

1 **Combining temperature rate and level perspectives in emission 2 metrics**

3 Borgar Aamaas¹, Terje K. Berntsen^{1,2}, Jan S. Fuglestvedt¹, Glen P. Peters¹

4 ¹CICERO Center for International Climate Research, PB 1129 Blindern, 0318 Oslo, Norway

5 ²Department of Geosciences, University of Oslo, Norway

6 *Correspondence to:* Borgar Aamaas (borgar.aamaas@cicero.oslo.no)

7 **Abstract.** The ultimate goal of the United Framework Convention on Climate Change, which is reconfirmed by the
8 Paris Agreement, is to stabilize the climate change at level that prevents dangerous anthropogenic interference, and it
9 should be achieved within a time frame that allow the natural systems to adapt. Numerous emission metrics have been
10 developed and applied in relation to the first target, while very few metrics have focused on the second target regarding
11 rate of change. We present here a simple and analytical physical emission metric based on the rate of global
12 temperature change and link that to a metric based on a target for the temperature level. The rate of change perspective
13 either can supplement the level target or can be considered together in one commitment that needs one combined
14 metric. Both emission metrics depend on assumptions on a temperature baseline scenario. We give some illustrations
15 on how this framework can be used, such as different temperature rate and level constraints based on the
16 Representative Concentration Pathways. The selection of the time horizon, for what time period and length the rate
17 constraint is binding, and how to weight the rate and level metrics are discussed. For a combined metric, the values
18 for short-lived climate forcers are larger in periods where the critical rate is binding, with larger temporal increases
19 during the rate constraint period as the atmospheric perturbation timescale of the species becomes shorter. Global CO₂
20 emissions remain the most important, or among the most important, drivers of temperature rates even during periods
21 of binding rate constraints.

22 **1 Introduction**

23 Human activity causes emissions of a range of gases and particles that alter the climate (Myhre et al., 2013), which
24 has wide reaching consequences (IPCC, 2014). Article 2 in the United Framework Convention on Climate Change
25 (UNFCCC) states that the ultimate objective is “stabilization of greenhouse gas concentrations in the atmosphere at a
26 level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be
27 achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food
28 production is not threatened and to enable economic development to proceed in a sustainable manner” (UNFCCC,
29 1992). This statement has two specific goals. The first is a long-term stabilization of the climate, e.g. below 1.5 or 2
30 °C as in the Paris Agreement (UNFCCC, 2015). Less attention has been given to the second target, which concerns
31 the rate of climate change that allows ecosystems to adapt.

32 According to Diffenbaugh and Field (2013); LoPresti et al. (2015); Settele et al. (2014) , many plants and animals will
33 not be able to keep track with climate change in the 21st century in the mid- and high-range climate change scenarios,
34 the Representative Concentration Pathways RCP4.5, RCP6.0, and RCP8.5. The quicker the temperature increase, the
35 larger is the velocity of climate change, which is a measure of how fast temperature isotherms are moving towards the
36 poles (Loarie et al., 2009). A temperature increase of 0.2 °C/decade over the 21st century will result in a larger climate
37 velocity than the dispersal capacity for a number of plant and animal species, and even 0.1 °C/decade is critical for
38 some. The global temperature has historically varied by as much as 0.2 °C/decade for single decades (Hansen et al.,
39 2010; Morice et al., 2012; Smith et al., 2008), while the literature suggest that such trends are critical for plants and
40 animals when lasting several decades. The required movement of plants and animals will be the fastest in extensive
41 flat landscapes. These studies show there might be some maximum temperature rate that is acceptable, just as an
42 absolute global temperature level of increase of e.g. 1.5 or 2 °C is seen as tolerable.

43 If only considering CO₂, the timing and magnitude of the largest temperature rate increase is determined by the CO₂
44 emissions peak and level (Bowerman et al., 2011). This perspective was widened by Matthews et al. (2012), that found
45 that the rate of warming depends linearly with the rate of increase of CO₂ cumulative emissions, while the eventual
46 warming level depends on the total cumulative CO₂ emissions. For a cumulative total of CO₂ emissions, the
47 temperature rate is highly dependent on the pathway of emissions (LoPresti et al., 2015). O'Neill et al. (2006) propose
48 interim targets, as opposed to near- or long-term targets, such as a 2050 target of about 430 ppm CO₂- equivalents that
49 ensure rate warming of no more than 0.1 °C/decade, or 550 ppm CO₂- equivalents for 0.2 °C/decade. Kallbekken et
50 al. (2009) argue for limiting the cumulative CO₂ emission budget in the next few decades to limit the rate of warming,
51 while such a rate approach enables short-lived climate forcers (SLCFs) also to be included in climate policy.

52 UNFCCC (1992) states in Article 3 that that climate policies should be “cost-effective so as to ensure global benefits
53 at the lowest possible cost” as well as “be comprehensive”, and “cover all relevant sources, sinks and reservoirs of
54 greenhouse gases.” In order to operationalize Article 3, emissions of various species must be made comparable, which
55 can be done by applying emission metrics. The most widely used metric is based on the cumulative global mean
56 warming effect over a time horizon (i.e., the Global Warming Potential (GWP), (IPCC, 1990)) or the global
57 temperature increase at some point in the future (e.g. the Global Temperature change Potential (GTP) (Shine et al.,
58 2007; Shine et al., 2005)) as a measure of dangerous anthropogenic interference. The GWP is not directly linked to
59 the rate or level targets, while the GTP with a time horizon is compatible with the level target, such as limiting global
60 temperature increase to less than 2 °C.

61 Here, we take Article 2 of the UNFCCC as our starting point, assuming that climate policies will be targeted to keep
62 both the rate of change as well as the long-term stabilization below certain thresholds. To make the GTP-metric
63 suitable for the long-term stabilization target, as discussed above, a key point is how to set the time horizon. Following
64 Tol et al. (2012), the time horizon should be set to when the temperature stabilization target is expected to be reached
65 (binding). This requires an a priori assumption about the future climate development and we will denote this the
66 *baseline scenario*.

67 Based on Article 2 of the UNFCCC, there is a need for a transparent metric compatible with the rate target. Such a
68 metric concept could be explored due to its potential usefulness, as well as providing insight, even though the political
69 feasibility might be low. As the temporal development in temperature is also linked to the rate target, GTP in some
70 form is also relevant for the rate metric. Following the same argument as for the GTP/stabilization target above, we
71 assume that with the climate scenario used there is some period where the rate of change will be above an acceptable
72 threshold. If not, then the rate of change is considered not to be a problem and policies should only focus on the long-
73 term stabilization target. With this framework, we suggest a modified GTP metric to address the rate target by
74 quantifying how pulse emissions at a given time contribute to warming within the period where the rate constraint is
75 binding.

76 Most of the developed metrics related to the rate goal are not purely physical, but also include economics. Manne and
77 Richels (2001) presented an emission metric that in principle is the Global Cost Potential (GCP) based on an economic
78 model that considered both the absolute temperature change and rate of temperature change, which was revisited by
79 Ekholm et al. (2013). Wallis and Lucas (1994) reformulated global warming potentials to include rate of change, and
80 Peck and Teisberg (1994) discussed optimal carbon emission trajectories given costs of different warming rates and
81 levels. These metrics are based on economic modeling, which is not necessary transparent to the metric user.
82 Kirschbaum (2014) developed the physical metric climate-change impact potential (CCIP) by giving identical weight
83 to three parameters, the temperature increase, rate of warming, and accumulated warming. He focused on emission
84 cases over a time period of 100 years until 2100 and did not develop a general rate metric which for instance separate
85 between periods that are rate constraint binding and not binding.

