
Responses to referee comments on the manuscript by Müller-Hansen et al.

Referee Comment #1

We thank the referee for his valuable comments. Although we do not agree with all the points, we 
think that they raise important issues that could be clarified in the paper. Furthermore, a productive 
ongoing discussion about these issues could help in aligning forces for the important goal of gaining
a more holistic understanding of global human-nature interactions by developing Earth system 
models that include important social and economic dynamics. In the following, we respond point by
point to the comments of the referee.

This paper provides an overview of a broad range of representations of human behaviours 
that might be considered when attempting to ‘people’ Earth System Models (ESMs). I found 
the paper to be well researched and written on the whole and if the aim was to inform the 
reader as to the range of options on offer in this space it did a relatively good job (with one 
or two notable exceptions which I detail below). However, the title suggests something more,
with the stated aim to also offer some guidance over the way forward in this space. This is 
very much needed given the likely expansion of research this area will experience. 
Unfortunately, I found this aspect of the paper a
little disappointing given it was rather passive, reserved or limited in any guidance it 
offered. This was not helped by the structure of the paper which separated out the extensive 
review of potential methods and the critique of these methods which was largely relegated to
the Discussion. If the authors really want to be faithful to their title and stated aims I would 
suggest some editorial changes. I would start by offering a strong steer on the guiding 
principles of model framework selection in this space. I would then combine the description 
of the options with a more hard-hitting critique of the various options assessed against your 
guiding principles. My reading of the current
paper suggest the author team would be more than able to achieve this and the product 
would be far more valuable than the largely descriptive review currently tabled. The 
alternative would be to dilute the title and aims to being those of a review of options as I 
believe this is what is currently being offered. I would like to encourage the former but 
providing the title and aims were adjusted the paper could go forward without this reediting.
I’ve ticked the ’major revisions’ box but only because I couldn’t simultaneously tick the 
’minor revisions’ box. This depends on which way you chose to jump.

We appreciate the critique of the referee and agree that this work did not deliver on the promise of a
general guideline for building ESMs with explicit human decision and behavior components. This is
for a specific reason: Such a guideline depends a lot on the concrete research questions that a 
modeler wants to tackle with the model. Therefore we argue that rather than a concrete guideline, 
some general principles have to be considered by the modelers and they have to be aware of the 
various possibilities from the toolbox that the literature provides and we aim to give an overview 
over. This approach is much in line what researchers from sociology have termed theory of the 
middle range (Merton, 1957). This approach does not aim at an all-encompassing theory of whole 
societies, but rather argues for using elements of different theories tailored to a specific problem. 
The selection of assumptions underlying the modeling approach has to be on the ground of good 
reasons and empirical evidence. In case of doubt, the validity of assumptions have to be tested for 
the specific context. Furthermore, we note that an extensive critique of all the different methods 
would be beyond the scope of a single paper. Where we were aware of such critiques, we provided 
some references for the readers. However, due to the huge variety of methods, there may be relevant
strands of critique which we were not aware of and therefore did not include into the paper.
In line with the above considerations, we will change the title and make the aim of the paper clearer 
in the introduction to avoid misunderstandings. Furthermore, we will make the general point more 



prominent, that there is not one method and theory that will fit all relevant research questions, 
which are interesting in the context of global human-nature interactions. Therefore the approach 
most appropriate for the question at hand has to be selected taking into account various general 
considerations as listed in the Discussion part of the paper.

Specific points (in no particular order)
1. I would like to see a full discussion over when ESM peopling might be useful, when it 
might not and when it might be actively discouraged. Given the huge uncertainties this 
activity can/will open up researchers need dissuading from the illegitimate and unnecessary 
hybridisation of social and natural systems models. This paper could offer some guiding 
principles. For example, although the chosen example of land surface/use parameterisation 
suggest a useful role for microscopic representations of people, ultimately we are only 
interested in the structural social dynamics when exploring Earth (i.e. global) scale 
feedbacks, even if these dynamics arise from the act of an individual. Therefore, at the ESM 
scale you would have to have a really powerful justification of a highly disaggregated 
representation of people and there should always be a presumption in favour of the 
macroscopic representation. The fact that ESMs are spatially disaggregated and therefore 
we should naturally entertain representations of people at this scale is not sufficient in my 
view.

We agree with the referee that a discussion about when a “peopling” of ESMs is useful should be 
added to the paper. We will add some corresponding paragraphs to the paper discussing that this is 
only relevant if there is a closed loop of interactions with the outcome of relevant decision 
processes and behaviors changing over the relevant time scales. However, we think that a full-
blown discussion of this question could be well suited for a follow-up paper as suggested by the 
editor.
Regarding the example of the macro- vs. micro-description of a human component in ESMs, we 
want to note that we do not argue that human behavior always has to be included at a micro-level 
and on the basis of single actors. But, as we are arguing in the paper, a complete picture of humans 
in ESMs should be well founded in micro-models of decision making, behavior and interaction. 
Especially when large societal and institutional changes are considered, models purely based on 
observed macro-dynamics might not be able to rightly capture these changes (this is referred to as 
the Lucas-critique in the economic literature). Of course, here again, it depends on the research 
questions whether a macro model of societal dynamics suffices (assuming that major societal 
dynamics will not change fundamentally over time) or if a more micro-founded model is needed.

2. The opening text made a big play of the distinction between ‘explicit decisions’ and
‘implicit behaviours’. Close inspection suggests this is a largely arbitrary distinction and
some critique of this divide would be a useful addition. Is me typing this response an
explicit decision or an implicit behaviour? I’m not sure.

If the question is based on the reading of our definition that decisions are only explicit and there are 
no implicit processes involved, then we regret the misunderstanding. We reformulated the 
corresponding paragraph to make it clear that decision-making can be influenced by implicit, 
unconscious and intuitive processes. In this understanding, the result of a decision process is usually
a certain type of behavior.
However, not every behavior has to be the outcome of a decision process, and this is why we have 
to insist that the distinction between decision making and behavior is analytically useful and not 
arbitrary. Although in the end, only the behavior of humans may be observable, many behaviors are 
highly influenced by semantic considerations as well as inscribed social and individual norms and 
values. For complex cultural settings, it is therefore often not helpful to reduce humans to a reflex-
response scheme as in behaviorist approaches.



The only alternative to modeling behavior without explicitly using theory about the decision 
processes would be to model behavior statistically or at the basis of physiological processes in the 
brain. Concerning the latter, the science is still in its infancy and it is at least questionable whether 
such a description is possible at all. Regarding statistical approaches, as explained in the previous 
point, when looking at strong social changes, statistical correlations might break down calling for 
the explicit modeling of decision processes.
Apart from these more pragmatic considerations, there is a philosophical argument to be made: 
From introspection the distinction between behavior as an event of the physical world (i.e., the 
body) and the decision-making process as at least being influenced by the mind should be clear to 
every human making conscious decisions. How these different processes interact has been the 
subject of the age-old debate called the mind-body problem in philosophy. Solving this problem by 
simply denying the existence of the mind altogether leads to even more serious problems: If we 
would assume that me typing this response is only a behavioral reaction to a very complex stimulus 
without any involvement of semantic processing, why should anybody of us care about the semantic
content of want we are writing here anyways?

3. Surely the most important distinction in normative framing involving any ESM is whether 
they adhere to the current socio-economic norm or they represent transitional/ 
transformative dynamics. Everything else is simply detail. This is not developed at all and 
yet practically all applications of peopled ESMs will revolve around exploring and 
contrasting alternatives to business-as-usual. This review is very constrained in this regard, 
and hardly mentions alternative (and potentially indispensable) economic framings required
when investigating, for example, implementation of the Paris Agreement.

We are well aware of the debate between the economic mainstream dominated by neoclassical 
theory and heterodox schools of economic thought and the different economic framings they 
involve (see publications of the lead author). To come up with new models of the economy that 
build on the work done in heterodox branches such as ecological and institutional economics is 
actually one of the main challenges when building social dynamics into ESMs. Thus, we agree that 
such models have to go beyond the currently dominant socio-economic framing. However, we tried 
to avoid an extensive discussion of this debate in the paper. The main goal of this paper is to 
compare different approaches to modeling human decision making that could be potentially useful 
to Earth system modeling. Therefore, the paper only considers those economic approaches that use 
mathematical modeling. Because many of the heterodox economic schools are not much engaged 
with modeling or event reject mathematical modeling as a valid tool to advance knowledge about 
social processes, this collection, unfortunately, is much biased towards mainstream economic 
thinking. If we omitted important and formalized economic modeling approaches in the literature, 
this is only due to our limited knowledge.

4. Other than discussion of flow consistent approaches, this review makes little or no 
mention of (bio)physical frameworks as covered in say ecological economics. I appreciate 
they are not mainstream but I think this is a critical omission because perhaps the most 
consistent scheme for peopling of ESMs is where both the Earth and social systems are both 
on a sympathetic ‘(bio)physical’ footing. This could be nicely contrasted against the fact 
that the standard macroeconomic framings are flow/physically inconsistent. Perhaps it’s 
time for the natural sciences to call the macroeconomic emperor on their lack of physically 
defensible clothing and peopling ESMs appears to be a great place to start. ESD has been 
central to getting these alternatives into the literature and it is anomalous that they are not 
considered here.

A discussion of purely biophysical models is neither the goal nor the focus of our article. We agree 
that a biophysical description of human activities is crucial for linking classical ESMs and social 



science approaches and that physically consistent stock-flow or similar models should be an 
essential part of ESMs with explicit human dynamics. Therefore, we will improve our account of 
physical stock-flow consistent modeling and add references to the important work of Nicholas 
Georgescu-Roegen in this area. We also agree that models of the social metabolism have to take 
thermodynamic limits into account. However, we doubt that thermodynamic laws alone can account
for the complex dynamics of social-metabolic processes as some recent work of the referee and 
others in this special issue suggest (Garrett, 2014; Garrett, 2015; Jarvis et al., 2016).

5. Much of the problem space that peopled ESMs would explore would be around 
precautionary Command and Control type policy such as that offered in the Paris 
Agreement. Here a formal control representation of ‘people’ is much more appropriate given
it is about compliance or non-compliance with a stated environmental objective such as 
keeping below 2 K. I would like to see some discussion of this.

Actually, a lot of economic reasoning for environmental policy recommendations builds strongly on
the control perspective. But as the failure of some of these policies shows, it is not only important to
have the formal framework right but also the micro-model of human behavior and decision making 
to judge how people will react to changes in institutional frameworks. For example, in some 
settings monetary incentives for environmental behavior might be counterproductive because they 
can lead to crowding out effects when moral rules are replaced by economic considerations. 
Therefore, a successful policy assessment needs to select correct micro-models to identify the right 
approaches for adjustments that influences individual behavior in the right direction. This applies 
equally to command and control type policies as to other (e.g., market-based) solutions. As 
suggested by the referee we will add these considerations to the paper.

Referee Comment #2

This paper provides a very comprehensive review of the application of human behavior
in earth system models. I was impressed with the coverage and extensive literature
review. The paper is well written and will make a valuable contribution to the field. My
main concern, which perhaps is unavoidable for such a review, is that the paper is very
long, bordering on overwhelming. There are parts that are redundant such as page six,
which takes three paragraphs to restate a Table. I suggest the authors search for other
places to streamline the paper. The table in the Discussion is an excellent summary. I
would recommend publication following minor revision.

We thank the referee for the positive response. We will revise the paper, shorten the suggested parts,
and aim at an overall reduction of the text.



List of changes in the manuscript

Important note: The co-author Rainer Hegselmann withdraw his authorship because he was not able
to take part in the revision process and held that his contribution to the paper would not justify a co-
authorship.

We included all the changes as promised in the above response to the reviewers comments. These 
include:

• We changed the title.
• We changed the introduction, discussion and abstract to make the goals of the paper clearer.
• We included a part in the introduction explaining that there is no single approach/technique 

usable for all relevant questions regarding human-nature interactions on a global scale and 
that researchers have to choose the techniques to model decision making and behavior 
appropriate for the specific context.

• We added some brief discussion of the question when modeling of human decision making 
explicitly is useful.

• We extended the discussion of models from the field of ecological economics.
• We made it clear in the introduction that a micro-based approach to human behavior is 

important for exploring the impact of environmental policies (even from a control-theory 
perspective).

• We shortened the paper as much as possible, given the requests by the first referee to extend 
some parts of the introduction, discussion and some subsections of the main parts.

Furthermore, we made the following changes:
• We moved the discussion of the methodological question how to model social systems 

(methodological individualism vs. structuralist approaches) from the introduction to the 
second section because it fits there much better.

• We corrected typos in the former version of the paper, changed wording that caused 
misunderstanding with some readers of the discussion paper and updated the references. A 
detailed comparison of the original submission and the resubmitted version of the paper can 
be found below.
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\maketitle 

\begin{abstract} 
In the AnthropoceneToday, humans have a critical impact on the Earth system and 
vice versa, which can generate complex feedback processes between social and 
ecological dynamics. Integrating human behavior into formal Earth System Models 
(ESMs), however, requires crucial modeling assumptions about actors and their 
goals, behavioral options and decision rules, as well as modeling decisions 
regarding human social interactions and the aggregation of individuals' 
behavior. In this tutorial Here, we review, we compare existing modeling 
approaches and techniques from differentvarious disciplines and schools of 
thought dealing with human behavior at variousdifferent levels of decision 
making. Providing an overview over social-scientific modeling approaches, weWe 
demonstrate modelers' often vast degrees of freedom but also seek to make 
modelers aware of the often crucial consequences of seemingly innocent modeling 
assumptions. 

