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Abstract. Today, humans have a critical impact on the Earth system and vice versa, which can generate com-
plex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth
System Models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral
options and decision rules, as well as modeling decisions regarding human social interactions and the aggregation
of individuals’ behavior. Here, we review existing modeling approaches and techniques from various disciplines
and schools of thought dealing with human behavior at different levels of decision making. We demonstrate
modelers’ often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences
of seemingly innocent modeling assumptions.

After discussing which socioeconomic units are potentially important for ESMs, we compare models of in-
dividual decision making that correspond to alternative behavioral theories and that make diverse modeling as-
sumptions about individuals’ preferences, beliefs, decision rules, and foresight. We review approaches to model
social interaction, covering game theoretic frameworks, models of social influence and network models. Finally,
we discuss approaches to studying how the behavior of individuals, groups and organizations can aggregate to
complex collective phenomena, discussing agent-based, statistical and representative-agent modeling and eco-
nomic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use
dynamics as one of the main drivers of environmental change bridging local to global scales.

1 Introduction ent scenarios of climate mitigation. These projections deter-
mine the radiative forcing used as external input in ESMs to
study its natural impacts (Moss et al., 2010; IPCC, 2014).
The latter can, however, have socioeconomic consequences
that may be fed back into the scenario process. However, the
complex interplay of dynamics of the natural Earth system
and social, cultural and economic responses to them are not
captured.

The concept of the Anthropocene epoch implies that hu-
mans have become a dominant geological force interfer-
ing with biophysical Earth system processes (Crutzen, 2002;

Even though Earth system models (ESMs) are used to study
human impacts on the complex interdependencies between
various compartments of the Earth, humans are not repre-
s sented explicitly in these models. ESMs consider human in-
fluence usually in terms of scenarios, comparing the impact
of alternative narratives about future developments of key so-
cioeconomic characteristics. For instance, the IPCC process
uses integrated assessment models to compute plausible fu-
10 ture emission pathways from energy and land use for differ-
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Maslin and Lewis, 2015). But a changing environment also
alters human behavior (Palmer and Smith, 2014). For exam-
ple, climate change will affect their land use and energy con-
sumption. Likewise, perceived environmental risks modify
consumption and mobility patterns. Therefore, with increas-
ing human impact on the Earth system, feedbacks between
shifts in the biophysical Earth system and human responses
will gain importance (Donges et al., 2017b, c; Thornton et al.,
2017). Donges et al. (2017a) provide a classification of these
10 feedbacks in this Special Issue.

Studying feedback loops between human behavior and the
Earth system, projecting its consequences, and developing
interventions to manage human impact on the Earth system
requires a suitable dynamic representation of human behav-

1s ior and decision making. In fact, even a very accurate statis-
tical description of human behavior may be insufficient for
several reasons. First, in a closed loop, humans constantly
respond to changes in the Earth system, facing novel envi-
ronmental conditions and decision problems. Hence, their
20 response cannot be predicted with a statistical model. Sec-
ond, for a correct assessment of different policy options (e.g.,
command and control policy vs. market-based solutions) a
sound theoretical and empirical account of the principles un-
derlying decision making in the relevant context is needed,
because they guide the development of intervention pro-
grams, such as incentives schemes, social institutions, and
nudges (Ostrom, 1990; Schelling, 1978; Thaler and Sunstein,
2009). A statistical model would not help decision makers
identifying handles to influence human behavior.
s Incorporating human behavior in ESMs is challenging. In
contrast to physical laws that traditional ESMs can use as a
basis, there is no single theory of human behavior that can be
taken as a general law (Rosenberg, 2012). The understanding
of human behavior is limited by its determinants often be-
ing contingent and socially formed by norms and institutions.
This allows a view on social systems as socially constructed
realities, which is in stark contrast to the positivist epistemol-
ogy of one objective reality prevalent in the natural sciences.
In fact, past attempts to develop grand theories have been
criticized for being too remote from reality and, as a conse-
quence, hard if not impossible to test empirically (Boudon,
1981; Hedstrom and Udehn, 2009; Hedstrom and Ylikoski,
2010; Merton, 1957). Accordingly, many social scientists
favor a so-called “middle-range approach”, trying to tailor
theoretical models to specific contexts rather than develop-
ing overarching, general theories. This acknowledges, for
instance, that individuals act in some contexts egoistically
and based on rational calculus, while in other contexts they
may act altruistically and according to simple heuristics. The
principles that determine human decisions depend on, e.g.,
whether the decision maker has faced the decision problem
before, the complexity of the decision, the amount of time
and information available to the individual, and whether the
decision affects others or is framed in a specific social situa-
ss tion. Likewise, different actor types might apply different de-
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cision principles. Furthermore, the decision determinants of
agents can be affected by others through social interactions
or aggregate outcomes of collective processes.

Here, we give an overview over existing approaches to
model human behavior and decision making to provide read-
ers with a toolbox of model ingredients. Rather than promot-
ing one theory and dismissing another, we list decisions that
modelers face when modeling humans, point to important
modeling options, and discuss methodological principles that
help developing the best model for a given purpose.

We define decision making as the cognitive process of de-
liberately choosing between alternative actions, which may
involve analytic as well as intuitive modes of thinking. Ac-
tions are intentional and subjectively meaningful activities of
an agent. Behavior, in contrast, is a broader concept that also
includes unconscious and automatic activities, such as habits
and reflexes. The outcome of a decision is therefore a certain
type of behavior, which might be explained by a decision-
making theory.

In ESMs, only those human decisions and behaviors are
relevant that have considerable impact on the Earth system,
i.e. primarily behavior towards the environment of a large
number of individuals or decisions amplified through the so-
cial position of the decision-maker or technology. Therefore,
this paper also covers techniques to model interactions be-
tween agents and to aggregate behavior and interactions to a
macro-level. On the micro-level, relevant decisions include
for instance reproduction, consumption and production of
energy- and material-intensive products, place of living and
land use. These decisions lead to aggregate and long-term dy-
namics of populations, production and consumption patterns
and migration.

There are diverse social-science theories explaining hu-
man behavior and decision making in environmental and eco-
logical contexts, for example in environmental economics,
sociology and psychology. In this paper, we focus on math-
ematical and computational models of human decision mak-
ing and behavior. Here, we understand the terms ‘modeling
approach’ and ‘modeling technique’ as a class of mathemati-
cal or computational structures that can be interpreted as a
simplified representation of physical objects and actors or
collections thereof, events and processes, causal relations or
information flows. Modeling approaches draw on theories of
human behavior that make — often contested — assumptions
about the structure of decision processes. Furthermore, mod-
eling approaches can have different purposes: The objective
of descriptive models is to explore empirical questions (e.g.,
which components and processes can explain the system’s
dynamics), while normative models aim at answering ethi-
cal questions (e.g., which policy we should choose to reach a
certain goal).

Recent reviews focus on existing modeling approaches
and theories that are applied in the context of environmental
management and change: For example, Verburg et al. (2016)
assess existing modeling approaches and identify challenges
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for improving these models in order to better understand

Anthropocene dynamics. An (2012), Meyfroidt (2013) and

Schliiter et al. (2017) focus on cognitive and behavioral the-

ories in ecological contexts, providing an overview for devel-

opers of agent-based land-use and social-ecological models.

Cooke et al. (2009) and Balint et al. (2017) review differ-

ent micro- and macro-approaches with applications to agro-

ecology and the economics of climate change, respectively.

The present paper complements this literature by reviewing

10 modeling approaches of (1) individual agent behavior, (2)
agent interactions and (3) aggregation of individual behav-
iors with the aim to support the integration of human decision
making and behavior into Earth system models. The combi-
nation of these three different categories is crucial to describe

15 human behavior at scales relevant for Earth system dynam-
ics. Furthermore, this review highlights strengths and limi-
tations of different approaches by connecting the modeling
techniques and their underlying assumptions about human
behavior and discusses criteria to guide modeling choices.

20 Our survey of techniques has a bias towards economic
modeling techniques for two simple reasons: First, eco-
nomics is the social science discipline that has the longest
and strongest tradition in formal modeling of human deci-
sion making. Second, economics focuses on the study of pro-

25 duction and consumption as well as the allocation of scarce

resources. In most industrialized countries today, a major

part of human interactions with the environment is mediated
through markets, central in economic analyses. This review
aims to go beyond the often narrow framing of economic ap-
proaches while at the same time not ignoring important eco-
nomic insights. For instance, consumption and production
decisions do not only follow purely economic calculations
but are deeply influenced for instance by behavioral patterns,

traditions and social norms (The World Bank, 2015).

s Because we discuss different approaches to model deci-
sion making and behavior from various disciplinary or sub-
disciplinary scientific fields, there are considerable differ-
ences in terminology that make a harmonized presentation
of the material challenging. For example, the same terms are

w0 used to describe quite separate varieties of an approach in
different fields and different terms from separate fields may
refer to very similar approaches. We adopt a terminology
that aims to a better interdisciplinary understanding and point
out different understandings of contested terms where we are

ss aware of them.

This paper works with land-use change as a guiding and
illustrative example. Land use and land-cover change is the
second largest source of greenhouse gases — besides the burn-
ing of fossil fuels — and thus contributes strongly to climate

so change. Behavioral responses related to land use will play a
crucial role for successful mitigation and adaptation to pro-
jected climatic changes, challenging modelers to represent
decision making in models of land-use change (Brown et al.,
2017). The complexity of land-use change provides various

ss examples how collective and individual decision making in-
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teracts with the environment across spatial scales and or-
ganizational levels. Land-use models consider environmen-
tal conditions as important factors in decision-making pro-
cesses, giving rise to feedbacks between environmental and
socioeconomic dynamics (Brown et al., 2016). However, this
paper does not provide an exhaustive overview over existing
land-use models. For this purpose, the reader is referred to
the various reviews in the literature (e.g., Baker, 1989; Brown
et al., 2004; Michetti, 2012; Groeneveld et al., 2017).

The remainder of the paper is organized as follows. In Sec-
tion 2, we give an overview over different levels of descrip-
tion of social systems and the socioeconomic units or agents
associated with them. Sections 3—5 form the main part of the
paper, presenting different modeling techniques and their un-
derlying assumptions about human decision making and be-
havior. First, Section 3 introduces approaches to model indi-
vidual decisions and behavior from rational choice to learn-
ing theories. Many of these techniques can be used to also
model higher-level social entities. Second, Section 4 puts
the focus on techniques for modeling interactions between
agents. Strategic interactions and social influence are sig-
nificant determinants of individual decisions and therefore
important for long-term changes in collective behavior, i.e.
the group outcome of mutually dependent individual deci-
sions. Third, Section 5 reviews different aggregation tech-
niques that allow describing human activities at the level of
social collectives or systems. These approaches allow mak-
ing simplifications so that theories about individual decision
making can be scaled up. Figure 1 summarizes these main
parts of the paper, the corresponding modeling approaches
and important considerations for model selection, which we
discuss in detail in Section 6. The discussion also reflects on
important distinctions between models of natural and social
systems that are crucial to consider when including human
behavior into ESMs. The paper concludes with remarks on
the remaining challenges for this endeavor.

2 The challenge: Modeling decision making and
behavior across different levels of organization

Decision making and behavior of humans can be described
and analyzed at different levels of social systems. While de-
cisions are made and behavior is performed by individual hu-
mans, it is often useful to not represent individual humans in
a model but to treat social collectives, such as households,
neighborhoods, cities, political and economic organizations,
and states, as decision makers or agents.

Figure 2 shows a hierarchy of socioeconomic units, i.e.,
groups, organizations and structures of individuals that play a
crucial role in human interactions with the Earth system. We
consider a broad scheme of levels ranging from the micro-
level across intermediate levels to the global level. This hier-
archy of socioeconomic units is not only distinguishable by
level of complexity but also by the different spatial scales in-
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Modeling approaches and
techniques

Optimal decisions in rational choice
Heuristics/decision trees
Learning theory

Classical and evolutionary game theory
Social influence models
Networks of interaction structures

Social welfare and voting
Representative agent
General equilibrium models
Agent-based modeling
Statistical distributions
System-level models

: Approaches to represent human behavior in ESM

Important considerations
for model choice and assumptions

Motives, objectives, preferences
Constraints, information and knowledge,
beliefs, behavioral options and dispositions
Decision rules, strategy selection

Strategic interaction, imitation of behavior,
influence on beliefs, opinions, preferences,
adaptation of interaction structure

Agent homo- or heterogeneity,

positive or negative feedbacks,

transient dynamics and equilibrium states,
centralization of decision making

Figure 1. Overview of modeling categories, corresponding modeling approaches and techniques discussed in this paper and important
considerations for model choice and assumptions about human behavior and decision making.

volved. However, there is no one-to-one correspondence: For
instance, some individuals have impacts at the global level,
while many transnational organizations operate at specific lo-
cal levels. Especially in the context of human-environment
interactions in ESMs, scaling and spatial extent are therefore
important issues (Gibson et al., 2000). Furthermore, we note
that the strict separation between a micro- and macro-level
may result in treating very different phenomena alike. For
instance, many economic models describe both small busi-
nesses and transnational corporations as actors on the micro-
level and model their decision processes with the same set of
assumptions, even though they operate very differently.