86 The rate of change perspective can be adopted to supplement a long-term stabilization target in two different ways.
87 One may regard the rate of warming and the long-term stabilization as two independent environmental issues (although
88 affected by the same emissions, much like air quality and climate change) or it may be regarded as one single problem.
89 In the former case, separate commitments in terms of weighted emissions (i.e. two sets of CO₂-equivalents and
90 emission metrics) for each of the problems could be negotiated, while with the latter approach a single commitment
91 is given using one common emission metric that includes a weighting to account for both the rate of change and the
92 long-term warming. The different configurations should all be based on the same basket of gases and particles, as all
93 the species affect both the level and rate of change.

94 In Sect. 2, we show alternative potential rate metrics. We present our suggested analytical and simple emission metric
95 that is relevant for the objectives addressing both the long-term stabilization and the rate of change in Sect. 3. In Sect.
96 4, we give some applications of these metrics for the 21st century. We discuss the implementation in a mitigation
97 policy framework, applications of the developed metrics and the linkage to cost-effectiveness in Sect. 5. Section 6
98 concludes.

99 2 Alternative rate metrics

100 Given that the rate of change causes damage (according to Article 2), one would intuitively attempt to derive a metric
101 based on the rate of change (i.e. based on $R(t) = \frac{d(\Delta T(t))}{dt}$). To illustrate why we would argue that the framework
102 described above (using a modified GTP) is a better approach, a schematic temperature response after a pulse emission
103 is shown in Fig. 1. The temperature rate of change is always largest at the time of emissions ($t_e = t_{R\max}$) and gradually
104 reduced until t_{R0} , where the temperature rate turns negative. On the other hand, the absolute temperature change is
105 positive throughout the period, with the largest increase at t_{R0} .

106 Possible metrics based on $R(t)$

107 1. $AM(t_e, t) = R_{\max}(t_e, t)$

108

109 Choosing the time horizon so that the rate of change is at its maximum, is equal to setting the time horizon
110 effectively to zero. Due to the atmospheric decay given by an impulse response function, the rate of
111 temperature increase is always largest as $t_e \rightarrow 0$, as seen in Fig. 1 in the Supporting Information. Then the
112 relative metric would be equal to the ratio of radiative effects, that is a similar framework as applied in the
113 Radiative Forcing Index (RFI) (IPCC, 1999), which has been criticized (e.g., Fuglestvedt et al., 2010).

114

115 2. $AM(t_e, t) = \int_{t_e}^{t_{R0}} R(t_e, t') dt'$

116

117 With this approach, we integrate the rate only when the rate of change is positive. However, this integral is
118 equal to the AGTP(t_e, t_{R0}). Thus, a relative metric would use a (potentially very) different time horizon for
119 different species (see also Sect. 2 in the Supporting Information). For very SLCFs like BC, t_{R0} would be less
120 than a year after emissions.

121

122 3. $AM(t_e, t) = \int_{t_e}^{t_L} R(t_e, t') dt'$

123 where t_L is the time horizon for the long-term stabilization target. This definition is exactly equal to the
124 proposed AGTP for use in relation to the long-term stabilization target.

125 3 Definition of rate and level metrics used in this paper

126 Based on the general approach described in the introduction, we develop the formal definition of our rate and level
127 metrics. The metrics are defined for pulse emissions (see Fig. 1), noting that metrics for a sustained emission change
128 or any future emission path can easily be derived from the pulse metrics (Fuglestvedt et al., 2010). For both metrics,
129 we assume that a general binding target constraint occurs over some time period. As the calculation of these metrics
130 depends on the baseline scenario for the temperature development, the dependence on scenarios are first shown.

131 **2.1 Dependence on scenario**
132 Both the rate and level metrics depend on the choice of the baseline scenario. There is a critical temperature rate and
133 temperature level, which gives binding constraints for the metrics. The baseline scenario determines the time horizon
134 or range of time horizons depending on when the targets are binding. This is illustrated in Fig. 2, where the level
135 constraint is binding between t_{L1} and t_{L2} , while the rate constraint is binding between t_{R1} and t_{R2} . The time horizons for
136 the two targets will of course be different, with the time horizon for the rate metric always shorter than for the level
137 metric. The choice of a proper baseline scenario is not straightforward and beyond the scope of this paper. In Sect. 8
138 in the Supporting Information, we combine different Representative Concentration Pathways (RCPs) with different
139 rate and level constraints, and show how this determines possible time horizons.

140 **2.2 Level metric**
141 The time-dependent GTP is a temperature emission metric that is well-known to be used relative to the level target,
142 for instance the 2 °C target (Shine et al., 2007). The time horizon can potentially be set to when 2 °C global warming
143 is reached (Joshi et al., 2011), while our framework focuses on the timing of the temperature stabilization. We define
144 here the level metric AM_L for emissions at time t_e for species i given by the level term calculated from the Absolute
145 Global Temperature change Potential (AGTP):

$$146 \quad AM_L(t_e) = \int_{t'=t_{L1}}^{t_{L2}} \Delta T_i(t_e, t') dt' = \int_{t'=t_{L1}}^{t_{L2}} AGTP_i(t' - t_e) dt' \quad (1)$$

147 The level target period is binding for some limited period between t_{L1} and t_{L2} when the temperature increase is above
148 the target level $\Delta T = T$, for instance $T = 2$ °C, as illustrated in Fig. 2(A). In the case for emission occurring after t_{L1}
149 ($t_e > t_{L1}$), we set $t' = t_e$. The target period could be shortened to one specific year, e.g. year 2100, which would give a
150 metric identical to a time-dependent AGTP for a pulse emission. However, we integrate over a period as the
151 temperature stabilization may in reality occur over a longer period or may not be able to be specified to a single year
152 due to uncertainty in emissions and climate response (Shine et al., 2007). Additional warming above the level is given
153 equal weight throughout the period of binding level constraint. As emissions at time t_e approaches the level target
154 period starting at time t_{L1} , the time horizon for the AGTP calculations is gradually reduced.

155 **2.3 Rate metric**
156 We propose a physical and analytical rate metric that depends on when the rate constraint is binding. A specific total
157 allowable rate of change for the global temperature over time must be selected that reflects a level of ecological risks
158 that can be tolerated. Natural variability will come on top of the rate of change imposed by anthropogenic forcing.
159 The maximum anthropogenic rate, which then determines the constraint for the metric, is then the difference between
160 the total allowable rate and possible contribution by natural variability. We acknowledge that determining the specific
161 maximum anthropogenic rate is not straightforward; however, the scope of this paper is to lay out the framework for
162 how rate considerations could be implemented in a comprehensive approach following Article 2 of the UNFCCC.

163 Given the baseline scenario selected, a period when the rate constraint is binding is determined. This is illustrated in
164 Fig. 2(B), where the rate is estimated to be above the threshold, and thus binding, between t_{R1} and t_{R2} . The absolute
165 metric value (AM_R) for a unit pulse emission at time t_e is defined to be the integral of the temperature change within

166 this period cf. Eq. (2). A temperature increase is given the same weight whenever in that period this warming occurs,
 167 as any additional warming is equally critical throughout the period of the binding rate constraint.

$$168 \quad AM_R(t_e) = \int_{t'=t_{R1}}^{t_{R2}} \Delta T_i(t_e, t') dt' = \int_{t'=t_{R1}}^{t_{R2}} AGTP_i(t' - t_e) dt' \quad (2)$$

169 In the case for emission occurring after t_{R1} ($t_{R1} < t_e < t_{R2}$), then (AM_R) is given by

$$170 \quad AM_R(t_e) = \int_{t'=t_e}^{t_{R2}} \Delta T_i(t_e, t') dt' = \int_{t'=t_e}^{t_{R2}} AGTP_i(t' - t_e) dt'. \quad (3)$$

171 The potential pathways to temperature T_L are many and the dotted line in Fig. 2(B) shows an alternative pathway with
 172 a temperature rate increase at $t_{R1} < t' < t_{R2}$ just below the rate threshold and, thus, gives no binding rate constraint, which
 173 gives $AM_R(t)=0$ for all time horizons. Hence, we consider the damage during the period with a rate constraint
 174 ($t_{R1} < t' < t_{R2}$), but not after ($t' > t_{R2}$).

