Responses to referee comments on the manuscript by Miiller-Hansen et al.
Referee Comment #1

We thank the referee for his valuable comments. Although we do not agree with all the points, we
think that they raise important issues that could be clarified in the paper. Furthermore, a productive
ongoing discussion about these issues could help in aligning forces for the important goal of gaining
a more holistic understanding of global human-nature interactions by developing Earth system
models that include important social and economic dynamics. In the following, we respond point by
point to the comments of the referee.

This paper provides an overview of a broad range of representations of human behaviours
that might be considered when attempting to ‘people’ Earth System Models (ESMs). I found
the paper to be well researched and written on the whole and if the aim was to inform the
reader as to the range of options on offer in this space it did a relatively good job (with one
or two notable exceptions which I detail below). However, the title suggests something more,
with the stated aim to also offer some guidance over the way forward in this space. This is
very much needed given the likely expansion of research this area will experience.
Unfortunately, I found this aspect of the paper a

little disappointing given it was rather passive, reserved or limited in any guidance it
offered. This was not helped by the structure of the paper which separated out the extensive
review of potential methods and the critique of these methods which was largely relegated to
the Discussion. If the authors really want to be faithful to their title and stated aims I would
suggest some editorial changes. I would start by offering a strong steer on the guiding
principles of model framework selection in this space. I would then combine the description
of the options with a more hard-hitting critique of the various options assessed against your
guiding principles. My reading of the current

paper suggest the author team would be more than able to achieve this and the product
would be far more valuable than the largely descriptive review currently tabled. The
alternative would be to dilute the title and aims to being those of a review of options as I
believe this is what is currently being offered. I would like to encourage the former but
providing the title and aims were adjusted the paper could go forward without this reediting.
I’ve ticked the *major revisions’ box but only because I couldn’t simultaneously tick the
’minor revisions’ box. This depends on which way you chose to jump.

We appreciate the critique of the referee and agree that this work did not deliver on the promise of a
general guideline for building ESMs with explicit human decision and behavior components. This is
for a specific reason: Such a guideline depends a lot on the concrete research questions that a
modeler wants to tackle with the model. Therefore we argue that rather than a concrete guideline,
some general principles have to be considered by the modelers and they have to be aware of the
various possibilities from the toolbox that the literature provides and we aim to give an overview
over. This approach is much in line what researchers from sociology have termed theory of the
middle range (Merton, 1957). This approach does not aim at an all-encompassing theory of whole
societies, but rather argues for using elements of different theories tailored to a specific problem.
The selection of assumptions underlying the modeling approach has to be on the ground of good
reasons and empirical evidence. In case of doubt, the validity of assumptions have to be tested for
the specific context. Furthermore, we note that an extensive critique of all the different methods
would be beyond the scope of a single paper. Where we were aware of such critiques, we provided
some references for the readers. However, due to the huge variety of methods, there may be relevant
strands of critique which we were not aware of and therefore did not include into the paper.

In line with the above considerations, we will change the title and make the aim of the paper clearer
in the introduction to avoid misunderstandings. Furthermore, we will make the general point more



prominent, that there is not one method and theory that will fit all relevant research questions,
which are interesting in the context of global human-nature interactions. Therefore the approach
most appropriate for the question at hand has to be selected taking into account various general
considerations as listed in the Discussion part of the paper.

Specific points (in no particular order)

1. I would like to see a full discussion over when ESM peopling might be useful, when it
might not and when it might be actively discouraged. Given the huge uncertainties this
activity can/will open up researchers need dissuading from the illegitimate and unnecessary
hybridisation of social and natural systems models. This paper could offer some guiding
principles. For example, although the chosen example of land surface/use parameterisation
suggest a useful role for microscopic representations of people, ultimately we are only
interested in the structural social dynamics when exploring Earth (i.e. global) scale
feedbacks, even if these dynamics arise from the act of an individual. Therefore, at the ESM
scale you would have to have a really powerful justification of a highly disaggregated
representation of people and there should always be a presumption in favour of the
macroscopic representation. The fact that ESMs are spatially disaggregated and therefore
we should naturally entertain representations of people at this scale is not sufficient in my
view.

We agree with the referee that a discussion about when a “peopling” of ESMs is useful should be
added to the paper. We will add some corresponding paragraphs to the paper discussing that this is
only relevant if there is a closed loop of interactions with the outcome of relevant decision
processes and behaviors changing over the relevant time scales. However, we think that a full-
blown discussion of this question could be well suited for a follow-up paper as suggested by the
editor.

Regarding the example of the macro- vs. micro-description of a human component in ESMs, we
want to note that we do not argue that human behavior always has to be included at a micro-level
and on the basis of single actors. But, as we are arguing in the paper, a complete picture of humans
in ESMs should be well founded in micro-models of decision making, behavior and interaction.
Especially when large societal and institutional changes are considered, models purely based on
observed macro-dynamics might not be able to rightly capture these changes (this is referred to as
the Lucas-critique in the economic literature). Of course, here again, it depends on the research
questions whether a macro model of societal dynamics suffices (assuming that major societal
dynamics will not change fundamentally over time) or if a more micro-founded model is needed.

2. The opening text made a big play of the distinction between ‘explicit decisions’ and
‘implicit behaviours’. Close inspection suggests this is a largely arbitrary distinction and
some critique of this divide would be a useful addition. Is me typing this response an
explicit decision or an implicit behaviour? I’m not sure.

If the question is based on the reading of our definition that decisions are only explicit and there are
no implicit processes involved, then we regret the misunderstanding. We reformulated the
corresponding paragraph to make it clear that decision-making can be influenced by implicit,
unconscious and intuitive processes. In this understanding, the result of a decision process is usually
a certain type of behavior.

However, not every behavior has to be the outcome of a decision process, and this is why we have
to insist that the distinction between decision making and behavior is analytically useful and not
arbitrary. Although in the end, only the behavior of humans may be observable, many behaviors are
highly influenced by semantic considerations as well as inscribed social and individual norms and
values. For complex cultural settings, it is therefore often not helpful to reduce humans to a reflex-
response scheme as in behaviorist approaches.



The only alternative to modeling behavior without explicitly using theory about the decision
processes would be to model behavior statistically or at the basis of physiological processes in the
brain. Concerning the latter, the science is still in its infancy and it is at least questionable whether
such a description is possible at all. Regarding statistical approaches, as explained in the previous
point, when looking at strong social changes, statistical correlations might break down calling for
the explicit modeling of decision processes.

Apart from these more pragmatic considerations, there is a philosophical argument to be made:
From introspection the distinction between behavior as an event of the physical world (i.e., the
body) and the decision-making process as at least being influenced by the mind should be clear to
every human making conscious decisions. How these different processes interact has been the
subject of the age-old debate called the mind-body problem in philosophy. Solving this problem by
simply denying the existence of the mind altogether leads to even more serious problems: If we
would assume that me typing this response is only a behavioral reaction to a very complex stimulus
without any involvement of semantic processing, why should anybody of us care about the semantic
content of want we are writing here anyways?

3. Surely the most important distinction in normative framing involving any ESM is whether
they adhere to the current socio-economic norm or they represent transitional/
transformative dynamics. Everything else is simply detail. This is not developed at all and
yet practically all applications of peopled ESMs will revolve around exploring and
contrasting alternatives to business-as-usual. This review is very constrained in this regard,
and hardly mentions alternative (and potentially indispensable) economic framings required
when investigating, for example, implementation of the Paris Agreement.

We are well aware of the debate between the economic mainstream dominated by neoclassical
theory and heterodox schools of economic thought and the different economic framings they
involve (see publications of the lead author). To come up with new models of the economy that
build on the work done in heterodox branches such as ecological and institutional economics is
actually one of the main challenges when building social dynamics into ESMs. Thus, we agree that
such models have to go beyond the currently dominant socio-economic framing. However, we tried
to avoid an extensive discussion of this debate in the paper. The main goal of this paper is to
compare different approaches to modeling human decision making that could be potentially useful
to Earth system modeling. Therefore, the paper only considers those economic approaches that use
mathematical modeling. Because many of the heterodox economic schools are not much engaged
with modeling or event reject mathematical modeling as a valid tool to advance knowledge about
social processes, this collection, unfortunately, is much biased towards mainstream economic
thinking. If we omitted important and formalized economic modeling approaches in the literature,
this is only due to our limited knowledge.

4. Other than discussion of flow consistent approaches, this review makes little or no
mention of (bio)physical frameworks as covered in say ecological economics. I appreciate
they are not mainstream but I think this is a critical omission because perhaps the most
consistent scheme for peopling of ESMs is where both the Earth and social systems are both
on a sympathetic ‘(bio)physical’ footing. This could be nicely contrasted against the fact
that the standard macroeconomic framings are flow/physically inconsistent. Perhaps it’s
time for the natural sciences to call the macroeconomic emperor on their lack of physically
defensible clothing and peopling ESMs appears to be a great place to start. ESD has been
central to getting these alternatives into the literature and it is anomalous that they are not
considered here.

A discussion of purely biophysical models is neither the goal nor the focus of our article. We agree
that a biophysical description of human activities is crucial for linking classical ESMs and social



science approaches and that physically consistent stock-flow or similar models should be an
essential part of ESMs with explicit human dynamics. Therefore, we will improve our account of
physical stock-flow consistent modeling and add references to the important work of Nicholas
Georgescu-Roegen in this area. We also agree that models of the social metabolism have to take
thermodynamic limits into account. However, we doubt that thermodynamic laws alone can account
for the complex dynamics of social-metabolic processes as some recent work of the referee and
others in this special issue suggest (Garrett, 2014; Garrett, 2015; Jarvis et al., 2016).

5. Much of the problem space that peopled ESMs would explore would be around
precautionary Command and Control type policy such as that offered in the Paris
Agreement. Here a formal control representation of ‘people’ is much more appropriate given
it is about compliance or non-compliance with a stated environmental objective such as
keeping below 2 K. I would like to see some discussion of this.

Actually, a lot of economic reasoning for environmental policy recommendations builds strongly on
the control perspective. But as the failure of some of these policies shows, it is not only important to
have the formal framework right but also the micro-model of human behavior and decision making
to judge how people will react to changes in institutional frameworks. For example, in some
settings monetary incentives for environmental behavior might be counterproductive because they
can lead to crowding out effects when moral rules are replaced by economic considerations.
Therefore, a successful policy assessment needs to select correct micro-models to identify the right
approaches for adjustments that influences individual behavior in the right direction. This applies
equally to command and control type policies as to other (e.g., market-based) solutions. As
suggested by the referee we will add these considerations to the paper.

Referee Comment #2

This paper provides a very comprehensive review of the application of human behavior
in earth system models. I was impressed with the coverage and extensive literature
review. The paper is well written and will make a valuable contribution to the field. My
main concern, which perhaps is unavoidable for such a review, is that the paper is very
long, bordering on overwhelming. There are parts that are redundant such as page six,
which takes three paragraphs to restate a Table. I suggest the authors search for other
places to streamline the paper. The table in the Discussion is an excellent summary. I
would recommend publication following minor revision.

We thank the referee for the positive response. We will revise the paper, shorten the suggested parts,
and aim at an overall reduction of the text.



List of changes in the manuscript

Important note: The co-author Rainer Hegselmann withdraw his authorship because he was not able
to take part in the revision process and held that his contribution to the paper would not justify a co-
authorship.

We included all the changes as promised in the above response to the reviewers comments. These
include:

*  We changed the title.

*  We changed the introduction, discussion and abstract to make the goals of the paper clearer.

*  We included a part in the introduction explaining that there is no single approach/technique
usable for all relevant questions regarding human-nature interactions on a global scale and
that researchers have to choose the techniques to model decision making and behavior
appropriate for the specific context.

*  We added some brief discussion of the question when modeling of human decision making
explicitly is useful.

*  We extended the discussion of models from the field of ecological economics.

*  We made it clear in the introduction that a micro-based approach to human behavior is
important for exploring the impact of environmental policies (even from a control-theory
perspective).

*  We shortened the paper as much as possible, given the requests by the first referee to extend
some parts of the introduction, discussion and some subsections of the main parts.

Furthermore, we made the following changes:

*  We moved the discussion of the methodological question how to model social systems
(methodological individualism vs. structuralist approaches) from the introduction to the
second section because it fits there much better.

*  We corrected typos in the former version of the paper, changed wording that caused
misunderstanding with some readers of the discussion paper and updated the references. A
detailed comparison of the original submission and the resubmitted version of the paper can
be found below.
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\begin{abstract}

In—the-AnthropeceneToday, humans have a critical impact on the Earth system and
vice versa, which can generate complex feedback processes between social and
ecological dynamics. Integrating human behavior into formal Earth System Models
(ESMs), however, requires crucial modeling assumptions about actors and their
goals, behavioral options and decision rules, as well as modeling decisions
regarding human social interactions and the aggregatlon of individuals'
behavior. In—this—tuterial-Here, we review,—we—compare existing modeling
approaches and techniques from diffe d&ﬁﬁeﬁeﬂtvarlous disciplines and schools of
thought deallng w1th human behav1or at va#&eusdlfferent levels of de0131on
making. : #
demonstrate modelers often vast degrees of freedom but also seek to make
modelers aware of the often crucial consequences of seemingly innocent modeling
assumptions.

After discussing which seeie—eesonemiesocioeconomic units are potentially
important for ESMs, we rewiewcompare models of individual decision making that
correspond to alternative behavioral theories and that make diverse modeling
assumptions about individuals' preferences, beliefs, decision rules, and
foresight. We diseussreview approaches to model social interaction, covering
game theoretic frameworks, models of social influence and network models.
Finally, we elaberatediscuss approaches to studystudying how the behavior of
individuals, groups and organizations can aggregate to complex collective
phenomena, discussing agent-based, statistical and representative-agent modeling
and economic macro-dynamics. We illustrate the main ingredients of modeling
techniques with examples from land-use dynamics as one of the main drivers of
environmental change bridging local to global scales.

\end{abstract}

\introduction—%%\inrtreductionfmodified headingif hecessary}

Even though Earth system models (ESMs) are used to study and—prejeet—the—human
impactimpacts on the complex interdependencies between various compartments of
the Earth, humans are not represented explicitly in these models. ESMs consider
the—human influence wusually in terms of scenarios, comparing the impact of
alternative narratives about the-future deveiepmen%developments of key secio-
economicesocioeconomic characteristics—efhuman—seecieties—. For instance, the
IPCC secenario—approachprocess uses—ecenomic integrated assessment models to
compute plausible future emission pathways ferfrom energy and land use {REPs-
SSPs)-for different scenarios of climate mitigation. These emissien—projections
are—thendetermine the radiative forcing used as external input in Earth-system
modelsESMs to study changes—in—eclimate—andtheconsegquentits natural impacts
\citep{M0ss2010, IPCC2014b}. Fhese natural impactsThe latter can, however, have
socioeconomic consequences that may be translatedfed back te—secioc-econemic

impacts—andfedagain-into the scenario process—leading—to—an—iterative
process. However, the dynramic—and potentially complex interplay of dynamics of




the natural Earth system and human—social, cultural and economic responses to
them are not captured.

InThe concept of the precltaimed-Anthropocene epoch,—human—secieties—are implies
that humans have become a dominant geological force interfering with biophysical
Earth system processes at—altl-relevant—secales—\citep{Crutzen2002, Maslin2015}.
HeweverBut a changing envirenmental conditiensenvironment also alteralters
human behavior— \citep{Palmer2014}. For example, climate change will affect hew
humans—dse—their land use and eeonsume—energy consumption. Likewise, perceived
environmental risks modify consumption and mobility patterns. Therefore, with
increasing human impact on the Earth system, feedbacks between shifts in the
blophy31cal Earth system and human responses will galn 1mportance

-Donges2017, Donge52017a Thornton2017}

\citet{Dongesinprep} provide a classification of these feedbacks in this Special
Issue.

Studying feedback loops between human behavior and the Earth system, projecting
its consequences, and developing interventions to manage human impact on the
Earth system requires a suitable dynamic representation of human behavior and
decision making.

In fact, even a very accurate statistical description of human behavior may be
insufficient for several reasons. First, in a closed loop, humans constantly
respond to changes in the Earth system, facing novel environmental conditions
and decision problems. Hence, their response cannot be predicted with a
statistical model. Second, for a correct assessment of different policy options
(e.g., command and control policy vs. market-based solutions) a sound
theoretical and empirical account of the principles underlying decision making
in the relevant context is needed, because they guide the development of
intervention programs, such as incentives schemes, social institutions, and
nudges \citep{Ostrom1990, Schelling1978, Thaler2009}.

A statistical model would not help decision makers identifying handles to
influence human behavior.

Incorporatlng human behav1or in ESMs is a—eempie*—endeave#——Medei&ng—the

a—hHge—ehaiienge——even—theeghchallenglng

B e
Accoerdingly,—seientifieuse as a ba31s there is no single theory of human

behavior that can be taken as a general law \citep{Rosenberg2012}. The
understanding of the-determinants—of individuals' behavieras—well asits
eollective consequenceshuman behavior is still-limited-
Furthermore,—human—actionis—influenced by its determinants often being
contingent and socially formed by norms and institutions. This allows a view on
social systems as socially constructed realities, which is in stark contrast to
the p031t1v1st eplstemology of one obJectlve reallty prevalent in the natural




past attempts to develop grand theories
have been criticized for being too remote from reality and, as a consequence,
hard if not impossible to test empirically \citep{Boudon1981, Hedstrom2009,
Hedstrom2010, Mertonl1957}.