One major challenge for modeling humans in the Earth
system is therefore to bridge the diverse levels between indi-
viduals and the global scale and integrate different levels of
social organization and spatial as well as temporal scales.

The relation between individual agents and social collec-
tives and structures has been the subject of considerable de-
bate in the social sciences: In the social-scientific tradition of
methodological individualism', the analysis aims to explain
social macro-phenomena, e.g., phenomena at the level of
groups, organizations, or societies, with theories of individ-
ual behavior. This approach deviates from structuralist tradi-
tions, which claim that collective phenomena are of their own
kind and can, thus, not be traced back to the behavior of indi-
viduals (Durkheim, 2014). Positions between these two ex-
tremes emphasize the interdependency of individual agents
and social structure, which is understood as an emerging
phenomenon that stabilizes particular behaviors (Coleman,
1994; Homans, 1951). While it very much depends on the
purpose of the given modeling exercise whether the model
should represent individuals or collectives, we mainly focus
here on the research tradition that acknowledges that com-

"'We note that there are different accounts of methodological in-
dividualism and it often remains unclear to what extend structural
and interactionist elements can be part of an explanation (see Hodg-
son, 2007; Udehn, 2002).

plex and unexpected collective phenomena can arise from the
interplay of individual behavior.

In Table 1, we provide an overview of socioeconomic units
at different levels that are potentially important for Earth sys-
tem modeling. We list common theories, frameworks and
assumptions made about decision making and behavior for
these socioeconomic units and link them to scientific fields
that focus on them.

At the micro-level, models consider individuals, house-
holds, families and small businesses. For instance, individ-
uals can make decisions as policy makers, investors, busi-
ness managers, consumers, or resource users. At this level,
decisions about lifestyle, consumption, individual natural re-
source use, migration and reproduction are particularly rele-
vant in the environmental context. Individual decisions have
to be made by a large number of individuals or have to be
reinforced by organizations, institutions or technology to be-
come relevant at the level of the Earth system. Individuals’
participation in collective decision processes, such as voting,
may also have consequences for the environment at a global
level.

At various intermediate levels, communities and organi-
zations like firms, political parties, labor unions, educational
institutions, non-governmental and lobby organizations play
a crucial role in shaping economic and political decisions and
therefore have a huge impact on aggregate behavior. Gov-
ernments at different levels and representing different terri-
tories, from cities to nation states, enact laws that strongly
frame economic and social activities of their citizens. Impor-
tant decisions for the Earth system context include environ-
mental regulations and standards, production and distribution
of commodities and assets, trade, extraction and use of nat-
ural resources and the development and building of physical
infrastructures.

At the global level, multinational companies and inter-
governmental organizations negotiate decisions. This level
has considerable impacts on policy and business decisions
even though it is remote from the daily life of most indi-
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intergovernmental organ-
governmel-)cieties

NGOs, lobby organizations, political parties

communities, villages, cities

individual

intermediate

global

>

level of social interaction

Figure 2. Socioeconomic units and their corresponding level and scales.

Table 1. Overview of particular levels of description of socioeconomic units, associated scientific fields/communities and some common
approaches and assumptions about decisions and behavior. The list gives a broad overview but is far from being exhaustive.

Level Socioeconomic units Fields/Communities Common approaches and theo- Common assumptions about
ries decision making
Micro Individual humans Psychology, Rational choice, bounded ratio- [All assumptions presented in
neuroscience, nality, heuristics, learning the-  this column]
sociology, economics, ory, cognitive architectures
anthropology
Households, families, Economics, Rational choice, heuristics, so- Maximization of consumption,
small businesses anthropology cial influence leisure, profits
Intermediate Communities (villages,  Sociology, Social influence, networks Transmission and evolution of
neighborhoods), cities anthropology, urban cultural traits and traditions
studies
Political parties, Political science, Strategic decision making, pub-  Agents form coalitions and co-
NGOs, lobby sociology lic/social choice, social influ- operate to achieve goals, influ-
organizations, ence and evolutionary interac- enced by beliefs and opinions
educational institutions tions of others
Governments Political science, Strategic decision making, cost-  Agents choose for the common
operations research benefit and welfare analysis, good
multi-criteria decision making
Nation states, societies Economics, political welfare maximization, social Majority vote
science, sociology choice
Global Multinational firms, Economics, Rational choice Maximization of profits or

trade networks
Intergovernmental
organizations

management science
Political science
(international relations)

Strategic decision making, cost-
benefit analysis

shareholder value
Coalition formation

viduals. Often this level provides framing for activities on
lower organizational levels and thus strongly influences the
problem statements and perceived solutions for instance re-
garding environmental issues. Decisions important for the
s Earth system at this level are for instance international cli-
mate and trade agreements, decisions of internationally oper-

ating corporations and financial institutions, and the adoption
of global frameworks like the UN Sustainable Development
Goals (United Nations General Assembly, 2015).

An overarching question that has triggered considerable 1o
debate between different disciplines is the allocation of
agency at different levels of description. Even if individu-
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als can decide between numerous options, the perception of
options and decisions between them are shaped by social
context and institutional embedding. Institutions® and orga-
nizations can display their own dynamics and lead to out-
comes unintended by the individuals. On the other hand,
social movements can initiate disruptive changes in institu-
tional development. The attribution and perception of agency
for a specific problem is therefore important for the choice of
a suitable level of model description. The following section
starts our discussion of different modeling techniques at the
level of individual decision making and behavior.

3 Modeling individual behavior and decision making

In a nutshell, models of individual decision making and be-
havior differ with regard to their assumptions about three cru-
cial determinants of human choices: goals, restrictions and
decision rules (Hedstrom, 2005; Lindenberg, 2001, 1990,
1985). First, the models assume that individuals have mo-
tives, goals or preferences. That is, agents rank goods or out-
comes in terms of their desirability and seek to realize highly
ranked outcomes. A prominent but debated assumption of
many models is that preferences or goals are assumed to be
stable over time. Stable preferences are included to prevent
researchers from developing trivial explanations, as a the-
ory that models a given change in behavior only based on
changed preferences does not have explanatory power. How-
ever, empirical research shows that preferences can change
even in relatively short time frames (Ackermann et al., 2016).
Changing individuals’ goals or preferences is an important
mechanism to affect their behavior, e.g., through policies,
making flexible preferences particularly interesting for Earth
system modelers.

Second, decision models make assumptions about restric-
tions and opportunities that constrain or help agents pursue
their goals. For instance, each behavioral option comes with
certain costs (e.g., money and time) and decision makers
form more or less accurate beliefs about these costs and how
likely they are to occur, depending on the information avail-
able to the agent.

Third, models assume that agents apply some decision
rule that translates their preferences and restrictions into a
choice. Although decision rules differ very much in their
complexity, they can be categorized into three types. First,
there are decision rules that are forward looking. Rational
choice theory, for instance, assumes that individuals list all

The notion of institution is used in the literature with slightly
different meanings: (1) formal and informal rules that shape behav-
ior, (2) informal social order, i.e. regular patterns of behavior, and
(3) organizations. Here, we adopt an understanding of institutions
as formal (e.g., law, property rights) or informal rules (e.g., norms,
religion). However, formal rules often manifest in social, political
and economic organizations and informal rules may be shaped by
them.

positive and negative future consequences of a decision and
choose the optimal option. Alternatively, backwards looking
approaches, such as classical reinforcement learning, assume
that actors remember the satisfaction experienced when they
chose a given behavior in the past and tend to choose a behav-
ior with a high satisfaction again. Finally, there are sideward-
looking decision rules, which assume that actors adopt the
behavior of others, for instance because they imitate success-
ful others (Kandori et al., 1993). Theories assume different
degrees of context-dependency of rules and make different
implicit assumptions about the underlying cognitive capabil-
ities of agents.

In the remainder of this section, we describe in more detail
three important approaches to individual decision making,
pointing out typical assumptions about motives, restrictions
and decision rules.

3.1 Optimal decisions and utility theory in rational

choice models

Rational choice theory, a standard model in many social sci-
ences including economics and widely studied in mathemat-
ics, assumes that decision making is goal-oriented: rational
agents have preferences and choose the strategy whose ex-
pected outcome is most preferred, given some external con-
straints and potentially based on their beliefs (represented by
subjective probability distributions, see beliefs, preferences,
constraints model, Gintis, 2009). It can either be used to rep-
resent actual behavior or serve as a normative benchmark for
other theories of behavior.

How to judge the “rationality” of individual decisions is
subject to ongoing debates. Opp (1999) distinguishes be-
tween strong rationality (“homo economicus™), assuming
purely self-interested agents with unlimited cognitive capac-
ities knowing all possible actions and probabilities of con-
sequences, and weak rationality that makes less strong as-
sumptions. Rabin (2002) distinguishes between standard and
non-standard assumptions regarding preferences, beliefs and
decision-making rules. Before discussing non-optimal deci-
sion making in subsection 3.2, we review here common as-
sumptions on preferences and beliefs.

Usually, agents are assumed to be mainly self-interested,
having fixed preferences regarding their personal conse-
quences of possible futures and being indifferent to how a de-
cision was taken and to consequences for others. Exceptions
are procedural (Hansson, 1996; Fehr and Schmidt, 1999) and
other-regarding preferences (Mueller, 2003; Fehr and Fis-
chbacher, 2003).

Preferences can be modeled as binary preference relations,
x P; y, denoting that individual ¢ prefers situation or outcome
x to y. Most authors assume that P; is complete (for every
pair (x,y) either xP;y or yP;x) and transitive (if P,y and
yP;z then x P;z), which allows representing the preferences
with a utility function u; (Von Neumann and Morgenstern,
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2007).3 Some authors also allow incomplete or cyclic prefer-
ences (Fishburn, 1968; Heitzig and Simmons, 2012). In the
land use context, ¢ could be a farmer, z might denote grow-
ing some traditional crops generating a moderate profit, and
y growing hybrid seeds for more profit but making ¢ depen-
dent on the seed supplier. If ¢ considers independence valu-
able enough to make up for the lower profit, z P; y would
denote 7’s preference of = over y.

In decision making under uncertainty, agents have to
choose between different risky prospects modeled as prob-
ability distributions p(x) over outcomes x. In expected util-
ity theory, p is preferred to p’ if and only if Y p(x)u;(z) >
>0 (x)u;(z). Empirical research shows that only a minor-
ity of people evaluate uncertainty in this risk-neutral way
(Kahneman and Tversky, 1979). Prospect theory therefore
models agents that overestimate small probabilities and and
evaluate outcomes relative to a reference point, which leads
to risk-averse or risk-seeking behavior regarding losses or
gains, respectively. (Kahneman and Tversky, 1979; Bruhin
etal., 2010). A conceptual example from the land-use context
illustrates decision making under risk: A farmer ¢ might face
the choice whether to stick to her current crop x or switch
to a new crop y. She may think that with 20% probability
the switch will result in a 50% reduction in her profits, while
with 80% probability, the profits would double. If her util-
ity is proportional to the profits and she evaluates this un-
certain prospect as described by expected utility theory, her
gain from switching to y would be positive. If, however, she
is averse to losses and thus conforms to prospect theory, she
might evaluate the switch as negative and prefer to stick to x.

If several time points ¢ are involved in a decision, agents
are typically assumed to discount future consequences by us-
ing utility weights that decay in time and reflect the agent’s
time preferences. Discounted utility quantifies the present
desirability of some utility obtained in the future. Most au-
thors use exponentially decaying weights of the form e~"*
with a discounting rate r > ( because this makes the evalua-
tion independent of its time point. However, empirical stud-
ies suggest that people often use slower decaying weights
(e.g., hyperbolic discounting), especially in the presence of
uncertainty (Ainslie and Haslam, 1992; Jamison and Jami-
son, 2011), although this might lead to time-inconsistent
choices that appear suboptimal at a later time. A farmer i
may compare different crops not only by next year’s expected
profit u;(z, 1) but, due to the various crops’ different effects
on future soil quality, also by future years’ profits u;(z,t) for
t > 1. Crop y might promise higher yields than x in the short
run but lower ones in the long run due to faster soil depletion.
If ¢ is “patient”, having small r, she might prefer y P; x even
though u;(z,1) > u;(y,1).

Preferences can be aggregated not only in time but across
several interrelated issues or consequences. For example,

3ui(:v) > u;(y) implies « P; y, where u; is only defined up to
positive linear (affine) transformations.

consumer theory (Varian, 2010) models preferences over
consumption bundles, combining the utility derived from
consuming different products into a total consumption utility
by simply adding-up these utilities or by combining them in
some nonlinear way with imperfect substitutability of goods
(Leontieff, Cobb-Douglas, or CES utility functions). A farm-
ers’ utility from leisure time and crop yield y(I) depending
on working time ! might for example be combined using the
Cobb-Douglas utility function u; = y*(12 — 1)~ for some
elasticity o € (0,1).