175 The proposed rate metric can be seen as a special case of the integrated AGTP and identical to the integrated AGTP
 176 within the time window $t_{R1} < t' < t_{R2}$ (Azar and Johansson, 2012; Peters et al., 2011); however, the metrics are different
 177 due to different choices of integration periods. If the constraint period converges to 0, then the metric is identical to
 178 the time-dependent AGTP.

179 Both the level and rate metric can be normalized to a reference gas e.g. CO₂ to form unitless relative metrics M_L and
 180 M_R , respectively.

181 **2.4 Combining level and rate metric**

182 The rate of change can supplement the long-term target by regarding them as separate environmental issues both
 183 related to climate change, with two separate mitigation commitments and corresponding metrics for the level and rate
 184 perspectives. For the rate issue, the CO₂-eq. emissions will be calculated using the rate metric described above, while
 185 for the long-term e.g. the GTP(t) will be used. In this framework, the parties to an agreement would negotiate separate
 186 quantitative emission reductions for a rate agreement and a level agreement, thus effectively weight the importance of
 187 the rate versus the level constraint. It is important to note that emission reductions of any warming species should be
 188 accounted for both commitments. E.g. if a stakeholder reduces their methane emissions, they will get credit for that
 189 under both the rate and level commitments, albeit with different metric and CO₂-eq. values.

190 If the targets rate of change and the long-term warming are regarded as one single coupled problem, then a common
 191 metric needs to be established. However, successfully achieving the combined emission reduction target based on one
 192 combined metric does not automatically assure that both individual targets are reached.

193 If the two targets are combined into one, the importance of the individual targets must somehow be weighted relative
 194 to each other. This weighting is not a scientific question, but rather involves value judgments and possibly economics,
 195 and as such would be determined through a negotiation process. Here, we illustrate a simple linear weighting by giving
 196 the rate metric a weight α , and the level metric $1-\alpha$, where $0 \leq \alpha \leq 1$. The combined metric for species i normalized to
 197 CO₂ ($M_{R\&L}$) is then

198
$$M_{R\&L,i}(t_e) = \alpha \frac{AM_{R,i}(t_e)}{AM_{R,CO_2}(t_e)} + (1 - \alpha) \frac{AM_{L,i}(t_e)}{AM_{L,CO_2}(t_e)}.$$
 (4)

199 This metric is a pure level metric when $\alpha=0$ and pure rate metric when $\alpha=1$. For emissions taking place after the rate
200 constraint is binding, i.e. for $t_e > t_{R2}$, we set $\alpha=0$. Then, only the level target is relevant and level metric values are
201 applied without any weighting. Thus, if the rate target is met, a combined metric focuses purely on the level target.
202 Both metrics are integrated over some constraint period, but can also be used for individual constraint years. Since all
203 the metrics discussed here are defined relative to a baseline scenario, the specific metric values are all known as a
204 function of (future) time of emissions (t_e). This time dependence must be communicated to the stakeholders so they
205 would know how to make investments that effect emissions over some future time period.

206 In this framework, the relative weight of the rate constraint versus the long-term level is determined through the policy
207 choice of α , and a single CO₂-eq. mitigation commitment is negotiated. As emitters are free to choose which species
208 to abate, the outcome of the mitigation efforts are more uncertain when applying a common metric (Daniel et al., 2012;
209 Fuglestvedt et al., 2000).

210 3 Results

211 We calculate the level metric, rate metric (i.e., setting $\alpha=0$ and $\alpha=1$, respectively), and combined metric values ($M_{R\&L}$)
212 for the SLCFs CH₄ and BC and the long lived greenhouse gas (LLGHG) N₂O based on radiative efficiencies and
213 perturbation lifetimes from IPCC AR5 (Myhre et al., 2013). Further, the Impulse Response Function (IRF) for CO₂
214 applied is based on the Bern Carbon Cycle Model (Joos et al., 2013), while the IRF for temperature comes from the
215 Hadley CM3 climate model (Boucher and Reddy, 2008). The schematic temperature response due to pulse emissions
216 of these species that is compatible with Fig. 2 is given in Fig. S1(B) in the Supporting Information.

217 Due to the quick response of SLCFs, mitigation of the warming SLCFs has the potential to regulate the temperature
218 development and, thus, the temperature rate, for short time horizons (see Sect. 2 in the Supporting Information).
219 Emission reduction of CO₂ will also reduce the short-term temperature rate, in addition to reduced long-term warming.
220 To demonstrate how the metrics presented in Sect. 3 are applied, we have to choose time horizons for binding rate and
221 level targets. Our default baseline scenario is an illustration of the framework that is not deduced from a specific
222 scenario. The default case is based on binding rate constraint for the 2031–2050 period and a level target reached in
223 the 2081–2100 period. All figures in the paper use these constraints unless otherwise explained. We will in Sect. 5.4.4
224 relate this hypothetical baseline scenario with potential temperature developments. The later part of Sect. 4 focuses
225 on CH₄ and presents different dimensions or choices for these metrics.

226 3.1 Different weighting factors

227 In Fig. 3, we show metric values for CH₄, BC, and N₂O based solely on the rate or level targets, as well as for an equal
228 weighting ($\alpha=0.5$). Figs. 3(A), 3(C), and 3(E) are the default cases with a 20 years binding period for both rate (2031–
229 2050) and level (2081–2100), while Figs. 3(B), 3(D), and 3(F) shows how this changes as the binding period is reduced
230 towards a minimum of 1 year, that is a rate target in 2050 and level target in 2100. The years on the x-axis correspond
231 to the time of emissions, t_e in Eqs. (2) and (3). As the rate target is no longer binding after 2050, values for a pure rate

232 metric ($\alpha=1$) are only given before that. Metric values for other weightings (α) are shown in Sect. 5 in the Supporting
233 Information.

234 For SLCFs, the metric values increase for emissions occurring towards the start of the rate-binding and level-binding
235 periods, with a second increase towards the end of the rate-binding and level-binding periods for the species with the
236 shortest perturbation timescales, such as BC. This fluctuating behavior in metric values for CH_4 is similar to the
237 findings of Manne and Richels (2001) with similar rate-binding and level-binding constraints. The metric values for
238 SLCFs are, for a period, larger when the binding periods start earlier, since a binding constraint in a given year results
239 in larger metric values than no binding for the SLCFs. One example is the elevated metric values from 2081 and
240 onwards for BC in Fig. 3(C) compared with Fig. 3(D). However, the differences between a long binding period (Figs.
241 3(A), 3(C), and 3(E)) and a short one (Figs. 3(B), 3(D), and 3(F)) is generally small. The longer the long binding
242 period is, the larger the difference. The opposite occurs for LLGHGs as those species have a relatively decreasing
243 impact on the temperature as the time horizon decreases, thus, they have a relatively smaller role for the short-term
244 rate change. The higher the α value is set, the larger influence has the rate metric, and the larger variability with time
245 is in the combined metric value. The deviation of this combined metric value compared to GWP(100) is largest for
246 BC due to its short perturbation timescale, and the difference is largest for emissions during the rate-binding and level-
247 binding periods.

248 **3.2 Different rate constraints**

249 Depending on the choice of baseline scenario and the rate and level constraints, the timing and length of the periods
250 when the constraints will be binding will vary. Next, we consider how the combined metric for CH_4 varies depending
251 on how long the rate constraint period lasts (Fig. 4(A)) and when the rate constraint becomes binding (Fig. 4(B)). The
252 earlier the rate constraint becomes binding, the larger is the metric value in early 21st century (see Fig. 4(A)). However,
253 as the rate metric is an integral over the binding rate constraint period (with equal weighting over time), the metric
254 values during the first part of these periods are in general lower for longer binding periods. On the other side, the peak
255 at the end is relatively higher for longer binding periods, as the level metric contributes more if we assume no change
256 of the level target. If both the rate and level targets are moved correspondingly in time, the metric value curves are
257 identical, just moved. The reduced metric values at the beginning for longer binding periods occur since the
258 temperature response of CH_4 decays at the end of the period, while CO_2 give a much longer lasting response. Moving
259 the rate constraint period without changing the length of the period just moves the metric curve (see Fig. 4(B)).

