlation 

becomes stronger as time window increases from 5 to 20. Meanwhile, for Well2 groundwater levels the 

correlation is weaker (𝑟 < 0.5), and r increases first and then decreases afterwards, following the increase of 

time window from 5 to 20 (Fig. 5d). For Well1 groundwater levels (Fig. 5c), a larger 𝑐𝑣 
normally follows a 5 

greater H for 5, 10 and 20-yr time windows. However, for Well2 groundwater levels (Fig. 5d), this 

relationship generally does not hold (especially for the 20-yr time window). Figures 5c and 5d suggest that 

the variability of groundwater level fluctuation may affect the intrinsic correlation (long memory or short 

memory) of the data, but it is highly site-specific. The different Hurst exponents in different wells may be 

due to the effect of heterogeneity of the aquifer materials (Li and Zhang 2007).  10 

Figure 6 further investigates the variation of the Hurst exponents by the boxplots of 5, 10, 20, 30, 40, and 50-

yr moving time windows. Unlike the inconsistency of the linear correlation between 𝑐𝑣 and H, the variation 

of H in both Well1 and Well2 groundwater levels are consistent here. The variation of H for both wells' 

groundwater levels, in general, decreases as the moving time window increases, which confirms the findings 

in Figures 5a and 5b. 15 

3.2 Multifractal Analysis 

The multifractal results obtained by MF-DFA in Fig.7 include log-log plots of 𝐹𝑞(𝑙) against time scale l,
 
the 

generalized Hurst exponent ℎ(𝑞), the scaling exponent spectrum 𝜏𝑞  and the singularity spectrum 𝑓(𝛼𝑞) 

corresponding to a series of moments q(−5 ≤ 𝑞 ≤ 5). ℎ(𝑞) is the slope of the linear regression line of the 

log-log plot for a given q . Clearly, multifractality exists in groundwater levels of Well1 (1935-2014) and 20 

Well2 (1945-2014), since ℎ(𝑞)  greatly varies with q, as demonstrated in Figures 7a and 7b, and the 

relationships between 𝜏𝑞 and q in Fig. 6c are not linear for groundwater levels of Well1 and Well2.  This also 

suggests that different exponents should be used to illustrate the fractal scaling behavior (self-affinity) of 

different time intervals of the data. Moreover, ℎ(𝑞) continuously decreases as q increases in both figures, 

implying that relatively small fluctuations occur more frequently in the time series than the large ones (Grech 25 

and Czarnecki, 2009; Rakhshandehroo and Amiri, 2012).    

The singularities of the processes in the groundwater levels of Well1 and Well2 are revealed in Fig. 7d. The 

width of the singularity spectrum, ∆𝛼𝑞 , is used to measure the level of multifractality. The width of the 

singularity spectrum ∆𝛼𝑞  tends to be zero for monofractal structures, and would increase as the level of 

multifractality of the signal increases. ∆𝛼𝑞 was found to be 4.05 for the groundwater levels of Well1 and 1.07 30 

for the groundwater levels of Well2. These results indicate a high level of multifractality in both time series, 

and Well1 groundwater levels have a stronger multifractality, which further suggests that the multifractal 

behavior is quite site-specific.   

Two types of rationale are used to account for multifractality in time series (Kantelhardt et al., 2002). The 

first type is that a broad probability density function of time series data, which cannot be represented by a 35 

regular distribution with finite moments, causes multifractality. The second type is that multifractality is 

r > 0.5
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caused by long-range correlations of small and large fluctuations (Kantelhardt et al., 2002; Rakhshandehroo 

and Amiri, 2012).To distinguish these two types of multifractality, the corresponding randomly shuffled 

dataset is analyzed. The multifractality will vanish if it is totally due to the second type and will remain 

otherwise. If the multifractality is due to both types, the shuffled data will present weaker multifractality than 

the original data (Kantelhardt et al., 2002).  5 

Therefore, a shuffling procedure was conducted to investigate the types of the multifractality for Well1 and 