Complex optimization problems arising from rational
choice theory can be solved by mathematical programming,
calculus of variations and similar methods (see, e.g., Kamien
and Schwartz, 2012; Chong and Zak, 2013). Optimal deci-
sions under constraints are not only discussed as a descrip-
tion of human behavior, but are often taken as the norma-
tive benchmark for comparison with other non-optimal ap-
proaches that we discuss in Section 3.2.

Regarding decision modeling in ESMs, rational choice
theory is useful when agents have clear goals and possess
enough information and cognitive resources to assess the op-
timality of strategies. For instance, individuals’ decisions re-
garding long-term investments or decisions of organizations
such as firms or governments in competitive situations can
often be assumed to follow reasonably well a rational choice
model. It can also be useful when actors make repeated simi-
lar decisions and can learn optimal strategies from fast feed-
back making them behave ‘as if” they were rational.

3.2 Bounded rationality and heuristic decision making

Empirical research on human decision making finds that in-
dividual behavior depends on the framing and context of the
decision (Tversky and Kahneman, 1974). Human decision
making is characterized by deviations from the normative
standards of the rational choice model, so-called cognitive
biases, challenging the understanding that rational choice
theory serves not only as a normative benchmark, but also
as a descriptive model of individual decision making. Bi-
ases can be the result of time-limited information processing
(Hilbert, 2012), heuristic decision making (Simon, 1956), or
emotional influences (e.g., wishful thinking, Babad and Katz,
1991; Loewenstein and Lerner, 2003). Bounded rationality
theory assumes that human decision making is constrained
by cognitive capabilities of the agents, additionally to the
constraints imposed by the environment and the available
information about it (Simon, 1956, 1997). In the economic
literature, non-transitive preferences, time-inconsistent dis-
counting and deviations from expected utility that we already
introduced in the previous subsection are often also consid-
ered as boundedly rational (Gintis, 2009). Boundedly ratio-
nal agents can be considered as satisficers that try to find a
satisfying action in a situation given their available informa-
tion and cognitive capabilities (Gigerenzer and Selten, 2002).
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Constraints on information processing imply that agents
do not integrate all the available information to compute the
utility of every possible option in complex decision situa-
tions and choose an action with maximal utility. Instead,
agents use heuristics for judging the available information
and choosing actions that lead to the more preferred out-
come over less preferred ones. Gigerenzer and Gaissmaier
(2011) define heuristics in decision making as a “strategy
that ignores part of the information, with the goal of mak-
ing decisions more quickly, frugally, and/or accurately than
more complex methods.” It is argued that instead of an all-
purpose tool the mind carries an “adaptive toolbox” of dif-
ferent heuristic decision schemes applicable in particular en-
vironments (Gigerenzer and Selten, 2002; Todd and Gigeren-
zer, 2007).

In general, heuristic rules are formalized either as decision
trees or flowcharts and consist of three building blocks: one
for information search, one for stopping information search
and one to derive a decision from the information found.
They evaluate a number of pieces of information — so-called
cues — to either categorize a certain object or to choose be-
tween several options. Many heuristics evaluate these cues in
a certain order and make a decision as soon as a cue value
allows classification or discriminates between options.

This is illustrated by means of the Take the Best heuristic:
Pieces of information (cues) are compared between alterna-
tives according to a prescribed order, which is crucial for the
decision process. At each step in the cue order, some infor-
mation is searched and evaluated. If the information does not
allow discriminating between the options, the process moves
on to the next cue. This repeats as the process moves down
the cue order until a cue is reached where the differentiation
between options is possible and the option with the higher
cue value is chosen. Another notable example is the satis-

ss ficing heuristic that evaluates information sequentially and
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chooses the first option satisfying certain criteria. Heuristics,
especially cue orders, can be interpreted as encoding norms
and preferences in individual decision making as they pri-
oritize features of different options over others and hierar-
chically structure the evaluation of available information. An
overview and explanation of numerous other decision heuris-
tics can be found in the recent review paper by Gigerenzer
and Gaissmaier (2011).

Gigerenzer and Todd (1999) question the usefulness of ra-
tional choice theory as the normative benchmark because it
is not designed for so-called ‘large worlds’ where informa-
tion relevant for the decision process is either unknown or
has to be estimated from small samples. Instead, they want
to relieve heuristic decision making of its stigma of cog-
nitive laziness, bias and irrationality. With their account of
ecological rationality, they suggest that heuristics can also
serve as a normative choice model providing context-specific
rules for normative questions. This is motivated by the ob-
servation that in many real world situations, especially when
high uncertainties are involved, some decision heuristics per-

form equally good or even better than more elaborated deci-
sion strategies (Dhami and Ayton, 2001; Dhami and Harries,
2001; Keller et al., 2014).

So far, heuristics have been used to describe decisions for
instance in consumer choice (Hauser et al., 2009), voter be-
havior (Lau and Redlawsk, 2006), and organizational behav-
ior (Loock and Hinnen, 2015; Simon, 1997). However, Fast
and Frugal decision heuristics are not yet commonly applied
in dynamic modeling of human-nature interactions. One ex-
ception is the description of farmer and pastoralist behavior
in a study of origins of conflict in east Africa (Kennedy and
Bassett, 2011). However, as the following example shows,
similar decision trees have been used to model decision
making in agent-based simulations of land-use change. The
model by Deadman et al. (2004) describes colonist house-
hold decisions in the Amazon rainforest. Each household is
a potential farmer who first checks whether a subsistence
requirement is met. If this is not the case, the household
farms annual crops. If the subsistence requirement is met, the
household eventually plants perennials or breeds livestock,
depending on the soil quality. The model shows how heuris-
tic decision trees can be used to simplify complex decision
processes and represent them in an intelligible way. However,
the example also shows the many degrees of freedom in the
construction of heuristics, pointing at the difficulty to obtain
these structures from empirical research.

Heuristics are a promising tool for including individual hu-
man decision making into ESMs because they can capture
crucial choices in a computationally efficient way. In order to
describe the long-term evolution of preferences, norms and
values relevant for human interactions with the Earth sys-
tem, heuristics could also be used to model meta-decisions
of preference or value adoption. Recent findings suggest that
cue orders can spread via social learning and social influence
(Gigerenzer et al., 2008; Hertwig and Herzog, 2009) anal-
ogously to norm and opinion spreading in social networks
(see Sections 4.3 and 4.4), which could be an promising ap-
proach to model social change. However, in contrast to fully
rational decision making, it can be very challenging to ag-
gregate heuristic decision making analytically to higher or-
ganizational levels. Therefore, approaches like agent-based
modeling are suitable to explore the aggregate outcomes of
many agents with such decision rules (see Section 5.5).

3.3 Learning theory

The approaches discussed in the previous two subsections
mainly took the perspective of a forward-looking agent. Ra-
tional or boundedly rational actors optimize future payoffs
based on information or beliefs about how their behavior af-
fects future payoffs, while the procedures to optimize may
be more or less bounded. However, these techniques do
not specify how the information is acquired and how the
beliefs are formed. Computational learning theory focuses
on behavior from a backward-looking perspective: an agent
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learned in the past that a certain action gives a reward, feels
good or is satisfying and is therefore more likely to repeat
this behavior. It can describe the adaptivity of agent behavior
to a changing environment and is particularly suited for mod-
eling behavior under limited information. To model the learn-
ing of agents unsupervised learning techniques are mostly
used because they do not require a training with an external
correction.
Reinforcement learning is such a technique that models
10 how an agent maps environmental conditions to desirable ac-
tions in a way that optimizes a stream of rewards (and/or pun-
ishments). The obtained reward depends on the state of the
environment and the chosen action, but may also be influ-
enced by chosen actions and environmental conditions in the
15 past. According to Macy et al. (2013), reinforcement learning
differs from forward-looking behavioral models regarding
three key aspects: (1) Because agents explore the likely con-
sequences and learn from outcomes that actually occurred
rather than those which are intended to occur but only with a
certain probability, reinforcement learning does not need to
assume that the consequences are intended. (2) Decisions are
guided by rewards that foster approach or punishment and
lead to avoidance rather than by static utilities. (3) Learning
is characterized by stepwise melioration and models the dy-
2s namic search for an optimum rather than assuming that the
optimal strategy can be determined right away.

The learning process is modeled via a learning algo-
rithm (e.g., Q-Learning, SARSA-Learning, Actor-Critic-
Learning), based on iteratively evaluating the current value

% of the environmental state utilizing a temporal difference
error of expected value and experience value (Sutton and
Barto, 1998). Artificial neural network algorithms can ex-
plore very high dimensional state and action spaces. Genetic
algorithms, which are inspired by evolutionary mechanisms

ss such as mutation and selection, are also applied to learn-
ing problems. The learning algorithm has to balance a trade-
off between the exploration of actions with unknown conse-
quences and the exploitation of current knowledge. In order
to not exploit only the currently learned strategy, many al-

40 gorithms use randomness to induce deviations from already
learned behavior.

The environment in reinforcement learning problems is
often modeled with Markovian transition probabilities. The
special case of a single agent is called Markov decision pro-

45 cess (Bellman, 1957). In each of the discrete states of the

environment the agent can choose from a set of possible ac-
tions. The choice then influences the transition probabilities

to the next state and the reward. As an illustration, consider a

farmer adapting her planting and irrigation practices to new
climatic conditions. The environment could be modeled by

a Markov process with different states of soil fertility and

moisture, where transitions between states reflect the influ-
ence of stochastic weather events. Without the possibility to
acquire knowledge through other channels, she would ex-
ss plore different possible actions and evaluate how they change

o

2

15}

5

S

the yield (her reward). Eventually, by a trial-and-error pro-
cess her yield would on average increase.

A common approach to model the acquisition of subjective
probabilities associated with the consequences of actions is
Bayesian learning, which has also been applied to reinforce-
ment learning problems (Vlassis et al., 2012). Starting with
some prior probability (e.g. from some high-entropy “unin-
formative” distribution) P(h;) that some hypothesis 4, about
the relation of actions and outcomes is true, new information
or evidence P(F) is used to update the subjective probabil-
ity with the posterior P(E|h;) calculated with Bayes’ the-
orem: P(h;|E) = P(E|h;)P(h;)/P(E) (Puga et al., 2015).
The most probable hypothesis can then be chosen to deter-
mine further action.

Combining various approaches to model the acquisition
of beliefs through learning, the formation of preferences and
different decision rules discussed in the previous sections
with further insights from psychology and neuroscience has
led to the development of very diverse and detailed behav-
ioral theories which are often formalized in cognitive archi-
tectures (Balke and Gilbert, 2014). These approaches can be
used to describe human behavior in computational models,
but are too complex and complex and diverse to discuss them
here in detail.

Learning and related theories that emphasize the adapt-
ability of human behavior might be important building
blocks to model the long-term evolution of human interac-
tions with the Earth system from an individual perspective.
On the other hand, they can capture short-term responses
to drastically changing natural environments, relevant for in-
stance in the context of tipping elements in the Earth system.

Table 2 summarizes the approaches that focus on indi-
vidual human behavior. Besides the forward- and backward-
looking behavior that we introduced in this section, agents
may exhibit sideways-looking behavior: agents can copy the
behavior of successful others, thereby contributing to a so-
cial learning process. For this kind of behavior, interactions
between different agents are crucial. This will be the focus of
the next section.

4 Modeling interactions between agents

In the previous section, we discussed modeling approaches
that focus on the choices of individuals that are confronted
with a decision in a specified situation. In contrast, this sec-
tion reviews techniques to model how actors interact with
each other and influence or respond to each other’s deci-
sions. Interactions at the system level that are also aggrega-
tion mechanisms (e.g., voting procedures and markets) will
be discussed in Section 5.

The section starts with reviewing strategic interactions as
modeled in classical game theory and dynamic interactions
in evolutionary approaches. Then, we address models of so-
cial influence that are used to study opinion and preference

60

65

70

75

80

85

90

95

00

05



10

Table 2. Summary table for individual behavior and decision making

Muller-Hansen et al.: Approaches to represent human behavior in ESM

Theories

Key considerations

Strengths

Limitations

Optimal decisions in rational
choice: Individuals take the
decision that maximizes their
expected utility given
economic, social and
environmental constraints

What are agent’s preferences?
Which information (and be-
liefs) do they have?

Highly researched theory with
strong theoretical foundation
and many applications

Individuals assumed to have
strong capabilities for informa-
tion processing and perfect self-
control

Bounded rationality and
heuristic decision making:
Individuals have biases and
heuristic decision rules that
help them navigate complex
environments effectively

Which cue order is used to
gather and evaluate informa-
tion? When do agents stop gath-
ering more information and de-
cide?

Simple decision processes that
capture observed biases in deci-
sion making

Suitable decision rules highly
context dependent

Learning: Agents explore
possible actions through
repeated learning from past
experience

How do agents interact with
their environment? What is the
trade-off between exploitation
of knowledge and exploration

Captures information and belief
acquisition process

High degree of randomness in
behavioral changes

of new options?

formation or the transmission of cultural traits, i.e. cultur-
ally significant behaviors. Finally, we discuss how interaction
structures can be modeled as dynamic networks.