After discussing which socio-economicsocioeconomic units are potentially 
important for ESMs, we reviewcompare models of individual decision making that 
correspond to alternative behavioral theories and that make diverse modeling 
assumptions about individuals' preferences, beliefs, decision rules, and 
foresight. We discussreview approaches to model social interaction, covering 
game theoretic frameworks, models of social influence and network models. 
Finally, we elaboratediscuss approaches to studystudying how the behavior of 
individuals, groups and organizations can aggregate to complex collective 
phenomena, discussing agent-based, statistical and representative-agent modeling 
and economic macro-dynamics. We illustrate the main ingredients of modeling 
techniques with examples from land-use dynamics as one of the main drivers of 
environmental change bridging local to global scales. 
\end{abstract} 

% 
================================================================================ 
% 
================================================================================ 

\introduction  %% \introduction[modified heading if necessary] 

Even though Earth system models (ESMs) are used to study and project the human 
impactimpacts on the complex interdependencies between various compartments of 
the Earth, humans are not represented explicitly in these models. ESMs consider 
the human influence  usually in terms of scenarios, comparing the impact of 
alternative narratives about the future developmentdevelopments of key socio-
economicsocioeconomic characteristics of human societies.. For instance, the 
IPCC scenario approachprocess uses economic integrated assessment models to 
compute plausible future emission pathways forfrom energy and land use (RCPs, 
SSPs).for different scenarios of climate mitigation. These emission projections 
are thendetermine the radiative forcing used as external input in Earth system 
modelsESMs to study changes in climate and the consequentits natural impacts 
\citep{Moss2010, IPCC2014b}. These natural impactsThe latter can, however, have 
socioeconomic consequences that may be translatedfed back to socio-economic 
impacts and fed again into the scenario process, leading to an iterative 
process. However, the dynamic and potentially complex interplay of dynamics of 



the natural Earth system and human social, cultural and economic responses to 
them are not captured. 

InThe concept of the proclaimed Anthropocene epoch, human societies are implies 
that humans have become a dominant geological force interfering with biophysical 
Earth system processes at all relevant scales \citep{Crutzen2002, Maslin2015}. 
However,But a changing environmental conditionsenvironment also alteralters 
human behavior. \citep{Palmer2014}. For example, climate change will affect how 
humans use their land use and consume energy consumption. Likewise, perceived 
environmental risks modify consumption and mobility patterns. Therefore, with 
increasing human impact on the Earth system, feedbacks between shifts in the 
biophysical Earth system and human responses will gain importance 
\citep{Palmer2014, Verburg2016, Donges2017}. To get an overview over possible 
feedback mechanisms, \citeauthor{Dongesinprep} (in prep. for this special issue) 
identify interactions between the social, metabolic and environmental spheres of 
the Earth system including humans.Donges2017, Donges2017a, Thornton2017}. 
\citet{Dongesinprep} provide a classification of these feedbacks in this Special 
Issue.  

Studying feedback loops between human behavior and the Earth system, projecting 
its consequences, and developing interventions to manage human impact on the 
Earth system requires a suitable dynamic representation of human behavior and 
decision making. 
In fact, even a very accurate statistical description of human behavior may be 
insufficient for several reasons. First, in a closed loop, humans constantly 
respond to changes in the Earth system, facing novel environmental conditions 
and decision problems. Hence, their response cannot be predicted with a 
statistical model. Second, for a correct assessment of different policy options 
(e.g., command and control policy vs. market-based solutions) a sound 
theoretical and empirical account of the principles underlying decision making 
in the relevant context is needed, because they guide the development of 
intervention programs, such as incentives schemes, social institutions, and 
nudges \citep{Ostrom1990, Schelling1978, Thaler2009}. 
A statistical model would not help decision makers identifying handles to 
influence human behavior. 

Incorporating human behavior in ESMs is a complex endeavor. Modeling the 
interaction between various nonlinear components of the Earth system is already 
a huge challenge, even thoughchallenging. In contrast to physical laws that 
traditional ESMs rely on precise natural laws. In order to capture feedbacks 
between biophysical and social dynamics, it is necessary to explicitly model 
human decision making and behavior, which can be very heterogeneous. 
Accordingly, scientificuse as a basis, there is no single theory of human 
behavior that can be taken as a general law \citep{Rosenberg2012}. The 
understanding of the determinants of individuals' behavior as well as its 
collective consequenceshuman behavior is still limited.  
Furthermore, human action is influenced by its determinants often being 
contingent and socially formed by norms and institutions. This allows a view on 
social systems as socially constructed realities, which is in stark contrast to 
the positivist epistemology of one objective reality prevalent in the natural 
sciences.  These epistemological questions may cause misunderstandings between 
natural and social scientists and show to the fundamental difference between 
rules in social systems and natural laws. 
In the past decades, technological advances and the Internet have brought about 
unprecedented amounts of data about individual behavior and  have led to a rapid 
growth in computational power. With these advances, new models that include 
human decision making and behavior could move beyond current approaches and 
describe for example changes in social norms and preferences, consumer behavior 
and/or social structure besides purely economic relationships. Contrary to 
conventional approaches, such coupled models would allow exploring possible 
complex nonlinear dynamics in the Earth system and reveal potential social-
environmental tipping points and regime shifts \citep{Filatova2016}. 



Here, we provide a guide for Earth system modelers to existing modeling 
approaches describing human behavior and decision making. 
Following \citet{Weber1978}, weIn fact, past attempts to develop grand theories 
have been criticized for being too remote from reality and, as a consequence, 
hard if not impossible to test empirically \citep{Boudon1981, Hedstrom2009, 
Hedstrom2010, Merton1957}. 
Accordingly, many social scientists favor a so-called ``middle-range approach'', 
trying to tailor theoretical models to specific contexts rather than developing 
overarching, general theories. This acknowledges, for instance, that individuals 
act in some contexts egoistically and based on rational calculus, while in other 
contexts they may act altruistically and according to simple heuristics. The 
principles that determine human decisions depend on, e.g., whether the decision 
maker has faced the decision problem before, the complexity of the decision, the 
amount of time and information available to the individual, and whether the 
decision affects others or is framed in a specific social situation. Likewise, 
different actor types might apply different decision principles. Furthermore, 
the decision determinants of agents can be affected by others through social 
interactions or aggregate outcomes of collective processes. 

Here, we give an overview over existing approaches to model human behavior and 
decision making to provide readers with a toolbox of model ingredients. Rather 
than promoting one theory and dismissing another, we list decisions that 
modelers face when modeling humans, point to important modeling options, and 
discuss methodological principles that help developing the best model for a 
given purpose. 

We define decision making as the cognitive process of deliberately choosing 
consciously between alternative actions, which may involve analytic as well as 
intuitive modes of thinking. Actions are intentional and subjectively meaningful 
activities of an agent. Behavior, in contrast, is a broader concept that also 
includes unconscious and reflexiveautomatic activities, such as habits and 
reflexes. The outcome of a decision is therefore a certain type of behavior, 
which might be explained by a decision-making theory. 

In Earth system modelsESMs, only those human decisions and responsesbehaviors 
are relevant that have considerable impactsimpact on the Earth system. They 
result from, i.e. primarily behavior towards the environment of a large number 
of individuals or decisions amplified decisions, e.g. through the social 
position of the decision-maker or technology. Therefore, this paper also 
covercovers techniques to model individuals' interactions between agents and to 
aggregate individual's behavior and interactions to a macro-level. 
On the micro-level, relevant decisions include for instance reproduction, 
consumption and production of energy- and material-intensive products, place of 
living and land use. These decisions lead to aggregate and long-term dynamics in 
populationof populations, production and consumption patterns and migration 
between countries as well as urban and rural areas. 

There are diverse social-science theories explaining human behavior and decision 
making in environmental and ecological contexts, for example in environmental 
economics, sociology and psychology. In this paper, we focus on mathematical and 
computational models of human decision making and behavior. Here, we understand 
the terms `modeling approach' and `modeling technique' as a class of 
mathematical or computational structures that can be interpreted as a simplified 
representation of physical objects and actors or collections thereof, events and 
processes, causal relations or information flows. Modeling approaches draw on 
theories of human behavior that make -- often contested -- assumptions about the 
structure of decision processes. Furthermore, modeling approaches can have 
different purposes: The objective of descriptive models is to explore empirical 
questions (e.g., which components and processes can explain the system's 
dynamics), while normative models aim at answering ethical questions (e.g., 
which policy we should choose to reach a certain goal). 



Recent reviews focus on existing modeling approaches and theories that are 
applied in the context of environmental management and change: For example, 
\citet{Verburg2016} assess existing modeling approaches and identify challenges 
for improving these models in order to better understand Anthropocene dynamics. 
\citet{An2012}, \citet{Meyfroidt2013} and \citet{Schlueter2017} focus on 
cognitive and behavioral theories in ecological contexts, providing an overview 
for developers of agent-based land-use and social-ecological models. 
\citet{Cooke2009} and \citet{Balint2017} review different micro- and macro-
approaches with applications to agro-ecology and the economics of climate 
change, respectively.  
The present paper complements this literature by reviewing modeling approaches 
of (1) individual agent behavior, (2) agent interactions and (3) aggregation of 
individual behaviors with the aim to support the integration of human decision 
making and behavior into Earth system models. The combination of these three 
different categories is crucial to describe human behavior at scales relevant 
for Earth system dynamics. Furthermore, this review highlights strengths and 
limitations of different approaches by connecting the modeling techniques and 
their underlying assumptions about human behavior and discusses criteria to 
guide modeling choices. 

Our survey of techniques has a bias towards economic modeling techniques for two 
simple reasons: First, economics is the social science discipline that has the 
longest and strongest tradition in formal modeling of human decision making. 
Second, economics focuses on the study of production and consumption as well as 
the allocation of scarce resources. In most industrialized countries today, a 
major part of human interactions with the environment is mediated through 
markets, central in economic analyses. 
This review aims to go beyond the often narrow framing of economic approaches 
while at the same time not ignoring important economic insights. For instance, 
consumption and production decisions do not only follow purely economic 
calculations but are deeply influenced for instance by behavioral patterns, 
traditions and social norms \citep{TheWorldBank2015}. 

Because we discuss different approaches to model decision making and behavior 
from various disciplinary or sub-disciplinary scientific fields, there are 
considerable differences in terminology that make a harmonized presentation of 
the material challenging. For example, the same terms are used to describe quite 
separate varieties of an approach in different fields and different terms from 
separate fields may refer to very similar approaches. We adopt a terminology 
that aims to a better interdisciplinary understanding and point out different 
understandings of contested terms where we are aware of them. 

This paper works with land-use change as a guiding and illustrative example. 
Land use and land-cover change is the second largest source of greenhouse gases 
-- besides the burning of fossil fuels -- and thus contributes strongly to 
climate change. Behavioral responses related to land use will play a crucial 
role for successful mitigation and adaptation to projected climatic changes, 
challenging modelers to represent decision making in models of land-use change 
\citep{Brown2017}. The complexity of land-use change provides various examples 
how collective and individual decision making interacts with the environment 
across spatial scales and organizational levels. Land-use models consider 
environmental conditions as important factors in decision-making processes, 
giving rise to feedbacks between environmental and socioeconomic dynamics 
\citep{Brown2016}. 
However, this paper does not provide an exhaustive overview over existing land-
use models. For this purpose, the reader is referred to the various reviews in 
the literature \citep[e.g.,][]{Baker1989, Brown2004, Michetti2012, 
Groeneveld2017}. 

The remainder of the paper is organized as follows. In Section~\ref{sec:levels}, 
we give an overview over different levels of description of social systems and 
the socioeconomic units or agents associated with them. Sections 
\ref{sec:individual_behavior}--\ref{sec:aggregation} form the main part of the 



paper, presenting different modeling techniques and their underlying assumptions 
about human decision making and behavior.  
First, Section \ref{sec:individual_behavior} introduces approaches to model 
individual decisions and behavior from rational choice to learning theories. 
Many of these techniques can be used to also model higher-level social entities. 
Second, Section \ref{sec:interaction} puts the focus on techniques for modeling 
interactions between agents. Strategic interactions and social influence are 
significant determinants of individual decisions and therefore important for 
long-term changes in collective behavior, i.e. the group outcome of mutually 
dependent individual decisions. 
Third, Section \ref{sec:aggregation} reviews different aggregation techniques 
that allow describing human activities at the level of social collectives or 
systems. These approaches allow making simplifications so that theories about 
individual decision making can be scaled up. 
Figure~\ref{fig:assumptions} summarizes these main parts of the paper, the 
corresponding modeling approaches and important considerations for model 
selection, which we discuss in detail in Section~\ref{sec:discussion}. 
The discussion also reflects on important distinctions between models of natural 
and social systems that are crucial to consider when including human behavior 
into ESMs. The paper concludes with remarks on the remaining challenges for this 
endeavor. 
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\section{The challenge: Modeling decision making and behavior across different 
levels of organization} 
\label{sec:levels} 

Decision making and behavior of humans can be described and analyzed at 
different levels of social systems. While decisions are made and behavior is 
performed by individual humans, it is often useful to not represent individual 
humans in a model but to treat social collectives, such as households, 
neighborhoods, cities, political and economic organizations, and states, as 
decision makers or agents. 