Well2 groundwater levels. The corresponding multifractality results are shown in Fig. 8. This figure clearly 

shows that multifractality still exists in the shuffled groundwater level data of Well1, since dependency 

between ℎ(𝑞) and  remains (Fig. 8a). The relationship between 𝜏𝑞  and q is not linear (Fig. 8c), which 

further verifies the existence of multifractality in shuffled Well1 data ∆𝛼𝑞 was 0.18 (Fig. 8d), which indicates 10 

a much weaker multifractality compared with ∆𝛼𝑞 = 4.05 for the original data. The results for shuffled 

Well2 groundwater level data, on the contrary, show that shuffling almost completely destroyed its intrinsic 

fractal correlations, since ℎ(𝑞)  is independent of q (Fig. 8b), 𝜏𝑞is linear  with q (Fig. 8c), and the singularity 

spectrum almost converges to a single point with ∆𝛼𝑞 = 0.02  (Fig. 8d), which may indicate an approximate 

monofractal structure in Well2 groundwater levels. 15 

Results in Fig. 8 reveal that different types of multifractality exist in Well1 and Well2 groundwater level time 

series. For Well1, the multifractality is clearly due to the combined effect of a broad probability density 

function and temporal correlations in diverse magnitudes of fluctuations. Meanwhile, the multifractality is 

almost purely caused by long-range temporal correlations in small and large fluctuations for Well2 

groundwater levels. 20 

Since the Hurst exponent varies for  different time intervals of the groundwater level time series of Well 1 

and Well 2 (Figures 4, 5, and 6), and the finding that the small and large flutuations of temporal correlations 

contribute to multifractality of  both datasets  (Fig. 8), the Multiscale Multifractal Analysis (MMA) is adopted 

to investigate the fractal behavior at different temporal scale ranges in detail, as demonstrated in Fig. 9. It is 

noted that the generalized Hurst surfaces for the original datasets of both Well1 and Well2 groundwater levels 25 

(top figures of Fig. 9) are far from flat (hill-like shape), which clearly suggests different fractal scaling 

exponents are needed to represent fractal behavior at multiple temporal scales for both datasets. In addition,  

the generalized Hurst exponents at q=2 are between 1.5 and 2 for Well1 groundwater levels, indicating  

persistent behavior, and are mostly within the range between 1 and 1.55 for Well2 groundwater levels, 

indicating  persistent and anti-persistent fractal behavior (sometimes even uncorrelated). Moreover, the Hurst 30 

surfaces for the shuffled time series  of Well1 and Well2 ( bottom figures of Fig. 9)  show that the surfaces 

become much flatter than those generated by the original datasets (small fluctuations of the Hurst surfaces 

still exist after shuffling),which suggests that the shuffling substantially destroys the intrinsic correlations, as 

consistent with the MF-DFA results.    

q
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3.3 Relationship between the stability index and the Hurst exponent 

Multifractal analysis suggests that the multifractality is partially due to a broad probability density 

distribution that may have infinite moments. However, fBm (fractional Brownian motion), which has been 

identified as an appropriate model to characterize groundwater level fluctuation (Li and Zhang, 2007; Little 

and Bloomfield, 2010; Rakhshandehroo and Amiri, 2012; Yu et al., 2016) is Gaussian with finite moments. 5 

Therefore, fBm may be inappropriate for the description of physical processes with infinite moments, such 

as the groundwater level fluctuations in this study. Histograms and Normal probability plots for Well1 and 

Well2 groundwater levels in six selected durations of varying length apparently indicate that the Gaussian 

distribution may not be suitable to represent the groundwater level processes of both wells, especially for 

Well1 (Figures 10 and 11, in which the probability curve would lie on the straight red line if the data are 10 

normally distributed). Well1 groundwater levels clearly show heavy tail, and Well2 groundwater levels 

demonstrate right-skewed behavior. As such, the Lévy alpha stable distribution, which is non-Gaussian with 

heavy tail and has infinite variance, was adopted to fit the groundwater datasets. Moreover, to obtain a 

relatively comprehensive picture of the underlying probability distribution, Gaussian distribution, Gamma 

distribution and Lognormal distribution were also used to fit the datasets (the Statistics and Machine Learning 15 