Accordingly, many social scientists favor a so-called " "middle-range approach'',
trying to tailor theoretical models to specific contexts rather than developing
overarching, general theories. This acknowledges, for instance, that individuals
act in some contexts egoistically and based on rational calculus, while in other
contexts they may act altruistically and according to simple heuristics. The
principles that determine human decisions depend on, e.g., whether the decision
maker has faced the decision problem before, the complexity of the decision, the
amount of time and information available to the individual, and whether the
decision affects others or is framed in a specific social situation. Likewise,
different actor types might apply different decision principles. Furthermore,
the decision determinants of agents can be affected by others through social
interactions or aggregate outcomes of collective processes.

Here, we give an overview over existing approaches to model human behavior and
decision making to provide readers with a toolbox of model ingredients. Rather
than promoting one theory and dismissing another, we list decisions that
modelers face when modeling humans, point to important modeling options, and
discuss methodological principles that help developing the best model for a
given purpose.

We define decision making as the cognitive process of deliberately choosing
consciousty—between alternative actions, which may involve analytic as well as
intuitive modes of thinking. Actions are intentional and subjectively meaningful
activities of an agent. Behavior, in contrast, is a broader concept that also
includes unconscious and reflexiveautomatic activities, such as habits and
reflexes. The outcome of a decision is therefore a certain type of behavior,
which might be explained by a decision-making theory.

In Earth-systemmodelsESMs, only those human decisions and respensesbehaviors
are relevant that have considerable impaetsimpact on the Earth system—TFhey
result—Ffrom, i.e. primarily behavior towards the environment of a large number
of individuals or decisions amplified deeisiens,—e-g-—through the social
position of the decision-maker or technology. Therefore, this paper also
eevercovers techniques to model individuals'—interactions between agents and to
aggregate individual's—behavior and interactions to a macro-level.

On the micro-level, relevant decisions include for instance reproduction,
consumption and production of energy- and material-intensive products, place of
living and land use. These decisions lead to aggregate and long-term dynamics in
pepulatienof populations, production and consumption patterns and migration
SR a e e e s e e L ne esben soe s Lo nmnee

There are diverse social-science theories explaining human behavior and decision
making in environmental and ecological contexts, for example in environmental
economics, sociology and psychology. In this paper, we focus on mathematical and
computational models of human decision making and behavior. Here, we understand
the terms “modeling approach' and “modeling technique' as a class of
mathematical or computational structures that can be interpreted as a simplified
representation of physical objects and actors or collections thereof, events and
processes, causal relations or information flows. Modeling approaches draw on
theories of human behavior that make -- often contested -- assumptions about the
structure of decision processes. Furthermore, modeling approaches can have
different purposes: The objective of descriptive models is to explore empirical
guestions (e.g., which components and processes can explain the system's
dynamics), while normative models aim at answering ethical questions (e.g.,
which policy we should choose to reach a certain goal).




Recent reviews focus on existing modeling approaches and theories that are
applied in the context of environmental management and change: For example,
\citet{Verburg2016} assess existing modeling approaches and identify challenges
for improving these models in order to better understand Anthropocene dynamics.
\citet{An2012}, \citet{Meyfroidt2013} and \citet{Schlueter2017} focus on
cognitive and behavioral theories in ecological contexts, providing an overview
for developers of agent-based land-use and social-ecological models.
\citet{Cooke2009} and \citet{Balint2017} review different micro- and macro-
approaches with applications to agro-ecology and the economics of climate
change, respectively.

The present paper complements this literature by reviewing modeling approaches
of (1) individual agent behavior, (2) agent interactions and (3) aggregation of
individual behaviors with the aim to support the integration of human decision
making and behavior into Earth system models. The combination of these three
different categories is crucial to describe human behavior at scales relevant
for Earth system dynamics. Furthermore, this review highlights strengths and
limitations of different approaches by connecting the modeling techniques and
their underlying assumptions about human behavior and discusses criteria to
guide modeling choices.

Our_survey of techniqgues has a bias towards economic modeling techniques for two

simple reasons: First, economics is the social science discipline that has the
longest and strongest tradition in formal modeling of human decision making.
Second, economics focuses on the study of production and consumption as well as
the allocation of scarce resources. In most industrialized countries today, a
major part of human interactions with the environment is mediated through
markets, central in economic analyses.

This review aims to go_beyond the often narrow framing of economic approaches
while at the same time not ignoring important economic insights. For instance,
consumption and production decisions do not only follow purely economic
calculations but are deeply influenced for instance by behavioral patterns,
traditions and social norms \citep{TheWorldBank2015}.

Because we discuss different approaches to model decision making and behavior
from various disciplinary or sub-disciplinary scientific fields, there are
considerable differences in terminology that make a harmonized presentation of
the material challenging. For example, the same terms are used to describe quite
separate varieties of an approach in different fields and different terms from
separate fields may refer to very similar approaches. We adopt a terminology
that aims to a better interdisciplinary understanding and point out different
understandings of contested terms where we are aware of them.

This paper works with land-use change as a guiding and illustrative example.
Land use and land-cover change is the second largest source of greenhouse gases
-- besides the burning of fossil fuels -- and thus contributes strongly to
climate change. Behavioral responses related to land use will play a crucial
role for successful mitigation and adaptation to projected climatic changes,
challenging modelers to represent decision making in models of land-use change
\citep{Brown2017}. The complexity of land-use change provides various examples
how collective and individual decision making interacts with the environment
across spatial scales and organizational levels. Land-use models consider
environmental conditions as important factors in decision-making processes,
giving rise to feedbacks between environmental and socioeconomic dynamics
\citep{Brown2016}.

However, this paper does not provide an exhaustive overview over existing land-
use models. For this purpose, the reader is referred to the various reviews in
the literature \citep[e.qg.,][]{Baker1989, Brown2004, Michetti2012,
Groeneveld2017}.

The remainder of the paper is organized as follows. In Section~\ref{sec:levels},
we give an overview over different levels of description of social systems and
the socioeconomic units or agents associated with them. Sections
\ref{sec:individual_behavior}--\ref{sec:aggregation} form the main part of the




paper, presenting different modeling techniques and their underlying assumptions
about human decision making and behavior.

First, Section \ref{sec:individual_behavior} introduces approaches to model
individual decisions and behavior from rational choice to learning theories.
Many of these techniques can be used to also model higher-level social entities.
Second, Section \ref{sec:interaction} puts the focus on techniques for modeling
interactions between agents. Strategic interactions and social influence are
significant determinants of individual decisions and therefore important for
long-term changes in collective behavior, i.e. the group outcome of mutually
dependent individual decisions.

Third, Section \ref{sec:aggregation} reviews different aggregation techniques
that allow describing human activities at the level of social collectives or
systems. These approaches allow making simplifications so that theories about
individual decision making can be scaled up.

Figure~\ref{fig:assumptions} summarizes these main parts of the paper, the
corresponding modeling approaches and important considerations for model
selection, which we discuss in detail in Section~\ref{sec:discussion}.

The discussion also reflects on important distinctions between models of natural
and social systems that are crucial to consider when including human behavior
into ESMs. The paper concludes with remarks on the remaining challenges for this
endeavor.

\section{The challenge: Modeling decision making and behavior across different

levels of organization}
\label{sec:levels}

Decision making and behavior of humans can be described and analyzed at
different levels of social systems. While decisions are made and behavior is
performed by individual humans, it is often useful to not represent individual
humans in a model but to treat social collectives, such as households,
neighborhoods, cities, political and economic organizations, and states, as
decision makers or agents.

Figure~\ref{fig:levels} shows a hierarchy of socioeconomic_units, i.e., groups,
organizations and structures of individuals that play a crucial role in human
interactions with the Earth system. We consider a broad scheme of levels ranging
from the micro-level across intermediate levels to the global level. This
hierarchy of socioeconomic units is not only distinguishable by level of
complexity but also by the different spatial scales involved. However, there is
no one-to-one correspondence: For instance, some individuals have impacts at the
global level, while many transnational organizations operate at specific local
levels. Especially in the context of human-environment interactions in ESMs,
scaling and spatial extent are therefore important issues \citep{Gibson2000}.
Furthermore, we note that the strict separation between a micro- and macro-level
may result in treating very different phenomena alike. For instance, many
economic models describe both small businesses and transnational corporations as
actors on the micro-level and model their decision processes with the same set
of assumptions, even though they operate very differently.

%t

\begin{figure*}[t]

\includegraphics[width=12cm]{figl.png}

\caption{Overview of modeling categories, corresponding modeling approaches and
techniques discussed in this paper and important considerations for model choice
and assumptions about human behavior and decision making.}
\label{fig:assumptions}

\end{figure*}




One major challenge for modeling humans in the Earth system is therefore to
bridge the diverse levels between individuals and the global scale and integrate
different levels of social organization and spatial as well as temporal scales.

The relation between individual agents and social collectives and structures has
been the reasen—Ffersubject of considerable debate in the social sciences: In the
social-scientific tradition of methodological individualism\footnote{We note;
though that there are different accounts of methodological individualism and it
often remains unclear to what extend structural and interactionist elements can
be part of an explanation,— \citep[see—\eitet{][]{Hodgson2007, Udehn2002}.3}, the
analysis aims to explain social macro-phenomena, e.g., phenomena at the level of
social—ecollectives—such—as—groups, organizations, andor societies, with theories
of individual behav1or—&eitep{Geieman1994——Udehn%@@Q——Hemans&Qé&}——

This approach deviates from structuralist traditions, which claim that
collective phenomena are of their own kind and can, thus, not be traced back to
the behavior of individuals \citep{Durkheim2014}. Positions between these two
extremes emphasize the interdependency of individual agents and social
structure—Strueture, which is understood as aan emerging phenomenon emerging

fromthe interactions betweenagents—andthat stabilizes particular behaviors
\citep{6iddenst984}-—Coleman1994, Homans1951}.

While it very much depends on the purpose of the given modeling exercise whether
the model should represent individuals or collectives—{e-g-—households,

-, we mainly focus here on athe research
tradition that acknowledges that complex and unexpected collective phenomena can
arise from the interplay of individual behavior.







list common theories,
frameworks and assumptlons that—a#e—made about decision making and human
behavior for these socioeconomic units and link them to scientific fields that
focus on them.

At the micro-level, models consider individuals, households, families and small
businesses. Individuals—For instance, individuals can make decisions as policy
makers, 1nvest0rs business managers consumers, or resource users——e#—in




. At this level, decisions about lifestyle, consumption,
individual natural resource use, migration and reproduction are particularly
relevant in the environmental context. 1Individual decisions have to be
takenmade by a large number of individuals or have to be multipliedreinforced by
organizations, institutions or technology to become relevant at the level of the
Earth system. PRartiecipatienIndividuals' participation in collective decision
processes, such as voting, may also has—petentialhave consequences for the

environment at higher—levelsa global level.

At various intermediate levels, communities and organizations like firms,
political parties, labor unions, educational institutions, non-governmental and
lobby organizations play a crucial role in shaping natienal—economic and
peltieypolitical decisions and therefore have a huge impact on aggregate
behavior. Governments at different levels and representing different
territories, from cities to nation states, enact laws that strongly frame the
eend&%&en—ﬁe#—economlc and social act1v1t1es of their citizens.—Fields—thatare

e e e e
management—science—andanthropelogy- Important decisions for the Earth system

context include environmental regulations and standards, production and
distribution of commodities and assets, trade, extraction and use of natural

resources %e—g———m&niﬂg——ﬁeﬁes%ﬁy——bHFH&HQ—@#—#@SS&&—#HeiS}—and the development
and building of physical infrastructures—{e—g-—+roads—dams—power—and
telecommunication—networks)—.

At the global level, multinational companies and intergovernmental organizations

negotiate decisions. This level maybe remote Frommost individuals—but it has
peverthelesshugeconsiderable impacts on policy and business decisions even

though it is remote from the daily life of most individuals. Often this level

provides framing for activities on lower organizational levels and thus strongly
influences the problem statements and perceived solutions for instance regarding

env1ronmental 1ssues Losesslonoe onob ooue o P e sl o oo o

Decisions
important for the Earth system at thlS level are for instance international
climate and trade agreements, decisions of internationally operating
corporations and financial institutions, and the adoption of global frameworks
like the UN Sustainable Development Goals \citep{UnitedNations2015}.

An overarching question that has triggered considerable debate between different
disciplines is the allocation of agency at different levels of description. Even
if individuals can decide between numerous options, the perception of options
and decisions between them are shaped by social context and institutional
embedding. Institutions\footnote{The notion of institution is used in the
literature with slightly different meanings: (1) formal and informal rules that
shape behavior, (2) informal social order, i.e. regular patterns of behavior,
and (3) organizations. Here, we adopt an understanding of institutions as formal
(e.g., law, property rights) or informal rules (e.g., norms, religion). However,
formal rules often manifest in social, political and economic organizations and
informal rules may be shaped by them.} and organizations can display their own
dynamics and lead to outcomes unintended by the individuals. On the other hand,
theresocial movements can beinitiate disruptive changes in institutional
development—brought—on—bysecial mevements—TFhis. The attribution and perception
of agency for a specific problem is therefore important te—bear—inmind -when
choeosing—a—for the choice of a suitable level of model description—fer—. The
following section starts our discussion of different modeling a—given
proeblemtechniques at the level of individual decision making and behavior.

%f

\begin{figure*}[t]

\includegraphics[width=12cm]{fig2.png}

\caption{Secio—economicSocioeconomic units and their corresponding level and
scales.}

\label{fig:levels}




\end{figure*}
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\newcolumntype{L}[1]{>{\raggedright}p{#1}}

\begin{table*}[t]

\caption{Overview of particular levels of description of seecie—
econoemicsocioeconomic units, associated scientific fields/communities and some
common approaches and assumptions about decisions and behavior. The list gives a
broad overview but is far from being exhaustive.}

\label{tab:levels}

\begin{tabular}{p{1.5cm} L{3cm} L{3cm} p{4cm} p{4cm}}

\tophline

Level & Secio-economic—unit & Field/CommunitySocioeconomic units &
Fields/Communities & Common approaches and theories & Common assumptions about
decision making \\

\middlehline

\multirow{2}{1.5cm}{Micro} & Individual humans &

Psychology, neuroscience, sociology, economics, anthropology
& Rational choice, bounded rationality, heuristics, learning theory, cemplex
cognitive architectures &

[All assumptions presented in this eedldumnrcolumn]

\\

&

Households, families, small businesses &

Economics, anthropology &

Rational choice, heuristics, social influence &

Maximization of consumption, leisure, profits

\\

\middlehline

Intermediate &

Communities (villages, neighborhoods), cities &

Sociology, anthropology, urban studies &

Social influence, networks &

Transmission and evolution of cultural traits and traditions
\\

&
Political parties, NGOs, lobby organizations, educational institutions &
Political science, sociology &

icStrategic decision making, public/social
choice, social influence and evolutionary interactions &

lﬂﬁiaeﬂeed—by—bei&eﬁs—and—ep&n&ens—eﬁ—ethe#s——agen%sAgents form coalitions {and

cooperate) to achieve goals, influenced by beliefs and opinions of others

\\

& Governments &

Political science, operations research &

Strategic decision making, cost-benefit and welfare analysis, multi-criteria
decision making &

Agents choose for the common good

\\

& Nation states, societies &

Economics, political science, sociology & welfare maximization, social choice &
Majority vote

\middlehline



Global & Multinational firms, trade networks &
Economics, management science &

Rational choice &

Maximization of profits or shareholder value
\\

& Intergovernmental organizations &

Political science (international relations) &
Strategic decision making, cost-benefit analysis &
Coalition formation

\\

\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\end{table*}

\section{Modeling individual behavior and decision making}
\label{sec:individual_behavior}

In a nutshell, models of individual decision making and behavior differ with
regard to their assumptions about three crucial determinants of human choices:
goals, restrictions and decision rules \citep{Hedstrom2005, Lindenberg2001,
Lindenberg1990, Lindenberg1985}.

First, allthe models assume that individuals have motives—er, goals or
preferences. That is, agents rank goods or outcomes in terms of their

desirability and seek to realize highly ranked outcomes. Fer—instance—learning
. 1 f thed hos e

prominent but debated assumption of many models is that preferences or goals are
assumed to be stable over time. Stable preferences are included to prevent
researchers from developing trivial explanations, as a theory that models a
given change in behavior only based on changed metivespreferences does not have
explanatory power. However, empirical research shows that preferences can change
even in relatively short time frames \citep{Ackermann2016}. Furthermoere
ehangingChanging individuals' goals or preferences is an important waymechanism
to affect their behavior, e.g., through policies, making flexible preferences
particularly interesting for Earth Systemsystem modelers.

Second, altdecision models make assumptions about restrictions and opportunities
that constrain or help the-agents te—feollow the motives—eorpursue their goals.
For instance, each behavioral option comes with certain costs (e.g., money and
time) and decision makers form more or less accurate beliefs about these costs
and how likely they are to occur, depending on the information available to the
agent.

Third, aetersmodels assume that agents apply some decision rule that translates
their preferences and restrictions into a choice. Although decision rules differ
very much in their complexity, they can be categorized into three types. First,
there are decision rules that are forward looking. Rational choice theory, for




instance, assumes that individuals list all positive and negative future
consequences of a decision and choose the optimal option. Alternatively,
backwards looking approaches, such as classical reinforcement learning, assume
that actors remember the satisfaction experienced when they chose a given
behavior in the past and tend to choose thea behavior that—feltbestwith a high
satisfaction again. Finally, there are sideward-looking decision rules, which
assume that actors adopt the behavior of others, for instance because they
imitate successful others \citep{Kandori1993}. BeeiSienTheorles assume different
degrees of context-dependency of rules are—interlinkedwithand make different
implicit assumptions about the agenrtsunderlying cognitive capabilities of
agents.