4.1 Strategic interactions between rational agents:
5 classical game theory

Game theory focuses on decision problems of “strategic in-
terdependence”, in which the utility that a decision-maker
(called player) gets does not only depend on her own deci-
sion but also on the choices of others. These are often sit-
10 uations of conflict or cooperation. Players choose an action
(behavioral option, control) based on a strategy, i.e. a rule
specifying which action to take in a given situation. Classi-
cal game theory explores how rational actors identify strate-
gies, usually assuming the rationality of other players. How-
1s ever, rational players can also base their choices on beliefs
about others players’ decisions, which can lead to an infinite
regress of mutual beliefs about each others’ decisions.
Formally, a game is described by what game-theorists call
a game form or mechanism. The game form specifies the
2 actions a;(t) that agents can choose at well-defined time
points ¢ from an action ser A;(t) that may vary over time,
having to respect all kinds of situation-dependent rules. The
game form may furthermore allow for communication with
the other agent(s) (signaling) or binding agreements (com-
25 mitment power). Simple social situations are formalized in
so-called normal-form games represented by a payoff ma-

trix specifying the individual utilities* for all possible action
combinations, while more complex situations are modeled as
a stepwise movement through the nodes of a decision tree or
game tree (Gintis, 2009).

Classical game theory assumes that players form consis-
tent beliefs about each others’ unobservable strategies, in
particular that the other’s behavior results itself from an op-
timal strategy. However, multi-player interaction and opti-
mization often leads to recursive relationships between be-
liefs and strategies, which makes solving complex classical
games often very difficult. Many problems have several so-
lutions, called equilibria (not to be confused with the steady-
state meaning of the word) and call for sophisticated non-
linear fixed-point solvers (Harsanyi and Selten, 1988). Only
in special cases, e.g. where players have complete informa-
tion and moves are not simultaneous but alternating, game-
theoretic equilibria can easily be predicted by simple solu-
tion concepts such as backwards induction (Gintis, 2009). In
other cases, one can identify strategies and belief combina-
tions consistent with the following two assumptions. First,
each player eventually chooses a strategy that is optimal
given her beliefs about all other players’ strategies (ratio-
nal behavior). Second, each player’s eventual beliefs about
other players’ strategies are correct (rational expectations).
The solutions are called Nash equilibria. However, many
games have multiple Nash equilibria, and the question of
which equilibrium will be selected arises.

“Note that despite the term “payoff matrix”, these utilities are
unexplained attributes of the agents and need not have a relation to
monetary quantities.
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Therefore, game theorists try to narrow down the likely
strategy combinations by assuming additional forms of con-
sistency and rationality (Aumann, 2006) such as consistency
over time (sequential and subgame perfect equilibria), and
stability against small deviations (stable equilibria, Foster
and Young, 1990), or small random mistakes (trembling hand
perfect equilibria, Harsanyi and Selten, 1988). After a plau-
sible strategic equilibrium has been identified, it can be used
in a simulation of the actual behavior resulting from these
strategies over time, possibly including noise and mistakes.

As an example from the land-use context, consider two
farmers living on the same road. They get their irrigation wa-
ter from the same stream. A dispute over the use of water
emerges. Both may react to the actions of the other in sev-
eral turns. The upstream farmer located at the end of the road
may increase or decrease her water use and/or pay compensa-
tion for using too much water to the other. The downstream
farmer at the entrance of the road may demand compensa-
tion or block the road and thereby cut the access of the up-
stream farmer to other supplies. A complex game tree en-
codes which actions are feasible at which moment and what
are the consequences on players’ utilities. If it is possible to
specify the information and options available to the players at
each time point, then a classical game theoretical analysis al-
lows determining the rational equilibrium strategies that the
farmers would follow.

Classical game theory is widely applied to interactions in
market settings in economics (see also Section 5.2), but in-
creasingly also in the social and political sciences to political
and voting behavior in public and social choice theory (see,
e.g., Ordeshook, 1986; Mueller, 2003, and Section 5.1). For
example, public choice theory studies strategic interactions
between groups of politicians, bureaucrats and voters with
potentially completely different preferences and action sets.

While many simple models of strategic interactions be-
tween rational and selfish agents will predict only low levels
of cooperation, more complex models can well explain how
bilateral and multilateral cooperation, consensus, and stable
social structure emerges (Kurths et al., 2015). This has been
shown in contexts such as multiplayer public goods problems
and international climate policy (e.g., Heitzig et al., 2011;
Heitzig, 2013).

To model relevant decision processes in the Earth system,
classical game theoretic analysis could be used for describ-
ing strategic interactions between agents which could be as-
sumed highly rational and well informed, i.e. international
negotiations of climate agreements between governments,
bargaining between social partners or monopolistic competi-
tion between firms. Similarly, international negotiations and
their interactions with domestic policy can also be framed
as two- or multilevel games (as in some models of political
science, e.g., Putnam, 1988; Lisowski, 2002). Furthermore,
social choice theory could be used to simulate simple voting
procedures that (to a certain extent) determine the goals of
regional or national governments.

4.2 Interactions with dynamic strategies: evolutionary

approaches and learning in game theory

In game theoretic settings, complex individual behavioral
rules are typically modeled as strategies specifying an action
for each node in the game tree. Consider as an example the
repeated version of the Prisoners’ Dilemma in which each of
two players can either “cooperate” or “defect” in each period
(Aumann, 2006). A typical complex strategy in this game
could involve reciprocity (defect temporarily after a defec-
tion of your opponent), forgiveness (every so often not recip-
rocate), and making up (don’t defect again after being pun-
ished by a defection of your opponent after your own defec-
tion).

Many or even most nodes of a game tree will not be vis-
ited in the eventual realization of the game and strategies
may involve deliberate randomization of actions. Therefore,
strategies are, unlike actual behavior, principally unobserv-
able, and assumptions about them are hard to validate. For
this and other reasons, several kinds of additional assump-
tions are often made that constrain the set of strategies further
that a player can choose, e.g., assuming only very short mem-
ory or low farsightedness (myopic behavior) and disallowing
randomization, or allowing only strategies of a specific for-
mal structure such as heuristics (see Section 3.2).

The water conflict example from Section 4.1 bears some
similarity to the repeated prisoners’ dilemma in that the farm-
ers’ possible actions can be interpreted as either defective
(using too much water, blocking the road) or cooperative (not
do any of this, compensate for past defections). Assuming
different levels of farsightedness may thus lead to radically
different actions because myopic players would much more
likely get trapped in a cycle of alternating defections than
farsighted players. The latter would recognize some degree
of forgiveness because that maximizes long-term payoff and
would thus desist from defection with some probability. In
any case, both farmers’ choices can be modeled as depend-
ing on what they believe the other will likely do or how she
will react to the last action.

Evolutionary approaches in game theory study the interac-
tion of different strategies and analyze which strategies pre-
vail on a population level as a result of selection mechanisms.
Thus, in contrast to classical game theory, evolutionary ap-
proaches focus on the dynamics of strategy selection in pop-
ulations. The agent’s strategies may be either hardwired, ac-
quired or adapted by learning (Fudenberg and Levine, 1998;
Macy and Flache, 2002). Although many evolutionary tech-
niques in game theory are used in biology to study biolog-
ical evolution (variation through mutation, selection by fit-
ness and reproduction with inheritance), evolutionary game
theory can be used to study all kinds of strategy changes in
game theoretic settings, for instance cultural evolution (trans-
mission of memes), social learning through imitation of suc-
cessful strategies or the emergence of cooperation (Axelrod,
1984, 1997).
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12 Muller-Hansen et al.: Approaches to represent human behavior in ESM

In an evolutionary game, a population of agents is di-
vided into factions with different strategies. They interact in
a formal game (given by a payoff matrix or game tree, see
Section 4.1), in which their strategy results in a fitness (or
payoff). The factions change according to some replicator
rules that depend on the acquired fitness. This can be mod-
eled using different techniques. Simple evolutionary games
on well-mixed large populations can be described with repli-
cator equations. The dynamics describing the relative change
in the factions with a particular strategy is proportional to the
deviation of the fitness of this faction from the average fitness
(Nowak, 2006).

Alternatively, the behavior resulting from evolutionary in-
teractions is often easy to simulate numerically as a discrete-
time dynamical system even for large numbers of players
if the individual action sets are finite or low-dimensional
and only certain simple types of strategies are considered.
This type of agent-based model (see Section 5.5) simply
implements features such as mutation or experimentation
and replication via strategy transfer (e.g., imitation and in-
heritance) at the micro-level. Combined with network ap-
proaches (see Section 4.4), the influence of interaction struc-
ture can also be studied (Szab6 and Fath, 2007; Perc and
Szolnoki, 2010). Strategies can be characterized as evolution-
ary stable if a population with this strategy cannot be invaded
by another, initially rare strategy. If a strategy is furthermore
stable for finite populations or noisy dynamics, it is called
stochastically stable.

In our water conflict example, the farmers could use a
heuristic strategy (see Section 3.2) that determines how much
water they extract given the actions of the other. The evolu-
tion of the strategies could either be modeled with a learn-
ing algorithm, repeating the game again and again. Alterna-
tively, to determine feasible strategies in an evolutionary set-
ting, a meta-model could consider an ensemble of similar vil-
lages consisting of two farmers. The strategies of the farmers
would then be the result of either an imitation process be-
tween the villages, or of an evolutionary process, assuming
that less successful villages die out over time.

Evolutionary approaches to game theory are a promising
framework to better understand the prevalence of certain hu-
man behaviors regarding interaction with the Earth system.
This is especially interesting regarding the modeling of long-
term cultural evolution and changes in individual’s goals, be-
liefs and decision strategies or the transmission of endoge-
nous preferences (Bowles, 1998).

4.3 Modeling social influence

Human behavior and its determinants (beliefs, goals, and
preferences) are strongly shaped by social influence, which
can result from various cognitive processes. Individuals may
be convinced by persuasive arguments (Myers, 1982), may
aim to be similar to esteemed others (Akers et al., 1979),
be unsure about what is the best behavior in a given situa-

tion (Bikhchandani et al., 1992), or perceive social pressure
to conform with others (Wood, 2000; Festinger et al., 1950;
Homans, 1951).

Models of social influence allow studying the outcomes
of repeated influence in social networks and have been used
to explain the formation of consensus, the development of
mono-culture, the emergence of clustered opinion distribu-
tions, and the emergence of opinion polarization, for in-
stance. Models of social influence are very general and can
be applied to any setting where individuals exert some form
of influence on each other. However, seemingly innocent dif-
ferences in the formal implementation of social influence can
have decisive effects on the model outcomes, as the follow-
ing list of important modeling decisions documents.

A first question is how social influence changes individ-
ual attributes. For example, a farmer deciding when to till his
field might either choose the date which most of his neigh-
bors think is best, take the average of the proposed dates, or
even try to counter coordinate with disliked farmers. Classi-
cal models incorporate influence as averaging, which implies
that interacting individuals always grow more similar over
time (Friedkin and Johnsen, 2011). Averaging is an accepted
and empirically supported model of influence resulting, for
instance, from social pressure that an actor exerts on some-
one else (Takdacs et al., 2016). Models assume different forms
of averaging: Rather than following the arithmetic average
of all opinions, actors might only consider the majority view
(Nowak et al., 1990). In other models, social influence can
lead to polarization (Myers, 1982). For instance, in models
of argument communication, actor’s opinions can turn more
extreme when the interaction partners provide them with new
arguments that support their own opinion (Mis and Flache,
2013; Maés et al., 2013).

Second, modelers need to decide whether there is just one
or multiple dimensions of influence. For instance, it is often
argued that political opinions are multi-dimensional and can-
not be captured by the one-dimensional left-right spectrum.
Explaining dynamics of opinion polarization and clustering
turned out to be often more difficult when multiple dimen-
sions are taken into account (Axelrod, 1997). Additionally,
model predictions often depend on whether the influence
dimension is a discrete or a continuous variable. Models
of individuals’ decisions about certain policies often model
the decisions as binary choices (Sznajd-Weron and Sznajd,
2000; Martins, 2008). However, binary scales fail to cap-
ture that many opinions vary on a continuous scale and that
differences between individuals can therefore increase also
on a single dimension (Feldman, 2011; Jones, 2002; Stroud,
2010). Therefore, models that describe opinion polarization
usually treat opinions as continuous attributes.