260 **3.3 Different time horizons for the level target**

261 If we only consider the level target, the level metric value at a fixed year is larger the earlier this level target is reached.
262 Shine et al. (2007) have previously shown this relationship with a pure GTP metric. Fig. 4(C) shows the combined
263 metric as we move the level target period gradually from 2081-2100 to 2041-2060. As the rate constraint is kept
264 constant in this illustration, a drop in the combined metric value is observed for all cases at the end of the rate constraint
265 period (2050). The size of this drop decreases with decreasing distance between the rate-binding and level-binding
266 constraints. Instead of a reduction of 66% from 71 to 25 in 2050 with a level target period of 2081-2100, the drop is
267 only 4.0% when the level target period is moved earlier by 40 years. However, a temporal distance of about 10 years

268 between the binding rate and level constraints is unlikely since the rate temperature increase will likely be gradually
269 reduced approaching the timing of the global temperature stabilization. In summary, the rate constraint becomes more
270 important for the combined metric as the temporal distance increases between the binding period of the rate constraint
271 and the level constraint.

272 **4 Discussion**

273 **4.1 Implementation**

274 A policy covering a range of species with a rate perspective can be implemented in various ways. Two/multi-basked
275 approaches have previous been discussed by Daniel et al. (2012); Fuglestvedt et al. (2000); Jackson (2009); Rypdal et
276 al. (2005). We present two approaches to combine the level and rate targets. The first method applies the level metric
277 and rate metrics individually, which we call the separate commitment approach. The second approach uses the
278 combined metric, thus, a common commitment.

279 **4.1.1 Separate commitments - two metrics**

280 Each party to an agreement now has two mitigation commitments, both quantified in terms of total CO₂-eq. emission
281 reductions, but using either the pure rate metric or the pure level metric to calculate the CO₂-eq. emissions. A dual
282 target is less flexible than a single target, which is likely more costly. Note that these commitments should be defined
283 (but could change) for all years following the time of the agreement. Figs. 3 and 4 show that the metric values varies
284 significantly with time of the emissions reductions, in contrast to the more traditional use of the (fixed) GWP₁₀₀.

285 **4.1.2 A common commitment - one metric**

286 In this case, each party has only one commitment in terms of CO₂-eq. emissions, using the combined rate and level
287 metric, with a chosen α ($0 < \alpha < 1$). As for the dual target case, the metric values varies with time, in particular for SLCFs,
288 with a sharp reduction for emissions after the end of the rate-binding period. The same argument holds also for this
289 case, i.e. that the parties need to know how the metric values change over time in order to implement cost-effective
290 policies. This case is probably simpler to implement for the parties as they have only one commitment to consider.

291 To implement cost-effective policies, the parties to the agreement need to know how the metric values change over
292 time when they plan investments that will reduce emissions for a longer period. The pulse metrics presented in this
293 paper, with their discontinuities, is only a building block. The abrupt change in emission metric value at the end of a
294 constraint period can make this emission metric confusing for decision makers. We discuss two options that will
295 remove this discontinuity. The first is to sum the absolute values of the rate metric and level metric, and then normalize
296 to CO₂:

$$297 M_{R\&L,i}(t_e) = \frac{AM_{R,i}(t_e) + AM_{L,i}(t_e)}{AM_{R,CO_2}(t_e) + AM_{L,CO_2}(t_e)} \quad (5)$$

298 This change of formula will smooth out the curve for the combined metric and give lower metric values during the
299 rate constraint period. Fig. S5 in Supporting Information is a remake of Figs. 3(A), 3(C), and 3(E) based on this
300 alternative formula. As we find our original formula simpler and easier to adjust the relative weighting, we prefer Eq.
301 (3).

302 The second alternative is to look at emissions over a longer period, which is often the case for decision makers leading
303 to emission changes lasting over a period. We give an illustrative example where decision makers can choose between
304 20 years of constant emissions of CH₄ versus CO₂. The emission metric value is then the average emission metric
305 value over a time period of 20 years following the implementation. The combined emission metric for CH₄ peaks in
306 2049 when considering individual years (see Fig. 3(A)), but an investment in 2049 has a metric value near the
307 minimum (see Fig. 5) due to the low metric values in the following years. The peak occurring around 2030 does not
308 have a discontinuity. The shape of the curve is similar for BC emissions, but with a relatively faster increase towards
309 2030 and larger decrease towards the end of the binding rate constraint period. Thus, a strategy for polluters and
310 policymakers cannot be based on the emission metric value for a single year, but a broader period relevant for
311 investments and policies.

312 **4.2 Cost-effective metrics**

313 The level and rate metrics presented here are purely physical based in that only physical quantities (like time, radiative
314 efficiency, etc.) are used to calculate their numerical values. However, from an economics point of view they represent
315 a cost-effective framework. On a fundamental level, emission metrics can either adopt a cost-effective or cost-benefit
316 approach which results in the metrics GCP (Manne and Richels, 2001) and Global Damage Potential (GDP) (Kandlikar,
317 1995), respectively (Tol et al., 2012). The GWP, which is also calculated from physical quantities only, can be derived
318 based on a cost-benefit approach where the benefit is optimized by weighting damages and costs. Alternatively, in the
319 cost-effective approach binding constraints are determined exogenously (e.g. the 1.5 and 2 °C targets are based on
320 political negotiations), and policies are developed to reach the policy target in a cost-effective way. Under given
321 assumptions, it can be shown that the GTP metric is suited for cost-effective approach to a level target (Tol et al.,
322 2012). The time horizon applied to calculate the metric values depends on the time interval when the constraints are
323 likely to be binding in an assumed baseline scenario.

324 **4.3 Weighting global emissions**

325 The impact in terms of CO₂-eq. emissions of different species depends on what perspective to take, whether level or
326 rate metric, what time horizon, or focusing on some other parameter. In Fig. 6(A), we show how different perspectives
327 compare based on the default level and rate metric cases, including GWP(100) and the Global Precipitation-change
328 Potential for pulse for a 20 year time horizon (GPP_p(20)) (Shine et al., 2015). For emissions in 2008 (EC, 2011;
329 Shindell et al., 2012), CO₂ is the most important contributor for all metrics, even the pure rate metric. If we keep the
330 emissions constant at the 2008 level and focus on the combined metric, the global BC and CH₄ emissions are given
331 little when they occur about 40-50 years before a binding constraint period (see Fig. 6(B)). The SLCFs increase their
332 influence closer to and during the rate-binding and level-binding constraint periods. The increase is most notable for
333 CH₄ in the first years, while the quick temperature response of BC leads to the largest increase for BC towards the end
334 of the rate constraint periods. However, global CO₂ emission is the most important or among the most important
335 drivers of temperature rates even during those binding periods. The most notable exception is the outsized influence
336 of BC in the final years of the rate and level binding constraint periods. These conclusions also hold for the rate metric
337 and level metric, as well as when applying emission scenarios such as the RCP6.0 (see Fig. S6 in the Supporting
338 Information).