Toolbox in Matlab are used for this purpose). The fitting procedure is conducted continuously with the data 

starting from 1945 for Well1 and from 1935 for Well2, and moves forward year-by-year with the same end 

year, 2014, for all the fitting durations (at least 15 years of daily data are used to ensure a good 

characterization of the data distribution). Results for the six selected durations are presented in Figures 12 

and 13 for Well1 and Well2 groundwater levels, respectively.  20 

Figure12 shows that in general, the Lévy stable distribution fits the groundwater level fluctuation time series 

of Well1 over different durations very well. Meanwhile, the other distributions, i.e. Normal, Gamma and 

Lognormal, cannot satisfactorily capture the behavior of the groundwater levels of Well1. This verifies the 

finding that the irregular distribution of Well1 groundwater levels contributes to the multifractality. For Well2 

groundwater levels, Gaussian distribution adequately fits the data, except at the peak values (Fig. 13).  25 

Furthermore, the fitted stable, Gamma and Lognormal distributions converge to the Gaussian distribution. 

This may imply that fBm may partially  represent the behavior of Well2 groundwater levels, which has the 

Hurst  exponent fluctuating between 0.48 and 0.52 (Fig.14b). 

Furthermore, the stability index 𝛼 of the stable distribution is related to the Hurst exponent H, given by a 

relationship between 𝛼 and H. Two formulae (Eq.12 and Eq.13) are used to estimate H. The estimated H is 30 

then compared with that estimated by DFA (Fig. 14). With respect to the difference between the Hurst 

exponent estimated by DFA (for both Well1 and Well2 groundwater levels) and that deducted from either 

𝐻 =
1

𝛼
 or 𝐻 =

3−𝛼

2
 or, the relative difference is less than 10% (even less than 1% in some time intervals) for 

most of the comparisons. For Well1 groundwater levels, the Hurst exponent by 𝐻 =
1

𝛼
  generally matches 

better with H estimated by DFA than that by 𝐻 =
3−𝛼

2
 (Fig. 14a), although for some durations, such as from 35 

1950-2014 to 1955-2014, the latter one performs better than the first. Fig. 14c further shows that the stability 
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index 𝛼 is strongly correlated with the coefficient of variation  of the groundwater level fluctuation data 

from Well1, since the correlation coefficient is as high as -0.84. It suggests that a larger  of Well1 

groundwater levels would probably imply a smaller 𝛼. A stability index 𝛼 = 2 for all the stable distributions 

for the groundwater levels data from Well2 (𝛼 = 2  corresponds to Gaussian distribution) is found. This may 

be due to the fact that the Lévy stable distribution here is restricted in the range 1 < 𝛼 ≤ 2  , which 5 

corresponds to 0.5 ≤ 𝐻 < 1. However, Well2 groundwater levels do not have long memory in some time 

intervals. The relationship between H and 𝛼 would completely fail when H<0.5. However, the resulting 

stability index 𝛼 = 2 for Well2 groundwater levels is acceptable, considering the difference between H 

estimated by DFA and H estimated by the stability index is less than 5% for all the time periods. This result 

is also consistent with Fig.11 where Gaussian distribution is capable of capturing the main groundwater level 10 

fluctuation patterns of Well2. 

The results indicate that fBm, which has Gaussian characteristics, may be a reasonable model for representing 

groundwater level fluctuations under certain conditions, such as in the case of the dataset of Well2, which 

has the Hurst exponent fluctuating closely around 0.5. However, fBm may be an insufficient model for 

capturing the behavior of groundwater fluctuations in other cases, for example in the case of the groundwater 15 

levels of Well1, where a non-Gaussian distribution, such as a heavy-tailed stable distribution (Lévy motion), 

is needed instead. In the presence of long-memory, fractional Lévy motion may be more appropriate to model 

and forecast the groundwater dynamics.  