A third critical question is how the interaction process is
modeled. In models of opinion dynamics, for example, influ-
ence is bi-directional, in that an actor who exerts influence on
someone else can also be influenced by the other (Macy et al.,
2013; Mis et al., 2010). In diffusion models, in contrast, the
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effective influence is directed. For instance, information can
spread only from informed to uninformed individuals, not
the other way around. Furthermore, actors may be influenced
dyadically or multilaterally. Model outcomes often depend
on whether the influence that a group exerts on an actor is
modeled as a sequence of events involving dyads of actors or
as a single opinion update where the actor considers all con-
tacts’ influences at once (Flache and Macy, 2011; Lorenz,
2005; Huckfeldt et al., 2004). In models that assume binary
influence dimensions, for instance, dyadic influence implies
that an agent copies a trait from her interaction partner. When
influence is multilateral, agents aggregate the influence ex-
erted by multiple interaction partners (using e.g. the mode of
the neighbors’ opinions), which can imply that agents with
rare traits are not considered even though they would have
an influence in the case of dyadic influence events. For ex-
ample, a farmer seeking advice whether to adopt a new tech-
nology can either consult his friends one after another or all
together, likely leading to different outcomes if they have dif-
ferent opinions on the matter.

Fourth, agents may slightly deviate from the influence
of their contacts. The exact type of these deviations affects
model outcomes and can introduce a source of diversity into
models of social influence (Mis et al., 2010; Pineda et al.,
2009; Kurahashi-Nakamura et al., 2016). For instance, some
models of continuous opinion dynamics include deviations
as Gaussian noise, i.e. random values drawn from a nor-
mal distribution. In such a model, opinions in homogeneous
subgroups will fluctuate randomly and subgroups with sim-
ilar opinions can merge that would have remained split in a
model without deviations (Mis et al., 2010). In other con-
texts, deviations are better modeled by uniformly distributed
noise, assuming that big deviations are as likely as small
ones. This can help to explain for instance the emergence
and stability of subgroups with different opinions, that do not
emerge in settings with Gaussian noise’ (Pineda et al., 2009).

Finally, the effects of social influence depend on the struc-
ture of the network that determines who influences whom.
Complex dynamics can arise when this interaction network
is dynamic and depends on the attributes of the agents, as we
discuss in the following section.

Models of social influence are a promising approach to
explore how social transitions interact with the Earth system,
e.g., transitions of norms regarding admissible resource use
and emissions, lifestyle changes, and adoption of new tech-
nology. For instance, they can be used to model under which
conditions social learning enables groups of agents to adopt
sustainable management practices.

>Gaussian noise needs to be very strong to generate enough
diversity for the emergence of subgroups with different opinions.
However, when noise is strong, subgroups will not be stable.

13

4.4 Modeling the interaction structure: (adaptive)
network approaches

In most of the models discussed in the previous section, the
social network is formally modeled as a graph (the mathe-
matical notion for a network): a collection of nodes that are
connected by links. In this mathematical framework, nodes
(vertices) represent agents and links (edges) indicate inter-
action, communication, or a social relationship. Agents can
only interact and thus influence each other if they are con-
nected by a link in the underlying network.

Classical social influence models study the dynamics of
influence on static networks, assuming that agents are al-
ways affected by the same subset of interaction partners (e.g.,
DeGroot, 1974; French, 1956; Friedkin and Johnsen, 2011).
These networks can be undirected or directed, possibly re-
stricting the direction of influence, but their structure does
not change over time. Furthermore, the topology of the net-
work, i.e. the arrangement of links, can be more or less ran-
dom or regular, clustered and hierarchical. In social influence
models on static networks, connected populations will usu-
ally reach consensus in the long run.

Especially when modeling social processes over longer
time scales, it is reasonable to assume that the social net-
work is dynamic, i.e. that its structure evolves over time.
This time evolution can be independent of the dynamics on
the network and encoded in a temporal network (Holme and
Saramiki, 2012). However, for many social processes, the
structure of the social network and the dynamics on the net-
work (e.g., social influence) interact. Adaptive network mod-
els make the removal of existing and the formation of new
links between agents dependent on attributes of the agents,
building on the insight that the social structure influences the
behavior, opinions or beliefs of individual actors, which in
turn drives changes in social structure (Gross and Blasius,
2008).

Local update rules for the social network structure and
the agent behavior can be chosen very flexibly. Changes in
agent behaviors may be governed by rules such as random
or boundedly rational imitation of the behavior of network
neighbors (see above). Update rules for the network struc-
ture are often based on the insight that agents tend to be
influenced by similar others and ignore those sources who
hold too distant views (Wimmer and Lewis, 2010; McPher-
son et al., 2001; Lazarsfeld and Merton, 1954). Many models
assume that agents with similar characteristics tend to form
new links between each other (homophily), while break-
ing links with agents having diverging characteristics (Ax-
elrod, 1997; Hegselmann and Krause, 2002; Deffuant et al.,
2005). In adaptive network models, homophily in combi-
nation with social influence generates a positive feed-back
loop: influence increases similarity, which leads to more in-
fluence and so on. Such models can explain for instance the
emergence and stability of multiple internally homogeneous
but mutually different subgroups. Other applications of co-
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14 Muller-Hansen et al.: Approaches to represent human behavior in ESM

evolutionary network models allow to understand the pres-
ence of social tipping points in opinion formation (Holme
and Newman, 2006), epidemic spreading (Gross et al., 2006),
the emergence of cooperation in social dilemmas (Perc and
Szolnoki, 2010) and the interdependence of coalition forma-
tion with social networks (Auer et al., 2015). Such adap-
tive network models exhibit complex and nonlinear dynam-
ics such as phase transitions (Holme and Newman, 2006),
multi-stability (Wiedermann et al., 2015), oscillations in both
10 agent states and network structure (Gross et al., 2006), and

structural changes in network properties (Schleussner et al.,

2016).

While adaptive networks have so far mostly been applied
to networks of agents representing individuals, the frame-

15 work can in principle be used to model co-evolutionary dy-
namics on various levels of social interaction as introduced
in Table 1. For instance, global complex network structures
such as financial risk networks between banks, trade net-
works between countries, transportation networks between

2 cities and other communication, organizational and infras-

tructure networks can be modeled (Currarini et al., 2016).

Furthermore, approaches such as multi-layer and hierarchi-

cal networks or networks of networks allow modeling the

interactions between different levels of a system (Boccaletti

» et al., 2014).

As an illustration, consider a community of agents each
harvesting a renewable resource, e.g., wood from a forest.
The agents interact on a social network, imitating the harvest-
ing effort of neighbors that harvest more and may drop links

a0 to neighbors that use another effort. The interaction of the
resource dynamics with the network dynamics either leads
to a convergence of harvest efforts or a segregation of the
community into a group with a higher and a lower effort, de-

pending on the model parameters (Wiedermann et al., 2015;
ss Barfuss et al., 2017).

In the context of long time scales in the Earth system,
the time evolution of social structures that determine interac-
tions with the environment are particularly important. Adap-
tive networks offer a promising approach to modeling struc-
tural change of the internal connectivity of a complex system
(Lade et al., 2016). For example, this could be applied to
explore mechanisms behind transitions between centralized
and decentralized infrastructure and organizational networks.

Table 3 summarizes the different modeling approaches
ss that focus on agent interactions in human decision making

and behavior. These interactions occur between two or sev-

eral agents. For including the effect of these interactions
into ESMs, their aggregate effects need to be taken into ac-
count as well. Therefore, we introduce in the next section

so approaches that allow to aggregate individual behavior and
local interactions and to study the resulting macro-level dy-
namics.

o

4

S

5 Aggregating behavior and decision making and
modeling dynamics at the system level

So far, we focused on theories and modeling techniques that
describe decision processes and behavior of single actors,
their interactions and the interaction structure. This section
builds on the previously discussed approaches and highlights
different aggregation methods for the behavior of an ensem-
ble or group of agents. This is an important step if models
shall describe system level outcomes or collective decision
making and behavior in the context of Earth system mod-
eling. Aggregation techniques link modeling assumptions at
one level (often called the micro-level) to a higher level (the
macro-level). They enable the analysis of macro-level out-
comes and help to transfer models from one scale to another.
In general, this could link all levels introduced in Section 2.

In this section, we describe different approaches that are
used to make this connection: Analytical approaches gen-
erally represent groups of individual agents through some
macro-level or average characteristic, often using simplify-
ing assumptions regarding the range of individual agents’
characteristics. Simulation approaches describe individual
behavior and interactions and then compute the resulting ag-
gregate macroscopic dynamics.

The question how to aggregate micro-processes to macro-
phenomena is not specific to modeling human decision mak-
ing and behavior. Aggregation of individual behavior and the
resulting description of collective action, such as collective
motion, is also an ongoing challenge in the natural sciences
(Couzin, 2009). Specific assumptions about the individual
behavior and agent interactions have consequences for the
degree of complexity of the macro-level description. For in-
stance, if agent goals and means do not interact, the proper-
ties of single agents can often be added up. If, on the con-
trary, agents influence each other’s goals or interact via the
environment, complex aggregate dynamics can arise.

The following sections discuss different aggregation tech-
niques, their underlying assumptions and how these reflect
specific aggregation mechanisms. They are summarized in
Table 4.

5.1 Aggregation of preferences: social welfare and
voting

Rational choice approaches can also be used to model deci-
sion making by agents on higher levels from Table 1, e.g.,
firms or countries. The “preferences” of such groups of indi-
viduals are often represented by using as the optimization tar-
get a social welfare function, which aggregates the members’
utility functions, either additively (“‘utilitarian” welfare) or
in some nonlinear way to represent inequality aversion (e.g.,
the Gini-Sen, Atkinson-Theil-Foster, or egalitarian welfare
functions; Dagum, 1990). To do so, a common scale of util-
ity must be assumed. For example, individual utility in many
economic models equals the logarithm of the total monetary
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Table 3. Summary table for agent interactions.

Approaches and Key considerations Strengths Limitations
frameworks
Classical game theory: ~ What is the game structure (op- Elegant solutions for low- Difficult to solve for complex

strategic interactions
between rational agents

tions, possible outcomes, tim-
ing, information flow) and what
are the players’ preferences?

complexity problems

games, agents cannot change
the rules of the game

Evolutionary game
theory: competition
and selection between
hardwired strategies

Which competition and selec-
tion mechanisms are there?

Can explain how dominant
strategies come about

Agent strategies are modeled as
hard-wired (no conscious strat-
egy change)

Social influence: agents
influence each other’s
beliefs, preferences or

How do influence mechanisms
change agent attributes? Is the
influence multilateral, dyadic,

Allows to model social learn-
ing, preference formation, and
hearding behavior

Local dynamics are often styl-
ized

behaviors directed? How large are devia-
tions?
Network theory: Is the social network static or Mathematical formalization to  Micro-interactions mostly di-

changing social
interaction structures

adaptive? How much random-
ness and hierarchy is in the

model co-evolution of social
structure with agent attributes

adic and schematic

15

structure? How do agents form
new links?

value of the individual’s consumption. In reality, social wel-
fare functions are indeed used to find optimal policy, e.g. in
cost-benefit analysis (Feldman and Serrano, 2006). For ex-
ample, consider a village of farmers growing crops, which
s need different amounts of water, so that water management
policies affect farmers’ incomes. The effects of a water pol-
icy could then be evaluated using either the average, mini-
mal or average-logarithmic income of farmers as a measure
of social welfare. The policy option maximizing the chosen
10 indicator should be implemented.

However, it is highly debated that utilities of different in-
dividuals can really be compared and substituted in the sense
that a drop in collective welfare resulting from an actor’s de-
crease in utility can be compensated by increasing the utility

15 of another actor. Defining suitable group preferences is es-
pecially hard when group composition or size changes over
time as in intergenerational models (Millner, 2013). Also, in
complex organizations, real decisions might be non-optimal
for the group and more explicit models of actual decision

20 procedures may be needed. Models in subfields of game the-
ory (bargaining, voting, or social choice theory) explore the
outcomes of formal protocols that are designed to aggregate
the group member’s heterogeneous preferences. Under dif-
ferent voting or bargaining protocols, subgroups may domi-

25 nate the decision or the group may be able to reach a com-
promise (Heitzig and Simmons, 2012). In the above example,
the farmers may not agree on a social welfare measure that a
policy should optimize but instead on a formal protocol that

would allow them to determine a policy for water usage that
is acceptable for all.

5.2 Aggregation via markets: economic models and
representative agents

A major part of the relevant interaction of contemporary
societies with the Earth system is related to the organiza-
tion of production and consumption on markets. Markets
do not only mediate between the spheres of production
and consumption, they can also be seen as a mechanism
to aggregate agents’ decisions and behavior. Economic the-
ory explores how goods and services are allocated and dis-
tributed among the various activities (sectors of production)
and agents (firms, households, governments) in an economy.
Goods and services may be consumed or can be the input
factors to economic production. Input factors for production
are usually labor and physical capital, but can also include
financial capital, land, energy, natural resources and interme-
diate goods. In markets, the coordination between demand
and supply of goods is mediated through prices that are as-
sumed to reflect information about the scarcity and produc-
tion costs of goods. Economics compares different kinds of
market setting (e.g., auctions, stock exchanges, international
trade) with respect to different criteria such as allocative ef-
ficiency.