339 **4.4 Temperature development and RCPs**

340 The time horizons of the level and rate targets are dependent on assumptions of the baseline scenario. In this study,
341 we have presented applications of the level, rate, and combined metric with illustrative examples. However, the RCPs
342 could be suitable for determining the timing of rate and level criteria. The global temperature increase and the decadal
343 rate change according to RCP2.6, RCP4.5, RCP6.0, and RCP8.5, as well as historic data, is provided in Sect. 3 in the
344 Supporting Information. According to RCP2.6, the global temperature stabilizes around 2060, while all other RCPs
345 give an increase in temperature throughout the 21st century. Due to natural variability, the decadal temperature change
346 can vary, historically cooling of almost -0.2 °C/decade to warming up to 0.25 °C/decade (Hansen et al., 2010; Morice
347 et al., 2012; Smith et al., 2008). Similar fluctuations can be expected in the future. Current average decadal increase
348 is approaching 0.2 °C/decade. All RCPs indicate an anthropogenically driven rate of increase of about 0.2 °C/decade
349 in the next decades potentially giving the order of 0.4 °C/decade when natural variability is added, which will likely
350 be harmful for some of the plants and animals (Settele et al., 2014). A gradual reduction in the rate increase for the
351 second half of the 21st century is seen for RCP2.6 and RCP4.5.

352 Our default case ends the binding rate constraint by 2050, which is partly consistent with a binding rate constraint of
353 0.2 °C/decade in RCP4.5, or alternatively 0.1 °C/decade in RCP2.6. The 1.5 or 2 °C target from the Paris Agreement
354 (UNFCCC, 2015) is for 2100. Collins et al. (2013) used the period 2081-2100 as a time proxy of climate change at
355 the end of the 21st century, which is identical to our default level target period. Additional metric examples based on
356 RCP4.5 and RCP8.5 with a range of different rate constraints are given in Sect. 8 in the Supporting Information.

357 For RCP8.5, the combined metric value increases throughout the century since the rate constraint is binding for the
358 entire period or becomes binding (for >0.3 °C/decade). On the other side, RCP4.5 gives a secondary maximum towards
359 the end of the binding rate constraint period similar to Fig. 3 as the rate constraint is only binding in the first part of
360 the century. In RCP2.6, one can argue that the level target is reached by 2060 as the global temperature increase since
361 the pre-industrial time is set to fluctuate around 1.5 °C from 2060 and for the rest of the century. A similar case is
362 presented in Fig. 4(C).

363 Our default combined metric case, which is partly inspired by RCP4.5, has similar metric fluctuations as Manne and
364 Richels (2001), with increasing (decreasing) metric values in the period of binding rate constraint for CH₄ (N₂O), and
365 similar changes as the time of the level target is approached. Updated calculations by Ekholm et al. (2013) of the GCP
366 for CH₄ for the 2 °C level target and a combination of the 2 °C level target combined with a rate constraint gave similar
367 findings. However, the absolute values between our and their estimate differ, since they apply the GCP in some form
368 based on economic assumptions and we apply analytical emission metrics.

369 The temperature development may be different from the baseline scenario, which could warrant the need for a regular
370 updates of metric values. For instance, the temperature pathways are influenced by climate policy. If a stringent
371 climate policy based on the metrics discussed here are applied, this will change this pathway as emissions are mitigated.
372 This pathway change will further change the period when the rate constraint is binding, which changes the assumptions
373 of the metric calculations i.e., a ‘policy feedback.’ If sustained and effective climate policy is practiced, the global

374 temperature trajectory will be lower than the baseline scenario. Not only is the temperature rate impacted, but also the
375 magnitude and the time horizon of the temperature stabilization or peaking. Another issue is what emission metric and
376 time horizon should be applied for emissions after both targets are reached, as continued climate policy is likely needed
377 to avoid further global warming, which potentially indicates that the emission metric values can be kept constant.

378 The rate metric presented here has a rate constraint that is either binding or not binding. Alternatively, a metric could
379 potentially be produced that assess different levels of temperature rates, for instance have a rate constraint starting at
380 the maximum allowable rate of change (e.g., 0.2 °C/decade) that increases linearly in weight above that. This would
381 give additional weight to the periods with the largest temperature rates.

382 The anthropogenic contributed temperature rates may hypothetically fluctuate, hence, the rate constraint binding may
383 occur for several different periods separated by periods that are not binding. We have not given examples of this in
384 our analysis of a rate metric since such behavior is unlikely, but this behavior can easily be included. In Eq. (2), an
385 additional constraint period term between t_{R3} and t_{R4} can be added.

386 Some of the individual pathways of the RCPs indicate overshooting (Clarke et al., 2014), i.e. the level target is met
387 in the long run but with a overshooting in the short-term. The AR5 WG3 Scenario database (Krey et al., 2014) shows
388 that overshooting pathways tend to have larger temperature rate increases, as well as for longer periods, than pathways
389 that approach level targets without overshoot (see Sect. 4 in the Supporting Information for details on scenarios
390 pathways that leads to CO₂ concentrations of 430–480 ppm and 530–580 ppm). Similar findings are previously
391 quantified by O'Neill and Oppenheimer (2004). Overshooting may lead to more ecological risks, as well as climate
392 feedback risks, than those pathways without overshoot (O'Neill and Oppenheimer, 2004). The overshoot pathways
393 result in larger combined metric values for SLCFs than the other pathways with identical long-term level targets due
394 to longer rate constraint periods closer in time to the level constraint.

395 5 Conclusion

396 We have presented a physical and analytical rate metric concept that is compatible with the rate target described in
397 Article 2 in the UNFCCC. In addition, we have developed a combined metric that considers both the rate and level
398 target. We discussed and argued against alternative rate metrics derived from the rate of change. Several issues have
399 been discussed, such as determining when the rate and level constraints are binding and how to weight the rate and
400 level metrics. Further, we considered applying the rate of change perspective with two different approaches. One is to
401 argue for the long-term temperature stabilization target and the target of reducing the rate of climate change as two
402 different issues that need separate metrics. The other is to consider the two issues in one common framework that
403 warrant one combined metric with a selected weighting of the two targets. We presented some illustrative examples
404 of how these metrics can be used, as well as linking them to the RCPs. The suggested rate metric may be applied, as
405 the global temperature increase in the next decades can be harmful for some ecosystems. The total metric values for
406 SLCFs increase distinctly in periods when the rate constraint is binding, and the shorter the atmospheric perturbation
407 timescale is for a species. However, global emissions of CO₂ are the most important contributor when using the rate

408 metric, except for BC and partially CH₄ at the end of the binding period of rate constraint. The metrics presented here
409 for pulse emissions must be seen as building blocks for the users. The discontinuity in metric value at the end of a
410 constraint period can be difficult to communicate to users, while looking at emissions over a longer period resolves
411 this issue. We illustratively showed that an investment that leads to 20 years of sustained emissions gives a smoother
412 temporal metric profile for CH₄ than one based on pulses for each year. The utilization of these metrics are likely most
413 effective when the decision makers know how the metric values vary over time.

414 **Acknowledgements**

415 We thank Keith Shine and Drew Shindell for valuable comments. We thank Daniel Johansson for ideas on how to
416 combine rate and level metrics in one equation. The authors would like to acknowledge the funding by the Norwegian
417 Research Council Project “the Role of Short-Lived Climate Forcers in the Global Climate Regime.”

418 **References**

419 Azar, C. and Johansson, D.J.A., 2012. On the relationship between metrics to compare greenhouse gases - the case
420 of IGTP, GWP and SGTP. *Earth Syst. Dynam.*, 3(2): 139-147.

421 Boucher, O. and Reddy, M.S., 2008. Climate trade-off between black carbon and carbon dioxide emissions. *Energy
422 Policy*, 36: 193-200.

423 Bowerman, N.H.A., Frame, D.J., Huntingford, C., Lowe, J.A. and Allen, M.R., 2011. Cumulative carbon emissions,
424 emissions floors and short-term rates of warming: implications for policy. *Philosophical Transactions of the
425 Royal Society of London A: Mathematical, Physical and Engineering Sciences*, 369(1934): 45-66.

426 Clarke, L. et al., 2014. Assessing Transformation Pathways. In: O. Edenhofer et al. (Editors), *Climate Change 2014:
427 Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the
428 Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, United Kingdom
429 and New York, NY, USA.