It is important to note that the results obtained so far are limited to the analysis of temporal correlations of 

the groundwater level fluctuations at certain locations. The properties of the groundwater levels at two wells, 20 

such as their fractal behavior and underlying distributions, are highly different from each other, which 

confirms that the results are site-specific. Well1 and Well2 are chosen because the groundwater level 

fluctuation records of these two wells are long and complete. In addition, these two wells are very 

representative in terms of fractal scaling behavior and underlying probability density distribution. 

Groundwater dynamics in aquifers result from multiple complex dynamic processes, such as the hydrologic 25 

processes (precipitation and river runoff, etc), hydraulic properties of soil and aquifers, and anthropogenic 

perturbations (such as construction of reservoirs and pumping of water). These processes and properties vary 

at different spatio-temporal scales, which directly or indirectly affect groundwater systems. The two confined 

aquifer wells analyzed in this study are located at the same type of aquifer, but present drastically different 

dynamcis of groudwater level fluctuations. The obtained results herein may be attributed to the time-space 30 

heterogeneity of aquifer characteristics, hydrometerological conditions and even anthropogenic forcing, but 

detailed research, such as the employment of time-space analysis, needs to be conducted to justify this and 

to account for the effect of heterogeneity on fractal behavior at different temporal scales. Non-Gaussian 

fractal property of the groundwater system in Well1 that demonstrates long memory, provides further insight 

for the resulting transport processes in the porous medium, which may also present non-Gausssian features 35 

with memory, similar to the non-Gaussian behavior that is found in the precipitation time series in other 

studies (Joelson et al., 2016; Lovejoy and Mandelbrot, 1985). Unlike Well1 groundwater levels, the origin 

cv

cv
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of multifractality for Well2 groundwater levels is difficult to explain, due to the very weak multifractality 

after the shuffling. An intuitive explanation may be that it is due to noise. However, the fractal structure is 

not affected by dynamical noise (Serletis, 2008). Additionally, Gaussian distribution may partially represent 

the dataset of Well2 groundwater levels, but it fails to capture the peak of the skewed distribution of Well2 

groundwater levels, which may imply that an irregular distribution that also holds certain Gaussian 5 

characteristics may be needed to fully characterize the groundwater dynamics of Well2.    

4 Conclusions  

In this study, fractal scaling properties of groundwater level fluctuations of two confined aquifer wells, with 

70 and 80 years of daily data, were analyzed. Detrended fluctuation analysis (DFA) was utilized to quantify 

the Hurst exponent and monofractality. The DFA results indicated that fractals exist in groundwater level 10 

time series of both wells, and it was shown that the Hurst exponent is closely dependent on the length and 

specific time period of the time series. Persistent scaling pattern was found for all investigated time periods 

of Well1 groundwater levels (Hurst exponent, H>0.5), and the scaling pattern varied between anti-persistent 

and persistent regimes for Well2 groundwater levels. The Hurst exponent H for Well1 groundwater levels 

fluctuated between 0.8 and 0.85 for up to 8 years of daily data for end years 1948-1952 (Fig. 4a), and then 15 

stabilized within  the range of 0.71 - 0.78 for 9 years and longer time durations (for end years greater than 

1952 in Fig. 4a). On the other hand, H for Well2 groundwater levels fluctuated between 0.53 and 0.6 for up 

to 7 years of daily data for end years 1939-1941 (Fig. 4b), and then stabilized within the range 0.46 - 0.53 for 

durations longer than 8 years (for end years greater than 1941 in Fig. 4b).  