Building on rational choice theory for modeling the deci-
sions of individual agents, microeconomic models in the tra-
dition of neoclassical economics analyze the conditions for
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Table 4. Summary table for aggregation and system level descriptions
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Approaches and frameworks

Key considerations

Strengths

Limitations

Social utility and welfare: Ag-
gregate individual utility, possi-
bly taking inequalities into ac-
count

How is inequality evaluated?
How is welfare compared be-
tween societies and genera-
tions?

Base for cost-benefit analysis, a
widely applied decision model
for policy evaluation

Assumes that individual utility
can be compared on a common
scale

Aggregation via markets: Rep-
resentative agents in economic
models

Which goals or preferences
do representative agents have?
How efficient do market mech-
anisms allocate on which spa-
tial and temporal scales? Which
market imperfections are there?

Well developed formalism that
makes the connection between
and macroeconomics
analytically traceable

micro-

Assumes that aggregated agent
properties are similar to indi-
vidual ones to derive economic
equilibrium, coordination effort
between agents neglected

Social planner and economic
policy in integrated assessment
models: Model ways to inter-
nalize environmental externali-
ties

Which economic policy in-
struments internalize environ-
mental externalities best? What
are plausible scenarios for pol-
icy implementation? How do
agents react to changes in pol-
icy?

Allows to determine optimal
paths for reaching societal
goals

Models focus on production
and investment in the economy

Distributions and moments:
Model heterogeneous agent at-
tributes via statistical properties
of distributions

Which heterogeneities are
most important for the macro-
outcome?

Systematic way to analytically
treat heterogeneities

Only applicable for rather sim-
ple behaviors and interactions

Agent-based models: Simulate
agent behavior and interactions
explicitly to study emergent
macro-dynamics computation-
ally

Which kind of agents types are
important? How do they make
decisions? How do the agents
interact with each other and the
environment?

Very flexible framework re-
garding assumptions about de-
cision rules and interactions

Models often with many un-
known parameters, difficult to
analyze mathematically

Dynamics at the system level

Which crucial parameters in the
model can be influenced by de-
cision makers?

Allows to explore possible
dynamical properties of the
system based on
mechanisms

macro-

No explicit micro-foundation

an equilibrium between supply and demand on single mar-
kets (partial equilibrium theory) and between all markets
(general equilibrium theory). The behavior of households
and firms is usually modeled as utility maximization under
budget constraints and profit maximization under technolog-
ical constraints in the production, respectively. A central as-
sumption is that an economy is characterized by decreasing
marginal utility and diminishing returns: The additional indi-
vidual utility derived from the consumption of one additional
unit of some good is declining. Similarly, the additional pro-
duction derived from an additional unit of a single input fac-
tor is declining with its absolute amount when holding other
input factors fixed. Accordingly, the output of the production
process is described as a production function, which is con-
cave in its input factor arguments.

Assuming that there is perfect competition between pro-
ducers, resources and goods are allocated in a Pareto-efficient
way so that no further redistribution is possible that benefits

somebody without making somebody else worse off (Var-
ian, 2010). It has been shown that this leads to the emer-
gence of an equilibrium price for each good as the market
is cleared and supply meets demand (Arrow and Debreu,
1954). The idea of this market equilibrium can be under-
stood by the associated prices: The rational market partici-
pants trade goods as long as there is somebody who is will-
ing to offer some good at a lower price than what somebody
else is willing to pay for it. However, in markets dominated
by a few or very heterogeneous agents perfect competition
cannot be assumed, and price wars, hoarding, and cartel for-
mation can occur. Such situations can be described in models
of oligopoly, bargaining or monopolistic competition but are
sometimes difficult to integrate into macroeconomic frame-
works.

Macroeconomic models build on this microeconomic the-
ory by modeling decision making of firms and households
with the representative agent approach. A representative
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agent stands for an ensemble of agents or an average agent
of a population. An underlying assumption is that hetero-
geneities and local interactions cancel out for large numbers
of agents. While representative firms model the supply of dif-
ferent sectors, the demand is determined by one or several
representative households. Representative firms and house-
holds are assumed to act as if there would be perfect compe-
tition and they had no market power, i.e. that they optimize
their production or consumption taking the prices of goods
10 and production factors as given. The prices of production fac-
tors are assumed to equal the value of what they are able to
produce additionally by using one additional unit, i.e. their
marginal product. In simple macroeconomic models, repre-
sentative agents interact on perfect markets for all production
1s factors and goods. The solution of the associated optimiza-
tion problem (with constraints given by a system of nonlin-
ear algebraic equations) specifies the quantity and allocation
of input factors, their prices (wages and interest rates), and
the production and allocation of consumer goods. A change
20 in one constraint therefore can lead to adjustments in all sec-
tors and new equilibrium prices. For example, in an economy
with only two sectors, industry and agriculture, modeled by
two representative firms and a representative household, in-
creases in agricultural productivity may lead to the realloca-
25 tion labor into the industrial sector and changes in wages.

In reality, prices can undergo rapid fluctuations, which
challenges the validity of equilibrium assumptions at least
in the short run. Furthermore, production factors may not
be fully employed as general equilibrium considerations sug-

a0 gest. Other deviations from efficient equilibria are discussed
as market imperfections such as transaction costs, asymme-
tries in available information and non-competitive market
structures. Dynamic stochastic general equilibrium (DSGE)
models account for consumption and investment decisions
a5 of economic agents under uncertainty and explore the conse-
quences of stochastic shocks on public information or tech-
nology for macroeconomic indicators. Many modern DSGE
models also incorporate short-term market frictions such as
barriers to nominal price adjustments (“sticky” prices) or
40 other market imperfections (Wickens, 2008). However, these
models still build on the key concept of general equilibrium
because they assume that the state of the economy is always
near such an equilibrium and market clearance is fast.
Economic growth models are used to study the long-term
dynamics of production and consumption and are therefore
an important approach for Earth system modeling. In sim-
ple growth models, a homogeneous product is produced per
time according to an aggregate production function. A part
of the output can be saved as new capital, while the remain-
so ing output is consumed. The evolution of the capital stock
is given by a differential equation taking into account in-
vestments and capital depreciation. In the standard neoclassi-
cal growth model, the savings are endogenously determined
by inter-temporal optimization of a representative household
ss and equal investments. The household maximizes an expo-

o

4

o

nentially discounted utility stream (compare Section 3.1),
which is a function of consumption (Acemoglu, 2009). The
central decision of the representative household is how much
of the produced output it saves to increase production in the
future and therefore cannot consume and enjoy directly. Such
inter-temporal optimization problems can be solved either
computationally by discretization in time or analytically by
applying techniques from optimal control theory®. Besides
population growth, the only long-term drivers of growth in
the standard neoclassical model are exogenously modeled
increases in productivity through technological change. In
contrast, so-called endogenous growth models exhibit long-
run growth and endogenously account for increases in pro-
ductivity, for example through innovation, human capital or
knowledge accumulation (Romer, 1986; Aghion and Howitt,
1998).

The use of representative agents in macroeconomic mod-
els has implications that stem from the implicit assumption
that the representative agent has the same properties as an
individual of the underlying group (Kirman, 1992; Rizvi,
1994): First, the approach neglects that single agents in the
represented group have to coordinate themselves, leaving out
problems that arise due to incomplete and asymmetric infor-
mation. Second, a group of individual maximizers does not
necessarily imply collective maximization, challenging the
equivalence of the equilibrium outcome. Finally, the repre-
sentative agent approach may neglect emergent phenomena
from heterogeneous micro-interactions (Kirman, 2011).

In spite of the deficiencies of the representative agent ap-
proach, its application to markets allows to aggregate behav-
ior in simple and analytically tractable forms. Modelers who
wish to describe economic dynamics at an aggregate level
can rely on a well developed theory that describes many eco-
nomic phenomena in a good approximation. In the following
section, we will discuss how this approach is used to analyze
impacts of economic activities on the environment.

5.3 Modeling of decisions in integrated assessment
models: social planner and economic policy

Integrated assessment models (IAMs) comprise a large mod-
eling family that combine economic with environmental dy-
namics. However, the majority of currently used IAMs draws
on ideas from environmental economics. Using the concept
of environmental externality, they evaluate the extraction of
exhaustible resources, environmental pollution and overex-
ploitation of ecosystems economically. Externalities are ben-
efits from or damages to the environment that are not re-
flected in prices and affect other agents in the economy (see,
e.g., Perman et al., 2003). These models therefore help to as-
sess economic policies that tackle environmental problems.

Optimal control theory deals with finding an optimal choice for
some control variables (often called policy) of a dynamical system
that optimizes a certain objective function, using for example vari-
ational calculus (Kamien and Schwartz, 2012).
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State-of-the-art global IAMs combine macroeconomic
representations of sectors like the energy and land system
with models of the biophysical bases and environmental im-
pacts of these sectors. For example, COy emitted from burn-
ing fossil fuels is linked to economic production by car-
bon intensities and energy efficiencies in different produc-
tion technologies. IAMs often model technological change
endogenously, for example with investments in R&D or
learning-by-doing (i.e., decreasing costs with increasing uti-
lization of a technology). Because of the possibility to induce
technological change, the models capture path-dependencies
of investment decisions. Many IAMs take the perspective of
a social planner, who makes decisions on behalf of society
by optimizing a social welfare function (see Section 5.1). It
is assumed that the social optimum equals the perfect market
outcome with economic regulations that internalize all exter-
nal effects (e.g., emission trading schemes).’

IAMs are mostly computational general or partial equi-
librium models, describing market clearing between all sec-
tors or using exogenous projections of macroeconomic vari-
ables (cp. Section 5.2). They also differ with respect to inter-
temporal allocation: While inter-temporal optimization mod-
els use discounted social welfare functions to allocate in-
vestments and consumption optimally over time, recursive
dynamic models solve an equilibrium for every time step
(Babiker et al., 2009). Furthermore, IAMs are designed for
(1) either determining optimal environmental outcomes of
a policy by making a complete welfare analysis between
different policy options or (2) evaluating different paths to
reach a political target with respect to their cost-effectiveness
(Weyant et al., 1996). In the context of climate change for
example, many IAMs have emission targets as constraints in
their optimization procedure and determine the best way to
reach them (Clarke et al., 2014).

For the analysis of global land-use, IAMs combine ge-
ographical and economic modeling frameworks (Lotze-
Campen et al., 2008; Hertel et al., 2009; Havlik et al., 2011).
These models are used for example to investigate the com-
petition between different land uses and trade-offs between
agricultural expansion and intensification. With the optimiza-
tion, land uses are instantaneously and globally allocated,
only constrained by environmental factors such as soil qual-
ity and water availability, as well as climate and protection
policies.

IAMs differ from ESMs not only regarding their model-
ing technique (mostly optimization) but also regarding their
purpose: They help policy advisors to assess normative paths
that the economy could take to reach environmental policy
goals. While the decision about the policy is exogenous to
the model, the investment decisions within and between sec-
tors are modeled as a reaction to the political constraints.

"This argument is based on the second fundamental theorem of
welfare economics, see for example Feldman and Serrano (2006,
pp. 63-70).

Muller-Hansen et al.: Approaches to represent human behavior in ESM

However, most IAMs do not account for possible changes on
the demand side, e.g., through changes in consumer’s prefer-
ences for green products. A better cooperation between the
IAM and ESM communities, as called for by Vuuren et al.
(2016) in this Special Issue, is certainly desirable because
some of the problems that arise when including human de-
cision making into ESMs have already been dealt with in
IAMs. However, when considering the coupling of IAMs and
ESMs with different methods (van Vuuren et al., 2012), mod-
elers have to keep in mind not only technical compatibility
(e.g. regarding the treatment of time in inter-temporal opti-
mization models) but also the possibly conflicting modeling
purposes.

5.4 Modeling agent heterogeneity via distributions and
moments

As discussed in Section 5.2, the representative agent ap-
proach can hardly capture heterogeneity in human behavior
and interaction. In this section we describe analytical tech-
niques that allow to capture at least some forms of agent het-
erogeneity.

An ensemble of similar agents can be modeled via statis-
tical distributions if the agents are heterogeneous regarding
only some quantitative characteristics, e.g. endowments such
as income or wealth or parameters in utility functions. In sim-
ple models, techniques from statistical physics and theoreti-
cal ecology can be used to derive a macro-description from
micro-decision processes and interactions. For instance, the
distribution of agent properties representing an ensemble of
agents can be described via a small number of statistics such
as mean, variance and other moments or cumulants. The dy-
namics in form of difference or differential equations of such
statistical parameters can be derived by different kinds of ap-
proximations. A common technique is moment closure that
expresses the dynamics of lower moments in terms of higher
order moments. At some order, the approximation is made by
neglecting all higher order moments or approximating them
by functions of lower-order ones (see, e.g., Goodman, 1953;
Keeling, 2000; Gillespie, 2009).