430 Collins, M. et al., 2013. Long-term Climate Change: Projections, Commitments and Irreversibility. In: T.F. Stocker
431 et al. (Editors), *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
432 Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press,
433 Cambridge, United Kingdom and New York, NY, USA, pp. 1029–1136.

434 Daniel, J. et al., 2012. Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy.
435 *Climatic Change*, 111(2): 241-248.

436 Diffenbaugh, N.S. and Field, C.B., 2013. Changes in Ecologically Critical Terrestrial Climate Conditions. *Science*,
437 341(6145): 486-492.

438 EC, 2011. Emission Database for Global Atmospheric Research (EDGAR), release version 4.2. European
439 Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL),
440 <http://edgar.jrc.ec.europa.eu/>.

441 Ekholm, T., Lindroos, T.J. and Savolainen, I., 2013. Robustness of climate metrics under climate policy ambiguity.
442 *Environmental Science & Policy*, 31: 44-52.

443 Fuglestvedt, J.S., Berntsen, T., Godal, O. and Skovdøn, T., 2000. Climate implications of GWP-based reductions in
444 greenhouse gas emissions. *Geophysical Research Letters*, 27: 409-412.

445 Fuglestvedt, J.S. et al., 2010. Transport impacts on atmosphere and climate: Metrics. *Atmospheric Environment*, 44:
446 4648-4677.

447 Hansen, J., Ruedy, R., Sato, M. and Lo, K., 2010. Global surface temperature change. *Reviews of Geophysics*,
448 48(4): 2010RG000345.

449 IPCC, 1999. *Aviation and the Global Atmosphere*. Cambridge University Press, Cambridge, United Kingdom, and
450 New York, NY, USA.

451 IPCC, 2014. Summary for policymakers. In: C.B. Field et al. (Editors), *Climate Change 2014: Impacts, Adaptation,*
452 and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
453 Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
454 Cambridge, United Kingdom and New York, NY, USA.

455 Jackson, S.C., 2009. Parallel Pursuit of Near-Term and Long-Term Climate Mitigation. *Science*, 326(5952): 526-
456 527.

457 Joos, F. et al., 2013. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas
458 metrics: A multi-model analysis. *Atmospheric Chemistry and Physics*, 13: 2793-2825.

459 Joshi, M., Hawkins, E., Sutton, R., Lowe, J. and Frame, D., 2011. Projections of when temperature change will
460 exceed 2 °C above pre-industrial levels. *Nature Clim. Change*, 1(8): 407-412.

461 Kallbekken, S., Rive, N., Peters, G.P. and Fuglestvedt, J.S., 2009. Curbing emissions: cap and rate. (0912): 141-142.

462 Kandlikar, M., 1995. The relative role of trace gas emissions in greenhouse abatement policies. *Energy Policy*,
463 23(10): 879-883.

464 Kirschbaum, M.U.F., 2014. Climate-change impact potentials as an alternative to global warming potentials.
465 *Environmental Research Letters*, 9(3): 034014.

466 Krey, V. et al., 2014. Annex II: Metrics & Methodology. In: O. Edenhofer et al. (Editors), *Climate Change 2014:*
467 *Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the*
468 *Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, United Kingdom
469 and New York, NY, USA.

470 Loarie, S.R. et al., 2009. The velocity of climate change. *Nature*, 462(7276): 1052-1055.

471 LoPresti, A. et al., 2015. Rate and velocity of climate change caused by cumulative carbon emissions.
472 *Environmental Research Letters*, 10(9): 095001.

473 Manne, A.S. and Richels, R.G., 2001. An alternative approach to establishing trade-offs among greenhouse gases.
474 *Nature*, 410(6829): 675-677.

475 Matthews, H.D., Solomon, S. and Pierrehumbert, R., 2012. Cumulative carbon as a policy framework for achieving
476 climate stabilization. *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical*
477 *and Engineering Sciences*, 370(1974): 4365-4379.

478 Morice, C.P., Kennedy, J.J., Rayner, N.A. and Jones, P.D., 2012. Quantifying uncertainties in global and regional
479 temperature change using an ensemble of observational estimates: The HadCRUT4 data set. *Journal of
480 Geophysical Research: Atmospheres*, 117(D8): n/a-n/a.

481 Myhre, G. et al., 2013. Anthropogenic and Natural Radiative Forcing. In: T.F. Stocker et al. (Editors), *Climate
482 Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
483 Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge,
484 United Kingdom and New York, NY, USA.

485 O'Neill, B.C. and Oppenheimer, M., 2004. Climate change impacts are sensitive to the concentration stabilization
486 path. *Proceedings of the National Academy of Sciences of the United States of America*, 101(47): 16411-
487 16416.

488 O'Neill, B.C., Oppenheimer, M. and Petsonk, A., 2006. Interim targets and the climate treaty regime. *Climate
489 Policy*, 5(6): 639-645.

490 Peck, S. and Teisberg, T., 1994. Optimal carbon emissions trajectories when damages depend on the rate or level of
491 global warming. *Climatic Change*, 28(3): 289-314.

492 Peters, G., Aamaas, B., Berntsen, T. and Fuglestvedt, F.S., 2011. The integrated Global Temperature Change
493 Potential (iGTP) and relationship with other simple emission metrics. *Environmental Research Letters*, 6:
494 044021.

495 Rypdal, K. et al., 2005. Tropospheric ozone and aerosols in climate agreements: scientific and political challenges.
496 *Environmental Science and Policy*, 8(1): 29-43.

497 Settele, J. et al., 2014. Terrestrial and inland water systems. In: C.B. Field et al. (Editors), *Climate Change 2014:
498 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working
499 Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge
500 University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 271-359.

501 Shindell, D. et al., 2012. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and
502 Food Security. *Science*, 335(6065): 183-189.

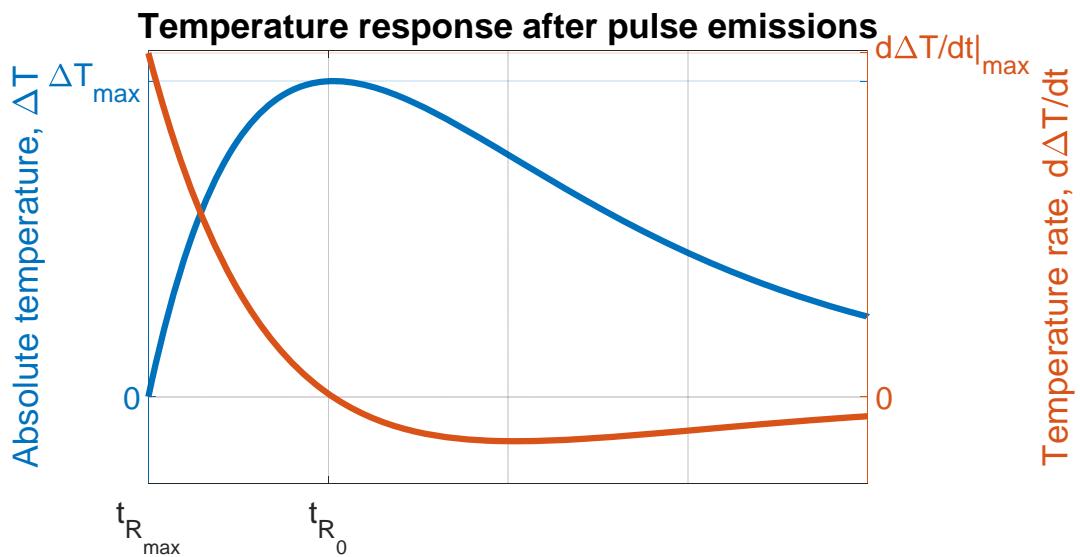
503 Shine, K.P., Allan, R.P., Collins, W.J. and Fuglestvedt, J.S., 2015. Metrics for linking emissions of gases and
504 aerosols to global precipitation changes. *Earth Syst. Dynam. Discuss.*, 6(1): 719-760.