Multifractal detrended fluctuation analysis (MF-DFA) and Multiscale Multifractal Analysis (MMA) were 20 

adopted to examine the multifractality and multifractal behavior at different temporal scales for confined 

groundwater levels. Although the MF-DFA results showed that relatively high level of multifractality exists 

for both wells' groundwater levels, a stronger multifractality was observed for the dataset of Well1 compared 

to that of Well2. The observed multifractality was postulated to originate from the combined effect of the 

underlying irregular probability distributions and different magnitudes of fluctuations on multiple long-range 25 

temporal correlations for Well1 groundwater levels, and mostly long-range temporal correlations in small 

and large fluctuations for Well2 groundwater levels. Moreover, the MMA results confirmed the existence of 

multifractality and diverse correlations of groundwater levels over different time scales. For Well1, the Hurst 

exponent by 𝐻 =
1

𝛼
  generally matches better with H estimated by DFA than that by 𝐻 =

3−𝛼

2
. The stability 

index 𝛼 is strongly correlated with the coefficient of variation  of the groundwater level fluctuation data 30 

from Well1, since the correlation coefficient is as high as -0.84. For Well2, a stability index 𝛼 = 2 for all the 

fitted stable distributions for the groundwater levels data from Well2 (𝛼 = 2  corresponds to Gaussian 

distribution) is found. 

Furthermore, the underlying probability distribution of groundwater level fluctuations for Well1 represented 

mainly long memory characteristics, which were fitted reasonably well by the Lévy stable distributions for 35 

cv
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various time periods. On the other hand, those of Well2 represented mainly Gaussian characteristics, which 

sometimes failed to capture the peaks of the skewed probability distributions of Well2 groundwater levels. 

Time series analysis of groundwater level fluctuations of the two wells demonstrated that the observed fractal 

behavior is site-specific, and there is a need for generalized governing equations of groundwater flow 

processes, which can model both the long-memory behavior as well as the Brownian finite-memory behavior 5 

(Kavvas et al., 2017; Tu et al., 2017).  
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Appendix A: Selection criteria for the two wells 

As of May, 2016, there are 257 monitoring wells, both active and inactive wells, reported on the webpage of 

the Water Data for Texas website (http://waterdatafortexas. org/groundwater/). The groundwater level 

datasets consist of data taken from 77 confined aquifer wells, 179 unconfined aquifer wells and 1 unknown 

aquifer well. Since the focus of this study is on the confined aquifer well, the spatial distribution of the 77 5 

datasets related to confined aquifer is provided in Figure A.1. 

The longest dataset has more than 81 years of record with around 2.6% missing rate, and the second longest 

dataset includes more than 72 years of record with about 3.6% missing rate. The third longest dataset has 

more than 10% missing measurements and has about 1/3 of the length of the second longest dataset. 

Therefore, the first and second longest groundwater level records were analyzed in this study. Record lengths 10 

(in days) and percentage of the missing data for the 20 longest groundwater level records reported by the 

Water Data for Texas are presented in Figure A.2. 

It can be seen from Figure A.2 that only the first two records are of excellent data quality with respect of 

length and being complete. Therefore, the groundwater level fluctuations of these two confined aquifer wells 

are analyzed in this study. The results indicate two different behaviors of the groundwater level fluctuations, 15 

i.e. Gaussian and non-Gaussian, which are not reported or compared in the previous studies of fractal scaling 

analysis of groundwater level fluctuation. Therefore, the results of this behavior with respect to these two 

confined aquifer wells are reported in the manuscript.  These two wells are both located at the Edwards 

(Balcones Fault Zone) aquifer, which primarily consists of partially dissolved limestone. However, the 

dynamics of groundwater level fluctuations of these two wells behaves drastically different, which may imply 20 

rather different climate-related and anthropogenic perturbations on these two wells. Unfortunately, due to the 

lack of high-quality datasets and detailed information about the aquifers in this area, further discussion on 

regionalization of the fractal properties is difficult to make.  
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Table 1. Statistics and geophysical properties of studied wells in Texas, USA 

Well ID Location (lat, long) 

Well Depth 

Below Land 

Surface (m) 

Aquifer 

Type 
Record Period 

Mean 

(m) 
STD(m) 

Well1 6950302 
(29.208888° N, 

99.784444° W) 
87.48 Confined 

1940-10-24 to 

present 
11.57 4.75 

Well2 6837203 
(29.479166° N, 

98.432499° W) 
266.40 Confined 

1932-11-12 to 

present 
20.10 5.00 

Note: Mean represents the mean groundwater level (hydraulic head) depth below land surface.  