To aggregate simple interactions between single nodes in
network models, similar techniques can be used to describe
with differential equations how the occurrence of simple
sub-graphs (motifs) changes with the dynamics on and of
the network. In network theory, these approaches are also
called moment closure, although the closure refers here to
neglecting more complicated subgraphs (e.g., Do and Gross,
2009; Rogers et al., 2012; Demirel et al., 2014). For ex-
ample, the simple pair approximation only considers differ-
ent subgraphs consisting of two vertices (agents) and one
link. To abstract from the finite-size effects of fluctuations
at the micro-level in stochastic modeling approaches and ar-
rive at deterministic equations, analytical calculations often
take the limit of the agent number going to infinity (in statis-
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tical physics called the thermodynamic limit, cp. Reif, 1965;
Castellano et al., 2009).

Techniques based on moment closure and network approx-
imations are used to aggregate the dynamics of processes like
opinion formation on networks. This might be especially use-
ful to reduce computational complexity when modeling so-
cial processes at intermediate levels of aggregation and could
allow investigating the interplay of meso-scale social pro-
cesses with natural dynamics of the Earth system.

5.5 Aggregation in agent-based models

Agent-based modeling is a computational approach to
modeling the emergence of macro- or system-level out-
comes from micro-level interactions between individual, au-
tonomous agents and between agents and their social and/or
biophysical environments (Epstein, 1999; Gilbert, 2008; Ed-
monds and Meyer, 2013). In agent-based models (ABMs),
human behavior is not aggregated to the system level a pri-
ori nor is it assumed that individual behavioral diversity can
be represented by a single representative agent as in many
macroeconomic models (cp. Section 5.2). Instead, the behav-
ior of heterogeneous agents or groups of agents is explic-
itly simulated to study the resulting aggregate outcomes. As
each action of an individual agent is interdependent, i.e. it
depends on the decisions or actions of other agents within
structures such as networks or space, local interactions can
give rise to complex, emergent patterns of aggregate behav-
ior at the macro-level (Page, 2015). ABMs allow explor-
ing such non-linear behavior in order to understand possi-
ble future developments of the system or assess possible un-
expected outcomes of disturbances or policy interventions.
Agent-based modeling is widely used to study complex sys-
tems in computational social science (Conte and Paolucci,
2014), land-use science (Matthews et al., 2007), political sci-
ence (de Marchi and Page, 2014), computational economics
(Tesfatsion, 2006; Heckbert et al., 2010; Hamill and Gilbert,
2016), social-ecological systems research (Schliiter et al.,
2012; An, 2012), and ecology (Grimm and Railsback, 2005),
among others.®

Agents in ABMs can be individuals, households, firms or
other collective actors as well as other entities or groups
thereof, such as fish, fish populations or plant functional
types. Agents are assumed to be diverse and heterogeneous,
i.e. they can belong to different types and can vary within
one type, respectively. Agent types can be characterized by
different attributes and decision making models (e.g., large
and commercial versus small and traditional farms). Hetero-
geneity within a type is often represented through quantita-
tive differences in values of these attributes (e.g. regarding

¥Note that in some scientific communities, this class of mod-
eling approaches is also known as multi-agent simulations (MAS,
Bousquet and Le Page, 2004) or individual-based modeling (Grimm
and Railsback, 2005).
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market access, social or financial capital). The decision mak-
ing and behavior of the agents can be modeled with any of
the approaches introduced in Section 3 or be based on data or
observations that are formalized in equations, decision trees
or other formal rules. In empirical ABMs agents are often
classified into empirically-based agent types, which are char-
acterized by attributes and decision heuristics derived from
empirical data obtained through interviews or surveys (Sma-
jgl and Barreteau, 2014). Increasingly, social science theories
of human behavior beyond the rational actor are being used
in ABMs to represent more realistic human decision making.
However, many challenges remain to translate these theories
for usage in ABMs (Schliiter et al., 2017).

Probabilistic and stochastic processes are often used to
capture uncertainty in and the impact of random events on
human decision making and assess the consequences for
macro-level outcomes. For example, random events at the lo-
cal level such as a random encounter between two agents that
results in a strategy change of one agent or a system-level
environmental variation can give rise to non-linear macro-
dynamics such as a sudden shift into a different system state
(Schliiter et al., 2016).

In addition to the behavior of the agents, ABMs of human-
environment systems incorporate the dynamics of the bio-
physical environment resulting from natural processes and
human actions insofar as it is relevant for the agents’ behav-
ior and to understand feedbacks between human behavior
and environmental processes. For example, in an ABM by
Martin et al. (2016), a number of cattle ranchers can move
their livestock between grassland patches in a landscape.
Overgrazing in one year decreases feed availability in the
following year because of the underlying biomass regrowth
dynamics. Agents decide how many cattle to graze on a par-
ticular land patch based on their individual goals or needs,
information on the state of the grassland, beliefs about the
future and interactions with other ranchers. The model can
reveal the interplay and success of different land-use strate-
gies on common land and assess their vulnerability to shocks
such as droughts. Most ABMs in the context of land-use sci-
ence have so far been developed for local or regional study
areas, taking into account local specificities and fitting be-
havioral patterns to data acquired in the field (Parker et al.,
2003; Matthews et al., 2007; Groeneveld et al., 2017). They
are often combined with cellular automaton models that de-
scribe the dynamics and state of the physical land system
(e.g., Heckbert, 2013). In these ABMs, the spatial embedding
of agents usually plays an important role (Stanilov, 2012).

Because ABMs can integrate a diversity of individual de-
cision making, heterogeneity of actors and interactions be-
tween agents constrained by social networks or space as well
as social and environmental processes, they are particularly
suitable to study feedbacks between human action and bio-
physical processes. In the context of ESM these may include
human adaptive responses to environmental change such as
effects of climate change on agriculture and water availabil-
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ity, to policies such as bioenergy production or the global
consequences of shifts in diets in particular regions. Agent-
based modeling is also a useful tool to unravel the causal
mechanisms underlying system-level phenomena (Epstein,
1999; Hedstrom and Ylikoski, 2010) and thus enhance un-
derstanding of key human-environment interactions that may
give rise to observed Earth system dynamics. However, be-
cause of their potentially high complexity and dimensional-
ity in state and parameter space, ABMs are often difficult to
analyze and may require high computational capacities and
sophisticated model analysis techniques to understand their
dynamics beyond single trajectories.

Agent-based approaches can be applied without modeling
each individual agent explicitly. It suffices to model a rep-
resentative statistical sample of agents that depicts the im-
portant heterogeneities of the underlying population. To cap-
ture major types of human behavior, a recent proposal are
agent functional types based on a theoretically derived typol-
ogy of agent attributes, interactions and roles (Arneth et al.,
2014). This proposal is explored for modeling the adapta-
tion of land-use practices to climate change impacts (Murray-
Rust et al., 2014). Agent-functional types represent a typol-
ogy that is theoretically constructed instead of data-driven,
which is common in empirically-based ABMs. Agent-based
approaches are promising for Earth system modeling because
they allow addressing questions of interactions across levels,
for instance how global patterns of land use emerge from in-
terdependent regional and local land-use decisions which are
in turn constrained by the emerging global patterns. Further-
more, they would allow the integration of uncertainty, agent
heterogeneity and aggregation of detailed technological and
environmental changes (Farmer et al., 2015).

5.6 Dynamics at the system level: System dynamics,
stock-flow consistent and input-output models

This final subsection discusses modeling approaches with-
out explicit micro-foundations. Decisions in such models are
not modeled explicitly with one of the options discussed in
Section 3 but, as policy decisions in integrated assessment
models, through the construction of different scenarios for
the evolution of crucial exogenous parameters in the model.
Global system dynamics models describe the economy,
population and crucial parts of the Earth system as well as
their dynamic interactions at the level of aggregate dynamic
variables, usually modeling the dynamics as ordinary differ-
ential equations or difference equations to project future de-
velopments. The equations are often built on stylized facts
about the dynamics of the underlying subsystems and are
linked by functions with typically many parameters. Mod-
elers employ system dynamics models to develop scenarios
based on different sets of model parameters and assess sys-
tem stability and transient dynamics of a system. In com-
parison to equilibrium approaches, system dynamics models
capture the inertia of socioeconomic systems at the cost of
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a higher dimensional parameter space. This can lead to more
complex dynamics, e.g., oscillations or overshooting. System
dynamics models can be very detailed, like the World3 model
commissioned by the Club of Rome for their famous report
on “Limits to Growth” (Meadows et al., 1972, 2004), the
GUMBO model (Boumans et al., 2002), or the International
Futures model (Hughes, 1999). Subsystems of such models
comprise human population (sometimes disaggregated be-
tween regions and age groups), the agricultural and industrial
sector, as well as the state of the environment (pollution and
resource availability). Simpler models describe the dynamics
of only a few aggregated variables at the global level (Kellie-
Smith and Cox, 2011) or confined to a region (Brander and
Taylor, 1998).

Other system-level approaches to macroeconomic model-
ing emphasize self-reinforcing processes in the economy and
point at positive feedback mechanisms, resulting in multi-
stability or even instability (e.g., increasing returns to scale in
production and self-amplification of expectations during eco-
nomic bubbles). For example, post-Keynesian economists
use stock-flow consistent models to track the complete mone-
tary flows in an economy in which low aggregate demand can
lead to underutilization of production factors and the state
plays an active role to stabilize the economy. In these mod-
els, a social accounting matrix provides a detailed framework
of transactions (e.g., monetary flows) between households,
firms and the government, which hold stocks of assets and
commodities (Godley and Lavoie, 2007).

Input-output models track flows to much more detail be-
tween different industries or sectors of production (Leontief,
1986; Ten Raa, 2005; Miller and Blair, 2009). Each indus-
try or production process is modeled by a fixed proportions
(“Leontief™) production function, which is characterized by
linear factors that depend on the available technology. For ex-
ample, an input-output model can describe which primary in-
put factors such as land, fertilizer, machinery, irrigation wa-
ter and labor are required for satisfying the demand of an
agricultural commodity by a mix of production techniques.
The model would consider that some of these primary inputs
have to be produced themselves, using other inputs and out-
puts may be unwanted side-products such as manure in cattle
production. Such models are used for instance to explore how
changes in demand would lead to higher-order effects along
the supply chain. Regional input-output models also account
for spatial heterogeneity and are used for example to evalu-
ate possible impacts of extreme climate events on the global
supply chain (Bierkandt et al., 2014).

While the approaches discussed above focus on the mon-
etary dimension of capital and goods, models from ecolog-
ical economics (van den Bergh, 2001) track material flows
or integrate material with financial accounting. For example,
input-output modeling has been extended to analyze the in-
dustrial metabolism, i.e. the material and energy flows and
its environmental impacts in modern economies (Fischer-
Kowalski and Haberl, 1997; Ayres and Ayres, 2002; Suh,
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2009). Regionalized versions of such models can for in-
stance be used to estimate the environmental footprint that
industrialized countries have in other regions (Wiedmann,
2009). In the emerging field of ecological macroeconomics
(see Hardt and Neill, 2017, for a detailed review of modeling
approaches), stock-flow consistent and input-output models
have been combined into one framework tracking financial
as well as material flows (Berg et al., 2015). Other ecologi-
cal models use the flow-fund approach by Georgescu-Roegen
(1971) or combine it with stock-flow consistent modeling ap-
proaches (Dafermos et al., 2017). While the flow concept
refers to a stock per time, a fund is the potentiality of a sys-
tem to provide a service. The important difference lies in the
observation that a stock can be depleted or accumulated in
one time step while a fund can provide its service only once
per time step. This distinction reflects physical constraints on
the production process that have important consequences for
modeling the social metabolism. Garrett (2015) and Jarvis
et al. (2015) in this Special Issue provide an extreme view on
the dynamics of social metabolism based only on thermody-
namic considerations without taking human decision making
or agency into account.

In order to make approaches that only consider the sys-
tem level useful for modeling the impact of humans on the
Earth system, they could be combined with approaches that
model the development of new production technologies and
how the deployment of new technologies is affected by deci-
sions at different levels (consumers, firms and governments).
Even if this integration with decision models may prove diffi-
cult, the approaches discussed in this section can help linking
social and environmental dynamics in new ways, providing
an important methodology to include humans into ESMs.

6 Discussion

In the previous three sections, we showed that there is a diver-
sity of approaches to model individual human decision mak-
ing and behavior, to describe interactions between agents and
to aggregate these processes. The discussion of strengths and
limitations of the modeling approaches showed possible un-
derlying assumptions and connections to theories of human
behavior. While some modeling techniques are compatible
with many theories of human behavior or decision making
and can thus be used with a variety of assumptions, other
techniques significantly constrain possible assumptions.

For many relevant questions in global environmental
change research, a dynamical representation of humans in
ESMs may not be necessary. If behavioral patterns are not ex-
pected to change over the relevant time scales or feedbacks
between natural and social dynamics are sufficiently weak,
modelers can simply use conventional scenario approaches.

However, if behavioral patterns are expected to change
over time and give rise to strong feedbacks with the envi-
ronment, then an explicit representation of human decision

making will provide new insights into the joint dynamics. In
this case, modelers have to choose carefully which assump-
tions about human behavior and decision making are plau-
sible for their specific modeling purpose. Modeling choices
require a constant interplay between model development and
the research questions that drive it.