Figure~\ref{fig:levels} shows a hierarchy of socioeconomic units, i.e., groups, 
organizations and structures of individuals that play a crucial role in human 
interactions with the Earth system. We consider a broad scheme of levels ranging 
from the micro-level across intermediate levels to the global level. This 
hierarchy of socioeconomic units is not only distinguishable by level of 
complexity but also by the different spatial scales involved. However, there is 
no one-to-one correspondence: For instance, some individuals have impacts at the 
global level, while many transnational organizations operate at specific local 
levels. Especially in the context of human-environment interactions in ESMs, 
scaling and spatial extent are therefore important issues \citep{Gibson2000}. 
Furthermore, we note that the strict separation between a micro- and macro-level 
may result in treating very different phenomena alike. For instance, many 
economic models describe both small businesses and transnational corporations as 
actors on the micro-level and model their decision processes with the same set 
of assumptions, even though they operate very differently. 
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\caption{Overview of modeling categories, corresponding modeling approaches and 
techniques discussed in this paper and important considerations for model choice 
and assumptions about human behavior and decision making.} 
\label{fig:assumptions} 
\end{figure*} 



One major challenge for modeling humans in the Earth system is therefore to 
bridge the diverse levels between individuals and the global scale and integrate 
different levels of social organization and spatial as well as temporal scales. 

The relation between individual agents and social collectives and structures has 
been the reason forsubject of considerable debate in the social sciences: In the 
social-scientific tradition of methodological individualism\footnote{We note, 
though, that there are different accounts of methodological individualism and it 
often remains unclear to what extend structural and interactionist elements can 
be part of an explanation,  \citep[see \citet{][]{Hodgson2007, Udehn2002}.}, the 
analysis aims to explain social macro-phenomena, e.g., phenomena at the level of 
social collectives such as groups, organizations, andor societies, with theories 
of individual behavior \citep{Coleman1994, Udehn2002, Homans1951}. . 
This approach deviates from structuralist traditions, which claim that 
collective phenomena are of their own kind and can, thus, not be traced back to 
the behavior of individuals \citep{Durkheim2014}. Positions between these two 
extremes emphasize the interdependency of individual agents and social 
structure. Structure, which is understood as aan emerging phenomenon emerging 
from the interactions between agents andthat stabilizes particular behaviors 
\citep{Giddens1984}. Coleman1994, Homans1951}. 
While it very much depends on the purpose of the given modeling exercise whether 
the model should represent individuals or collectives (e.g. households, 
neighborhoods, cities, countries),, we mainly focus here on athe research 
tradition that acknowledges that complex and unexpected collective phenomena can 
arise from the interplay of individual behavior. 

There are diverse social science theories explaining human behavior and decision 
making in environmental and ecological contexts, for example in the fields In 
Table~\ref{tab:levels}, we provide an overview of environmental and ecological 
economics \citep{Perman2003, VandenBergh2001}, environmental sociology and 
psychology \citep{Pellow2013}, and many others. 
In this paper, we focus on mathematical and computational models of human 
decision making and behavior. Here, we understand the terms `modeling approach' 
and `modeling technique' as a class of mathematical or computational structures 
that can be interpreted as a simplified representation of physical objects and 
actors or collections thereof, events and processes, causal relations or 
information flows. Modeling approaches may differ for instance according to (i) 
variables and parameters that they use to describe the entities of the modeled 
system, (ii) the logical or functional relationships between modeled entities, 
(iii) the representation of space and time, if any, and (iv) the kinds of 
mathematical and computational solution techniques applied to find a solution of 
the model. The modeling approaches that we review often draw upon theories of 
human behavior that make -- often contested -- assumptions about the structure 
of decision processes and the resulting behavior. Furthermore, we want to point 
out that models of social systems can have socioeconomic units at different 
purposes, which islevels that are potentially important for the choice of 
modeling approach. The purpose can be either descriptive (helping to answer 
empirical questions, e.g., which components can explain the system's dynamics) 
or normative (helping to answer ethical questions, e.g., how should we act or 
which policy should we choose to reach a certain goal).  

Recent reviews focus on existing modeling approaches and theories that are 
applied in the context of environmental change: For example, \citet{Verburg2016} 
assess existing modeling approaches and identify challenges for improving these 
models in order to better understand the Anthropocene. \citet{Meyfroidt2013} and 
\citet{Schlueter2017} focus on cognitive and behavioral theories in ecological 
contexts, providing an overview for developers of agent-based land-use and 
social-ecological models. \citet{Cooke2009} also classify micro- and macro-
approaches and review their applications in agro-ecology. 
The present paper complements this literature, reviewing modeling approaches of 
individual agent behavior, agent interactions and aggregation. The combination 
of these three different categories is crucial to describe human behavior at a 
level relevant for ESMs. Furthermore, this review highlight connections between 



modeling techniques and their underlying assumptions about human behavior and 
discuss criteria to guide modeling choices. The presented composition and 
classification of approaches into categories was guided by an iterative process 
that aims at an interdisciplinary understanding. 

This paper works with land-use change as a guiding and illustrative example. 
Land use and land-cover change is the second largest source of greenhouse gases 
-- besides the burning of fossil fuels -- and thus contributes strongly to 
climate change, one of the most challenging environmental problems of our time. 
Behavioral responses in the land-based sector will play a crucial role for 
successful mitigation and adaptation to projected climatic changes, challenging 
modelers to represent decision making in models of land-use change 
\citep{Brown2017}. The complexity of land-use change provides various examples 
how collective and individual decision making interacts with the environment 
across spatial scales and organizational levels. Land-use models consider 
environmental conditions as important factors in decision-making processes, 
giving rise to feedbacks between environmental and socio-economic dynamics 
\citep{Brown2016}. Furthermore, there are first attempts to integrate diverse 
human decision making explicitly into global models by the use of agent 
functional types in the context of land-use science \citep{Arneth2014}. 
However, this paper does not provide an exhaustive overview over existing land-
use models. For this purpose, the reader is referred to the various reviews in 
the literature \citep[e.g.,][]{Baker1989, Brown2004, Michetti2012, 
Groeneveld2017}. 

The rest of the paper is organized as follows. In Section~\ref{sec:levels}, we 
give an overview over different levels of description of social systems, the 
socio-economic units or agents associated with them and the research communities 
that study them. Sections \ref{sec:individual_behavior}--\ref{sec:aggregation} 
form the main part of the paper. There, we review the different modeling 
techniques and their underlying assumptions about human decision making and 
behavior in detail, following a simple tripartition: 
First, Section \ref{sec:individual_behavior} introduces approaches to model 
individual decisions and behavior. Second, Section \ref{sec:interaction} puts 
the focus on techniques for modeling interactions between agents. Third, Section 
\ref{sec:aggregation} reviews different aggregation techniques that allow 
describing human activities at the system level. Examples from the land-use 
context are used throughout these sections to illustrate the modeling techniques 
in a relevant context. Section~\ref{sec:discussion} provides a discussion of 
criteria and questions for guiding model selection and important distinctions 
between models of natural and social systems. The paper concludes with remarks 
on the many remaining challenges for incorporating human behavior into Earth 
system models. 
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\section{The challenge: Modeling decision making and behavior across different 
levels of organization} 
\label{sec:levels} 

Decision making and behavior of humans can be described and analyzed at 
different levels of social systems. While decisions are made and behavior is 
performed by individual humans, it is often useful to not represent individual 
humans in a model but to treat social collectives, such as households, 
neighborhoods, cities, organizations and states, as decision makers or agents. 
However, we argue below that independent of the level of analysis the following 
main questions are useful to guide the modeling choices regarding decision 
making of agents: Which goals do individual agents follow? Which constraints 
restrict the pursuit of these goals? And finally, according to which decision 
rules do the agents choose an action? 



Furthermore, when thinking about how to integrate human decision making into 
Earth system models, we are generally interested in the outcome of aggregate and 
collective behavior, i.e. the group outcome of mutually interdependent 
individual decisions, possibly leading to a joint decision. Therefore, a 
considerable part of this paper will be devoted to providing guidelines to 
modeling approaches that are organized around two additional questions: In which 
way do individual agents interact? How are individual decisions and interactions 
aggregated to phenomena at the level of social collectives? 
Figure~\ref{fig:assumptions} gives an overview of the modeling approaches that 
we introduce in detail in Sections~\ref{sec:individual_behavior}--
\ref{sec:aggregation} and important considerations for model choice and 
assumptions about human behavior and decision making. 
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\caption{Overview of modeling categories, corresponding modeling approaches and 
techniques discussed in this paper and important considerations for model choice 
and assumptions about human behavior and decision making.} 
\label{fig:assumptions} 
\end{figure*} 

A central challenge for integrating human decision making into Earth system 
models is the bridging of several levels of social organization and collectives 
as well as across spatial and temporal scales. 
Figure~\ref{fig:levels} shows a hierarchy of socio-economic units, i.e., groups, 
organizations and structures of individuals that play a crucial role in human 
interactions with the Earth system. modeling. We consider a broad scheme of 
levels ranging from the individual and micro-level across intermediate levels to 
the macro- and global level. This hierarchy of socio-economic units is not only 
distinguishable by level of complexity but also by the different spatial scales 
involved: For instance, some individuals may also operate at the global level 
while transnational organizations may also have impacts on the local level. 
Because some socio-economic units span various scales there is no canonical 
mapping. Especially in the context of human-environment interactions in Earth 
system models, scaling and spatial extent are important issues 
\citep{Gibson2000}. 
Furthermore, we note that the clear distinction between a micro- and macro-level 
may result in neglecting intermediate levels and treating very different 
phenomena alike. 
For instance, many economic models describe both small businesses and 
transnational corporations as actors on the micro-level and model their decision 
processes with the same set of assumptions, even though they operate very 
differently. 

One of the major difficulties for modeling humans in the Earth system is 
therefore to bridge these diverse levels between individuals and the global 
population with all its structural complexities. 

In Table~\ref{tab:levels}, we summarize the socio-economic units found in 
Fig~\ref{fig:levels} and connect them to traditional scientific disciplines and 
fields that focus on them. Additionally, we name somelist common theories, 
frameworks and assumptions that are made about decision making and human 
behavior for these socioeconomic units and link them to scientific fields that 
focus on them. 

At the micro-level, models consider individuals, households, families and small 
businesses. Individuals For instance, individuals can make decisions as policy 
makers, investors, business managers, consumers, or resource users, or in 
various other contexts. Communities and disciplines focusing on this level are 
the cognitive and behavioral sciences, and related fields. More specifically in 
the context of human-nature interactions interdisciplinary fields like natural 
resource management, resource and institutional economics, social-ecological and 



land systems research. At this level, decisions about lifestyle, consumption, 
individual natural resource use, migration and reproduction are particularly 
relevant in the environmental context.  Individual decisions have to be 
takenmade by a large number of individuals or have to be multipliedreinforced by 
organizations, institutions or technology to become relevant at the level of the 
Earth system. ParticipationIndividuals' participation in collective decision 
processes, such as voting, may also has potentialhave consequences for the 
environment at higher levelsa global level. 

At various intermediate levels, communities and organizations like firms, 
political parties, labor unions, educational institutions, non-governmental and 
lobby organizations play a crucial role in shaping national economic and 
policypolitical decisions and therefore have a huge impact on aggregate 
behavior. Governments at different levels and representing different 
territories, from cities to nation states, enact laws that strongly frame the 
condition for economic and social activities of their citizens. Fields that are 
concerned with this level include sociology, political science, economics, 
management science and anthropology.  Important decisions for the Earth system 
context include environmental regulations and standards, production and 
distribution of commodities and assets, trade, extraction and use of natural 
resources (e.g., mining, forestry, burning of fossil fuels) and the development 
and building of physical infrastructures (e.g., roads, dams, power and 
telecommunication networks).. 

At the global level, multinational companies and intergovernmental organizations 
negotiate decisions. This level may be remote from most individuals, but it has 
nevertheless hugeconsiderable impacts on policy and business decisions even 
though it is remote from the daily life of most individuals. Often this level 
provides framing for activities on lower organizational levels and thus strongly 
influences the problem statements and perceived solutions for instance regarding 
environmental issues. Disciplines that focus on this level include 
macroeconomics, international relations, as well as most of the disciplines 
mentioned in the previous section. Decisions especially influencingDecisions 
important for the Earth system at this level are for instance international 
climate and trade agreements, decisions of internationally operating 
corporations and financial institutions, and the adoption of global frameworks 
like the UN Sustainable Development Goals \citep{UnitedNations2015}. 