In the remainder of this section, we describe in more detail three important
medels—eﬁapproaches to 1nd1v1dual de0151on mak1ng——medeis—eﬁ—#at&enai—ehe&ee—

\subsection{Optimal decisions and utility theory in rational choice models}
\label{sec:rational_choice}

\emph{Rational choice theory},

a standard model in many social sciences including economics and

widely studied in mathematics,

assumes that decision making is an—-appreach—te—medel-goal-oriented—deeision

making—Rational—choicemodels—assume—that—:
rational agents have \emph{preferences},—representinggoals—that they try te
pursue—} and choose the strategy whose expected outcome is

most preferred,

given a—number—efsome external \emph{constraints}—Agents—choose the actionthat
' -}

and potentlally based on the1r \emph{be11efs}—abeat—e*te#nai—eeast#a&ats—en

\citep[represented by subjective
probability distributions, see beliefs, preferences, constraints {BRG}

model, ][]{Glnt152009} —Bei&eﬁs—aFe—sHb}eet&ve—p#&e#s—that—ean—be—sha#ed—ameng

It can either be used

to represent actual behavior or serve as a

normative benchmark for other theories of behavior.

How to judge the " “rationality'' of individual decisions is
subject to ongoing debates.—Fer—example,
\01tet{0pp1999} d15t1ngu1shes between—a
strong a

%eﬁtea—#eﬁe##ed—te—as—rat1ona11ty (" homo eeeaem&eas}—dese#&beseconomlcus")
assuming purely self-interested agents thathave full control and knowledge of
theirwith unlimited cognitive

capacities knowing all possible actions;—infermatien—abeut—the— and
probabllltles of pess&bie—consequences—

and ¢
ve#s&ea—Fe}axes—theseweak ratlonallty that makes less strong assumptlons
other—authers—1ike-\citet{Rabin2002} furtherdistinguishdistinguishes between
standard and non-standard

assumptions regarding preferences, beliefs and decision-making rules.—In—the
pomothe st thic

Before discussing non-optimal decision making

in subsection;— \ref{sec:bounded_rationality},




we d&seuss—the—d&ﬁﬁerentrev1ew here common assumptlons regard&ngon preferences

Usually—individual—preferences—, agents are assumed to be fixed—over—the
retevonttame seoles Lo reooord poco ble oulbeomes of nelbieoncs ond omainly scll-

interested,
having fixed preferences regarding their personal consequences for—theagent

eententp0551ble futures and

being indifferent to how a decision was taken and,—fer—example—can—-also—concern
features—of collective decision precesses\eitepf to consequences

for others.

Exceptions are procedural preferences—e—g-—tHFH{f\citep{Hansson1996, Fehr1999}
and—ssroosnoneoo e othors s ool

other-regarding preferences and—altruism—e—g-—FHF{\citep{Mueller2003,
Fehr2003}.

Preferences can be modeled as binary

\emph{preference relations}, e-g—38x \
P 1\ y$s$, denot1ng that 1nd1v1dual $1$ prefers $*$—te—$y$——where—$x$—and

prebabiiity—d&str&but&ens—eﬁ—sueh—s1tuatlon or outcome $x$ to $y$.
Standard—versiens—eﬁ—rat&enai—ehe&ee—theoryMost authors assume that the binary
relations—$P_1% areis complete (for every pair $(x, y)$ either $x P_i y$ or $y
P i x$) and trans1t1ve (1f $x P_1i y$ and $y P_i z$ then $x P_i z$), although

which allows

: 3 i JJ . I II
representing the preferences with a “emph{futility function} $u_i$ with
$\citep{vonNeumann2007}.\footnote{$u_i(x) > u_i(y)$ if-and-ontyifimplies $x \
P_i \ y$\Ffootnete{Fheutility Ffunretion$, where $u_i$ is only defined up to

pos1t1ve llnear (afflne) transformatlons—}——utiiity—ﬁunetions—thus—spee&ﬁy—how

Some authors also allow incomplete or cyclic preferences \citep{Fishburn1968,
Heitzig2012}.

In the eeontext—ef-land use context, $i$ could be a farmer—and, $x$ might denote
a—state—eﬁ—aﬁﬁa&rs——where—$i$—grews—grow1ng

some traditional crops generatlng a moderate proflt———}n—additien—

and $y$

seme—genet&eaiiy—med&ﬁ&edgrow1ng hybr1d seeds generat&ngfor more proflt
but putt&ngmaklng $1$ &nte—a—streng—dependeneydependent on the seed suppller

If $1$ considers 1ndependence valuable enough to make up for the lower profit—,
$x \ P_i \ y$ would denote $i$'s preference of $x$ over $y$.

$u—&£p}———&1n dec151on maklng under uncertalnty, agents have to choose between

different \emph{risky prospects} modeled as probability distributions




$p(x)$ over outcomes $x$. In \emph{expected utility theory}, $p$ is preferred to
$p'$
if and only if $\sum_Xx p(x) u_i(x3$—) > \sum_Xx p'(x) u_i(x)$.
Empirical research hewever—shows that only a minority of people evaluate

X
uncertainty in this \emph{risk-neutral} way \citep{Kahneman1979}.-Fhe—vast
majority h , )
\emph{Prospect theory} therefore models agents that overestimate small
probabilities and shewsand evaluate outcomes relative to a reference point,
which leads to \emph{risk-aversionaverse} or \emph{risk-seeking} with—respect—teo
behavior

regardlng losses or galns—iﬂ—eempaF&seH—with—expeeted—ut&i&ty—theeFy——SHeh

regpectively

\citep{Kahneman1979},—e+r—bythe slightly more complex\emphfcumulative prospect
theory}\eitepfe—g—+F1£, Bruhin2010}.

A conceptual example from the land-use context illustrates decision

making under risk:

A farmer $i$ might face the choice whether to stick to her current crop—($
$x$)3$ or switch to a differentnew crop {$$y$)—$.

She may think that with 20\% probability the switch will tura—eut—badly-
resutting—in—oenlya—quarter—as—much—yieldaswith-$x$,result in a 50\% reduction
in her profits, while with 80\% probability, the yieldprofits would double.

If her utility depends—logarithmically on—yieldis proportional to the profits
and she evaluates this uncertain prospect as described by expected utility
theory,

her gain from switching to $y$ would be positive.

If, however, she is averse to losses and thus conforms to prospect theory,
she might evaluate the switch as negative and prefer to stick to $x$.

If behavier—and its consequences—involve-several time points $t$,—then
Aemph{time—$ are involved in a decision, agents are typically assumed to

\emph{discount} future consequences by using utility weights that decay in time

and reflect the agent's time preferences}-and\emph{patience}areoftentaken

into—account—via\emph{discounting}—.

Discounted utility quantlfles the present desirability of some ut111ty obtained

Most authors use exponentlally decaying weights of the form $er{-rt}$

with a \emph{discounting rate} $r>0$ because it—is—mathematically convenientand

Aemph{time—consistent}—meaning—that3itthis makes no—difference—atwhichpeint
in—time—the evaluation is—made~—independent of its time point.

However emplrlcal research—Findsstudies suggest that people seem—te—d&seeeﬂt

ﬁaste#—thanoften use slower decaylng welghts (e. g., hyperbollc dlscountlng),
espe01ally in the : !

presence of uncertalnty

e L LR = T e et
\citep{Ainsliel992, Jamlson2011}—&ﬁeetHete{Fe#—expeeent&ai—d&seeunt&ng——ﬁata#e

deeays—stewer—in—thefar future $u—3i)—=sum—t o3+ ++t32s$3 ],
Consider—as—an—examplefrom—the land-usecontext—aalthough this might lead to
\emph{time-inconsistent} choices that appear

suboptimal at a later time.

A farmer $i$ whe—cemparesmay compare different crops not only by next year's
expected profit $u_i(x,1)$

but, due to the various crops' different effects on future soil quality,
also by future years' profits $u_i(x,t)$ for $t > 13$.

Crop $y$ might promise higher yields than $x$ in the short run but lower




ones in the long run due to faster soil depletion;,—se—that—although-—$u—31—>

$H:i%*}_<—H—i{y}$——bﬁt—eﬂly—if—
If $i$ is ~“patient''-—eneugh,—i-e——3if the discounting rate$r$is, having small
epough-$r$, she might prefer $y\,P_i\,x$

}n—addi%ien——pFeﬁeFenee—aggFegatieneven though $u_i(x,1) > u_i(y,1)$.

Preferences can alse—be necessaryaggregated not only in time but across
&ﬂdepeHdeH%—eF—eeHpied—deeis&ens—deai&ng—w&th—several

interrelated 1ssues or types—eﬁ—consequences

For example,
consumer theory \01tep{Var1an2010}—} models preferences over
\emph{consumption bundles},

combining the utility derived from consuming $r$—-apples—$u—{iar-{r)y$—-and
$m$—pears,—Su—{ipHm) S —may be combined-different products
1nt0 a total consumptlon ut1l1ty—by—meaas-eﬁ—an—&emph{add&%&veiy—sepa#abie}

by gimply adding-up these utilities or by combining them in some

nonlinear way

with imperfect \emph{substitutability of goods}—In—thetand-—use—context,}
(\emph{Leontieff}, \emph{Cobb-Douglas}, or \emph{CES} utlllty functions).

A farmers' utility from leisure time $h—

thefield thatincreases—and crop yield $y—x$—(1)$ depending on working time $1$
might for example be combined ipr—a—similar—way—{e-g—via—ausing the Cobb-Douglas
utility function

Su_ipa)r—= = y—*A\alpha (12 h—*l)A{l \alpha}$}—}$ for _some \emph{elastlclty}

In—models,—the resulting optimizationproblemis—$\alphal\in(0,1)S.

Complex optimization problems arising from rational choice theory

can be solved using—toels—such—as—emph{by mathematical programming}—{e-g-
iineaF—pFegFamming}—eF—xemph{, calculus of variations} and similar methods
\citep[see, e.g.,][]{Kamien2012, Chong2013}.

Optimal decisions under constraints are not only discussed as a
description of human behavior,

but are often taken as the normative benchmark for comparison with other

non-optimal approaches that we discuss in—thefollewing—section-

Section~\ref{sec:bounded_rationality}.

Regarding decision- modeling in Earth—system—modelsESMs, rational choice theory
is useful—Fer—eceontettesdnwhich theooentst

when agents have clear goals—aresufficiently elear,—agents—canbe assumed—to
seoote

and possess enough information—time and cognitive resources to assess all
available—options—For—action—the

optimality of strategies.

For instance, individuals' decisions regarding long-term investments or
decisions of organizations such as firms or governments in competitive
situations

can often be assumed to follow reasonably well a rational aetionmedel.—However
ratienal-choice model.

It can also be a—useful assumption—when actors make the same-decisionmany—times
ahd—get—immediaterepeated similar decisions and
can learn optimal strategies from fast feedback,—se—thatthey learntochoose

the—optimaloption—Fhus,—they making them behave — as if*'if' they were
rational-deeision—makers.

\subsection{Bounded rationality and heuristic decision making}



\label{sec:bounded_rationality}

Empirical research on human decision making finds that individual behavior
depends on the framing and context of the decision \citep{Tversky1974}. Human
decision making is characterized by deviations from the normative standards of
the rational choice model, so-called \emph{cognitive biases}, challenging the
understanding that rational choice theory serves not only as a normative
benchmark, but also as a descriptive model of individual decision making.
Biases can be the result of time-limited information processing
\citep{Hilbert2012}, heuristic decision making \citep{Simon1956}, or emotional
influences \citep[e.g., wishful thinking, ][]{Babad1991, Loewenstein2003}.
\emph{Bounded rationality theory} assumes that human decision making 1is
constrained by \emph{cognitive} and—ecemputational-capabilities of the agents,
additionally to the constraints imposed by the environment and the available
information about it \citep{Simon1956, Simon1997}. In the economic literature,
non-transitive preferences, time-inconsistent discounting and deviations from
expected utility that we already introduced in the previous subsection are often
also considered as boundedly rational \citep{Gintis2009}. Boundedly rational
agents can be considered as \emph{satisficers} that try to find a satisfying
action in a situation given their available information and cognitive
capabilities \citep{Gigerenzer2002}.

Constraints on information processing imply that agents do not integrate all the
available information to compute the utility of every possible option in complex
decision situations and choose the—enean action with maximal utility.

Instead, agent—deeisiensagents use \emph{heuristics} for judging the available
information and choosing actions that lead to the more preferred outcome over
less preferred ones. \citet{Gigerenzer2011} definresdefine heuristics in decision

making as a "~ “strategy that ignores part of the information, with the goal of
making decisions more quickly, frugally, and/or accurately than more complex

methods. ''——scpirnot o oo cnlled oo A7 medele of homen cocdodon moloipo fhot

It is argued that instead of an all-purpose tool the mind carries an "~ "adaptive
toolbox'' of different heuristic decision schemes applicable in particular
environments \citep{Gigerenzer2002, Todd2007}.

In general, heuristic rules are formalized either as \emph{decision trees} or
\emph{flowcharts} and consist of three building blocks: one for information



search, one for stopping information search and one to derive a decision from
the information found. They evaluate a number of pieces of information -- so-
called cues -- to either categorize a certain object or to choose between
several options. Many heuristics evaluate these cues in a certain order and make
a decision as soon as a cue value allows classification or dlscrlmlnates between

ftherThis is illustrated by means of the \emph{Take the Best heuristic}: Pieces
of information (cues) are compared between alternatives according to a
prescribed order, which is crucial for the decision process. At each step in the
cue order, some information is searched and evaluated. If the information does
not allow discriminating between the options, the process moves on to the next
cue. This repeats as the process moves down the cue order until a cue is reached
where the differentiation between options is possible and the option with the
higher cue value is chosen.

Another notable examples—are \emph{Fastand Frugal Frees}—and-example is the
\emph{satisficing heuristics}.—Fhe latterheuristic} that evaluates information

sequentlally and chooses the flrst optlon satlsfylng certain cr1ter1a An

Heuristics, especially cue orders, can alse—be interpreted as encoding norms and
preferences in individual decision making as they prioritize features of
different options over others and hierarchically structure the evaluation of
available information.

An overview and explanation of numerous other decision heuristics can be found
in the recent review paper by \citet{Gigerenzer2011}.

\citet{Gigerenzer1999} question the usefulness of rational choice theory as the
normative benchmark because it is not designed for so-called "large worlds'
where information relevant for the decision process is either unknown or has to
be estimated from small samples. Instead, they want to relieve heuristic
decision making of its stigma of cognitive laziness, bias and irrationality.
With their account of ecological rationality, they suggest that heuristics can
also serve as a normative choice model providing context-specific rules for
normative questions. This is motivated by the observation that in many real
world situations, especially when high uncertainties are involved, some decision
heuristics perform equally good or even better than more elaborated decision
strategies \citep{Dhami200@l1la, Dhami2001b, Keller2014}.

So far, heuristics have primarily-been studied ferinferences ratherthan
preferences.Nevertheless,—the same frameworkscan—also-be-used to describe
decisions based—en—preferences,—such—asfor instance in consumer choice
\citep{Hauser2009}, voter behavior \citep{Lau2006}, erand organizational
behav1or \01tep{Loock2015 Slmon1997}




Despitethe many—upsides—efHowever, Fast and Frugal decision heuristics—they

are not yet commonly applied in dynamic modeling of secial-ecolegical
systemshuman-nature interactions. One exception is the description of farmer and

pastoralist behavior in a study of origins of conflict in east Africa
\citep{Kennedy2011}. However, as the following example shows, similar decision
trees ean—behave been used to model decision making in agent-based simulations
of land-use change—eitep. The model by \citet{Deadman2004}-—Fhe—medel}
describes colonist household decisions in the Amazon rainforest. Each household
is a potential farmer who first checks whether a subsistence requirement is met.
If this is not the case, the household farms annual plantscrops. If the

subsistence requirement is met, the household eheeks—the guality of the seil—In
%he—ease—eﬁ—ae&d&e—se&i——iteventually plants perennials—In—the caseof hon-

acidic—soil;—itplants—pasture—andbreed or breeds livestock—Ifthe—activities
are—notaffoerdable,—the household doesnot farmatall, depending on the soil
quality.

The model shows how—simple heuristic decision trees can be used to simplify
complex decision processes and represent them in an intelligible way. However,
the example also shows the many degrees of freedom in the construction of
heuristics, pointing at the difficulty to obtain these structures from empirical
research.

Heuristics are a promising tool for including individual human decision making

at—the micro-tevel inte Earth-systemmodelsinto ESMs because they can capture

basie—crucial choices in a computationally efficient way. In order to describe
the long-term evolution of preferences, norms and values;—which—mightplay—an
impertant—role relevant for human influences—oninteractions with the Earth
system, heuristics could also be used to model meta-deeisiendecisions of
preference andor value adoption. Recent findings suggest that cue orders can
spread via social learning and social influence \citep{Gigerenzer2008,
Hertwig2009} analogously to norm and opinion spreading in social networks (see
Sections \ref{sec:social_influence} and \ref{sec:networks}), which could be an
promising approach to model social change.