505 Shine, K.P., Berntsen, T., Fuglestvedt, J.S., Stuber, N. and Skeie, R.B., 2007. Comparing the climate effect of
506 emissions of short and long lived climate agents. *Philosophical Transactions of the Royal Society A*, 365:
507 1903-1914.

508 Shine, K.P., Fuglestvedt, J.S., Hailemariam, K. and Stuber, N., 2005. Alternatives to the Global Warming Potential
509 for Comparing Climate Impacts of Emissions of Greenhouse Gases. *Climatic Change*, 68: 281-302.

510 Smith, T.M., Reynolds, R.W., Peterson, T.C. and Lawrimore, J., 2008. Improvements to NOAA's Historical Merged
511 Land–Ocean Surface Temperature Analysis (1880–2006). *Journal of Climate*, 21(10): 2283-2296.

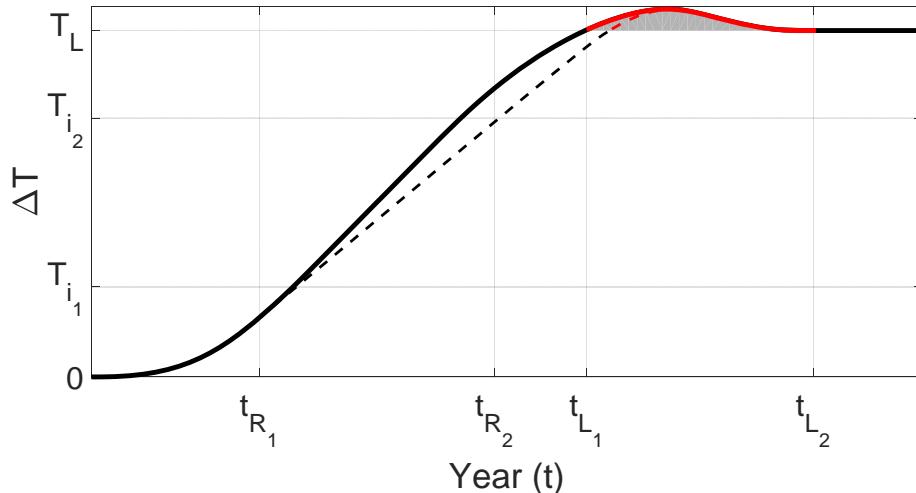
512 Tol, R.S.J., Berntsen, T., O'Neill, B.C., Fuglestvedt, J.S. and Shine, K., 2012. A unifying framework for metrics for
513 aggregating the climate effect of different emissions *Environmental Research Letters*, 7(4): 044006.


514 UNFCCC, 1992. United Nations Framework Convention on Climate Change. United Nations.

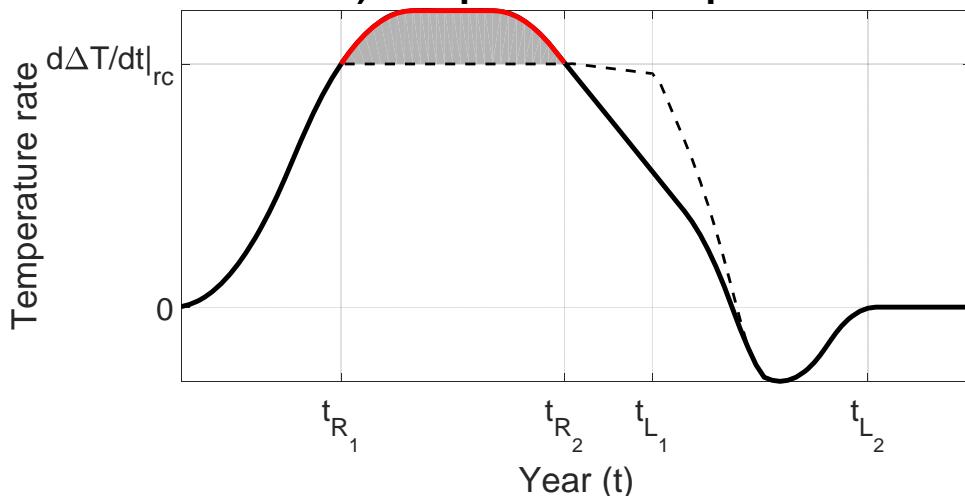
515 UNFCCC, 2015. Paris Agreement. United Nations.
516 Wallis, M.K. and Lucas, N.J.D., 1994. Economic global warming potentials. International Journal of Energy Research,
517 18(1): 57-62.

518

519


520

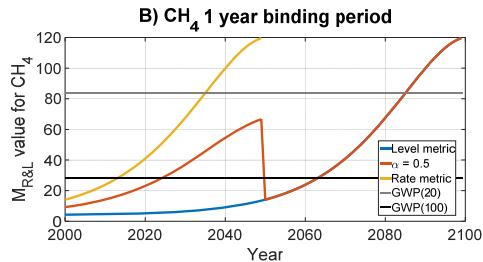
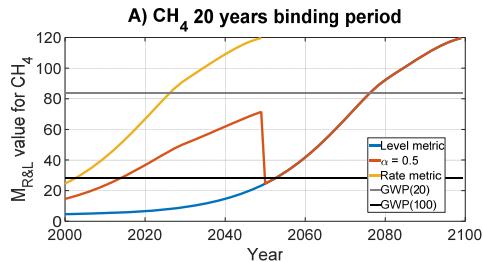
521 **Figure 1:** A schematic of how the absolute temperature and temperature rate evolve after a pulse emission of a warming
522 species. The max rate of change occurs at $t_{R_{\max}} = 0$. This figure is based on CH₄, but the principal is the same for all other
523 warming species.


524

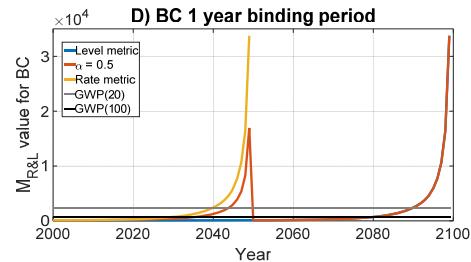
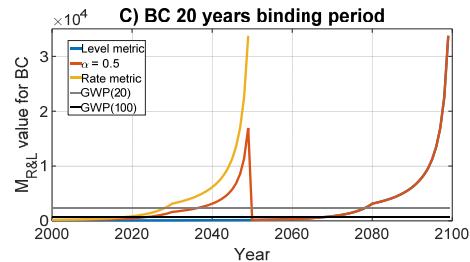
A) Absolute temperature profile

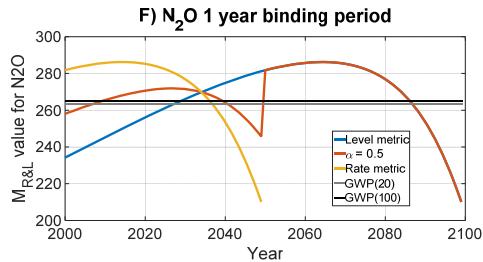
525

B) Temperature rate profile



526

527 **Figure 2: A schematic of a baseline scenario where the global temperature initially have an increasing rate of change and**
 528 **eventually levels off. The total temperature change is given in A and the temperature rate in B. The level constraint above**
 529 **the level temperature T_L occurs in the time period between t_{L_1} and t_{L_2} (shown in red). The rate of temperature increase is**
 530 **above some set critical level between t_{R_1} and t_{R_2} (shown in red) and makes the rate constraint binding for that period. The**
 531 **dotted line indicates an alternative baseline scenario that do not cross the rate constraint threshold, but leads eventually to**
 532 **the same total temperature increase.**