An overarching question that has triggered considerable debate between different 
disciplines is the allocation of agency at different levels of description. Even 
if individuals can decide between numerous options, the perception of options 
and decisions between them are shaped by social context and institutional 
embedding. Institutions\footnote{The notion of institution is used in the 
literature with slightly different meanings: (1) formal and informal rules that 
shape behavior, (2) informal social order, i.e. regular patterns of behavior, 
and (3) organizations. Here, we adopt an understanding of institutions as formal 
(e.g., law, property rights) or informal rules (e.g., norms, religion). However, 
formal rules often manifest in social, political and economic organizations and 
informal rules may be shaped by them.} and organizations can display their own 
dynamics and lead to outcomes unintended by the individuals. On the other hand, 
theresocial movements can beinitiate disruptive changes in institutional 
development brought on by social movements. This. The attribution and perception 
of agency for a specific problem is therefore important to bear in mind when 
choosing a for the choice of a suitable level of model description for . The 
following section starts our discussion of different modeling a given 
problemtechniques at the level of individual decision making and behavior. 
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% separating theories and assumptions whould be nice but is hardly practical: 
most of the discussed theories include techniques as well as assumtions about 
human behavior and how to aggregate it 
%t 
\newcolumntype{L}[1]{>{\raggedright}p{#1}} 
\begin{table*}[t] 
\caption{Overview of particular levels of description of socio-
economicsocioeconomic units, associated scientific fields/communities and some 
common approaches and assumptions about decisions and behavior. The list gives a 
broad overview but is far from being exhaustive.} 
\label{tab:levels} 
\begin{tabular}{p{1.5cm} L{3cm} L{3cm} p{4cm} p{4cm}} 
\tophline 
Level & Socio-economic unit & Field/CommunitySocioeconomic units & 
Fields/Communities & Common approaches and theories & Common assumptions about 
decision making \\ 

\middlehline 
\multirow{2}{1.5cm}{Micro} & Individual humans & 
Psychology, neuroscience, sociology, economics, anthropology 
& Rational choice, bounded rationality, heuristics, learning theory, complex 
cognitive architectures & 
[All assumptions presented in this collumncolumn] 
\\ 
& 
Households, families, small businesses & 
Economics, anthropology & 
Rational choice, heuristics, social influence & 
Maximization of consumption, leisure, profits 
\\ 

\middlehline 
Intermediate & 
Communities (villages, neighborhoods), cities & 
Sociology, anthropology, urban studies & 
Social influence, networks & 
Transmission and evolution of cultural traits and traditions 
\\ 

& 
Political parties, NGOs, lobby organizations, educational institutions & 
Political science, sociology & 
Social influence on networks, strategicStrategic decision making, public/social 
choice, social influence and evolutionary interactions & 
Influenced by beliefs and opinions of others, agentsAgents form coalitions (and 
cooperate) to achieve goals, influenced by beliefs and opinions of others 

\\ 
& Governments & 
Political science, operations research & 
Strategic decision making, cost-benefit and welfare analysis, multi-criteria 
decision making & 
Agents choose for the common good 
\\ 
& Nation states, societies & 
Economics, political science, sociology & welfare maximization, social choice & 
Majority vote 
\\ 

\middlehline 



Global & Multinational firms, trade networks & 
Economics, management science & 
Rational choice & 
Maximization of profits or shareholder value 
\\ 

& Intergovernmental organizations & 
Political science (international relations)  & 
Strategic decision making, cost-benefit analysis & 
Coalition formation 
\\ 

\bottomhline 
\end{tabular} 
\belowtable{} % Table Footnotes 
\end{table*} 
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In the following three sections, we introduce the modeling techniques that are 
used in the literature to describe human behavior, interactions between 
individuals, and to aggregate them between the different levels. We start this 
overview at the level of individual behavior. 

\section{Modeling individual behavior and decision making} 
\label{sec:individual_behavior} 

In a nutshell, models of individual decision making and behavior differ with 
regard to their assumptions about three crucial determinants of human choices: 
goals, restrictions and decision rules \citep{Hedstrom2005, Lindenberg2001, 
Lindenberg1990, Lindenberg1985}. 
First, allthe models assume that individuals have motives or, goals or 
preferences. That is, agents rank goods or outcomes in terms of their 
desirability and seek to realize highly ranked outcomes. For instance, learning 
theories assume that actors evaluate the outcome of their choices and that 
satisficing decisions are reinforced. Other models, such as rational choice 
theory, make more complex assumptions about preference relations 
\citep{Neumann1944}. Another prominent but debated assumption is that motivesA 
prominent but debated assumption of many models is that preferences or goals are 
assumed to be stable over time. Stable preferences are included to prevent 
researchers from developing trivial explanations, as a theory that models a 
given change in behavior only based on changed motivespreferences does not have 
explanatory power. However, empirical research shows that preferences can change 
even in relatively short time frames \citep{Ackermann2016}. Furthermore, 
changingChanging individuals' goals or preferences is an important waymechanism 
to affect their behavior, e.g., through policies, making flexible preferences 
particularly interesting for Earth Systemsystem modelers. 

Second, alldecision models make assumptions about restrictions and opportunities 
that constrain or help the agents to follow the motives orpursue their goals. 
For instance, each behavioral option comes with certain costs (e.g., money and 
time) and decision makers form more or less accurate beliefs about these costs 
and how likely they are to occur, depending on the information available to the 
agent. 

Third, actorsmodels assume that agents apply some decision rule that translates 
their preferences and restrictions into a choice. Although decision rules differ 
very much in their complexity, they can be categorized into three types. First, 
there are decision rules that are forward looking. Rational choice theory, for 



instance, assumes that individuals list all positive and negative future 
consequences of a decision and choose the optimal option. Alternatively, 
backwards looking approaches, such as classical reinforcement learning, assume 
that actors remember the satisfaction experienced when they chose a given 
behavior in the past and tend to choose thea behavior that felt bestwith a high 
satisfaction again. Finally, there are sideward-looking decision rules, which 
assume that actors adopt the behavior of others, for instance because they 
imitate successful others \citep{Kandori1993}. DecisionTheories assume different 
degrees of context-dependency of rules are interlinked withand make different 
implicit assumptions about the agent'sunderlying cognitive capabilities of 
agents. 

In the remainder of this section, we describe in more detail three important 
models ofapproaches to individual decision making: models of rational choice, 
models of bounded rationality and learning models. For each model we discuss, 
pointing out typical assumptions about motives, restrictions and decision rules. 
In Section~\ref{sec:discussion} we provide general guidelines for the choice of 
model assumptions. 

\subsection{Optimal decisions and utility theory in rational choice models} 
\label{sec:rational_choice} 

\emph{Rational choice theory}, 
a standard model in many social sciences including economics and 
widely studied in mathematics, 
assumes that decision making is an approach to model goal-oriented decision 
making. Rational choice models assume that : 
rational agents have \emph{preferences}, representing goals that they try to 
pursue } and choose the strategy whose expected outcome is 
most preferred, 
given a number ofsome external \emph{constraints}. Agents choose the action that 
brings about the most preferred outcome.} 
Some versions of rational choice theory also take into account that agents form 
and potentially based on their \emph{beliefs} about external constraints on 
their decision options  
\citep[represented by subjective 
probability distributions, see beliefs, preferences, constraints (BPC) 
model,][]{Gintis2009}. Beliefs are subjective priors that can be shared among 
agents, but contrary to external constraints they can be wrong. Rational choice 
theory is a standard model in various social sciences, especially in economics, 
and has been widely studied also in mathematics. 
The qualification of a decision or action as being rationalIt can either be used 
to represent actual behavior or serve as a 
normative benchmark for other theories of behavior. 

How to judge the ``rationality'' of individual decisions is  
subject to ongoing debates. For example,  
\citet{Opp1999} distinguishes between a  
strong and weak version of rational choice theory. While the strong version 
(often referred to as rationality (``homo economicus) describeseconomicus''), 
assuming purely self-interested agents that have full control and knowledge of 
theirwith unlimited cognitive 
capacities knowing all possible actions, information about the  and 
probabilities of possible consequences , 
and unlimited capacities to compute the optimal decision to take, a weaker 
version relaxes theseweak rationality that makes less strong assumptions. 
Other authors like \citet{Rabin2002} further distinguishdistinguishes between 
standard and non-standard  
assumptions regarding preferences, beliefs and decision-making rules. In the 
remainder of this  
Before discussing non-optimal decision making 
in subsection,  \ref{sec:bounded_rationality}, 



we discuss the differentreview here common assumptions regardingon preferences 
and beliefs, while in the next subsection (\ref{sec:bounded_rationality}) we 
introduce decision-making rules that deviate from the standard that agents 
always choose the optimal action. 

Usually individual preferences , agents are assumed to be fixed over the 
relevant time scales, to regard possible outcomes of actions and mainly self-
interested, 
having fixed preferences regarding their personal consequences for the agent 
(self-interest or even ``selfishness'', in particularly assumed by economics 
scholars), and to take into account risk in some way (see below).of 
In general, however, preferences are completely neutral with regard to their 
contentpossible futures and 
being indifferent to how a decision was taken and, for example, can also concern 
features of collective decision processes \citep[ to consequences 
for others. 
Exceptions are procedural preferences, e.g.,][]{\citep{Hansson1996, Fehr1999} 
and consequences for others \citep[ 
other-regarding preferences and altruism, e.g.,][]{\citep{Mueller2003, 
Fehr2003}. 

In the broadest version, preferences are Preferences can be modeled as binary 
\emph{preference relations}, e.g. $x \  
P_i \ y$$, denoting that individual $i$ prefers $x$ to $y$, where $x$ and 
$y$ represent outcomes, consequences, processes, combinations thereof, or 
probability distributions of such.situation or outcome $x$ to $y$. 
Standard versions of rational choice theoryMost authors assume that the binary 
relations $P_i$ areis complete (for every pair $(x, y)$ either $x P_i y$ or $y 
P_i x$) and transitive (if $x P_i y$ and $y P_i z$ then $x P_i z$), although 
more general preference relations are possible \citep[e.g.,][]{Fishburn1968, 
Heitzig2012}. These properties allow it to be represented by which allows 
representing the preferences with a \emph{utility function} $u_i$ with 
$\citep{vonNeumann2007}.\footnote{$u_i(x) > u_i(y)$ if and only ifimplies $x \ 
P_i \ y$.\footnote{The utility function$, where $u_i$ is only defined up to 
positive linear (affine) transformations.}. Utility functions thus specify how 
combinations of behavioral outcomes satisfy the preferences of the decision 
makers..} 
Some authors also allow incomplete or cyclic preferences \citep{Fishburn1968, 
Heitzig2012}. 
In the context of land use context, $i$ could be a farmer and, $x$ might denote 
a state of affairs, where $i$ grows growing 
some traditional crops generating a moderate profit.  In addition,, 
and $y$ could denote an alternative state of affairs where $i$ instead grows 
some genetically modifiedgrowing hybrid seeds generatingfor more profit  
but puttingmaking $i$ into a strong dependencydependent on the seed supplier. 
Then, $x \ P_i \ y$ would denote $i$'s preference of $x$ over $y$ because he 
If $i$ considers independence valuable enough to make up for the lower profit., 
$x \ P_i \ y$ would denote $i$'s preference of $x$ over $y$. 

Utility functions are particularly useful in the context of \emph{decision 
making under uncertainty}\footnote{We note that some authors make the 
distinction between risk as unknown events with measurable probabilities 
(``known unknowns'') as opposed to (fundamental) uncertainty as such events 
without any knowledge about their probabilities \citep[``unknown unknowns'', 
cp.][]{Knight2006}. Although fundamental uncertainty may be important in human 
decision making, we only consider risk here because some forms of fundamental 
uncertainty cannot be represented in models.}. 
To determine the optimal decision under probabilistic uncertainty, the standard 
\emph{expected utility theory} is usually applied to calculate the utility 
$u_i(p)$ of a \emph{lottery} or \emph{risky prospect} (i.e. a probabilistic 
outcome) $p$ represented by probabilities $p(x)$ as the linear combination 
$u_i(p) = \In decision making under uncertainty, agents have to choose between 
different \emph{risky prospects} modeled as probability distributions 



$p(x)$ over outcomes $x$. In \emph{expected utility theory}, $p$ is preferred to 
$p'$ 
if and only if $\sum_x p(x) u_i(x)$. ) > \sum_x p'(x) u_i(x)$. 
Empirical research however shows that only a minority of people evaluate 
lotteries 
uncertainty in this \emph{risk-neutral} way \citep{Kahneman1979}. The vast 
majority, however, overestimates 
\emph{Prospect theory} therefore models agents that overestimate small  
probabilities and showsand evaluate outcomes relative to a reference point, 
which leads to \emph{risk-aversionaverse} or \emph{risk-seeking} with respect to 
behavior 
regarding losses or gains in comparison with expected utility theory. Such 
decisions are described by \emph{prospect theory}, using the non-linear formula 
$u_i(p) = \sum_x w(p(x)) v(u_i(x))$ with suitable functions $v$ and $w$ , 
respectively. 
\citep{Kahneman1979}, or by the slightly more complex \emph{cumulative prospect 
theory} \citep[e.g.,][]{, Bruhin2010}. 
A conceptual example from the land-use context illustrates decision  
making under risk:  
A farmer $i$ might face the choice whether to stick to her current crop ($ 
$x$)$ or switch to a differentnew crop ($$y$). $. 
She may think that with 20\% probability the switch will turn out badly, 
resulting in only a quarter as much yield as with $x$,result in a 50\% reduction 
in her profits, while with 80\% probability, the yieldprofits would double.  
If her utility depends logarithmically on yieldis proportional to the profits 
and she evaluates this uncertain prospect as described by expected utility 
theory,  
her gain from switching to $y$ would be positive.  
If, however, she is averse to losses and thus conforms to prospect theory,  
she might evaluate the switch as negative and prefer to stick to $x$. 