However, in contrast to fully rational decision making, it can be very
challenglng to aggregate heuristic decision making analytically to higher

organizational levels. Therefore, computational methedsapproaches like agent-
based modeling are Heededsu1table to explore the aggregate outcomes of many

agents with such decision precesses,—which—has—implications—for the pessible
apalysesrules (see Section~\ref{sec:abm}).

\subsection{Learning theory}
\label{sec:learning}

The approaches discussed in the previous two subsections mainly took the
perspective of a forward-looking agent. Rational or boundedly rational actors
optimize future payoffs based on information or beliefs about how their behavior
affects future payoffs, while the procedures to optimize may be more or less
bounded.

However, these techniques do not specify how the 1nformat10n is acquired and how
the bellefs are formed.

\emph{Computational learning theory} focuses on behavior from a backward-looking
behavierperspective: an agent learned in the past that a certain action gives a
reward—oer, feels good)} or is satisfying and is therefore the—agent—repeats
itsmore likely to repeat this behavior. It can describe the adaptivity of agent
behavior to a changing environment and is particularly suited for modeling
behavior under limited information. To model the learning of agents unsupervised
learning techniques are mostly used because they do not require a training with
an external correction.




\emph{Reinforcement learning} is such a medelingappreachtechnique that
eapturesmodels how an agent maps— environmental conditions to desirable actions
in a way that optimizes a stream of rewards (and/or punishments). The obtained
reward depends on the state of the environment and the chosen action, but may
also be influenced by chosen actions and environmental conditions in the past.
According to \citet{Macy2013}, reinforcement learning differs from forward-
looking behavioral models regarding three key aspects: (+1) Because agents
explore the likely consequences and learn from outcomes that actually occurred
rather than those which are intended to occur but only with a certain
probability, reinforcement learning does not need to assume that the
consequences are intended. (i32) Decisions are guided by rewards festeringthat
foster approach or punishment leadingand lead to avoidance rather than by static
utilities. {iii) Rather thaneptimization,—deeisionsrules—-are(3) Learning is
characterized by stepwise melioration and models the dynamic search for an
optimum rather than assuming that the optimal strategy can be determined right
away .

The learning process is modeled via a learning algorithm that—eperationalizes
different——strategiesof trialanderror,—(e.g—by—-a——simple., Q-Learning, SARSA-

Learning, Actor-Critic-Learning), based on iteratively evaluatlng the current
value funetion—er—of the environmental state utilizing a temporal difference {Q-
learning)—algorithmserartificial neural network approeacheserror of expected
value and experience value \citep{Sutton1998}. Seme learningArtificial neural
network algorithms can explore very high dimensional state and action spaces.
Genetic algorithms—have—-alse—been, which are inspired by the preecessof
paturatevolutionary mechanisms such as mutation and selection—(\emph{genetic
algerithms})~, are also applied to learning problems. The learning algorithm has
to balance a trade-off between the exploration of actions with unknown
consequences and the exploitation of current knowledge. In order to not having
to—explore—-all poessible actions by brute foerceexploit only the currently learned
strategy, many algorithms use randomness to inreludeinduce deviations from
already learned behavior.

The environment in reinforcement learning problems is often modeled as—awith
Markovian transition probabilities. The special case of a single agent is called
Markov decision process \citep{Bellman1957}. In each of the discrete states of
the environment the agent can choose from a set of possible actions. The choice
then influences the tran51t10n probabllltles to the next state and the reward.

As an illustration—frem—the land-usecontext,
consider a farmer adapting her planting and irrigation practices to new cllmatlc

conditions—by—adjusting—the timing. The environment could be modeled by a Markov

process with different states of soil fertility and moisture, where transitions
between states reflect the influence of sew&eg——&##&gat&en—and
harvesting-stochastic weather events. Without the possibility to acquire
knowledge through other channels, she would experiment—insome—way—with
theexplore different possible adjustmentsactions and evaluate how they change
the yield (her reward). Eventually, by a trial-and-error process her yield would
on average increase.

A stanrdardcommon approach to model the acquisition of \emph{subjective
probabilities} associated with the consequences of actions is \emph{Bayesian
learning}, which has also been applied to reinforcement learning problems
\citep{Vlassis2012}. Starting with some prior probability (e.g. from some high-
entropy "~ “uninformative'' distribution) $P(h_i)$ that some hypothesis

$h_i$ about the relation of actions and outcomes is true, new information or
evidence $P(E)$ is used to update the subjective probability with the posterior
$P(E|h_1)$ calculated with Bayes' theorem: $P(h_i|E) = P(E|h_1i) P(h_1i) /

P(E)$ \citep{Puga2015}. The most probable hypothesis can then be chosen to
determine further action.



Combining various approaches to model the acquisition of beliefs through
learning, the formation of preferences and different decision rules discussed in
the previous sections with further insights from psychology and neuroscience has
led to the development of very diverse and detailed behavioral theories which
are often formalized in \emph{eemplex—cognitive architectures}
\citep{Balke2014}. These approaches can alse—be used to medeldescribe human
behavior in computational models, but wewill netare too complex and complex and

diverse to discuss them here in detail-here—because—oftheircomplexity—-and
dibroppoc fopmalizotion,

Learning and related theories that emphasize the adaptability of human behavior
might be important building blocks to model en—the—ene—hand-the long-term
evolution of human interactions with the Earth system from an individual
perspective. On the other hand, they can capture alse—short-term responses to
drastically changing natural environments, which—mightgivedinsightson
behavieral transfoermatioensrelevant for 1nstance in the futurecontext of tipping
elements in the Earth system.

Table~\ref{tab:individual} summarizes the approaches that focus on individual
human behavior. Hewever—besidesBesides the forward- and backward-looking
behavior that we introduced in this section, agents may exhibit sideways-looking
behavior: agents can copy the behavior of successful others, thereby
contributing to a \emph{social learning} process. For this kind of behavior,
interactions between different agents are crucial. This will be the focus of the
next section.

%t

\begin{table*}[t]

\caption{Summary table for individual behavior and decision making}
\label{tab:individual}

\begin{tabular}{L{4cm}p{4cm}p{4cm}p{4cm}}

\tophline

Theories & Key considerations & Strengths & Limitations \\

\middlehline

Optimal decisions in rational choice: Individuals take the decision that
maximizes their expected utility given economic, social and environmental
constraints &

What are agent's preferences? Which information (and beliefs) do they have? &
Highly researched theory with strong theoretical foundation and many
applications &

Individuals assumed to have strong capabilities for information processing and
perfect self-control

\\

\middlehline

Bounded rationality and heuristic decision making:

Individuals have biases and heuristic decision rules that help them navigate
complex environments effectively &

Which cue order is used to gather and evaluate information?

When do agents stop gathering more information and decide? &

Simple decision processes that capture observed biases in decision making &
Suitable decision rules highly context dependent

\\

\middlehline

Learning: Agents explore possible actions through repeated learning from similar
past eventsexperience &

How do agents interact with their environment?

What is the trade-off between exploitation of knowledge and exploration of new
options? &

Captures information and belief acquisition process &

High degree of randomness in behavioral changes

\bottomhline



\end{tabular}
\belowtable{} % Table Footnotes
\end{table*}

\section{Modeling interactions between agents}
\label{sec:interaction}

In the previous section, we discussed modeling approaches that focus on the

choices of individuals that are confronted with a decision in a specified

situation. In contrast, this section fecuses—on—interaction betweenindividuals
reviews techniques to model how actors

er—greeps—eﬁ—agents——dee&s&ens—where
1nteract w1th each other and 1nfluence or respond to each ether——We—rev&ew

agents——;nd&reet—&nteraet&ensother S dec131ons Interactlons at the system level

that eare also
aggregation mechanlsms en—(e.g., vot1ng procedures and markets ) will be

discussed as—part—efin Section~\ref{sec: aggregat1on}—en—aggregat&en—}

The section starts with reviewing strategic interactions as modeled in classical
game theory and dynamic interactions withinin evolutionary approaches—anrd—secial
learning. Then, we address models of social influence that are used to study
opinion and preference formation or the transmission of cultural traits, i.e.
culturally significant behaviors.

| Finally, we discuss how interaction structures can be modeled eras dynamic
networks.

\subsection{Strategic interactions between rational agents: classical game
theory}
\label{sec:game_theory}

Game theory focuses on situatiens—decision problems of "~ “strategic
interdependence'', deeision—problems—wherein which the utility that a decision-
maker (called player) gets does not only depend on her own decision but also on
the choices of others. These are often situations of conflict or cooperation.
Players choose an action (behavioral option, control) based on a
\emph{strategy}, i.e. a rule specifying which action to take in a given
situation. \emph{Classical game theory} explores how rational actors identify
strategies, usually assuming the rationality of other players.

However, rational players can also base their choices on beliefs about others
players' decisions, which can lead to an infinite regress of mutual beliefs
about each others' decisions.

Formally, a game is described by what game-theorists call a \emph{game form} or
\emph{mechanism}. The game form specifies the actions $a_i(t)$ that agents can
choose at well-defined time points $t$ from an \emph{action set} $A_i(t)$ that
may vary over time, having to respect all kinds of situation-dependent rules.
The game form may furthermore allow for communication with the other agent(s)
(\emph{signaling}) or binding agreements (\emph{commitment power}). Simple
social situations are typieallyformalized in so-called normal-form games
represented—as——nermalformgames— by a \emph{payoff matr1x} specifying the
individual utilities\footnote{Note that despite the term °  payeff——matrixpayoff
matrix'', these utilities are unexplained attributes of the agents and need not
have a relation to monetary quantities.} for all possible action combinations,

| while more complex situations are modeled as a stepwise movement through the
nodes of a decision tree or game tree \citep{Gintis2009}.




In—partieular,—classicalClassical game theory assumes that players form
consistent beliefs about each others' unobservable behavier—They

assumestrategies, in particular that the other's behavior results itself from an
optimal strategy. Because—theHowever, multi-player inter-temperalinteraction and
optimization often leads to recursive relationships between beliefs and
strategies, which makes solving complex classical games becoemes—guiteoften very
difficult. SuehMany problems—eften have several solutions, called
\emph{equilibria} (not to be confused with the steady-state meaning of the word)
and call for sophisticated nonlinear fixed-point solvers \citep{Harsanyil988}.
Only in special cases, e.g. where players have complete information and moves
are not simultaneous but alternating, game-theoretic equilibria can easily be
predicted by simple solution concepts such as backwards induction
\citep{Gintis2009}.

In other cases, one can identify strategies and belief combinations consistent
with the following two assumptions. First, each player eventually chooses a
strategy that is optimal given her beliefs about all other players' strategies
(rational behavior). Second, each player's eventual beliefs about other players'
strategies are correct (\emph{rational expectations}). The solutions are called
\emph{Nash equilibria}. However, many games have multiple Nash equilibria, and
the question of which equilibrium will be selected arises.

Therefore, game theorists try to narrow down the likely strategy combinations by
assuming additional forms of consistency and rationality
\citepfseeHJ{{Aumann2006} such as consistency over time -{emph{(sequential and
subgame perfect equilibriaj);—statienarity—over—time—{emph{Markov
eguitibrial)), and stability against small deviations \citepfremph{[stable
equilibria} £, 1 [ 1{Foster1990,—Maes2016},—coordinated deviations by groups
emphicorrelated,—coalition-proof,—and—strong—equilibrial)+}, or small random
mistakes \citepfemph{[trembling— hand- perfect}—andemph{proper
equilibria}—3£, 1[1{Harsanyi1988}. After a plausible strategic equilibrium has
been identified, it can—then be used in a simulation of the actual behavior
resulting from these strategies over time, possibly including noise and
mistakes.

As an example inafrom the land--use context, consider two farmers living on the
same road. They get their irrigation water from the same stream. A dispute over
the use of water emerges. Both may react to the actions of the other in several
turns. The upstream farmer located at the end of the road may increase or
decrease her water use and/or pay compensation for using too much water to the
other. The downstream farmer at the entrance of the road may demand compensation
or block the road and thereby cut the access of the upstream farmer to other
supplies. ;

game—tree—thatA complex game tree encodes which actlons are feaslble at Wthh

moment and what are the consequences on players utilities.

possible to explieitly medelspecify the information and options efavailable to

the players at each time point, then a classical game theoretical analysis makes
senserallows determining the rational equilibrium strategies that the farmers
would follow.

Classical game theory is widely applied to interactions in market settings in
economics (see also Section~\ref{sec:macroeconomics}), but increasingly also in
the social and political sciences to political and voting behavior in
\emph{public and social choice theory} \citep[see, e.g.,][and
Section~\ref{sec:social welfare}]{Ordeshook1986, Mueller2003}. For example,
public choice theory studies strategic interactions between groups of
politicians, bureaucrats and voters with potentially completely different

preferences and action sets—uhder—eonstraints by existinglaw.




While many simple models of strategic interactions between rational and selfish
agents will predict only low levels of \emph{cooperation}, more complex models
can well explain how bilateral and multilateral cooperation, emph{consensus};,
and stable social structure emerges \citep{Kurths2015}. This has been shown in

d&ve#se—contexts such as &nd&vidHal—bila%eFal—in%e#ae%&ens—&n—ia#ge—g#eups

and 1nternat10nal cllmate

policy \citep[e.g.,][]{Heitzig2011, HeitzigZOls}

To model relevant decision processes in the Earth system, classical game
theoretic analysis could be used for describing strategic interactions between
agents which could be assumed highly rational and well informed, 1i.e.
international negotiations of climate agreements between governments, bargaining
between social partners or monopolistic competition between firms. Similarly,
international negotiations and their interactions with domestic policy can also
be framed as two- or multilevel games \citep[as in some models of political
science, e.g.,][]{Putnam1988, Lisowski2002}. Furthermore, social choice theory
could be used to simulate simple voting procedures that (to a certain extent)
determine the goals of regional or national governments.

\subsection{Interactions with dynamic strategies: evolutionary approaches and
learning in game theory}
\label{sec:evolutionary_approaches}

In game theoretic settings, complex individual behavioral rules are typically
modeled as \emph{strategies} specifying a—behavieran action for each node in the
game tree. Consider as an example the repeated version of the Prisoners' Dilemma
in which each of two players can either "~ “cooperate'' or "~“defect'' in each
period \citepfe—g—FH{Aumann2006}. A typical complex strategy in this game
could involve reciprocity (defect temporarily after a defection of your
opponent), forgiveness (everevery so often not reciprocate), and making up
(don't defect again after being punished by a defection of your opponent after
your own defection).

Many or even most nodes of a game tree will not be visited in the eventual
realization of the game and strategies may involve deliberate randomization of

actions—{e—g—tessing—a—ecoein)-. Therefore, strategies are—{}ike—preferences),
unlike actual behavior, principally unobservable—{eHiy—ae%aai—behav&e#—&s}TL and
assumptions about pFeﬁe#enees—and—s%#a%egiesthem are—unfalsifiableand hard to
validate.

For this and other reasons, eften—several kinds of additional assumptions are
often made that constrain the set of strategies further that a player can
choose, e.g., assuming only very short memory or low farsightedness
%——myep&eil(myoplc behavior) and disallowing randomization, or allowing only
strategies of a specific formal structure such as heurlstlcs (see
Section~\ref{sec:bounded_rationality}).

The abeve-mentioned-—water conflict example {seefrom
Section~\ref{sec:game_theory}}} bears some similarity to the repeated prisoners'
dilemma in that the farmers' possible actions can be interpreted as either
defective (using too much water, blocking the road—appealing—to—the magistrate)
or cooperative (not do any of thlS compensate for past defections). Assuming
different levels of farsightedness may thus lead to radically different
predictions—sinceactions because myopic players would much more likely get
trapped in a cycle of alternating defections than farsighted players. The latter
would recognize some degree of forgiveness asbecause that maximizes long-term
payoff and would thus desist from defection with some probability. In any case,
both farmers' choices maycan be modeled as depending on what they believe the
other will likely do or how she will react to the last action.




Evolutionary approaches in game theory study the interaction of different
strategies and analyze which strategies prevail on a population level as a
result of selection mechanisms. Thus, in contrast to classical game theory,
evolutionary approaches focus on the dynamics of strategy selection in
populations. The agent's strategies may be either hardwired, acquired or adapted
by learning \citepfe—g-—F+H1{{Fudenberg1998, Macy2002b}.

Although many evolutionary techniques in game theory are used in biology to
study biological evolution (variation through mutation, selection by fitness and
reproduction with inheritance), \emph{evolutionary game theory} can be used to
study all kinds of strategy changes in game theoretic settings, for instance
cultural evolution (transmission of memes), social learning through imitation of
successful strategies or the emergence of cooperation \citep{Axelrod1984,
Axelrod1997}.

In an evolutionary game, a population of agents is divided into factions with
different strategies. They interact in a formal game (given e-g—by a payoff
matrix or game tree, see Section~\ref{sec:game_theory}), in which their strategy
results in a fitness (or payoffAutility). The factions change according to some
replicator rules that depend on the acquired fitness.

This can be modeled using different techniques. Simple evolutionary games on
well-mixed large populations can be described with replicator equations. The
dynamics describing the relative change in the factions efwith a particular
strategy—$i$ is proportional to the deviation of the fitness of this faction
from the average fitness \citep{Nowak2006a}.