 

 

  5 
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Figure 1. Groundwater level time series data of (a) Well1and (b) Well2 

 

Figure 2.  Autocorrelation function (ACF) of the whole groundwater level datasets (Top); ACF at every 20 years 

interval for Well 1 (bottom left) and Well 2 (bottom right). 5 
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Figure 3. Power spectra of (a) Well1 and (b) Well2 groundwater levels. 

 
Figure 4. (a)The evolution of the Hurst exponent through time for Well1 groundwater levels, which starts from 

1945; (b)The evolution of the Hurst exponent through time for Well2 groundwater levels, which starts from 1935; 5 
(c) Boxplots of the Hurst exponents in (a) and (b). 
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Figure 5.  (a) The Hurst exponent of Well 1 groundwater levels, estimated by DFA within different time windows. 

(b) The Hurst exponent of Well 2 groundwater levels, estimated by DFA within different time windows. (c) The 

relationship between the coefficient of variation  and the Hurst exponent obtained in (a). (d) The relationship 5 

between the coefficient of variation  and the Hurst exponent obtained in (b). 
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Figure 6. Boxplots of the Hurst exponents under different moving time windows for (a) Well1 groundwater 

levels and (b) Well2 groundwater levels. 

 

 5 
Figure 7. Fq as a function of time scale l and the generalized Hurst exponent h as a function of q  for the 

groundwater levels of (a) Well1 (b) Well2; (c) the scaling exponent spectrum 𝝉𝒒  vs the moments for the 

groundwater levels of Well1 and Well2; (d) the singularity  spectrum for the groundwater levels of Well1 and Well 

2. 
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Figure 8. Fq

 
as a function of time scale l, and the generalized Hurst exponent h as a function of q  after shuffling 

for (a) Well1 groundwater levels, (b) Well2 groundwater levels, (c) the scaling exponent spectrum 𝝉𝒒  vs the 

moments for Well1 and Well2 groundwater levels after shuffling, and (d) the singularity  spectrum for Well1 and 

Well 2 groundwater levels after shuffling. 5 
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Figure 9. Multiscale Multifractal Analysis for (a) Well1 groundwater levels and (b) Well2 groundwater levels . 

The top figure is for the original data and the bottom is for the shuffled data. The thick black line indicates MF-

DFA results for a given temporal scale, and the solid dots show the generalized Hurst exponents at q=2 by DFA 

over different scales.   5 
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Figure 10. Histograms and Normal probability plots for various time intervals of groundwater levels of Well1 

 
Figure 11. Histograms and Normal probability plots for various time intervals of groundwater levels of Well2 
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Figure 12. Probability density function and cumulative distribution function (first two lines and last two lines 

respectively) of groundwater level fluctuation time series data of Well1.  

 
Figure 13. Probability density function and cumulative distribution function (first two lines and last two lines 5 
respectively) of groundwater level fluctuation time series data of Well2. 



 26 

 
Figure 14.  (a) Well1 groundwater levels: Comparison between the Hurst exponent estimated by DFA and that by 

stability index. (b) Well2 groundwater levels: Comparison between the Hurst exponent estimated by DFA and 

that by stability index. (c) Well1 groundwater levels: The coefficient of variation 𝒄𝒗  versus the stability index 

obtained in (a). (d) Well 2 groundwater levels: The coefficient of variation 𝒄𝒗 versus the stability index obtained 5 
in (b). 
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Figure A.1. Spatial distribution of the confined aquifer wells in Texas, USA, reported by the Water Data for Texas. 

The two red stars denote the locations of the wells that have the first and second longest records; yellow solid 

circles denote the locations of the other 75 wells.  5 

 
 

 
 
Figure A.2. Record lengths (in days) and percentage of the missing data for the 20 longest groundwater level 10 
records reported in Texas by the Water Data for Texas 

 

 