If behavior and its consequences involve several time points $t$, then 
\emph{time $ are involved in a decision, agents are typically assumed to 
\emph{discount} future consequences by using utility weights that decay in time 
and reflect the agent's time preferences} and \emph{patience} are often taken 
into account via \emph{discounting}. . 
Discounted utility quantifies the present desirability of some utility obtained 
in the future. Therefore, discounting can be used to measure the utility that an 
individual derives at a given point in time from future consequences of her 
current decisions. Exponential discounting is often used in models 
Most authors use exponentially decaying weights of the form $e^{-rt}$ 
with a \emph{discounting rate} $r>0$ because it is mathematically convenient and 
\emph{time-consistent}, meaning that itthis makes no difference at which point 
in time the evaluation is made. independent of its time point. 
However, empirical research findsstudies suggest that people seem to discount 
hyperbolically, meaning that their valuation in the short-term declines much 
faster thanoften use slower decaying weights (e.g., hyperbolic discounting), 
especially in the long-term. This is \emph{time-inconsistent} because people 
might prefer getting one dollar today over two dollars tomorrow but two dollars 
in a month and a day over one dollar in a monthpresence of uncertainty 
\citep{Ainslie1992, Jamison2011}.\footnote{For exponential discounting, future 
(expected) utility is depreciated with an exponentially decaying factor $u_i(x) 
= \sum_t \exp(-r t) u_i(x,t)$, while for hyperbolic discounting the factor 
decays slower in the far future $u_i(x) = \sum_t u_i(x,t) / (1 + r t)^s$.}}, 
Consider as an example from the land-use context aalthough this might lead to 
\emph{time-inconsistent} choices that appear 
suboptimal at a later time. 
A farmer $i$ who comparesmay compare different crops not only by next year's  
expected profit $u_i(x,1)$  
but, due to the various crops' different effects on future soil quality,  
also by future years' profits $u_i(x,t)$ for $t > 1$.  
Crop $y$ might promise higher yields than $x$ in the short run but lower  



ones in the long run due to faster soil depletion, so that although $u_i(x,1) > 
u_i(y,1)$, it might still be that her evaluation of this utility stream is 
$u_i(x) < u_i(y)$, but only if . 
If $i$ is ``patient'' enough, i.e., if the discounting rate $r$ is, having small 
enough.$r$, she might prefer $y\,P_i\,x$ 
In addition, preference aggregationeven though $u_i(x,1) > u_i(y,1)$. 

Preferences can also be necessaryaggregated not only in time but across 
independent or coupled decisions dealing with several  
interrelated issues or types of consequences.  
For example, in the modeling of preferences over \emph{consumption bundles} in 
consumer theory \citep{Varian2010},} models preferences over 
\emph{consumption bundles}, 
combining the utility derived from consuming $n$ apples, $u_{i,a}(n)$ and 
$m$ pears, $u_{i,p}(m)$, may be combined different products 
into a total consumption utility by means of an \emph{additively separable} 
utility function $u_i(n,m) = u_{i,a}(n) + u_{i,p}(m)$, a \emph{Cobb-Douglas} 
utility function $u_i(n,m) = u_{i,a}(n)^\alpha u_{i,p}(m)^{1 - \alpha}$, or a 
\emph{constant elasticity of substitution} (CES) utility function $(u_{i,a}(n)^r 
+ u_{i,p}(m)^r )^{1/r}$ representing different forms of 
by simply adding-up these utilities or by combining them in some 
nonlinear way 
with imperfect \emph{substitutability of goods}. In the land-use context,} 
(\emph{Leontieff}, \emph{Cobb-Douglas}, or \emph{CES} utility functions). 
A farmers' utility from leisure time $h_x$ and consumption enabled by work in 
the field that increases and crop yield $y_x$ (l)$ depending on working time $l$  
might for example be combined in a similar way (e.g. via ausing the Cobb-Douglas 
utility function  
$u_i(x) = = y_x^\alpha (12-h_xl)^{1-\alpha}$).}$ for some \emph{elasticity} 
Given constraints by the environment, the available information and the 
evaluation by utility resulting from each possible action, rational choice 
theory assumes that the agent chooses the action with the maximal utility. 
In models, the resulting optimization problem is $\alpha\in(0,1)$. 

Complex optimization problems arising from rational choice theory 
can be solved using tools such as \emph{by mathematical programming} (e.g. 
linear programming) or \emph{, calculus of variations} and similar methods 
\citep[see, e.g.,][]{Kamien2012, Chong2013}.  
Optimal decisions under constraints are not only discussed as a  
description of human behavior,  
but are often taken as the normative benchmark for comparison with other  
non-optimal approaches that we discuss in the following section. 
Section~\ref{sec:bounded_rationality}. 

Regarding decision- modeling in Earth system modelsESMs, rational choice theory 
is useful for contexts in which the agents' 
when agents have clear goals are sufficiently clear, agents can be assumed to 
posses 
and possess enough information, time and cognitive resources to assess all 
available options for action. the 
optimality of strategies. 
For instance, individuals' decisions regarding long-term investments or  
decisions of organizations such as firms or governments in competitive  
situations  
can often be assumed to follow reasonably well a rational action model. However, 
rational choice model. 
It can also be a useful assumption when actors make the same decision many times 
and get immediaterepeated similar decisions and 
can learn optimal strategies from fast feedback, so that they learn to choose 
the optimal option. Thus, they making them behave ```as if''if' they were 
rational decision makers. 

\subsection{Bounded rationality and heuristic decision making} 



\label{sec:bounded_rationality} 

Empirical research on human decision making finds that individual behavior 
depends on the framing and context of the decision \citep{Tversky1974}. Human 
decision making is characterized by deviations from the normative standards of 
the rational choice model, so-called \emph{cognitive biases}, challenging the 
understanding that rational choice theory serves not only as a normative 
benchmark, but also as a descriptive model of individual decision making. 
Biases can be the result of time-limited information processing 
\citep{Hilbert2012}, heuristic decision making \citep{Simon1956}, or emotional 
influences \citep[e.g., wishful thinking,][]{Babad1991, Loewenstein2003}. 
\emph{Bounded rationality theory} assumes that human decision making is 
constrained by \emph{cognitive} and computational capabilities of the agents, 
additionally to the constraints imposed by the environment and the available 
information about it \citep{Simon1956, Simon1997}. In the economic literature, 
non-transitive preferences, time-inconsistent discounting and deviations from 
expected utility that we already introduced in the previous subsection are often 
also considered as boundedly rational \citep{Gintis2009}. Boundedly rational 
agents can be considered as \emph{satisficers} that try to find a satisfying 
action in a situation given their available information and cognitive 
capabilities \citep{Gigerenzer2002}. 

Constraints on information processing imply that agents do not integrate all the 
available information to compute the utility of every possible option in complex 
decision situations and choose the onean action with maximal utility.  
Instead, agent decisionsagents use \emph{heuristics} for judging the available 
information and choosing actions that lead to the more preferred outcome over 
less preferred ones. \citet{Gigerenzer2011} definesdefine heuristics in decision 
making as a ``strategy that ignores part of the information, with the goal of 
making decisions more quickly, frugally, and/or accurately than more complex 
methods.'' In contrast to so-called `as if' models of human decision making that 
mathematically integrate all available information to mimic the outcome of the 
decision process, heuristic decision making taps into the process of information 
gathering and processing and describes it in the form of simple algorithmic 
rules. 
Heuristics are considered to be \emph{fast and frugal} in the sense that they do 
not solve algebraic or optimization problems and evaluate only part of the 
available information. Consequently, they are well suited for computationally 
efficient implementations of human decision making in models. 

Furthermore, \citet{Gigerenzer1999} argue that many of the decision theories 
being used as a benchmark for rationality are not designed for so-called `large 
worlds' where information relevant for the decision process is either unknown or 
has to be estimated from small samples. They question the usefulness of rational 
choice theory as the normative standard and try to relieve heuristic decision 
making of its stigma of cognitive laziness, bias and irrationality. In many real 
world situations, especially when high uncertainties are involved, some decision 
heuristics perform equally good or even better than more elaborated decision 
strategies \citep{Dhami2001a, Dhami2001b, Keller2014}. Therefore, it is argued 
that instead of an all-purpose tool the mind carries an 'adaptive toolbox' of 
different heuristic decision schemes, that are ecologically 
rational\footnote{Ecological rationality claims that rational decisions should 
not be made based on rules that are independent of the circumstances (as for 
example in rational choice theory) but on context-specific ones such as 
heuristics, making heuristic decision making also a normative choice model.} in 
particular environments \citep{Gigerenzer2002, Todd2007}. 

It is argued that instead of an all-purpose tool the mind carries an ``adaptive 
toolbox'' of different heuristic decision schemes applicable in particular 
environments \citep{Gigerenzer2002, Todd2007}. 

In general, heuristic rules are formalized either as \emph{decision trees} or 
\emph{flowcharts}  and consist of three building blocks: one for information 



search, one for stopping information search and one to derive a decision from 
the information found. They evaluate a number of pieces of information -- so-
called cues -- to either categorize a certain object or to choose between 
several options. Many heuristics evaluate these cues in a certain order and make 
a decision as soon as a cue value allows classification or discriminates between 
options. This is illustrated by means of the \emph{Take the Best heuristic}: 
Pieces of information (cues) are compared between alternatives according to a 
prescribed order until one cue discriminates between the alternatives under 
consideration. At each step in the cue order of the decision process, some 
information is searched and evaluated. If it allows discriminating between the 
options, the option with the higher cue value is chosen. Else the process moves 
on to the next cue. This repeats as the process moves down the cue order until a 
cue is reached where the differentiation between options is possible. For the 
'Take the Best' heuristic, the order in which the cues are evaluated is crucial 
for the result. 

OtherThis is illustrated by means of the \emph{Take the Best heuristic}: Pieces 
of information (cues) are compared between alternatives according to a 
prescribed order, which is crucial for the decision process. At each step in the 
cue order, some information is searched and evaluated. If the information does 
not allow discriminating between the options, the process moves on to the next 
cue. This repeats as the process moves down the cue order until a cue is reached 
where the differentiation between options is possible and the option with the 
higher cue value is chosen. 
Another notable examples are \emph{Fast and Frugal Trees} and example is the 
\emph{satisficing heuristics}. The latterheuristic} that evaluates information 
sequentially and chooses the first option satisfying certain criteria. An 
overview and explanation of numerous other decision heuristics can be found in 
the recent review paper by \citet{Gigerenzer2011}. 

 
Heuristics, especially cue orders, can also be interpreted as encoding norms and 
preferences in individual decision making as they prioritize features of 
different options over others and hierarchically structure the evaluation of 
available information. 
An overview and explanation of numerous other decision heuristics can be found 
in the recent review paper by \citet{Gigerenzer2011}. 

\citet{Gigerenzer1999} question the usefulness of rational choice theory as the 
normative benchmark because it is not designed for so-called `large worlds' 
where information relevant for the decision process is either unknown or has to 
be estimated from small samples. Instead, they want to relieve heuristic 
decision making of its stigma of cognitive laziness, bias and irrationality. 
With their account of ecological rationality, they suggest that heuristics can 
also serve as a normative choice model providing context-specific rules for 
normative questions. This is motivated by the observation that in many real 
world situations, especially when high uncertainties are involved, some decision 
heuristics perform equally good or even better than more elaborated decision 
strategies \citep{Dhami2001a, Dhami2001b, Keller2014}. 

So far, heuristics have primarily been studied for inferences rather than 
preferences. Nevertheless, the same frameworks can also be used to describe 
decisions based on  preferences, such asfor instance in consumer choice 
\citep{Hauser2009}, voter behavior \citep{Lau2006}, orand organizational 
behavior \citep{Loock2015, Simon1997}. 
Also, recent findings suggest that cue orders can spread via social learning and 
social influence \citep{Gigerenzer2008, Hertwig2009} analogously to norm and 
opinion spreading in social networks (see Sections \ref{sec:social_influence} 
and \ref{sec:networks}). Therefore, heuristics might be used to shed light on 
the implications of changing norms and values for individual and collective 
behavior. 



Despite the many upsides ofHowever, Fast and Frugal decision heuristics, they 
are not yet commonly applied in dynamic modeling of social-ecological 
systemshuman-nature interactions. One exception is the description of farmer and 
pastoralist behavior in a study of origins of conflict in east Africa 
\citep{Kennedy2011}. However, as the following example shows, similar decision 
trees can behave been used to model decision making in agent-based simulations 
of land-use change \citep. The model by \citet{Deadman2004}. The model} 
describes colonist household decisions in the Amazon rainforest. Each household 
is a potential farmer who first checks whether a subsistence requirement is met. 
If this is not the case, the household farms annual plantscrops. If the 
subsistence requirement is met, the household checks the quality of the soil. In 
the case of acidic soil, iteventually plants perennials. In the case of non-
acidic soil, it plants pasture and breed or breeds livestock. If the activities 
are not affordable, the household does not farm at all, depending on the soil 
quality. 
The model shows how simple heuristic decision trees can be used to simplify 
complex decision processes and represent them in an intelligible way. However, 
the example also shows the many degrees of freedom in the construction of 
heuristics, pointing at the difficulty to obtain these structures from empirical 
research. 