Alternatively, the behavior resulting from evolutionary interactions is often
easy to simulate numerically as a discrete-time dynamical system even for large
numbers of players if the individual action sets are finite or low-dimensional
and only certain simple types of strategies are considered. This type of agent-
based model (see Section~\ref{sec:abm}) simply implements features such as
mutation or experimentation and replication via strategy transfer (e.g.,
imitation and inheritance) at the micro-level. Combined with—({adaptive) secial
network approaches (see Section~\ref{sec:networks}), the influence of
interaction structure can also be studied \citep{Szabo2007, Perc2010}.
Strategies can be

e e

characterized by—se-calledas \emph{evolutionary stable—strategies}—or
Semphlstechaostienl by stoble conn b a AL 1T a population wheeh—odests—an
evolutionary—stablewith this strategy cannot be invaded by etheranother,

initially rare strategies-—strategy.
If the steadystatea strategy is furthermore stable for finite populations or

noisy dynamics, stableegquilibria—areit is called
stoechastie-\emph{stochastically stable}.

In our water conflict example, the farmers could use a heuristic strategy (see
Section~\ref{sec:bounded_rationality}) that determines how much water they
extract given the actions of the other. The evolution of the strategies could
either be modeled with a learning algorithm, repeating the game again and again.
Alternatively, to determine feasible strategies in an evolutionary setting, a
meta-model could consider an ensemble of similar villages consisting of two
farmers—and—a—magistrate-. The strategies of the farmers would then be the
result of either an imitation process between the villages, or of an
evolutionary process, assuming that less successful villages die out over time.

Evolutionary approaches to game theory are a promising framework to better
understand the prevalence of certain human behaviors regarding interaction with
the Earth system. This is especially interesting regarding the modeling of long-
term cultural evolution and changes in individual's goals, beliefs and decision
strategies or the transmission of endogenous preferences \citep{Bowles1998}.

\subsection{Modeling social influence}
\label{sec:social_influence}



Human behavior and its determinants

(bellefs goals, and preferences) are strongly shaped by social influence, a

ﬁercan result from various reasens——lheycognltlve processes Individuals may be
convinced by persuasive arguments \citep{Myers1982}, may aim to be similar to
esteemed others \citep{Akersl1979}, arebe unsure about what is the best behavior
in a given situation \citep{Bikhchandanil992}, or perceive social pressure to
conform with others \citep{Wo00d2000, Festinger1950, Homans1951}.

\emph{Models of social influence} allow studying the outcomes of repeated
influence in social networks and have been used to explain the formation of
consensus, the development of mono-culture, the emergence of clustered opinion
distributions, and the emergence of opinion polarization, for instance.

Models of social influence are very general and can be applied to any setting
where individuals exert some form of influence on each other. However, seemingly
innocent differences in the formal implementation of social influence in—meodels
can have decisive effects on the model outcomes—*n, as the following—we list

of important modeling decisions that have beenshown—tohave significant
implicationsdocuments.

A first question is \emph{how} agentsocial influence changes individual
attributes—are—influenced by interactions. For example, a farmer deciding when
to till his field might either choose the date which most of his neighbors think
is best, take the average of the proposed dates, or even try to counter
coordinate with ethers—disliked farmers.

Classical models incorporate influence as averaging, which meansimplies that
interacting individuals becemealways grow more similar over time
\citep{Friedkin2011}. \emph{Averaging} is an accepted and empirically supported

model of influence resulting, for instance, from social pressure that an actor

exerts on someone else \c1tep{Takac32®16} ln—ether—eente*ts——averag&ng—&s

medeisModels assume dlfferent forms of averaglng Rather than follow1ng the
ar1thmetlc average of all oplnlons actors mlght only consider the majorlty view

dates—\c1tep{Nowak1990}

In other models, social influence can lead to polarization \citep{Myers1982}.
For instance, in models of argument communication, actor's opinions can turn
more extreme when the interaction partners provide them with new arguments that
support their own opinion \citep{Maes2013a, Maes2013b}.

Second, ene—eeould—askmodelers need to decide whether there areis just one or
severatmultiple \emph{dimensions of influence}. For instance, it is often argued
that political opinions are multi-dimensional and cannot be captured by the one-
dimensional left-right spectrum. Explaining dynamics of opinion polarization and
clustering turned out to be often more difficult when multiple dimensions are
taken into account \citep{Axelrod1997}. Additionally, model predictions often
depend on whether the influence dimension is a \emph{discrete} \eitepfsee

St e dd 00 Ml 000 o lenn 000 Do lopt00f  penn el 000 or @
\emph{continuous variable} \eitepfsee—e-g-—F}{ Pe6rootls74, Frenchl956-

B e e et

Models of individuals' decisions about certain policies often model the
decisions as binary choices \citep{Sznajd-Weron2000, Martins2008}. However,
binary scales fail to capture that many opinions vary on a continuous scale and
that differences between individuals can therefore increase also on a single
dimension \citep{Barker2806,—balten1i998,—Feldman2011, Jones2002,—Maes2613a,




Stroud2010}. Therefore, models that describe opinion polarization usually treat

oplnlons as contlnuous attrlbutes —Ihe—ep&n&eH—en—a—iaﬂd—ﬁeﬁeﬁm—ean——ﬁeF

A pextthird critical question is whetheragents' characteristics ecantravelin

differentdirections—Fromoneperson—to—-another,—i-e—ifhow the
influenceinteraction process is direetionalmodeled. In models of opinion

dynamics, for example, influence is eften—\emph{bi-directional}}, in—the—sense
that an actor who exerts influence on someone else iscan also be influenced by
the other \citep{Macy2013, Maes2010}. ButIn diffusion models, in contrast, the
effective influence is directed. For instance, information can spread only from

informed to uninformed individuals, not the influence ecan—alsobe only possible
in—eHe—diFeetien—eF—the—stFength—9ﬁ—inﬁiHenee—ean—be—asymmeteie—other way

around.
Furthermore, the—influence—actors may be influenced
\emph{mait&iate#aidyadloally} or \emph{dyadic}—i-e—only between—twoe
interactionparthrers-multilaterally}. Model outcomes often depend on whether the
influence that a group exerts on an actor is modeled as amn—eventa sequence of
events involving a—dyaddyads of actors or multiple contactsforas a single
opinion update where the actor considers all contacts' influences at once
\citep{Parisiz2883—Flache2011, Lorenz2005, Huckfeldt2004}. In models that assume
binary influence dimensions, for instance, dyadic influence implies that an
agent copies a trait from her interaction partner. When influence is
multilateral, agents aggregate the influence exerted by multiple interaction
partners (using e.g. the mode of the neighbors' opinions), which can imply that
agents with rare traits are not considered even though they would have an
influence in the case of dyadic influence events. Ithas beendemonstratedthat
B e e e e e

i For example, a farmer seeking advice whether
to adopt a new technology can e1ther consult his friends one after another or
all together, likely leading to different outcomes if they have different
opinions on the matter.

Fourth,
agents nevermay slightly deviate from the influence of their contacts. The exact
medeltype of these \emph{deviations} affects model outcomes and can introduce a
source of diversity into the—medelmodels of social influence \citep{Maes2010,
Pineda2009, Kurahashi-Nakamura2016}. For instance, some models of continuous
opinion dynamlos include deviations as Gaussian noise, i.e. random values drawn
from a normal distribution. In such a model, ne&se—&mp&&es—that—op1n10ns in

homogeneous subgroups w1ll fluctuate randomly ﬁiHetHate——wh&eh—agg#egates—te

tweand subgroups happeﬂ—te—adeptw1th 31m11ar oplnlons——iﬂﬁioeﬂee—Wiii—iead—te—a
fusion—of subgreups can merge that would have remained split in a model without
deviations \citep{Maes2010}.

In other contexts, deviations are better modeled by uniformly distributed noise,
assuming that big deviations are as likely as small ones. This can help to
explain for instance the emergence and stability of subgroups with different
opinions, that do not emerge in settings with Gaussian noise\footnote{Gaussian
noise needs to be very strong to generate enough diversity for the emergence of
subgroups with different opinions. However, when noise is strong, subgroups will

not be stable } \c1tep{P1neda2009} —;H—the—eeHte*t—eﬁ—iaﬂd—ase——the—ep&n&en

Fo-model-Finally, the effects of social influence depend on the structure of the
network that determines who influences whom. Complex dynamics can arise when
this interaction network is dynamic and depends on the attributes of the agents,
as we discuss in the following section.




Models of social influence are a promising approach to explore how social
transitions interact with the Earth system, e.g., transitions of norms regarding

nerms—and—}iﬁestyle—ehanges—te—susta&nable—eensumpt&en——adm1s51ble resource use

and emissions,

shew—&n—the—next—seet&enl1festyle changes and adoptlon of new technology For

instance, they can be used to model under which conditions social learning
enables groups of agents to adopt sustainable management practices.

\subsection{Modeling the evelution—ef-interaction structure: (adaptive) network

moedelsapproaches}
\label{sec:networks}

In most of the models discussed in the previous section, the social network ear
beis formally modeled as a \emph{graph} (the mathematlcal notion for a network):
a collection of nodes that are connected by a—cellectionof-links. In this
mathematical framework, nodes (vertices) represent agents and links (edges)
between—the—agents—lnd1cate hotooento dnteornct Do copmundenting sl orehonosiing
informationinteraction, communication, or ferma social
reiatiensh}psrelationship Agents can only interact and thus influence each

other if they are connected by a link in the underlylng network —Nete—that

Classical social- influence models study the dynamics of influence on
\emph{static networks- }, assuming that agents are always influencedaffected by
the same subset of interaction partners \citep{Abelsonl964,-
[e.qg.,]1[]1{DeGroot1974, French1956, Harary1959—Friedkin2011}. As—diseussed
abeve—theseThese networks can be direeted—or—undirected or directed, possibly
restricting the direction of influence, but their structure does not change over
time. Furthermore, the topology of the network, i.e. the arrangement of 1links,
can be more or less random or regular, clustered and hierarchical. In social

influence models on static networks, Fultly—connected populations will usually

reach perﬁeet—consensus in the long run. —Hewever——&t—depends—en—the—durat&en—eﬁ

Especially when modeling social processes over longer time scales, it is
reasonable to assume that the social network is dynamic, i.e. that its structure
evolves over time. This time evolution can be independent of the dynamics on the
network and encoded in a \emph{temporal nretwerksnetwork} \citep{Holme2012}.
However, for many social processes, it—ecanbe-assumed—that-the structure of the
social network and the dynamics on the network (e.g-., social influence)
interact. \emph{Adaptive network models} make the removal of existing and the
formation of new links between agents dependent on attributes of the agents—
Fhus—they—build, building on the insight that the social structure influences
the behavior, epinienopinions or value—systemsbeliefs of individual actors,

which in turn drives changes in social structure \citep{Gross2008}.

Local update rules for the social network structure and the agent behavior can
be chosen very flex1bly Ihe—ruies—ean—be—determan&st&e—er—steehast&e—and

Changes in agent behav1ors
may be governed by rules such as random or boundedly rational imitation of the

behavior of network nelghbors (see above). Relevantuodate roles for neber

rules for the network structure are often based on the 1n51ght that




agents tend to be influenced
by similar others and ignore those sources who hold too distant views
\citep{Axelrodl1997, Carleyl1991Wimmer2010, McPherson2001, Lazarsfeldl1954}.
Many models assume that agents with similar characteristics tend to form new
links between each other (homophily), while breaking links with agents having
diverging characteristics \citep{Axelrod1997, Hegselmann2002, Deffuant2005}.
In adaptive network models, homophily in combination with social influence
generates a positive feed-back loop: influence increases similarity, which leads
to more influence and so on. Such models can explain for instance the emergence
and stability of multiple internally homogeneous but mutually different
subgroups. Other applications of co-evolutionary network models allow to
understand the presence of social tipping points in opinion formation

\citep{Holme2006}, epidemic spreading \citep{Gross2006}—in—systems—ofF networked

agents-}, the emergence of cooperation in 5001al dllemmas en—ee‘eveiet&eﬂapy
petworks—\citep{Perc2010} and the

{interdependence of coalition formation)} with social networks \citep{Auer2015}.
Fhe—dynamicaldnteraction—3nSuch adaptive network models ecan—give—+rise—toeexhibit
complex and nonlinear ce—evelutiehary—dynamics such as phase transitions
\citep{Holme2006+—Auer28145}, multi-stability \citep{Wiedermann2015},
oscillations in both agent states and network structure \citep{Gross2006}, and
subtle butrobuststructural changes in secial-strueturenetwork properties
\citep{Schleussner2016}.

While adaptive networks have so far mostly been applied to networks of agents
representing individuals, the framework can in principle be used to model co-
evolutionary dynamics on various levels of social interaction as introduced in
Table~\ref{tab:levels}.

For instance, global complex network structures such as financial risk networks
between banks, trade networks between countries, transportation networks between
cities and other communication, organizational and infrastructure networks can
be modeled \citep{Currarini2016}. Furthermore, approaches such as multi-layer
and hierarchical networks or networks of networks allow modeling the
interactions between different levels of a system \citep{Boccaletti2014}.

As an illustration—fer—an—-application—inthe land-usecontext, consider a

community of farmers—deseribed-byagents each harvesting a renewable resource,
e.g., wood from a forest. The agents interact on a social network, imitating the

harvesting effort of see&ai—Feiat&eHs——Ihe—ﬁaFmeFs—aFe—ﬁaeed—w&th—the—ehe&ee—te
adept—anewagricultural technologywhich—is petentiallyneighbors that harvest

more preductive,—butthisis unecertain—If the social acquaintancesand may drop
links to neighbors that use another effort The interaction of a—farmer

medeithe resource dynamlcs eae—eme#ge——that—may—w1th the network dynamlcs e1ther
1eadleads to a full-adeptienconvergence of the -newtechneloegyharvest efforts or
a segregation of the —community into a group with and-anether without—the new
teehnelogya higher and a lower effort, depending on the model parameters-—
\citep{Wiedermann2015, Barfuss2017}.

In the context of long time scales in the Earth system, the time evolution of
social structures that determine interactions with the environment are
particularly important. Adaptive networks offer an—interestinga promising

approach to modeling transfermative change with—deep—structural imprints
ehchange of the internal connectivity of a complex system \citep{lLade2016}suech

as—an—-allegedgreattransformation}. For example, this could be applied to
i = i I explore

mechanisms behind transitions between centralized teand decentralized

infrastructure netwerk—strueturesand organizational networks.

Table~\ref{tab:interaction} summarizes the different modeling approaches that
focus on agent interactions in human decision making and behavior. These
interactions occur between two or several agents. For including the effect of



these interactions into Earth—systemmedelsESMs, their aggregate effects need to
be taken into account as well. Therefore, we introduce in the next section
approaches that allow to aggregate individual behavior and local interactions
and to study the resulting macro-level dynamics.

%t

\begin{table*}[t]

\caption{Summary table for agent interactions.}

\label{tab:interaction}

\begin{tabular}{L{3cm}p{4cm}p{4cm}p{4cm}}

\tophline

Approaches and frameworks & Key considerations & Strengths & Limitations \\
\middlehline

Classical game theory: strategic interactions between rational agents &
What is the game structure (options, possible outcomes, timing, information
flow) and what are the players' preferences? &

Elegant solutions for low-complexity problems &

AgentsDifficult to solve for complex games, agents cannot change the rules of
the game

\\

\middlehline

Evolutionary game theory: competition and selection between hardwired strategies
&

Which competition and selection mechanisms are there? &

Can explain how dominant strategies come about &

Agent strategies are modeled as hard-wired (no conscious strategy change)

\\

\middlehline

Social influence: agents ehange—theirinfluence each other's beliefs, preferences
and—epiniensor behaviors &

WhatHow do influence mechanisms are—deminantchange agent attributes?

Is seeialthe influence multilateral—e+, dyadic, directed?

How large are deviations? &

Allows to model social learning, preference formation, and hearding behavior &
Local dynamics are often stylized

\\

\middlehline

Network theory: changing social interaction strueturestructures &

Is the social network static or adaptive?

How much randomness and hierarchy is in the structure?

How do agents form new 1links? &

Mathematical formalization to model co-evolution of social structure with agent
attributes &

Micro-interactions mostly diadic and schematic

\\

\bottomhline

\end{tabular}

\belowtable{} % Table Footnotes

\end{table*}

\section{Aggregating behavior and decision making and modeling dynamics at the
system level}
\label{sec:aggregation}

So far, we focused on theories and modeling techniques that describe decision
processes and behavior of single actors, their interactions and the interaction



structure. This section builds on the previously discussed approaches and
highlights different aggregation methods hewfor the behavior of an ensemble or

group of agents—mightbe—-aggregated-. This is an important step if models shall
describe system level outcomes or collective decision making and behavior in the

context of Earth system modeling.

B e T L e e e
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techniques link modeling assumptions at one level (often called the micro-level)

to a hlgher level (the macro- level) —Ihey—%heFeﬁeFe—eﬂabie—the—aﬂainis—eﬁ

They enable the analysis of macro-level outcomes and help to transfer models
from one scale to another.
In general, this could link all levels introduced in Section~\ref{sec:levels}.

In this section, we describe different approaches that are used to make this
connection: 9H—%he—ene—haHd——aﬂaiytieai—teeis—aiiew—#ep#esent&ngAnalyt1cal
approaches generally represent groups of individual agents through some macro-
level or average characteristic, often using simplifying assumptions regarding
the range of individual agents' characteristics. 9nr—the other hand-
simultatiensSimulation approaches describe individual behavior and interactions

and cemputational-methods—allowto—study—then compute the resulting aggregate

macroscopic dynamics.

The question how to aggregate micro-processes to macro-phenomena is not specific
to modeling human decision making and behavior. Aggregation of individual
behavior and the resulting description of collective action, such as collective
motion, is also an ongoing challenge in the natural sciences \citepfsee
e~g—+H1H{Couzin2009}.