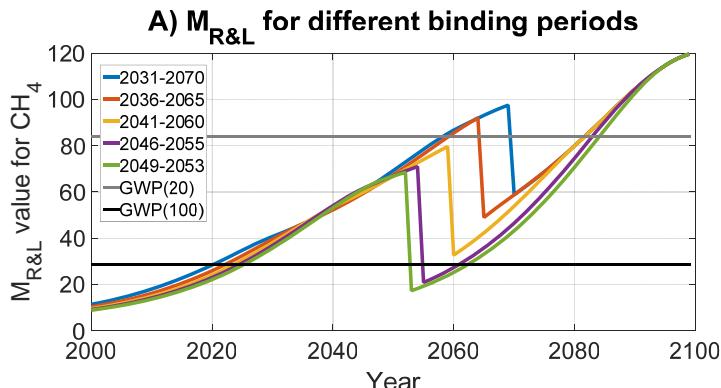


533



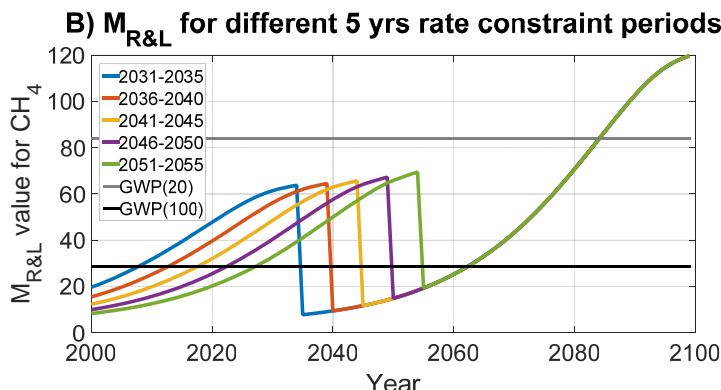
534

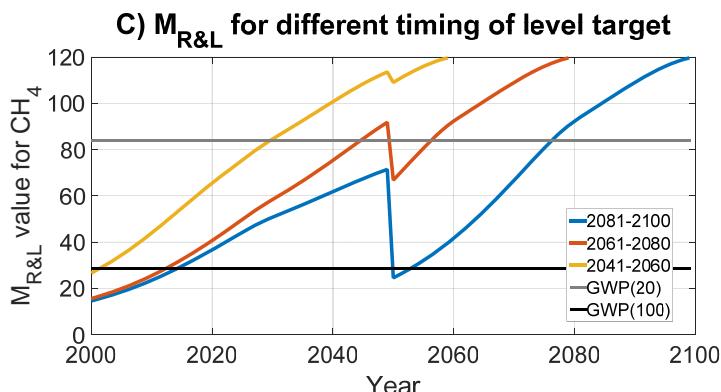
535

536



537


Figure 3: Illustrative values for the level and rate metrics, as well as a combined metric based on equal weighting, for CH₄, BC, and N₂O. Metric values for other weightings (α) are shown in Sect. 5 in the Supporting Information. The rate constraint is binding for the period 2031–2050, and the level reached in 2081–2100 in A, C, and E. For B, D, and F, the rate is binding in 2050 and level binding in 2100. α is the weight given to the rate metric in the period that is binding. GWP(20) and GWP(100) values are given as reference.

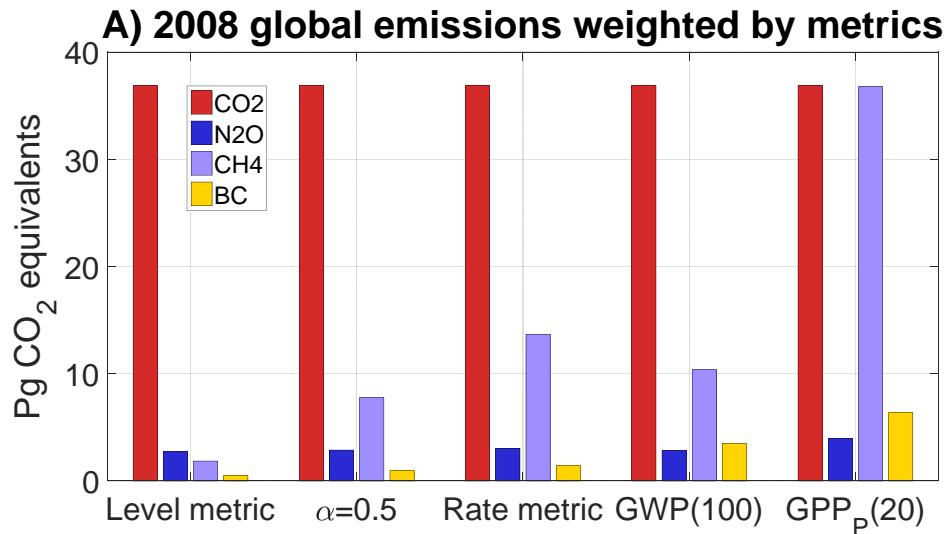

542

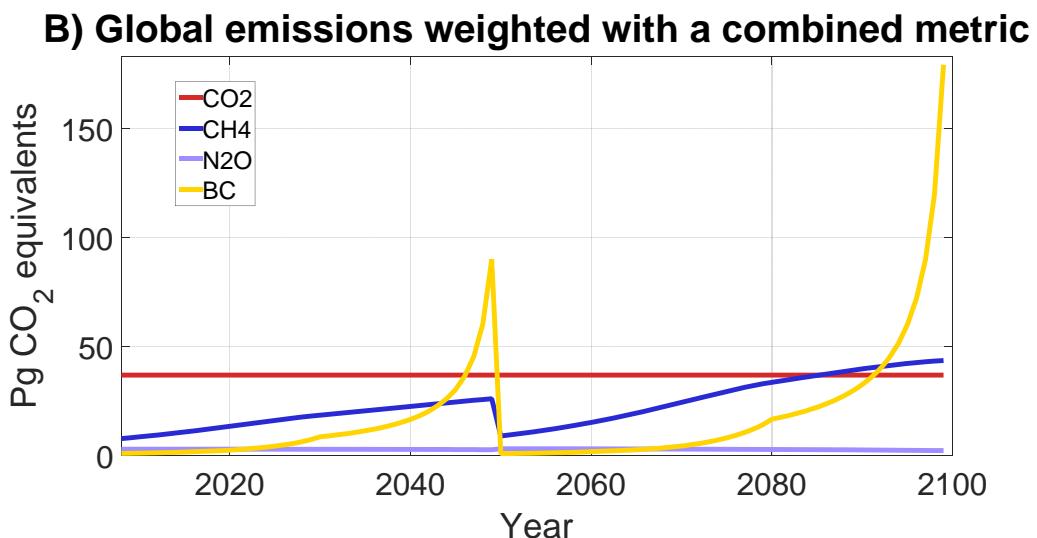
543

544

545

546 Figure 4: How changing the timing of the level and rate targets influence the combined metric values. For all figures, the
 547 length of the level constraint in years is identical to the length of the rate constraint period. All metric values are given
 548 based on a weighting of $\alpha=0.5$. In A, the length of the period of binding rate constraint (5-40 years) varies with midpoint in
 549 2050. B shows a 5 years period of binding rate constraint at different times. C shows a sensitivity test of the timing of the
 550 level target. GWP(20) and GWP(100) values are added to all figures as a reference.


551


552

553 **Figure 5:** Metric values for investments that lead to constant emissions over a period of 20 years based on the baseline
554 scenario. The weighting is $\alpha=0.5$. GWP(20) and GWP(100) values are given as reference. For the rate metric ($\alpha=1$), we apply
555 the level metric after the period of binding rate constraint.

556

557

558

559 Figure 6: A shows the global 2008 emissions weighted by different emission metrics. The calculations is based on Fig. 3,
 560 with the rate constraint binding for the 2031-2050 period and level reached in 2081-2100. The level metric is here the same
 561 as $\alpha=0$ and the rate metric equal to $\alpha=1$. These metrics are given equal weight with $\alpha=0.5$, while GWP(100) and GPP_P(20)
 562 are given for comparison. B is based on constant 2008 emissions for the rest of the century. The emissions are weighted with
 563 the combined metric ($\alpha=0.5$).

564