Heuristics are a promising tool for including individual human decision making 
at the micro-level into Earth system modelsinto ESMs because they can capture 
basic crucial choices in a computationally efficient way. In order to describe 
the long-term evolution of preferences, norms and values, which might play an 
important role relevant for human influences oninteractions with the Earth 
system, heuristics could also be used to model meta-decisiondecisions of 
preference andor value adoption. Recent findings suggest that cue orders can 
spread via social learning and social influence \citep{Gigerenzer2008, 
Hertwig2009} analogously to norm and opinion spreading in social networks (see 
Sections \ref{sec:social_influence} and \ref{sec:networks}), which could be an 
promising approach to model social change. 
However, in contrast to fully rational decision making, it can be very 
challenging to aggregate heuristic decision making analytically to higher 
organizational levels. Therefore, computational methodsapproaches like agent-
based modeling are neededsuitable to explore the aggregate outcomes of many 
agents with such decision processes, which has implications for the possible 
analysesrules (see Section~\ref{sec:abm}). 

\subsection{Learning theory} 
\label{sec:learning} 

The approaches discussed in the previous two subsections mainly took the 
perspective of a forward-looking agent. Rational or boundedly rational actors 
optimize future payoffs based on information or beliefs about how their behavior 
affects future payoffs, while the procedures to optimize may be more or less 
bounded. 
However, these techniques do not specify how the information is acquired and how 
the beliefs are formed. Therefore, another branch of modeling 
\emph{Computational learning theory} focuses on behavior from a backward-looking 
behaviorperspective: an agent learned in the past that a certain action gives a 
reward (or, feels good) or is satisfying and is therefore the agent repeats 
itsmore likely to repeat this behavior. It can describe the adaptivity of agent 
behavior to a changing environment and is particularly suited for modeling 
behavior under limited information. To model the learning of agents unsupervised 
learning techniques are mostly used because they do not require a training with 
an external correction. 

Computational learning theory focuses on this narrow understanding of learning. 
It can help to capture the adaptivity of agent behavior and is particularly 
suited for modeling behavior under limited information. 



\emph{Reinforcement learning} is such a modeling approachtechnique that 
capturesmodels how an agent maps  environmental conditions to desirable actions 
in a way that optimizes a stream of rewards (and/or punishments). The obtained 
reward depends on the state of the environment and the chosen action, but may 
also be influenced by chosen actions and environmental conditions in the past. 
According to \citet{Macy2013}, reinforcement learning differs from forward-
looking behavioral models regarding three key aspects: (i1) Because agents 
explore the likely consequences and learn from outcomes that actually occurred 
rather than those which are intended to occur but only with a certain 
probability, reinforcement learning does not need to assume that the 
consequences are intended. (ii2) Decisions are guided by rewards fosteringthat 
foster approach or punishment leadingand lead to avoidance rather than by static 
utilities. (iii) Rather than optimization, decisions rules are(3) Learning is 
characterized by stepwise melioration and models the dynamic search for an 
optimum rather than assuming that the optimal strategy can be determined right 
away. 

The learning process is modeled via a learning algorithm that operationalizes 
different strategies of trial and error, (e.g.  by a simple., Q-Learning, SARSA-
Learning, Actor-Critic-Learning), based on iteratively evaluating the current 
value function or of the environmental state utilizing a temporal difference (Q-
learning) algorithms or artificial neural network approacheserror of expected 
value and experience value \citep{Sutton1998}. Some learningArtificial neural 
network algorithms can explore very high dimensional state and action spaces. 
Genetic algorithms have also been, which are inspired by the process of 
naturalevolutionary mechanisms such as mutation and selection (\emph{genetic 
algorithms})., are also applied to learning problems. The learning algorithm has 
to balance a trade-off between the exploration of actions with unknown 
consequences and the exploitation of current knowledge. In order to not having 
to explore all possible actions by brute forceexploit only the currently learned 
strategy, many algorithms use randomness to includeinduce deviations from 
already learned behavior. 

The environment in reinforcement learning problems is often modeled as awith 
Markovian transition probabilities. The special case of a single agent is called 
Markov decision process \citep{Bellman1957}. In each of the discrete states of 
the environment the agent can choose from a set of possible actions. The choice 
then influences the transition probabilities to the next state and the reward. 
Reinforcement learning is an unsupervised learning technique as opposed to 
supervised learning, which requires that optimal responses are presented and 
therefore trained with an external correction. Therefore, it is suitable to 
model the learning of agents. As an illustration from the land-use context, 
consider a farmer adapting her planting and irrigation practices to new climatic 
conditions by adjusting the timing. The environment could be modeled by a Markov 
process with different states of soil fertility and moisture, where transitions 
between states reflect the influence of sowing, irrigation and 
harvesting.stochastic weather events.  Without the possibility to acquire 
knowledge through other channels, she would experiment in some way with 
theexplore different possible adjustmentsactions and evaluate how they change 
the yield (her reward). Eventually, by a trial-and-error process her yield would 
on average increase. 

A standardcommon approach to model the acquisition of \emph{subjective 
probabilities} associated with the consequences of actions is \emph{Bayesian 
learning}, which has also been applied to reinforcement learning problems 
\citep{Vlassis2012}. Starting with some prior probability (e.g. from some high-
entropy ``uninformative'' distribution) $P(h_i)$ that some hypothesis 
$h_i$ about the relation of actions and outcomes is true, new information or 
evidence $P(E)$ is used to update the subjective probability with the posterior 
$P(E|h_i)$ calculated with Bayes' theorem: $P(h_i|E) = P(E|h_i) P(h_i) / 
P(E)$ \citep{Puga2015}. The most probable hypothesis can then be chosen to 
determine further action. 



Combining various approaches to model the acquisition of beliefs through 
learning, the formation of preferences and different decision rules discussed in 
the previous sections with further insights from psychology and neuroscience has 
led to the development of very diverse and detailed behavioral theories which 
are often formalized in \emph{complex cognitive architectures} 
\citep{Balke2014}. These approaches can also be used to modeldescribe human 
behavior in computational models, but we will notare too complex and complex and 
diverse to discuss them here in detail here because of their complexity and 
diverse formalization. 

Learning and related theories that emphasize the adaptability of human behavior 
might be important building blocks to model on the one hand the long-term 
evolution of human interactions with the Earth system from an individual 
perspective. On the other hand, they can capture also short-term responses to 
drastically changing natural environments, which might give insights on 
behavioral transformationsrelevant for instance in the futurecontext of tipping 
elements in the Earth system. 

Table~\ref{tab:individual} summarizes the approaches that focus on individual 
human behavior. However, besidesBesides the forward- and backward-looking 
behavior that we introduced in this section, agents may exhibit sideways-looking 
behavior: agents can copy the behavior of successful others, thereby 
contributing to a \emph{social learning} process. For this kind of behavior, 
interactions between different agents are crucial. This will be the focus of the 
next section. 

%t 
\begin{table*}[t] 
\caption{Summary table for individual behavior and decision making} 
\label{tab:individual} 
\begin{tabular}{L{4cm}p{4cm}p{4cm}p{4cm}} 
\tophline 
Theories & Key considerations & Strengths & Limitations \\ 
\middlehline 
Optimal decisions in rational choice: Individuals take the decision that 
maximizes their expected utility given economic, social and environmental 
constraints & 
What are agent's preferences? Which information (and beliefs) do they have? &  
Highly researched theory with strong theoretical foundation and many 
applications & 
Individuals assumed to have strong capabilities for information processing and 
perfect self-control 
\\ 
                 
\middlehline 
Bounded rationality and heuristic decision making: 
Individuals have biases and heuristic decision rules that help them navigate 
complex environments effectively & 
Which cue order is used to gather and evaluate information? 
When do agents stop gathering more information and decide? & 
Simple decision processes that capture observed biases in decision making & 
Suitable decision rules highly context dependent 
\\ 
\middlehline 
Learning: Agents explore possible actions through repeated learning from similar 
past eventsexperience & 
How do agents interact with their environment?  
What is the trade-off between exploitation of knowledge and exploration of new 
options? & 
Captures information and belief acquisition process & 
High degree of randomness in behavioral changes 
\\ 
\bottomhline 



\end{tabular} 
\belowtable{} % Table Footnotes 
\end{table*} 

% 
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\section{Modeling interactions between agents} 
\label{sec:interaction} 

In the previous section, we discussed modeling approaches that focus on the 
choices of individuals that are confronted with a decision in a specified 
situation. In contrast, this section focuses on interaction between individuals 
or groups of agents, decisions wherereviews techniques to model how actors 
interact with each other and influence or respond to each other. We review 
different kinds of direct interactions and techniques to model them. Direct 
interactions are usually local and take place between two (or sometimes a few) 
agents. Indirect interactionsother's decisions. Interactions at the system level 
that can happen at broader scales, for instance mediated through priceare also 
aggregation mechanisms on (e.g., voting procedures and markets,) will be 
discussed as part ofin Section~\ref{sec:aggregation} on aggregation.}. 

The section starts with reviewing strategic interactions as modeled in classical 
game theory and dynamic interactions withinin evolutionary approaches and social 
learning. Then, we address models of social influence that are used to study 
opinion and preference formation or the transmission of cultural traits, i.e. 
culturally significant behaviors. 
Finally, we discuss how interaction structures can be modeled onas dynamic 
networks. 

\subsection{Strategic interactions between rational agents: classical game 
theory} 
\label{sec:game_theory} 

Game theory focuses on situations decision problems of ``strategic 
interdependence'', decision problems wherein which the utility that a decision-
maker (called player) gets does not only depend on her own decision but also on 
the choices of others. These are often situations of conflict or cooperation.  
Players choose an action (behavioral option, control) based on a 
\emph{strategy}, i.e. a rule specifying which action to take in a given 
situation. \emph{Classical game theory} explores how rational actors identify 
strategies, usually assuming the rationality of other players.  
However, rational players can also base their choices on beliefs about others 
players' decisions, which can lead to an infinite regress of mutual beliefs 
about each others' decisions. 

Formally, a game is described by what game-theorists call a \emph{game form} or 
\emph{mechanism}. The game form specifies the actions $a_i(t)$ that agents can 
choose at well-defined time points $t$ from an \emph{action set} $A_i(t)$ that 
may vary over time, having to respect all kinds of situation-dependent rules. 
The game form may furthermore allow for communication with the other agent(s) 
(\emph{signaling}) or binding agreements (\emph{commitment power}). Simple 
social situations are typicallyformalized in so-called normal-form games 
represented as ``normal form games'' by a \emph{payoff matrix} specifying the 
individual utilities\footnote{Note that despite the term ``payoff'' matrixpayoff 
matrix'', these utilities are unexplained attributes of the agents and need not 
have a relation to monetary quantities.} for all possible action combinations, 
while more complex situations are modeled as a stepwise movement through the 
nodes of a decision tree or game tree \citep{Gintis2009}. 



In particular, classicalClassical game theory assumes that players form 
consistent beliefs about each others' unobservable behavior. They 
assumestrategies, in particular that the other's behavior results itself from an 
optimal strategy. Because theHowever, multi-player inter-temporalinteraction and 
optimization often leads to recursive relationships between beliefs and 
strategies, which makes solving complex classical games becomes quiteoften very 
difficult. SuchMany problems often have several solutions, called 
\emph{equilibria} (not to be confused with the steady-state meaning of the word) 
and call for sophisticated nonlinear fixed-point solvers \citep{Harsanyi1988}. 
Only in special cases, e.g. where players have complete information and moves 
are not simultaneous but alternating, game-theoretic equilibria can easily be 
predicted by simple solution concepts such as backwards induction 
\citep{Gintis2009}. 
In other cases, one can identify strategies and belief combinations consistent 
with the following two assumptions. First, each player eventually chooses a 
strategy that is optimal given her beliefs about all other players' strategies 
(rational behavior). Second, each player's eventual beliefs about other players' 
strategies are correct (\emph{rational expectations}). The solutions are called 
\emph{Nash equilibria}. However, many games have multiple Nash equilibria, and 
the question of which equilibrium will be selected arises. 

Therefore, game theorists try to narrow down the likely strategy combinations by 
assuming additional forms of consistency and rationality 
\citep[see][]{{Aumann2006} such as consistency over time (\emph{(sequential and 
subgame perfect equilibria}), stationarity over time (\emph{Markov 
equilibria}),), and stability against small deviations \citep[\emph{[stable 
equilibria}][]{,][]{Foster1990, Maes2016}, coordinated deviations by groups 
(\emph{correlated, coalition-proof, and strong equilibria}),}, or small random 
mistakes \citep[\emph{[trembling- hand- perfect} and \emph{proper 
equilibria},][]{,][]{Harsanyi1988}. After a plausible strategic equilibrium has 
been identified, it can then be used in a simulation of the actual behavior 
resulting from these strategies over time, possibly including noise and 
mistakes. 