Specific assumptions about the individual behavior and agent interactions have
consequences for the degree of complexity of the macro-level description. For
instance, if agent goals and means do not interact, the properties of single
agents can often be added up. If, on the contrary, agents influence each other's
goals or interact via the environment, complex aggregate dynamics can arise.

The follow1ng sectlons dlSCUSS the—spee&ﬁ&e&t&es—ﬁeF—agg#ega%&ng—human—dee&s&en

dlfferent aggregatlon technlques their underlying
assumptions and how these reflect specific aggregation mechanisms. They are
summarized in Table~\ref{tab:aggregation}.

\subsection{Aggregation of preferences: social welfare and voting}
\label{sec:social welfare}

Fheoriginal-miecro-level framework of ratienalRational choice is—eften
appltiedapproaches can also be used to model thebehavierdecision making by

agents on
hlgher levels from Table~\ref{tab:levels}, e.g., firms or countries.
The "~ “preferences'' of such groups of individuals at—all levels introduced—in

1&9&e=¥#e£{%ab—leve}s}——are often represented




by using as the optimization target a \emph{social welfare function},

which aggregates the members' utility functions, either additively

(" utilitarian'' welfare)

or in some nonlinear way to represent inequality aversion

\citep[e.g., the

Gini-Sen, Atkinson-Theil-Foster, or egalitarian welfare
functions; ][ ]{Dagum1990}.

To do so, a common scale of utility must be assumed.

For example, individual utility in many economic models equals the logarithm of
the total monetary value of the individual's consumption.

In reality, social welfare functions are indeed used to find optimal

policy, e.g. in \emph{cost-benefit analysis} \citep{Feldman2006}.

For example, consider a village of farmers growing crops, which need different
amounts of water,

so that water management policies affect farmers' incomes.

The effects of a water policy could then be evaluated using either the
average, minimal or average-logarithmic income of farmers as

a measure of social welfare.

The policy option maximizing the chosen indicator should be implemented.

However, it is highly debated that utilities of different individuals
can really be compared and substituted

in the sense that a drop in collective welfare resulting from an actor's
decrease in utility can be compensated by increasing the utility of
another actor. ; i i i

B e e CEE e e
ins%ead—eﬁ—ea#diﬂai—{seaie‘measHFabie}—g%;iity—iﬁte—aeeeantT—geneFai—statements

7 valy uch—as wealth,
suitable group preferences

Defining becomesis especially eemplicatedhard when
the—group
composition or size $N$-—changes over time as in intergenerational models
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\c1tep{Mlllner2013}

Also, in complex organizations, real decisions might be non-optimal for

the group and more explicit models of actual decision procedures may be

needed.

Models in subfields of game theory (bargaining, voting, or social choice theory)
explore the outcomes of formal protocols that are designed to aggregate the
group member's heterogeneous preferences.

Under different voting methedsor bargaining protocols, subgroups may dominate
the decision or the group may be able to reach a compromise

\01tep{ep—}{}{{Heltz1g2012}——aise—depeﬂding—en—%he—individuai—s—s%Fa%eg&es—

.}.
In the above example, the farmers may not agree on a social welfare
measure that a policy should optimize
but instead on a formal protocol that would allow them to determine a
policy for water usage that is acceptable for all.

\subsection{Aggregation via markets: economic models and representative agents}
\label{sec:macroeconomics}

Newadays—aA major part of the relevant interaction of contemporary societies
with the Earth system is eleselylinkedrelated to the organization of production
and consumption ergahized—on markets. Markets do not only mediate between the
spheres of production and consumption, they can also be seen as a mechanism to
aggregate agents' decisions and behavior. Economic theory builds—en—+ratienal
choicetheory—to—-askexplores how goods and services are allocated and
distributed among the various activities (sectors of the—eesnremyproduction) and
agents (firms, households, governments) in an economy. Goods and services may be
consumed or can be the input factors to economic production. Input factors for
production are usually labor and physical capital, but can also include
financial capital, land, energy, natural resources and intermediate goods. In
markets, the coordination between \emph{demand} and \emph{supply} of goods is
mediated through \emph{prices} that are assumed to reflect information about the
abundance—er—scarcity and production costs of goods. Economics compares
different kinds of market setting (e.g., auctions, stock exchanges,

international trade) with respect to different cr1ter1a such as allocative
efficiency—eriteria.

MieroeconomicBuilding on rational choice theory for modeling the decisions of
individual agents, microeconomic models in the tradition of neoclassical
economics analyze the conditions for an equilibrium between supply and demand on
a—single marketmarkets (\emph{partial equilibrium theory}) and between all
markets in—an—economy—(\emph{general equilibrium theory}). The behavior of
households and firms is usually modeled as utility maximization under budget
constraints and profit maximization under technological constraints in the
production, respectively.

A central ideaassumption is that an economy is characterized by \emph{decreasing
marginal utility} and preduectien\emph{diminishing returns}: The additional
individual utility derived from the consumption of one additional unit of some

good oot coneodditional Doy off Jodoncn do deoclindne  oopdlornly db Ao




inpe%—ﬁae%e#s—as—a#gements1s decllnlng

Decreasing—marginal—utility andSimilarly, the additional production implies—that
wtility andderived from an additional unit of a single input factor is declining
with its absolute amount when holding other input factors fixed.

Accordingly, the output of the production furetiens—areprocess is described as a
\emph{production function}, which is concave in theirits input factor arguments

I

Assuming that there is \emph{perfect competition},} between producers, resources
and goods weould—beare allocated in a \emph{Pareto-efficient} way so that no
further redistribution is possible that benefits somebody without making
somebody else worse off \citep{Varian2010}. It has been shown that this leads to
the emergence of an equilibrium price for each good as the market is cleared and
supply meets demand \citep{Arrow1954}.

The idea of this \emph{market equilibrium} can be understood by the associated
prices: The rational market participants trade goods as long as there is
somebody who is willing to offer some good at a lower price than what somebody
else is willing to pay for it.

However, in markets dominated by-enly a few or very heterogeneous agents perfect
competition cannot be assumed, and price wars, hoarding, and cartel formation
can occur. Such situations can be described in models of oligopoly, bargaining
or monopolistic competition but are sometimes difficult to integrate into
macroeconomic frameworks.

Macroeconomic models are—eoften—builtbuild on this miero—econemiemicroeconomic
theory ineerperatingby modeling decision making of firms and households with the
representative agent approach. A representative agent stands for an ensemble of
identical-agents or an average agent of a populat1on—tha%—ean—be—he%e#egeneees
to-—some—degree—However—an. An underlying assumption is that heterogeneities

and local interactions cancel out for large numbers of agents.
Ihe—behav&e#—eﬁ—%heseWh1le representatlve heeseheids—aﬂd—flrms &s—eseaiiy

the supply of dlfferent sectors, the demand is determlned by one or several
representative households. Representative firms and households are assumed to
act as if there would be perfect competition and they had no \emph{market
power}, i.e. that they takeoptimize their production or consumption taking the
prices of inmputsgoods and eutputsproduction factors as given—and-cannot

inﬁleenee—them— The dynam&esprlces of %he—eeenemy—is—then—the—#eseit—eﬁ—the

B e e e e e
other—input factor—These pricesproduction factors are assumed to equal the

value of what they are able to produce additionally by using one mere—heur—of
taber—oroenemoreadditional unit-efthe respectiveinputfaecter, i.e. their



\emph{marginal product}. Fhe -household canconsume goods—worththe capital and
oo dncome 4 rocedves . Tnde Jonde fo

In simple macroeconomic models,
representative agents interact on perfect markets for all production factors and
goods. The solution of the associated optimization problem (with constraints

glven by a system of nonllnear algebralc equatlons—&n—pF&ees—and—qeant&t&es—that

ﬁaeteFs—adiest—te—the—new—demand the1r prlces (wages and 1nterest rates), and

the production and allocation of consumer goods.

A change in one constraint therefore can lead to adjustments in all sectors and
new equilibrium prices.

For example, in an economy with only two sectors, industry and agriculture,
modeled by two representative firms and a representative household, increases in
agricultural productivity may lead to the reallocation labor into the industrial
sector and changes in wages.

In reality, prices can undergo rapid fluctuations, which challenges the validity
of equilibrium assumptions at least in the short run. Medels—eaptureFurthermore,
production factors may not be fully employed as general equilibrium
considerations suggest. Other deviations from egquilibriumbyefficient equilibria
are discussed as \emph{market imperfections} such as transaction costs,
asymmetrles in avallable 1nformat10n and steehastie—sheeks—due—te—new

ehange——non competltlve market structures
\emph{Dynamlc stochastlc general equ111br1um} (DSGE) models account for

consumptlon and 1nvestment dec151ons of economic agents under uncertalnty——Mest
and explore the consequences of stochastic shocks on public information or
technology for macroeconomic indicators.

Many modern DSGE models also incorporate short-term market frictions such as
barriers to nominal price adjustments (" “sticky'' prices,—which—have
consegquences Forinflation)and imperfect competition) or other market
imperfections \citep{Wickens2008}. However, these models still build on the key
concept of general equilibrium because they assume that the state of the economy
is always near such an equilibrium and market clearance is fast.




used to study the long—term dynamics of production and consumption as—well-as

In-standard-and are therefore an important approach for Earth system modeling.

In simple growth models, a guantity$¥{t}$of a—-homogeneous product is produced
per t1me un&t—accordlng to an aggregate productlon functlon—depend&ng—en

. A part of the output iscan be saved and—&nvested—&nteas new capital, while the
rest—ean—be-remaining output is consumed.
The evolution of the capital stock $k$—is deseribedgiven by a differential

equation—-———<ci— Lo — o Lo e les e 0 Lees  the cpootion Col o oo

taking 1nto account 1nvestments and capltal depre01at10n

In the typiecalemph{standard neoclassical growth modelj}—eitep{Ramsey1928,
Cass1965, Koopmans1965},—the fractionof saving$s{t}$3is, the savings are

endogenously determined by inter-temporal optimization of a representative
household—Itis—-assumed—thatthe and equal investments.

The household maximizes an exponentially discounted utility stream
$U{£)$—(compare Section~\ref{sec:rational_choice}), which is a function of its
consumption $e{t} = teft{ 1 —s{t )y right)r ¥{(£}$ \citep{Acemoglu2009}.

The central decision of the representative household is thus—how much of the
produced output it saves and—invests—at eachpointintimeto increase production
in the future and therefore cannot consume and enjoy directly. Fhe—-Such inter-
temporal optimization preblemproblems can be solved either computationally by
discretization in time or analytically by applying wariatienal—ecaleulus
{techniques from optimal control theory\footnote{Optimal control theory deals
with the—problem—ef finding thean optimal choice for some control variables

(often called policy) givenbya set of differential equationsfor the contrel
variablesthat eptimizeof a dynamical system that optimizes a certain objective

function—efa—{dynramical)}—system—{under—econstraints),—see, using for example
Aeitetvariational calculus \citep{Kamien20123-—3)-}.}.

Besides population growth the only long term dr1vers of growth in the standard
neoclassical

teehneleg&eal—ehanges——i—e——model are exogenously modeled increases in ﬁaeter
product1v1ty——Wh&ie through technologlcal change—s—eecenons—dn—stondord growth

7 in. In contrast, so-called endogenous growth
models exhibit long-run growth and endogenously account for increases in
productivity, for example through innovation, human capital or knowledge
accumulation \citep{Romer1986, Aghion1998}.

The assumptionuse of representative agents in macroeconomic models has
theoretiecal implications that stem from the implicit assumption that the
representative agent has the same properties as an individual of the underlying
group \citep{Kirman1992, Rizvil994}: First, the approach neglects that single
agents in the represented group have to coordinate themselves, leaving out
problems that arise due to incomplete and asymmetric information. Second, a
group of individual maximizers does not necessarily imply collective
maximization, challenging the equivalence of the equilibrium outcome. Finally,
the representative agent approach may neglect emergent phenomena from
heterogeneous micro-interactions \citep{Kirman2011}.

In spite of the deficiencies of the representative agent approach, its
application to markets allows to aggregate behavior in simple and analytically
tractable forms. Modelers who wish to describe economic dynamics at an aggregate
level can rely on a well developed theory that deseribedescribes many economic
grewthphenomena in a plausible—way-good approximation. In the following section,
we will discuss how this approach is used in—eembination—with—the-to analyze
impacts of this—economic ergineactivities on Earth-—systemthe environment.

\subsection{Modeling of decisions in integrated assessment models: social
planner and economic policy}



\emph{Integrated assessment

models} (IAMs) comprlse a large modeling family that combine economic with
environmental dynamics. However, the majority of currently used IAMs draws on
ideas from environmental economics. Using the concept of environmental
\emph{externality}, they evaluate the extraction of exhaustible resources,
environmental pollution and overexploitation of ecosystems economically. Fhey
alseExternalities are benefits from or damages to the environment that are not
reflected in prices and affect other agents in the economy \citep[see,

e.g., 1[]1{Perman2003}. These models therefore help to desigrassess economic
policies tethat tackle—the-associated environmental problems.

re—State-of -the-
art global IAMs comblne macroeconomic medels—w&th—deta&led—representatlons of

sectors that—are—eclosely linked to the envirenment—TFhey—arelike the mest
commonenergy and land system with models thatceombine beth—amiero-of the

blophyslcal bases and a—maere‘deserip%&en—eﬁ—heman—aetiVities—at—a—seales—With

ae%ava%&es—te—env1ronmental var&ables—by—ineerperat&ng—mater&al—ﬁlews
explieitiyimpacts of these sectors. For example, CO0$_2% emitted from burning

fossil fuels is linked to economic production by carbon intensities and energy
effiecieneyefficiencies in different production technologies.

IAMs—usuallyIAMs often model technological change endogenously, for example with
investments in R\&D or learning-by-doing (i.e., decreasing costs with increasing
utilization of a technology). Because of the possibility to induce technological
change, the models capture path-dependencies of investment decisions.

Many IAMs take the perspective of a social planner, who makes decisions on
behalf of society by optimizing a social welfare function (see
Section~\ref{sec:social_welfare}). It is assumed that the social optimum equals
the perfect market outcome with a—pelieyeconomic regulations that
internalizesinternalize all external effects—\ (e.g., emission trading

schemes) .\footnote{This argument is based on the second fundamental theorem of
welfare economics, see for example \citet[][pp. 63--70]{Feldman2006}.}

IAMs are eﬁ%enmostly computatlonal %general or partlal} equ1llbr1um models

or using exogenous

e*pl&e&%ly——sHeh—as—the—land—and—energy—system——Pre}ee%iens
projections of macroeconomic variables (interestrates—wages,—ete—)—then—drive
these—sectoralmodels—exogenouslky—(2)Intercp.

Section~\ref{sec:macroeconomics}).
They also differ with respect to inter-temporal allocation: While inter-temporal
optimization models use discounted social welfare functions to allocate

1nvestments and consumptlon optlmally over t1me——Ihey—ase—d&seeun%ed—seeial

preeedare——Reeers&ve—dynam}es, recursive dynamlc models solve an equ1llbr1um for
every t1me step——Ihe—dynam&es—&s—asually—preseribed—by—d&ﬁﬁerenee—eqaa%&ens—%ha%

Babiker2009}.
Furthermore TAMS s mooone Lo tnn cocononn o s on o foebioe locaon L




eatege#&es—eﬁ—;AMs—&e&tep{Weyant&ggé}——FiFst——are de31gned for (1) e1ther

determining optimal environmental outcomes of a policy eptimizatien—models—(POM)
makeby maklng a complete eest‘beneﬁitwelfare analy31s between the—eests—eﬁ

medeis——Seeend——dlfferent pollcy eva}HatieH—medels—{PEMs}—assess—pei&ey—opt1ons
and-—socio-economicor (2) evaluating different paths to reach a political target

with respect to their cost-effectiveness to—achievecertain—emission—targets—
Ihey—asea}iy—\c1tep{Weyant1996} In the context of climate change for example,
many IAMs have emission targets as constraints in thetheir optimization
procedure and determine the best way to reach them \citepfsee for—instance the
most—recent IPCCreportFH{1{{Clarke2014}.

For the analysis of global land-use, IAMs combine geographical and economic
modeling frameworks \citep{Barwinl1996,—Lotze-Campen2008, Hertel2009,
Havl1ik2011}. These models are used for example to investigate inteﬁaetiens

between—landallocation—andpricemechanisms-the competition between different
land uses %ﬁeFestFy——b&eeﬂeFgy—aad—ﬁeed—p#edaet&eh}—and trade-offs between

agricultural expansion and intensification. Fhey—eften—assume—thatWith the
optimization, land- uses ean—beare instantaneously and globally allocated, only

constrained by environmental factors such as soil quality and water
availability, as well as climate and protection policies.

IAMs differ from ESMs not only inregarding their modeling technique (mostly

optimization) but also inregarding their purpose—fremEarth—systemmodels: They
help policy advisors to assess normative paths that the economy could take to
reach env1ronmental pollcy goals. —BecauseTAMs—represent

pFedHetieH—teehaeieg&es——lhas——wh&iede01s1on about the pollcy dee&s&eh—ls
exogenous to the model, the investmentsinvestment decisions within and between

sectors are eniy—modeled as a reactlon ‘to the polltlcal constralnts —;t—weeid—be

However, most IAMs do not account for possible changes on the demand side, e.g

4

through changes in consumer's preferences for green products.