Because there is no general theory of human decision
making and behavior, especially not for social collectives,
we cannot provide a specific recipe for including humans
into ESMs. In Table 5, we summarize the approaches we
discussed in this paper and collect important questions to
guide the choice of appropriate model assumptions and ap-
proaches. To find the right assumptions for a specific con-
text, modelers can furthermore build on and consult exist-
ing social-scientific research, even though ambiguities due to
a fragmentation of the literature between opposing schools
of thought and difficulties to generalize single case studies
from their local or cultural specificities can make some of
the research difficult to access. In case of doubt, modelers
can team up with social scientists to conduct empirical re-
search in the specific context needed to select the appropri-
ate approach. The selection of a modeling technique com-
patible with the chosen assumptions also has to consider its
limitations for meaningfully answerable research questions
and analyses that it can provide. In the following, we discuss
some important considerations regarding individual decision
making, interactions and aggregation.

Concerning individual agents, we identified three impor-
tant determinants in decision models: motives, restrictions
and decision rules. Modelers need to take the many factors
into account that influence which assumptions about each of
these three determinants are applicable in a given context.
For instance, modelers can make different assumptions about
whether agents only consider financial incentives or also take
into account other criteria, such as a desire for fair outcome
distributions (Opp, 1999), depending, e.g., on whether a sit-
uation is more or less competitive or cooperative. Research
shows that the relevance of motives and goals can vary over
time and that surprisingly subtle cues can change their im-
portance (Lindenberg, 1990; Tversky and Kahneman, 1985).
Likewise, the choice of a plausible decision rule depends
on the studied context. For instance, a decision rule that re-
quires complex computations may be relatively plausible in
contexts where agents make decisions with important con-
sequences and where they have the information and time
needed to compare alternatives. When stakes are low and
time to decide is limited, however, more simple decision
rules are certainly more plausible. Cognitively demanding
decision rules are also more plausible when decision makers
are collectives, such as companies and governments. Some-
times, it may even be reasonable to assume that agents use
combinations of different decision models (Camerer and Ho,
1999).

Important criteria for choosing an appropriate model of
agent interactions are the type and setting of interactions, the
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assumptions that agents make about each other, the influence
they may exert on each other and the structure of interactions.
For example, interactions in competitive environments will
only lead to cooperation if this is individually beneficial. In
such environments, agents may assume that the others form
their strategies rationally. In less competitive settings, where
social norms and traditions play a crucial role, however, be-
havior may not be strategically chosen but rather adaptively,
e.g., by imitating other agents. This might also be important
on time scales at which cultural evolution happens. Further-
more, social settings might favor that agents primarily inter-
act by exchanging opinions or sharing beliefs and influence
each others’ decisions in this way.

Crucial criteria for the choice of an appropriate aggrega-
tion technique for behavior and interactions are the prop-
erties of relevant economic and political institutions (e.g.,
market mechanisms or voting procedures), decision criteria
for collective agents, heterogeneity of modeled agents, avail-
ability of data to evaluate the model and relevant time and
spatial scales of macro-descriptions. Depending on the spe-
cific research questions, modelers have to choose the aggre-
gation method that fits the real-world systems of interest and
describes their aggregation mechanisms and aggregate be-
havior reasonably. Whether the aggregate behavior of many
agents is better represented by a representative agent as in
macroeconomic models, a distribution of agent characteris-
tics, or many diverse individuals as in ABMs depends on the
importance of agent heterogeneity and interaction structures
such as networks or spatial embeddedness. The choice of an
aggregation technique then determines which characteristics
and processes of the system are modeled explicitly and which
assumptions influence the form of the model only implicitly.

If the local structure of interaction matters, this would re-
quire a gridded or networked approach, otherwise a mean
field approximation is justified. Similar choices have to be
made in classical ESMs: For example, the interaction of
ocean and atmosphere temperature near the surface on a spa-
tial grid could be modeled either by only taking interactions
between neighboring grid points into account or by cou-
pling the ocean temperature to the atmospheric mean field.
Analogously, the interactions between groups of two types
of agents may be modeled explicitly on a social network.
However, it might also suffice to only consider interactions
between two agents representing the mean of each group
respectively. The question whether the interaction structure
matters can often not be answered a priori but may be the
result of a comparison between an approximation and an ex-
plicit simulation.

For the choice of an appropriate aggregation technique,
modelers also have to decide on the level of detail to describe
the system and whether the modeling of individuals or in-
termediate levels of the system is necessary or an aggregate
description suffices. This choice depends on the expected im-
portance of interactions and heterogeneity in an assumed set
of agents. As an example from classical Earth system model-
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ing consider vegetation models, in which modelers choose
between the simulation of representative plant functional
types or ensembles of individual adaptive plants depending
on whether they consider the interaction and heterogeneity
important for the macro-dynamics. Analogously, a model of
social dynamics may use a representative agent approach
or model heterogeneous agents explicitly in an agent-based
model, depending on the research question. The choice be-
tween a detailed and aggregated description depend strongly
on the model purpose. For example, if the goal is to predict
the future development of a system, a system-level descrip-
tion could already suffice, while a more detailed model (e.g.,
ABM) would be needed for understanding the mechanisms
that explain these outcomes in terms of underlying hetero-
geneous responses of individuals. Likewise, for a normative
model aiming to identify the action that maximizes social
welfare an intermediate level of detail could suffice, taking
only specific agent heterogeneities into account.

In general, the evaluation of time scales can help in
many of the above-mentioned modeling choices to decide
whether social processes and properties of socioeconomic
units should be represented as evolving over time, can be
fixed or need not be modeled explicitly at all for a macro-
level description of the system. For example, CO5 concen-
tration in global circulation models can be assumed to be
well-mixed for the atmosphere, while assuming this for the
ocean with its slow convection would distort results on po-
litically relevant time scales considerably (Mathesius et al.,
2015). Similarly, general equilibrium models can be a good
description if the convergence of prices happens on fast time
scales and market imperfections are negligible. Dynamical
system models, on the contrary may be more appropriate to
describe systems with a high inertia that operate far from
equilibrium due to continuous changes in system parameters
and slow convergence. A decisive question is therefore if the
time scales of processes in the system allow a separation of
scales. For instance, this is possible if the micro-interactions
are some orders of magnitude faster that changes in system
parameters or boundary conditions. Similar considerations
apply for spatial scales.

As we have shown in the examples above, there are many
similarities regarding the choice of modeling techniques and
assumptions in ESMs and models of socioeconomic systems.
However, fundamental differences between the modeled sys-
tems pose a big challenge for an informed choice of modeling
techniques. ESMs can often build on physical laws describ-
ing micro-interactions that can be tested and scrutinized. Of
course this can result in very complex macroscopic system
behavior with high uncertainties. But models including hu-
man behavior have to draw on a variety of accounts of basic
motivations in human decision making. And these motiva-
tions may change over time while societies evolve and hu-
mans change their actions because of new available knowl-
edge.
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This can lead to a crucial feedback between the real world
and models: Agents (e.g., policy makers) may decide differ-
ently when they take the information provided by model pro-
jections into account. Therefore, modeling choices regarding
human behavior might eventually change this behavior. This
aspect of human reflexivity makes models of human societies
fundamentally different from natural science models and is
closely linked to the important difference in social modeling
between normative and descriptive model purposes. For ex-
10 ample, models that optimize social welfare usually reflect the

goal that a government should pursue, and therefore have a

normative purpose. But if this model is used to guide policy

making while taking into account the actual and perceived
controls of policy makers and considers the effect of compro-
15 mises between different interest groups, it could also describe
its behavior. This example already shows the often intricate
interconnections between normative and descriptive assump-
tions in decision modeling that modelers should be aware of.
This is further complicated by the observation that the
20 same assumption may be understood in one model as a de-
scriptive (positive) statement whereas in another model it
may be meant as a prescriptive (normative) one. For exam-
ple, in a model of agricultural markets, the assumption that
big commercial farms maximize their profits might be a rea-
25 sonable descriptive approximation. However, in a model that
asks how small-holder farms could survive under competi-
tive market conditions, the same assumption gets a strong
normative content.
Another difficulty is that model choices are often not only
s based on the most plausible assumptions about human de-
cision making but are strongly influenced by considerations
about the assumption’s mathematical convenience. Choosing
assumptions for technical reasons, e.g., mathematical sim-
plicity and tractability, may be problematic because it re-
ss mains unexplained how they are related to the real world.

But because not all assumptions can be easily implemented

in formal models, often a trade-off has to be found between

plausibility and technical practicality of assumptions.
Most global models that describe human interactions with
40 the Earth system and we reviewed here are based on eco-
nomic assumptions about the behavior of humans and so-
cieties. They are often only linked in a one-way fashion to
the biogeophysical part of the Earth system. Including closed
feedback loops between social and environmental dynamics
ss into ESMs is still a big challenge. To advance this endeavor,
more work is needed to synthesize modeling approaches that
can represent various aspects of human behavior in the con-
text of global modeling, even if the need for generalizations
and formalization of human behavior is sometimes met with
so skepticism or rejection by social scientists who emphasize
the context dependence and idiosyncrasy of human behav-
ior. Of course, models that use simple theories of human de-
cision making and behavior to describe human-environment
interactions in the global context cannot claim to capture all
ss real-world social interactions. If models considered the het-

o

erogeneity of agents in all relevant aspects, they would have
to be much more complex than all models that have been de-
veloped to date. But in many real-life settings even simple
conceptual models of social mechanisms are good descrip-
tions of key features of the dynamics at work, as we have
highlighted throughout this review. Including such formal de-
scriptions of idealized social mechanisms can therefore be a
good starting point for understanding feedbacks in the Earth
system and their qualitative consequences so far not consid-
ered explicitly in global models.

7 Summary and Conclusion

In this review, we discussed common modeling techniques
and theories that could be potentially used to include hu-
man decision making and the resulting feedbacks with envi-
ronmental dynamics into Earth system models (ESMs). Al-
though we could only discuss basic aspects of the presented
modeling techniques, it is apparent that modelers who want
to include humans into ESMs are confronted with crucial
choices of which assumptions to make about human behavior
and which appropriate techniques to use.

As Table 5 summarizes, we discussed techniques and
modeling assumptions in three different categories. First, in-
dividual decision modeling focuses on decision processes
and the resulting behavior of single agents and therefore has
to make assumptions about the determinants of choices be-
tween behavioral options. Second, model of interactions be-
tween agents capture how decisions depend upon each other
and how agents influence each other regarding different deci-
sion criteria. Third, modeling techniques that aggregate agent
behavior and interactions to a system level description are
crucial for being able to model human behavior at scales rel-
evant for the Earth system and requires ingredients of the first
and the second categories. To include human decision mak-
ing into ESMs, techniques and assumptions from these three
categories have to be combined. Finally, we discussed impor-
tant questions regarding the choice of modeling approaches
and their interrelation with assumptions about human behav-
ior and decision making, e.g., regarding the level of descrip-
tion, the relevant time scales but also difficulties that can arise
due to human reflexivity and the amalgamation of normative
and descriptive assumptions in models.

Most formal models that describe human behavior in
global environmental contexts are based on economic ap-
proaches. This is not surprising because many human inter-
actions with the environment are driven by economic forces
and economics has a stronger focus on formal models than
other social sciences. However, we think that it is necessary
to advance research that builds on insights from other so-
cial sciences and applies social modeling and simulation in
the context of global environmental change. One important
aim of such research would be to provide a theoretical basis
for including processes of social evolution and institutional
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Table 5. Collection of questions that may guide the choice of modeling approaches and assumptions.

Category

Important modeling questions

Modeling individual decision
making and behavior

Which goals do agents pursue?
Which constraints do they have?

Which decision rules do agents use?
How do agents acquire information and beliefs about their environment?

Modeling interactions between

agents norms?

Do agents interact in a competitive environment or are interactions primarily governed by social

What do agents assume about each other’s rationality?

Do agents choose actions strategically or adaptively?

How are agents influenced by others regarding their beliefs and norms?
Which structure do the interactions have and how does the structure evolve?

Aggregating behavior and mod-
eling dynamics at the system
level

Are decisions aggregated through political institutions (e.g., voting procedures) or markets?
According to which criteria do policy makers decide and which controls do they have?
Is the heterogeneity of agent characteristics and interactions important?

Which macro-level measures are dynamic and which can be assumed to be fixed?

development into ESMs. If we want to explore the possible
futures of the Earth, we need to get a better understanding of
how the long-term dynamics of the Earth system is shaped
by these cultural and social processes.

A new generation of ESMs can build on various ap-
proaches, some of which we reviewed here, to include hu-
man decision making and behavior explicitly into Earth sys-
tem dynamics. However, ambitious endeavors like this have
to take into account that modeling of human behavior and
10 social processes is a contested topic and the assumptions and

corresponding modeling techniques need to be chosen care-

fully being aware of their strengths and limitations for the
specific modeling purpose.
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