As an example infrom the land -use context, consider two farmers living on the 
same road. They get their irrigation water from the same stream. A dispute over 
the use of water emerges. Both may react to the actions of the other in several 
turns. The upstream farmer located at the end of the road may increase or 
decrease her water use and/or pay compensation for using too much water to the 
other. The downstream farmer at the entrance of the road may demand compensation 
or block the road and thereby cut the access of the upstream farmer to other 
supplies. Either of them may appeal to the magistrate or apologize to the other 
and the magistrate may set quotas or impose fines. This results in a complex 
game tree thatA complex game tree encodes which actions are feasible at which 
moment and what are the consequences on players' utilities. 
The magistrate in the example might not know about the farmers' actions before 
one of them appeals to him and the other farmer might not know about the appeal 
until the magistrate acts. If these are the only relevant constraints and it is 
possible to explicitly modelspecify the information and options ofavailable to 
the players at each time point, then a classical game theoretical analysis makes 
sense,allows determining the rational equilibrium strategies that the farmers 
would follow. 

Classical game theory is widely applied to interactions in market settings in 
economics (see also Section~\ref{sec:macroeconomics}), but increasingly also in 
the social and political sciences to political and voting behavior in 
\emph{public and social choice theory} \citep[see, e.g.,][and 
Section~\ref{sec:social_welfare}]{Ordeshook1986, Mueller2003}. For example, 
public choice theory studies strategic interactions between groups of 
politicians, bureaucrats and voters with potentially completely different 
preferences and action sets under constraints by existing law. 



While many simple models of strategic interactions between rational and selfish 
agents will predict only low levels of \emph{cooperation}, more complex models 
can well explain how bilateral and multilateral cooperation, \emph{consensus},, 
and stable social structure emerges \citep{Kurths2015}. This has been shown in 
diverse contexts such as individual bilateral interactions in large groups 
\citep[e.g.,][]{Helbing2009}, bilateral international relations 
\citep[e.g.,][]{Aumann2006}, multiplayer public goods problems 
\citep[e.g.,][]{Heitzig2011}, group decision making \citep{Heitzig2012}, 
coalition formation on networks \citep{Auer2015}, and international climate 
policy \citep[e.g.,][]{Heitzig2011, Heitzig2013}. 

To model relevant decision processes in the Earth system, classical game 
theoretic analysis could be used for describing strategic interactions between 
agents which could be assumed highly rational and well informed, i.e. 
international negotiations of climate agreements between governments, bargaining 
between social partners or monopolistic competition between firms. Similarly, 
international negotiations and their interactions with domestic policy can also 
be framed as two- or multilevel games \citep[as in some models of political 
science, e.g.,][]{Putnam1988, Lisowski2002}. Furthermore, social choice theory 
could be used to simulate simple voting procedures that (to a certain extent) 
determine the goals of regional or national governments. 

\subsection{Interactions with dynamic strategies: evolutionary approaches and 
learning in game theory} 
\label{sec:evolutionary_approaches} 

In game theoretic settings, complex individual behavioral rules are typically 
modeled as \emph{strategies} specifying a behavioran action for each node in the 
game tree. Consider as an example the repeated version of the Prisoners' Dilemma 
in which each of two players can either ``cooperate'' or ``defect'' in each 
period \citep[e.g.,][]{{Aumann2006}. A typical complex strategy in this game 
could involve reciprocity (defect temporarily after a defection of your 
opponent), forgiveness (everevery so often not reciprocate), and making up 
(don't defect again after being punished by a defection of your opponent after 
your own defection). 

Many or even most nodes of a game tree will not be visited in the eventual 
realization of the game and strategies may involve deliberate randomization of 
actions (e.g. tossing a coin).. Therefore, strategies are (like preferences), 
unlike actual behavior, principally unobservable (only actual behavior is),, and 
assumptions about preferences and strategiesthem are unfalsifiable and hard to 
validate. 
For this and other reasons, often several kinds of additional assumptions are 
often made that constrain the set of strategies further that a player can 
choose, e.g., assuming only very short memory or low farsightedness 
(``myopic''(myopic behavior) and disallowing randomization, or allowing only 
strategies of a specific formal structure such as heuristics (see 
Section~\ref{sec:bounded_rationality}). 

The above-mentioned water conflict example (seefrom 
Section~\ref{sec:game_theory})} bears some similarity to the repeated prisoners' 
dilemma in that the farmers' possible actions can be interpreted as either 
defective (using too much water, blocking the road, appealing to the magistrate) 
or cooperative (not do any of this, compensate for past defections). Assuming 
different levels of farsightedness may thus lead to radically different 
predictions sinceactions because myopic players would much more likely get 
trapped in a cycle of alternating defections than farsighted players. The latter 
would recognize some degree of forgiveness asbecause that maximizes long-term 
payoff and would thus desist from defection with some probability. In any case, 
both farmers' choices maycan be modeled as depending on what they believe the 
other will likely do or how she will react to the last action. 



Evolutionary approaches in game theory study the interaction of different 
strategies and analyze which strategies prevail on a population level as a 
result of selection mechanisms. Thus, in contrast to classical game theory, 
evolutionary approaches focus on the dynamics of strategy selection in 
populations. The agent's strategies may be either hardwired, acquired or adapted 
by learning \citep[e.g.,][]{{Fudenberg1998, Macy2002b}. 
Although many evolutionary techniques in game theory are used in biology to 
study biological evolution (variation through mutation, selection by fitness and 
reproduction with inheritance), \emph{evolutionary game theory} can be used to 
study all kinds of strategy changes in game theoretic settings, for instance 
cultural evolution (transmission of memes), social learning through imitation of 
successful strategies or the emergence of cooperation \citep{Axelrod1984, 
Axelrod1997}. 

In an evolutionary game, a population of agents is divided into factions with 
different strategies. They interact in a formal game (given e.g. by a payoff 
matrix or game tree, see Section~\ref{sec:game_theory}), in which their strategy 
results in a fitness (or payoff/utility). The factions change according to some 
replicator rules that depend on the acquired fitness. 
This can be modeled using different techniques. Simple evolutionary games on 
well-mixed large populations can be described with replicator equations. The 
dynamics describing the relative change in the factions ofwith a particular 
strategy $i$ is proportional to the deviation of the fitness of this faction 
from the average fitness \citep{Nowak2006a}. 

Alternatively, the behavior resulting from evolutionary interactions is often 
easy to simulate numerically as a discrete-time dynamical system even for large 
numbers of players if the individual action sets are finite or low-dimensional 
and only certain simple types of strategies are considered. This type of agent-
based model (see Section~\ref{sec:abm}) simply implements features such as 
mutation or experimentation and replication via strategy transfer (e.g., 
imitation and inheritance) at the micro-level. Combined with (adaptive) social 
network approaches (see Section~\ref{sec:networks}), the influence of 
interaction structure can also be studied \citep{Szabo2007, Perc2010}. 
The steady states of evolutionary games are usually Strategies can be 
characterized by so-calledas \emph{evolutionary stable strategies} or 
\emph{stochastically stable equilibria}. A} if a population which adopts an 
evolutionary stablewith this strategy cannot be invaded by otheranother, 
initially rare strategies. strategy.  
If the steady statea strategy is furthermore stable for finite populations or 
noisy dynamics, stable equilibria areit is called 
stochastic.\emph{stochastically stable}. 

In our water conflict example, the farmers could use a heuristic strategy (see 
Section~\ref{sec:bounded_rationality}) that determines how much water they 
extract given the actions of the other. The evolution of the strategies could 
either be modeled with a learning algorithm, repeating the game again and again. 
Alternatively, to determine feasible strategies in an evolutionary setting, a 
meta-model could consider an ensemble of similar villages consisting of two 
farmers and a magistrate.. The strategies of the farmers would then be the 
result of either an imitation process between the villages, or of an 
evolutionary process, assuming that less successful villages die out over time. 

Evolutionary approaches to game theory are a promising framework to better 
understand the prevalence of certain human behaviors regarding interaction with 
the Earth system. This is especially interesting regarding the modeling of long-
term cultural evolution and changes in individual's goals, beliefs and decision 
strategies or the transmission of endogenous preferences \citep{Bowles1998}. 

\subsection{Modeling social influence} 
\label{sec:social_influence} 



Another strong force in human interaction is Human behavior and its determinants 
(beliefs, goals, and preferences) are strongly shaped by social influence, a 
process in which individuals adjust their opinions, beliefs, preferences, or 
behavior after interacting with others. Humans exert influence on each other 
forcan result from various reasons. Theycognitive processes. Individuals may be 
convinced by persuasive arguments \citep{Myers1982}, may aim to be similar to 
esteemed others \citep{Akers1979}, arebe unsure about what is the best behavior 
in a given situation \citep{Bikhchandani1992}, or perceive social pressure to 
conform with others \citep{Wood2000, Festinger1950, Homans1951}. 

\emph{Models of social influence} allow studying the outcomes of repeated 
influence in social networks and have been used to explain the formation of 
consensus, the development of mono-culture, the emergence of clustered opinion 
distributions, and the emergence of opinion polarization, for instance.  
Models of social influence are very general and can be applied to any setting 
where individuals exert some form of influence on each other. However, seemingly 
innocent differences in the formal implementation of social influence in models 
can have decisive effects on the model outcomes. In, as the following, we list 
of important modeling decisions that have been shown to have significant 
implicationsdocuments. 

A first question is \emph{how} agentsocial influence changes individual 
attributes are influenced by interactions. For example, a farmer deciding when 
to till his field might either choose the date which most of his neighbors think 
is best, take the average of the proposed dates, or even try to counter 
coordinate with others. disliked farmers. 
Classical models incorporate influence as averaging, which meansimplies that 
interacting individuals becomealways grow more similar over time 
\citep{Friedkin2011}. \emph{Averaging} is an accepted and empirically supported 
model of influence resulting, for instance, from social pressure that an actor 
exerts on someone else \citep{Takacs2016}. In other contexts, averaging is 
debated \citep{Myers1982, Maes2013a, Maes2013b, Myers1976, Vinokur1978}. For 
instance, some models of opinion influence assume that opinion influence results 
from argument communication \citep{Maes2013a, Maes2013b}. When actors with 
similar opinions interact in these models, their opinions do not always 
converge. Instead, they turn more extreme as the interaction partner provides 
them with new arguments that support the own opinion. Likewise, some 
modelsModels assume different forms of averaging: Rather than following the 
arithmetic average of all opinions, actors might only consider the majority view 
(mode) in their network \citep{Nowak1990}. For example, a farmer considering on 
which date to best till his field might either take the date which most of his 
neighbors think is best or simply take the average of all the proposed 
dates.\citep{Nowak1990}. 
In other models, social influence can lead to polarization \citep{Myers1982}. 
For instance, in models of argument communication, actor's opinions can turn 
more extreme when the interaction partners provide them with new arguments that 
support their own opinion \citep{Maes2013a, Maes2013b}. 

Second, one could askmodelers need to decide whether there areis just one or 
severalmultiple \emph{dimensions of influence}. For instance, it is often argued 
that political opinions are multi-dimensional and cannot be captured by the one-
dimensional left-right spectrum. Explaining dynamics of opinion polarization and 
clustering turned out to be often more difficult when multiple dimensions are 
taken into account \citep{Axelrod1997}. Additionally, model predictions often 
depend on whether the influence dimension is a \emph{discrete} \citep[see 
e.g.,][]{Axelrod1997, Mark1998, Carley1991, Galam2005, Nowak1990} or a 
\emph{continuous variable} \citep[see e.g.,][]{ DeGroot1974, French1956, 
Lehrer1975, Friedkin2011}. 
Models of individuals' decisions about certain policies often model the 
decisions as binary choices \citep{Sznajd-Weron2000, Martins2008}. However, 
binary scales fail to capture that many opinions vary on a continuous scale and 
that differences between individuals can therefore increase also on a single 
dimension \citep{Barker2006, Dalton1998, Feldman2011, Jones2002, Maes2013a, 



Stroud2010}. Therefore, models that describe opinion polarization usually treat 
opinions as continuous attributes. The opinion on a land reform can, for 
instance, be modeled as a binary variable (approval or rejection) whereas the 
willingness to support it could be better described by a continuous variable 
from strong support to strong opposition. 

A nextthird critical question is whether agents' characteristics can travel in 
different directions from one person to another, i.e. ifhow the 
influenceinteraction process is directionalmodeled. In models of opinion 
dynamics, for example, influence is often \emph{bi-directional}}, in the sense 
that an actor who exerts influence on someone else iscan also be influenced by 
the other \citep{Macy2013, Maes2010}. ButIn diffusion models, in contrast, the 
effective influence is directed. For instance, information can spread only from 
informed to uninformed individuals, not the influence can also be only possible 
in one direction or the strength of influence can be asymmetric.other way 
around.  
Furthermore, the influence actors may be influenced 
\emph{multilateraldyadically} or \emph{dyadic}, i.e. only between two 
interaction partners.multilaterally}. Model outcomes often depend on whether the 
influence that a group exerts on an actor is modeled as an eventa sequence of 
events involving a dyaddyads of actors or multiple contacts foras a single 
opinion update where the actor considers all contacts' influences at once 
\citep{Parisi2003, Flache2011, Lorenz2005, Huckfeldt2004}. In models that assume 
binary influence dimensions, for instance, dyadic influence implies that an 
agent copies a trait from her interaction partner. When influence is 
multilateral, agents aggregate the influence exerted by multiple interaction 
partners (using e.g. the mode of the neighbors' opinions), which can imply that 
agents with rare traits are not considered even though they would have an 
influence in the case of dyadic influence events. It has been demonstrated that 
this can have important consequences on equilibrium predictions 
\citep{Flache2011, Huckfeldt2004}. For example, a farmer seeking advice whether 
to adopt a new technology can either consult his friends one after another or 
all together, likely leading to different outcomes if they have different 
opinions on the matter. 