A better cooperation between the IAM and ESM communities, as called for by
\citet{vanVuuren2016} in this Special Issue, is certainly desirable because some
of the problems that arise when including human decision making into ESMs have
already been dealt with in IAMs. However, when considering the coupling of IAMs

and ESMS w1th dlfferent methods \01tep{vanVuuren2012}——Heweve#——th&s—eeuid—pFeve
! }I
modelers have to keep in mlnd not only technical compatlblllty (e.g. regarding
the treatment of time in inter-temporal optimization models) but also the
possibly conflicting modeling purposes.

\subsection{Modeling agent heterogeneity via distributions and moments}



As discussed in Section~\ref{sec:macroeconomics}, the representative agent
approach can hardly capture heterogeneity in human behavior and interaction. In
this section we describe analytical techniques that allow to capture at least
some forms of thisagent heterogeneity.

An ensemble of similar agents can be modeled via statistical distributions if
the agents are heterogeneous regarding only some quantitative preperties—Such
properties—could forexample becharacteristics, e.g. endowments such as income
or wealth or parameters in utility functions. In simple models, techniques from
\emph{statistical physics} and theoretical ecology can be used to derive a
macro-description from micro-decision processes and interactions. For instance,
the distribution of agent properties representing an ensemble of agents can be
described via a small number of statistics such as mean, variance and other
moments or cumulants. The dynamics in form of difference or differential
equations of such statistical parameters can be derived by different kinds of
approximations. A common technique is \emph{moment closure} that expresses the
dynamics of lower moments in terms of higher order moments. At some order, the
approximation is made by neglecting all higher order moments or approximating
them by functions of lower-order ones \citep[see, e.g.,][]{Goodmanl953,
Keeling2000, Gillespie2009}.

To aggregate simple interactions between single nodes in network models, similar
techniques can be used to describe the fregquenciesof particular simple
subgraphs—with differential equations how the occurrence of simple sub-graphs
(motifs) changes with the dynamics on and of the network.

In network theory, these approaches are eften—also called moment closure,
although the closure here-refers here to neglecting more complicated subgraphs
\citep[see—e.g.,][]1{D02009, Rogers2012, Demirel2014}. For example, the simple
\emph{pair approximation} only considers different subgraphs consisting of two
vertices (agents) and one link. To abstract from the finite-size effects of
fluctuations at the micro-level in stochastic modeling approaches and arrive at
deterministic equations, analytical calculations often take the limit of the
agent number going to infinity \citep[in statistical physics called the
thermodynamic limit, see—e-g-—Ft}Hfcp.][]{Reif1965, Castellano2009a}.

Techniques based on moment closure and network approximations ean—beare used—in
erder to aggregate the dynamics of processes like opinion formation on networks.
Fhis-This might be especially useful to reduce computational complexity when

modeling social processes at intermediate levels of aggregation and could allow
to—investigateinvestigating the interplay of suehmeso-scale social processes

with natural dynamics of the Earth system—e-g-—coupled—throughresource

\subsection{Aggregation in agent-based models}
\label{sec:abm}

Agent-based modeling {ABM}—is a computational approach to modeling the emergence
of macro- or system-level outcomes from micro-level interactions between
individual, autonomous agents and between agents and their social and/or




biophysical enwd = i
environments \01tep{Epste1n1999 Gllbert2008 Heekbert%@&@——Edmonds2013

Hamill2646}. In \emph{agent-based models} (ABMs), human behavior is not
aggregated to the system level a priori nor is it assumed that individual
behavioral diversity can be represented by a single representative agent as in
many macroeconomlo models (cp. Sect10n~\ref{sec macroeconomlos}) hotonE—

ABMInstead the behav1or of heterogeneous agents or groups of agents is
explicitly simulated to study the resulting aggregate outcomes. As each action
of an individual agent is interdependent, i.e. it depends on the decisions or
actions of other agents within structures such as networks or space, local
interactions can give rise to complex, emergent patterns of aggregate behavior
at the macro-level \citep{Page2015}. ABMs allow exploring such non-linear
behavior in order to understand possible future developments of the system or
assess possible unexpected outcomes of disturbances or policy interventions.
Agent-based modeling is widely used to study complex systems in computational
social science \citep{Conte2014}, land-use science \citep{Matthews2007},
political science \citep{deMarchi2014}, computational economics
\citep{Tesfatsion2006}—Fer—the—study—of, Heckbert2010, Hamill2016}, social-
ecological systems research \citep{Schlueter2012, An2®12}, as—well-as—inand
ecology \citepfwhere—it is often—calledindividual-based
modeltingHH{Grimm20053-—}, among others.\footnote{Note that in some scientific
communities, this class of modeling approaches is also known as multi-agent
simulations \citep[MAS, J[]{Bousquet2004} or individual-based modeling
\citep{Grimm2005}.}

Agents in ABMs can be individuals, households, firms or other collective actors

as well as elemehts—eﬁ—the—biephySieal—eHVirenment——ﬁer—exampleother entities or
groups thereof, such as fish, fish populat1ons——Ageht—behav&er—ean—be—medeled—at

in—eqHatieHs——dee&s&en—trees—er—rales—— or plant functlonal types Agents are
assumed to be diverse and heterogeneous, i.e. representingthey can belong to

different types efagents—that-areand can vary within one type, respectively.
Agent types can be characterized by specifiedifferent attributes and decision
making models (e.g., large and commercial versus small and traditional farms).
AgentsHeterogeneity within a type areis often alse—qaaat&tat&vely
heterogeneousrepresented through quantitative differences in thatthey peossess

varyinrg—values of these attributes (e.g. regarding market access, social or

f1nanc1al capltal) Aooptodntoract op o cotuetires cuel o oty o fhodr

behav1or of the agents can be modeled w1th any of the approaches 1ntroduced in

Section~ \ref{sec 1nd1v1dual behav1or} or be based Hhderstaad&ag—eﬁ—system‘level




eﬁ%en—medeied-%h#eagh—on data or observatlons that are formallzed in equatlons

decision trees or other formal rules. In empirical ABMs agents are often

classified into empirically-based agent types—\ecitep{Smajgl20i4}—-er—described

by—, which are characterized by attributes and decision heuristics based-on
empirical -observations—ofderived from empirical data obtained through interviews
or surveys \citep{Smajgl2014}. Increasingly, social science theories of human
behavior beyond the rational actor are being used in ABMs to represent more
realistic human behavierdecision making. However, many challenges remain to

translate these theories for usage in speeific—situationsABMs \citep{Conte28143—~
Furthermere,-Schlueter2017}.

Probabilistic and stochastic processes are often used to capture uncertainty in
and the impact of random events on human decision making and assess the
consequences for macro-level outcomes. For example, random events at the local
level such as a random encounter between two agents that results in a strategy
change by—aﬂ—iﬂd&v&daaiof one agent or a system-level environmental variation
can give rise to non-linear macro-dynamics such as a sudden shift into a
different system state \citep{Schlueter2016}.

In—the contextof land-use science,—ABMs—aremostlyIn addition to the behavior

of the agents, ABMs of human-environment systems incorporate the dynamics of the
biophysical environment resulting from natural processes and human actions
insofar as it is relevant for the agents' behavior and to understand feedbacks
between human behavior and environmental processes. For example, in an ABM by
\citet{Martin2016}, a number of cattle ranchers can move their livestock between
grassland patches in a landscape. Overgrazing in one year decreases feed
availability in the following year because of the underlying biomass regrowth
dynamics. Agents decide how many cattle to graze on a particular land patch
based on their individual goals or needs, information on the state of the
grassland, beliefs about the future and interactions with other ranchers. The
model can reveal the interplay and success of different land-use strategies on
common land and assess their vulnerability to shocks such as droughts. Most
ABMs in the context of land-use science have so far been developed for local or
regional study areas, taking into account local specificities and fitting
behavioral patterns to data acquired in the field \citep{Parker2003,
Parker2008a,—Matthews2007, Groeneveld2017}. They are often combined with
cellular automaton models that describe the dynamics and state of the physical
land system \citep[e.g., ][]{Heckbert2013}. In these ABMs, the spatial embedding

of agents usually plays an important role \citep{Stanilov2012}.




Because ABMs can integrate a diversity of individual decision making,

heterogeneity of actors and interactions between agents constrained by social
networks or space as well as social and environmental processes, they are
particularly suitable to study feedbacks between human action and biophysical
processes. In the context of ESM these may include human adaptive responses to
environmental change such as effects of climate change on agriculture and water
availability, to policies such as bioenergy production or the global
consequences of shifts in diets in particular regions. Agent-based modeling is
also a useful tool to unravel the causal mechanisms underlying system-level
phenomena \citep{Epstein1999, Hedstrom2010} and thus enhance understanding of
key human-environment interactions that may give rise to observed Earth system
dynamics. However, because of their potentially high complexity and
dimensionality in state and parameter space, ABMs are often difficult to analyze
and may require high computational capacities and sophisticated model analysis
techniques to understand their dynamics beyond single trajectories.

Agent-based approaches can be applied without modeling each individual agent
explicitly. It suffices to model a representative statistical sample of agents
that depietdepicts the important heterogeneities of the underlying population.
To capture major types of human behavior, a recent proposal are \emph{agent
functional types}XﬁeetHete{&e&tet{AFHeth2@14}—make—the—aﬂaiegy—te—piant
funetional types—invegetation models—}basedon—a} based on a theoretically
derived typology of agent attributes, interactions and roles \citep{Arneth2014}.
This proposal is explored for modeling the adaptation of land-use practices to
climate change impacts \citep{Murray-Rust2014a}. Agent-functional types
represent a typology that is theoretically constructed instead of anr—empirically
derived-data-driven—typetegy, which is common in empirically-based ABMs. Such
agentAgent-based approaches are promising for Earth system modeling with—+respeet
tebecause they allow addressing questions of interactions across levels, for
instance how regienal—or—global patterns of land use emerge from 1nterdependent
regional and local er—regienal-land-use decisions thatwhich are in turn
constrained by the resultsof lecal interactions—atemerging global patterns.
Furthermore, they would allow the respeetive level-integration of uncertainty,
agent heterogeneity and aggregation of detailed technological and environmental
changes \citep{Farmer2015}.

\subsection{Dynamics at the system level: System dynamics, stock-flow consistent
and input-output models}

This final subsection discusses modeling approaches without explicit micro-
foundations. Decisions in such models are not modeled direetlyexplicitly with
one of the options discussed in Section~\ref{sec:individual_behavior} but, as

policy decisions in integrated assessment models, through the construction of
different scenarios for the evolutlon of cruc1al exogenous parameters in the

Global \emph{Systemsystem dynamics} models describe the economy, population and
crucial parts of the Earth system as well as their dynamic interactions at the
level of aggregate dynamic variables, usually modeling the dynamics as ordinary
differential equations or difference equations to mapproject future
developments. The equations are often built on stylized facts about the dynamics
of the underlying subsystems and are linked by functions with typically many
parameters. Modelers employ systemssystem dynamics models to develop scenarios
based on different sets of model parameters and assess system stability and
transient dynamics of a system. In comparison to equilibrium approaches,
systemssystem dynamics models capture the inertia of secio-ecenomiesocioeconomic
systems at the cost of a higher dimensional parameter space. This can lead to




more complex dynamics, e.g-——eseillatery., oscillations or overshootings
dynamies—Systems. System dynamics models can be very detailed, llke the World3
model commissioned by the Club of Rome for their famous report on *‘Limits to
Growth'' \citep{Meadows1972, Meadows2004}, the GUMBO model \citep{Boumans2002a},
or the International Futures model \citep{Hughes1999}. Subsystems of such models
comprise human population (sometimes disaggregated between regions and age
groups), the agricultural and industrial sector, as well as the state of the
environment (e+~g—pollution and resource availability). Simpler models describe
the dynamics of only a few aggregated variables at the global level
\citep{Kellie-Smith2011} or confined to a region \citep{Brander1998b}.

SystemOther system-level approaches to macroeconomic modeling—eften emphasize
self-reinforcing processes in the economy and point at positive feedback
mechanisms, resulting in multi-stability or even instability (e.g., increasing
returns to scale in eapital aceumulatienproduction and self-amplification of
expectations during economic bubbles).

For example, post-Keynesian and—ecological—economists use \emph{stock-flow
consistent models} to deseribe—a—eireulartrack the complete monetary flows in an
economy in which low aggregate demand can lead to underutilization of production
factors and the state plays an active role to stabilize the economy
Aeitep{Godley20074)~. In these models, a social accounting matrix provides a
detailed framework of transactions (e g., monetary flows,—3i-e—per-time

guantities) between representativeagents—inthe economy—such—as—households,

firms and the government, which hold stocks of—finaneialand physical assets and
commodities \citep{Godley2007}.

Aeitepte—g—H{Berg2035-\emph{Input-output medeling}—Focuses—on—thematerial
side—of economicmodels} track flows to much more detail between different
industries or sectors of production \citep{Leontief1986, TenRaa2005, Miller2009+

B T T e Each 1ndustry

- process is modeled by
a fixed proportions ( “Leontief'') production function, which is characterized
by llnear factors that depend on the avallable technology G&ven—a—ﬁ&nal—demand—

In—the contextof land-use changeFor example, an input-output model eeuldcan

describe which primary input factors such as land, fertilizer, machinery,
irrigation water and labor are required for satlsfylng the demand of an
agricultural commodity by a speeifiemix of production teehnigque—Semetechniques.
The model would consider that some of these primary inputs have to be produced
themselves, using other inputs—Outputs and outputs may alse—ineludebe unwanted
51de products such as manure in cattle productlon—e#—e*%e#nal&%&es—saeh—as

Such models are used for 1nstance to explore how changes in
demand would lead to higher-order effects along the supply chain.
Regional input-output models also account for spatial heterogeneity and are used
for example to evaluate possible impacts of extreme climate events on the global
supply chain \citep{Bierkandt2014}.

While the approaches discussed above focus on the monetary dimension of capital
and goods, models from ecological economics \citep{vandenBergh2001} track




material flows or integrate material with financial accounting. For example,
input-output modeling has been extended to analyze the industrial metabolism,
i.e. the material and energy flows and its environmental impacts in modern

economles \c1tep{FlscherKowalsk11997 Ayre52002 Suhzoog} ——ﬁe#—&ﬂstanee

Regionalized versions of such models can for instance be used to estimate the
environmental footprint that industrialized countries have in other regions
\citep{Wiedmann2009}.

In the emerging field of ecological macroeconomics \citep[see][for a detailed
review of modeling approaches]{Hardt2017}, stock-flow consistent and input-
output models have been combined into one framework tracking financial as well
as material flows \citep{Berg2015}.

Other ecological models use the flow-fund approach by \citet{Georgescu-
Roegen1971} or combine it with stock-flow consistent modeling approaches
\citep{Dafermos2017}. While the flow concept refers to a stock per time, a fund
is the potentiality of a system to provide a service. The important difference
lies in the observation that a stock can be depleted or accumulated in one time
step while a fund can provide its service only once per time step. This
distinction reflects physical constraints on the production process that have
important consequences for modeling the social metabolism.

\citet{Garrett2015} and \citet{Jarvis2015} in this Special Issue provide an
extreme view on the dynamics of social metabolism based only on thermodynamic
considerations without taking human decision making or agency into account.

In order to make thesetechniguesapproaches that only consider the system level
useful for modeling the impact of humans on the Earth system, they could be
combined with approaches that model the development of new production
technologies and how they—arethe deployment of new technologies is affected by
decisions at different levels (consumers, firms and governments). Even if this
integration with decision models may prove difficult, the approaches discussed
in this section can help linking social and environmental dynamics in new ways,
providing an important methodology to peliey—makers)-include humans into ESMs.

%t

\begin{table*}[t]

\caption{Summary table for aggregation and system level descriptions}
\label{tab:aggregation}

\begin{tabular}{p{4cm}p{4cm}p{4cm}p{4cm}}

\tophline

Approaches and frameworks & Key considerations & Strengths & Limitations \\

\middlehline

Social utility and welfare: Aggregate individual utility, possibly taking
inequalities into account &

How is inequality evaluated?

How is welfare compared between societies and generations? &

Base for cost-benefit analysis, a widely applied decision model for policy
evaluation &

Assumes that individual utility can be compared on a common scale

A\

\middlehline

Aggregation via markets: Representative agents in economic models &

Which goals or preferences do representative agents have?

Whieh—How efficient do market mechanisms allocate on which spatial and temporal
scales—de—pricemechanisms—span? Which market imperfections are there?

&

Well developed formalism that makes the connection between micro- and
macroeconomics analytically traceable &

Assumes that aggregated agent properties are similar to individual ones to
derive economic equilibrium, coordination effort between agents neglected




\\

\middlehline

Social planner and economic policy in integrated assessment models: Model
poessibilitiesways to internalize environmental externalities &

Which economic policy instruments internalize environmental externalities best?
What are plausible scenarios for policy implementation?

How do agents react to changes in policy? &

Allows to determine optimal paths for reaching societal goals &

Models focus on production and investment in the economy

\\

\middlehline

Distributions and moments: Model heterogeneous agent attributes via statistical
properties of distributions &

Which heterogeneities are most important for the macro-outcome? &

Systematic way to analytically treat heterogeneities &

Only applicable for rather simple behaviors and interactions

\\

\middlehline

Agent-based models: Simulate agent behavior and interactions explicitly to study
emergent macro-dynamics computationally &

Which kind of agents types are important? How do they make decisions?

How do the agents interact with each other and the environment? &

Very flexible framework regarding assumptions about decision rules and
interactions &

Models often with many unknown parameters, difficult to analyze mathematically
\\

\middlehline

Dynamics at the system level &

Which crucial parameters in the model can be influenced by decision makers?
&

Allows to explore possible dynamical properties of the system based on macro-
mechanisms &

No explicit micro-foundation

\\

\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\end{table*}

\section{Discussion}
\label{sec:discussion}

In the previous three sections, we reviewed different-showed that there is a
diversity of approaches to model individual human decision making and behavior,

to descrlbe 1nteract10ns between agents and to aggregate these processes We

One—intentionThe discussion of this review istedrawthe attentienstrengths and
limitations of the readertothe differentmodeling approaches showed possible

underlying assumptions and connections to theories abeuthuman—decisionmaking




Semeof human behavior. While some modeling techniques are compatible with almest

apy—theorymany theories of human behavior or decision making that—ecan—be
formalized-and can thus be used with manya variety of assumptions—abeut—human
behavier—0Other—modeling—, other techniques significantly constrain possible
assumptions—abeut—human—behavier—anddecisionmaking.

Fherefore it isimportant to First deecide—on% paragraph: when is it useful to

model humans dynamically

For many relevant questions in global environmental change research, a dynamical
representation of humans in ESMs may not be necessary. If behavioral patterns
are not expected to change over the relevant time scales or feedbacks between
natural and social dynamics are sufficiently weak, modelers can simply use
conventional scenario approaches.

However, if behavioral patterns are expected to change over time and give rise
to strong feedbacks with the environment, then an explicit representation of
human decision making will provide new insights into the joint dynamics.

In this case, modelers have to choose carefully which assumptions about human
behavior and decision making are reasonable—inthe contextof a research

Sots o el Shn e ehecers on fochoscnne coccmrsne b
Fo—put—it-the otherwayaround—the choice—ofaplausible for their specific

proevidepurpose.
Modeling choices require a constant interplay between model development and the
research questlons that dr1ve it. —;n—Iabie=&Feﬁ{tab—sHmma#y}——we—samma#&zed—%he

RegardingBecause there is no general theory of human decision making and

behavior, especially not for social collectives, we cannot provide a specific
recipe for including humans into ESMs.

In Table~\ref{tab:summary}, we summarize the approaches we discussed in this
paper and collect important questions to guide the choice of appropriate model
assumptions and approaches.

To find the right assumptions for a specific context, modelers can furthermore
build on and consult existing social-scientific research, even though
ambiguities due to a fragmentation of the literature between opposing schools of
thought and difficulties to generalize single case studies from their local or
cultural specificities can make some of the research difficult to access.

In case of doubt, modelers can team up with social scientists to conduct
empirical research in the specific context needed to select the appropriate
approach.

The selection of a modeling technique compatible with the chosen assumptions
also has to consider its limitations for meaningfully answerable research
guestions and analyses that it can provide. In the following, we discuss some
important considerations regarding individual decision making, interactions and
aggregation.

% discussion of individual decisions

Concerning individual agents, we identified three important determinants in
decision models: motives, restrictions and decision rules. Assumptions—abeut
eaeh—eﬁ—%hese—th#ee—dete#m&nants—Modelers need to bemadewith-great-—ecare—as
there—are—take the many factors into account that might—influence which metivess
FestFie%iens——and—deeiSien—FHies—aFe—Felevantassumptlons about each of these
three determinants are applicable in a given context. For instance, modelers can
make different assumptions about whether deeisien—makersagents only consider
financial incentives or whether—also seft—inecentivestake into account other




criteria, such as a desire for fair outcome distributions \citep{Fehr2882},—are
Feievan%—Xei%ep{Opp1999}—}, depending, e.g., on whether a situation is more or
less competitive or cooperative. Research shows that the relevance of motives
and goals can vary over time and that surprisingly subtle cues can change
thetheir importance—efmetives \citep{Lindenberg1990, Tversky1985}. Likewise,
the choice of a plausible decision rule depends on the studied context. For
instance, a decision rule that requires complex ealeulatienscomputations may be
relatlvely plausible in contexts where individualsagents make decisions with
important consequences and where they have the information and time needed to
compare alternatives. When stakes are low and time to decide is limited,
however, more simple decision rules are certainly more plausible. Cognitively
demanding decision rules are also more plausible when decision makers are
collectives, such as companies and governments. Sometimes, it may even be
reasonable to assume that aetersagents use combinations of—the different
decision models \citep{Camerer1999}.

Wher—rosusing—eon—the dnterastden o aeents——wmaertant) discussion of

interactions

Important criteria for choosing an appropriate model of agent interactions are
the type and setting of interactions, the assumptions that agents make about
each other, the influence they may exert on each other and the structure of
interactions. For example, interactions in competitive environments will only
lead to cooperation if this is individually beneficial. In such environments,
agents may assume that the ethers'others form their strategies rationally. In
less competitive settings, where social norms and traditions play a crucial
role, however, behavior may not be strategically chosen but rather adaptively,
e.g., by imitating other agents. This might also be important on time scales at
which cultural evolution happens.

Furthermore, social settings might favor that agents influence eachothers"
eha#ae%e#&s%&es—and—pr1mar11y interact by exchanging opinions or sharing beliefs
and influence each others' decisions in this way.

e e

Finally,—an—impertanteriterion% discussion of aggregation

Crucial criteria for the choice of hew—te-—medel-an appropriate aggregation
technique for behavior and interactions ef-single—elementsare the properties of
relevant economic and political institutions (e.g., market mechanisms or voting
procedures), decision criteria for collective agents, heterogeneity of modeled
agents, availability of data to evaluate the model and relevant time and spatial
scales of macro-descriptions.

Depending on the specific research questions, modelers have to choose the
aggregation method that fits the real-world systems of interest and describes
their aggregation mechanisms and aggregate behavior reasonably. Whether the
aggregate behavior of many agents is whetherbetter represented by a
representative agent as in macroeconomic models, a distribution of agent
characteristics, or many diverse individuals as in ABMs depends on the
importance of agent heterogeneity and interaction structures such as networks or
spatial embeddedness.

The choice of an aggregation technique then determines which characteristics and
processes of the system are modeled explicitly and which assumptions influence
the form of the model only implicitly.

% interaction structure

If the local structure of interaction matters—Ifit—dees, this would require a
gridded or networked approach, otherwise a mean field approximation 1is
justified. Similar choices have to be made in classical Earth—systemmodelsESMs:
For example, the interaction of ocean and atmosphere temperature near the
surface on a spatial grid could be modeled either by only taking interactions
between neighboring grid points into account or by coupling the ocean
temperature to the atmospheric mean field. Analogously, the interactions between
groups of two types of agents may be modeled explicitly on a social network.
However, it might also suffice to only consider interactions between two agents
representing the mean of each group respectively. The question whether the




interaction structure matters can often not be answered a priori but eanmay be
the result of a comparison between an approximation and an explicit simulation.

%e—the—system‘}evelé heterogenelty / level of detall and aggregatlon
For the choice of an appropriate aggregation technique, modelers also have to

decide on the level of detail to describe the system and whether the modeling of
individuals or intermediate levels of the system is necessary or an aggregate
description suffices.

This choice depends on the expected importance of interactions and heterogeneity
in an assumed set of agents. Fake—asAs an example from classical Earth system
modeling consider vegetation models, in which modelers may—eceoensiderchoose
between the simulation of representative plant functional types or ensembles of
individual adaptive plants depending on whether they consider the interaction
and heterogeneity important for the macro-dynamics. Analogously, a model of
social dynamics may cheoese forinstance betweenuse a representative agent
approach or model heterogeneous agents expllcltly 1n an agent- based model——eﬁ

e#ae&a}}y—depends dependlng on the pFepeF%ies—eﬁ—the—system—and—the—research
guestionsquestion.

The choice between a detailed and aggregated description depend strongly on the
model purpose. For example, if the goal is to predict the future development of
a system, a system-level description could already suffice, while a more
detailed model (e.g., ABM) would be needed for understanding the mechanisms that
explain these outcomes in terms of underlying heterogeneous responses of
individuals. Likewise, for a normative model aiming to identify the action that
maximizes social welfare an intermediate level of detail could suffice, taking
only specific agent heterogeneities into account.

% time scales
Seeond,In general, the evaluation of time scales can help in many of the above-
mentioned modeling choices to decide whether elements—andsocial processes and
properties of socioeconomic units should be medeledrepresented as evolving
irover time, can be fixed or need not be eensideredmodeled explicitly at all for
a macro- level description of the system.-As—an

For example, —ecensider—the propagation—ofincreased C0$_2$ concentration in
global circulation models—Fhe—relatively guick convectionof £0$2$ in the

B T = O e L= s
e9$—2$—eeneent#at&en—ean—be—— can be assumed to be well-mixed—PBut—when

for the atmosphere, while assuming
this for the ocean with its slow convection would distort results on politically

relevant time scales,—the-assumption—that €0$- 2% is well-mixed mightdistortthe

results— considerably because—convectionbetween—ocean—layers—is—comparatively
stew-\citep{Mathesius2015}.

Similarly, general equilibrium models can be a good description if the
convergence of prices happens on fast time scales and market imperfections are




negligible. Dynamical systemssystem models, on the contrary aremay be more
appropriate to describe systems with a high inertia that-may operate far from
equ1llbr1um due to contlnuous changes in system parameters and slow convergence.

A decisive question is therefore if the time scales of processes in the system

allow a separation of scales. For instance, this is possible if the micro-
interactions are some orders of magnitude faster that changes in system
parameters or boundary conditions.

Similar considerations apply for spatial scales.

% differences to natural science models

As we have shown in the examples above, there are sememany similarities
regarding the choice of modeling technlques and assumptions in Earth—systemESMs
and models and-medels—of secio-economicof socioeconomic systems. However,
fundamental differences between the modeled systems pose a big challenge for an
informed choice of modeling techniques. Earth—systemmodelsESMs can often build
on fundamental -seientifiephysical laws describing micro-interactions that can be
tested and scrutinized. Of course this can result in very complex macroscopic
system behavior with high uncertainties. But models including human behavior esn
the—eother—hand—have to draw on a variety of accounts of basic motivations in ef
human decision making. And these motivations may change over time while
societies evolve and humans change their actions because of new available
knowledge.

At—this peint,—there3isThis can lead to a crucial feedback between the real

world and models: Agents (e.g-., policy makers) may decide differently when they
take the information provided by model projections into account. Therefore, it
is—important—tokeep—inmindthat-modeling aectivitiesincludinghumans—choices
regarding human behavior might eventually change thethis behavior—ef—agents
beeause. This aspect of human reflexivity-—Fhis makes models of human-deminated
systems societies fundamentally different from natural science models—
Fhis—alse—peintsand is closely linked to the important difference in social
modeling between normative and descriptive model purposes.-We—highlighted

For example, models that optimize social welfare usually reflect the goal that a
government should pursue, and therefore have a normative purpose. But if this
differencethroughoutthe paper butwantte peinteutmodel is used to guide
policy making while taking into account the actual and perceived controls of
policy makers and considers the effect of compromises between different interest

groups, 1t could also descrlbe 1ts impeF%aﬂee—hepe—again——lhe—pquese—eﬁ—a—medei

may—behavior.
This example already imply—basieshows the often intricate interconnections

between normative and descriptive assumptions altheugh—the—modeler—may—neot—in
decision modeling that modelers should be aware of—them—andJjust—echeese.

This is further complicated by the observation that the same assumption may be
understood in one model as a descriptive (positive) statement whereas in another
model it may be meant as a prescriptive (normative) one. For example, in a model
of agricultural markets, the assumption that big commercial farms maximize their
profits might be a reasonable descriptive approximation. fer pragmatic
reasensHowever, in a model that asks how small-holder farms could survive under
competitive market conditions, the same assumption gets a strong normative
content.

AAnother difficulty that—we-encountered—in—the eclassificationand presentation
is that
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model choices are impertant—often not only based on the most plausible
assumptions regardingabout human behavier—and—which—modeling—decisions—decision




making but are takenbeecauseofstrongly influenced by considerations about the
assumption's mathematical convenience. Choosing assumptions for technical

reasons, e.g., mathematical simplicity and tractability, may be problematic
because it remains unexplalned how they are related to the real world

assumptlons can be ea31ly 1mplemented in formal models, often a trade-off has to
be found between plau31b111ty and technlcal practlcallty of assumpt10ns==£e$

Most global models that describe human interactions with the Earth system and we

found—in—the literaturereviewed here are based on economic assumptlons about the
behavior of humans and societies—and. They are often only linked in a one-way
fashion to the biogeophysical part of the Earth system.—It

Including closed feedback loops between social and environmental dynamics into
ESMs is thus—an—engoingstill a big challenge.

To advance this endeavor, more work is needed to inelude—eco-evelutienary
dynam&eai—&n%e#aet&ens—synthe31ze modeling approaches that can represent various

aspects of human secietieswith—ether Earth-system—componrents—inte—behavior in
the context of global medels—modeling, even if the need for generalizations and

formalization of human behavior is sometimes met with skepticism or rejection by
social scientists who emphasize the context dependence and idiosyncrasy of human
behavior.




Of course, models inreludingthat use simple theories of human decision making and

see&al—dynam&es—ean—netbehav1or to describe human-environment interactions in
the global context cannot claim to deseribecapture all real-world social

1nteract10ns —HeweveF——%hey—eeHid—iﬂeiade—ﬁeﬁmai—deseFipt&ens—eﬁ—&dea&&zed

If models considered the heterogeneity of agents in all relevant aspects, they
would have to be much more complex than all models that have been developed to
date.

But in many real-life settings even simple conceptual models of social
mechanisms are good descriptions of key features of the dynamics at work, as we
have hlghllghted throughout thlS review.

Including such formal descriptions of idealized social mechanisms can therefore

be a good starting point for understanding feedbacks in the Earth system and
their qualitative consequences so far not considered explicitly in global
models.

%t

\begin{table*}[t]

\caption{Collection of questions that may guide the choice of modeling
approaches and assumptions.}

\label{tab:summary}

\begin{tabular}{p{4cm}p{28emi2cm}}

\tophline
Category & Important modeling questions \\

\middlehline
Modeling individual decision making and behavior
& Which goals do agents pursue?

Which constraints do they have?

Which decision rules are—useddo agents use?

How do agents acquire information and beliefs about their environment?
\\

Modeling interactions between agents &
Do agents interact in a competitive environment or are interactions primarily
governed by social norms?

What do agents assume about each other's rationality?
Do agents choose actions strategically or adaptively?
How are agents influenced by others regarding their beliefs and norms?

Which structure do the interactions have and how does the structure evolve?
\\

Aggregating behavior and modeling dynamics at the system level &



| Are—agent decisions aggregated through political institutions (e.g., voting
procedures) or markets?

According to which criteria do policy makers decide and which controls do they
have?

Is the heterogeneity of agent characteristics and interactions important?

Which macro-level measures are dynamic and which can be assumed to be fixed?
\\

\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\end{table*}

\conclusions[Summary and Conclusion]
\label{sec:conclusion}

In this review, we discussed common modeling techniques and theories that could
be potentially used to include human decision making and the resulting

| respensesfeedbacks with environmental dynamics into Earth system models— (ESMs).
Although we could only discuss basic aspects of the presented modeling
techniques, it is apparent that modelers who want to include humans into Earth
system—modelsESMs are confronted with crucial choices of which assumptions to
make about human behavior and which appropriate techniques to use.

As Table~\ref{tab:summary} summarizes, we discussed techniques and modeling
assumptions in three different categorles First, the medeling—ef-individual
decision makingmodeling focuses on decision processes and the resulting behavior
of single agents and therefore has to make assumptions about hew—the
determinants of choices between possible behaviorcomes—about-behavioral
options. Second, medelsmodel of interactions eftwe—er severalbetween agents
capture how de0131ons depend upon each other and how agents influence are
influencedeach other regarding different decision criteria. Third, modeling
techniques that aggregate individualagent behavior and interactions to a system
level description—Fhe—thirdecategory—3is are crucial for being able to model
human behavior at scales relevant for the Earth system butand requires key
elementsingredients of the first and the second categories. To include human
decision making into ESMs, techniques and assumptions from these three
categories have to be combined. Finally, we discussed important questions
regarding the choice of modeling approaches and their interrelation with

| assumptions about human behavior and decision making, e.g-., regarding the level
of description, the relevant time scales but also difficulties that can arise
due to human reflexivity and the amalgamation of normative and descriptive
assumptions in models.

FheMost formal models used—in—various—diseiplines—+to-that describe human
behavior in global environmental contexts have—abiastewardare based on

economlc approaches ThlS is not surprlslng because mes%—eﬁ—%he—medei&ng

eeeeem&e—app#eaehes—and—many human 1nteract10ns w1th the env1ronment are drlven

by economic forces-~ and economics has a stronger focus on formal models than
other social sciences. However, we think that it is necessary to advance
research that alsebuilds on insights from other social sciences and applies
social modeling and simulation in the context of global environmental change.
One important aim of such research would be to provide a theoretical basis for




including processes of social evolution and institutional development into Earth
system—medels-ESMs. If we want to explore the possible futures of the Earth, we
need to get a better understanding of how the long-term dynamics of the Earth

system in—the-Anthropecene—is shaped by these cultural and social processes.

A new generation of Earth—systemmedelsESMs can build on various approaches,
some of which we reviewed here, to include human decision making and behavior
explicitly into Earth system dynamics. However, ambitious endeavors like this
have to take into account that modeling of human behavior and social processes
is a contested topic and the assumptions and corresponding modeling techniques
need to be chosen carefully being aware of their strengths and limitations for
the specific modeling purpose.
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