Social influence is a strong force but it is not plausible to assume thatFourth, 
agents nevermay slightly deviate from the influence of their contacts. The exact 
modeltype of these \emph{deviations} affects model outcomes and can introduce a 
source of diversity into the modelmodels of social influence \citep{Maes2010, 
Pineda2009, Kurahashi-Nakamura2016}. For instance, some models of continuous 
opinion dynamics include deviations as Gaussian noise, i.e. random values drawn 
from a normal distribution. In such a model, noise implies that opinions in 
homogeneous subgroups will fluctuate randomly fluctuate, which aggregates to 
collective random walks of subgroup members through the opinion space. When 
twoand subgroups happen to adoptwith similar opinions, influence will lead to a 
fusion of subgroups can merge that would have remained split in a model without 
deviations \citep{Maes2010}. 
In other contexts, deviations are better modeled by uniformly distributed noise, 
assuming that big deviations are as likely as small ones. This can help to 
explain for instance the emergence and stability of subgroups with different 
opinions, that do not emerge in settings with Gaussian noise\footnote{Gaussian 
noise needs to be very strong to generate enough diversity for the emergence of 
subgroups with different opinions. However, when noise is strong, subgroups will 
not be stable.} \citep{Pineda2009}. In the context of land use, the opinion 
dynamics regarding a land reform may not only be determined by the interactions 
between individual agents but may also be influenced by mass media that randomly 
shifts individual's opinions. 

To model Finally, the effects of social influence depend on the structure of the 
network that determines who influences whom. Complex dynamics can arise when 
this interaction network is dynamic and depends on the attributes of the agents, 
as we discuss in the following section. 



Models of social influence are a promising approach to explore how social 
transitions interact with the Earth system, e.g., transitions of norms regarding 
norms and lifestyle changes to sustainable consumption, admissible resource use 
and emissions, as well as technology adoption at a micro-level, models of social 
influence are an important tool. These mechanisms can furthermore be combined 
with changes in social structure and be modeled via adaptive networks, as we 
show in the next sectionlifestyle changes, and adoption of new technology. For 
instance, they can be used to model under which conditions social learning 
enables groups of agents to adopt sustainable management practices. 

\subsection{Modeling the evolution of interaction structure: (adaptive) network 
modelsapproaches} 
\label{sec:networks} 

In most of the models discussed in the previous section, the social network can 
beis formally modeled as a \emph{graph} (the mathematical notion for a network): 
a collection of nodes that are connected by a collection of links. In this 
mathematical framework, nodes (vertices) represent agents and links (edges) 
between the agents indicate that agents interact by communicating and exchanging 
informationinteraction, communication, or forma social 
relationshipsrelationship. Agents can only interact and thus influence each 
other if they are connected by a link in the underlying network. Note that 
network models of agents can be understood as a special case of agent-based 
models, which we discuss in more detail in Section~\ref{sec:abm}. 

Classical social- influence models study the dynamics of influence on 
\emph{static networks,}, assuming that agents are always influencedaffected by 
the same subset of interaction partners \citep{Abelson1964, 
[e.g.,][]{DeGroot1974, French1956, Harary1959, Friedkin2011}. As discussed 
above, theseThese networks can be directed or undirected or directed, possibly 
restricting the direction of influence, but their structure does not change over 
time. Furthermore, the topology of the network, i.e. the arrangement of links, 
can be more or less random or regular, clustered and hierarchical. In social 
influence models on static networks, fully connected populations will usually 
reach perfect consensus in the long run. However, it depends on the duration of 
the modeled processes whether the assumption of flexible network ties is 
plausible. For instance, in an organization where individuals have fixed 
position in organizational subunits networks appear to be less flexible than in 
on-line social networks. 

Especially when modeling social processes over longer time scales, it is 
reasonable to assume that the social network is dynamic, i.e. that its structure 
evolves over time. This time evolution can be independent of the dynamics on the 
network and encoded in a \emph{temporal networksnetwork} \citep{Holme2012}. 
However, for many social processes, it can be assumed that the structure of the 
social network and the dynamics on the network (e.g.., social influence) 
interact. \emph{Adaptive network models} make the removal of existing and the 
formation of new links between agents dependent on attributes of the agents. 
Thus they build, building on the insight that the social structure influences 
the behavior, opinionopinions or value systemsbeliefs of individual actors, 
which in turn drives changes in social structure \citep{Gross2008}. 

Local update rules for the social network structure and the agent behavior can 
be chosen very flexibly. The rules can be deterministic or stochastic and 
described for example by discrete maps, ordinary differential equations or 
logical operations (related to cellular automata). Changes in agent behaviors 
may be governed by rules such as random or boundedly rational imitation of the 
behavior of network neighbors (see above). Relevant update rules for network 
structure describe processes such as homophily, where agents with similar states 
tend to form new links between each other while breaking links with agents 
having diverging states \citep{Wimmer2010, McPherson2001, Lazarsfeld1954}.Update 
rules for the network structure are often based on the insight that 



This common assumption is based on the insight that agents tend to be influenced 
by similar others and ignore those sources who hold too distant views 
\citep{Axelrod1997, Carley1991Wimmer2010, McPherson2001, Lazarsfeld1954}. 
Many models assume that agents with similar characteristics tend to form new 
links between each other (homophily), while breaking links with agents having 
diverging characteristics \citep{Axelrod1997, Hegselmann2002, Deffuant2005}. 
In adaptive network models, homophily in combination with social influence 
generates a positive feed-back loop: influence increases similarity, which leads 
to more influence and so on. Such models can explain for instance the emergence 
and stability of multiple internally homogeneous but mutually different 
subgroups. Other applications of co-evolutionary network models allow to 
understand the presence of social tipping points in opinion formation 
\citep{Holme2006}, epidemic spreading \citep{Gross2006} in systems of networked 
agents,}, the emergence of cooperation in social dilemmas on co-evolutionary 
networks \citep{Perc2010} and the co-evolution of multilateral cooperation 
(interdependence of coalition formation) with social networks \citep{Auer2015}. 
The dynamical interaction inSuch adaptive network models can give rise toexhibit 
complex and nonlinear co-evolutionary dynamics such as phase transitions 
\citep{Holme2006, Auer2015}, multi-stability \citep{Wiedermann2015}, 
oscillations in both agent states and network structure \citep{Gross2006}, and 
subtle but robuststructural changes in social structurenetwork properties 
\citep{Schleussner2016}. 

While adaptive networks have so far mostly been applied to networks of agents 
representing individuals, the framework can in principle be used to model co-
evolutionary dynamics on various levels of social interaction as introduced in 
Table~\ref{tab:levels}. 
For instance, global complex network structures such as financial risk networks 
between banks, trade networks between countries, transportation networks between 
cities and other communication, organizational and infrastructure networks can 
be modeled \citep{Currarini2016}. Furthermore, approaches such as multi-layer 
and hierarchical networks or networks of networks allow modeling the 
interactions between different levels of a system \citep{Boccaletti2014}. 

As an illustration for an application in the land-use context, consider a 
community of farmers described byagents each harvesting a renewable resource, 
e.g., wood from a forest. The agents interact on a social network, imitating the 
harvesting effort of social relations. The farmers are faced with the choice to 
adopt a new agricultural technology which is potentiallyneighbors that harvest 
more productive, but this is uncertain. If the social acquaintancesand may drop 
links to neighbors that use another effort. The interaction of a farmer 
successfully test the new technology, she is more likely to adopt it herself. 
However, if the adoption is not successful, she might form relationships with 
other farmers that have not yet adopted the new technology. In this way, rich 
modelthe resource dynamics can emerge, that may with the network dynamics either 
leadleads to a full adoptionconvergence of the new technologyharvest efforts or 
a segregation of the  community into a group with and another without the new 
technologya higher and a lower effort, depending on the model parameters. 
\citep{Wiedermann2015, Barfuss2017}. 

In the context of long time scales in the Earth system, the time evolution of 
social structures that determine interactions with the environment are 
particularly important. Adaptive networks offer an interestinga promising 
approach to modeling transformative change with deep structural imprints 
onchange of the internal connectivity of a complex system \citep{Lade2016} such 
as an alleged great transformation}. For example, this could be applied to 
sustainability \citep{WBGU2011} that may involve the transition fromexplore 
mechanisms behind transitions between centralized toand decentralized 
infrastructure network structuresand organizational networks. 

Table~\ref{tab:interaction} summarizes the different modeling approaches that 
focus on agent interactions in human decision making and behavior. These 
interactions occur between two or several agents. For including the effect of 



these interactions into Earth system modelsESMs, their aggregate effects need to 
be taken into account as well. Therefore, we introduce in the next section 
approaches that allow to aggregate individual behavior and local interactions 
and to study the resulting macro-level dynamics. 

%t 
\begin{table*}[t] 
\caption{Summary table for agent interactions.} 
\label{tab:interaction} 
\begin{tabular}{L{3cm}p{4cm}p{4cm}p{4cm}} 
\tophline 
Approaches and frameworks & Key considerations & Strengths & Limitations \\ 
\middlehline 
Classical game theory: strategic interactions between rational agents & 
What is the game structure (options, possible outcomes, timing, information 
flow) and what are the players' preferences? & 
Elegant solutions for low-complexity problems & 
AgentsDifficult to solve for complex games, agents cannot change the rules of 
the game 
\\ 
                 
\middlehline 
Evolutionary game theory: competition and selection between hardwired strategies 
& 
Which competition and selection mechanisms are there? & 
Can explain how dominant strategies come about & 
Agent strategies are modeled as hard-wired (no conscious strategy change) 
\\ 
\middlehline 
Social influence: agents change theirinfluence each other's beliefs, preferences 
and opinionsor behaviors & 
WhatHow do influence mechanisms are dominantchange agent attributes? 
Is socialthe influence multilateral or, dyadic, directed? 
How large are deviations? & 
Allows to model social learning, preference formation, and hearding behavior & 
Local dynamics are often stylized 
\\ 
\middlehline 
Network theory: changing social interaction structurestructures & 
Is the social network static or adaptive? 
How do agents find new neighbors? 
How much randomness and hierarchy is in the structure? 
How do agents form new links? & 
Mathematical formalization to model co-evolution of social structure with agent 
attributes & 
Micro-interactions mostly diadic and schematic 
\\ 
\bottomhline 
\end{tabular} 
\belowtable{} % Table Footnotes 
\end{table*} 

% 
================================================================================ 
% 
================================================================================ 

\section{Aggregating behavior and decision making and modeling dynamics at the 
system level} 
\label{sec:aggregation} 

So far, we focused on theories and modeling techniques that describe decision 
processes and behavior of single actors, their interactions and the interaction 



structure. This section builds on the previously discussed approaches and 
highlights different aggregation methods howfor the behavior of an ensemble or 
group of agents might be aggregated.. This is an important step if models shall 
describe system level outcomes or collective decision making and behavior in the 
context of Earth system modeling. 
In general, aggregation can take place on all levels introduced in 
Section~\ref{sec:levels} and summarized in Table~\ref{tab:levels}. Aggregation 
techniques link modeling assumptions at one level (often called the micro-level) 
to a higher level (the macro-level). They therefore enable the analysis of 
emergent macro-level outcomes and help to transfer models from one scale to 
another. 
They enable the analysis of macro-level outcomes and help to transfer models 
from one scale to another. 
In general, this could link all levels introduced in Section~\ref{sec:levels}. 

In this section, we describe different approaches that are used to make this 
connection: On the one hand, analytical tools allow representingAnalytical 
approaches generally represent groups of individual agents through some macro-
level or average characteristic, often using simplifying assumptions regarding 
the range of individual agents' characteristics. On the other hand, 
simulationsSimulation approaches describe individual behavior and interactions 
and computational methods allow to study then compute the resulting aggregate 
macroscopic dynamics. 

The question how to aggregate micro-processes to macro-phenomena is not specific 
to modeling human decision making and behavior. Aggregation of individual 
behavior and the resulting description of collective action, such as collective 
motion, is also an ongoing challenge in the natural sciences \citep[see 
e.g.,][]{{Couzin2009}. 
Specific assumptions about the individual behavior and agent interactions have 
consequences for the degree of complexity of the macro-level description. For 
instance, if agent goals and means do not interact, the properties of single 
agents can often be added up. If, on the contrary, agents influence each other's 
goals or interact via the environment, complex aggregate dynamics can arise. 

The following sections discuss the specificities for aggregating human decision 
making and behavior and notable applications in models in the global 
environmental change context.different aggregation techniques, their underlying 
assumptions and how these reflect specific aggregation mechanisms. They are 
summarized in Table~\ref{tab:aggregation}. 

As some aggregate dynamics are difficult to reduce to micro-behavior and 
interactions, the section concludes with discussing important macro-level 
approaches with applications in Earth system modeling. 

 
\subsection{Aggregation of preferences: social welfare and voting} 
\label{sec:social_welfare} 

The original micro-level framework of rationalRational choice is often 
appliedapproaches can also be used to model the behaviordecision making by 
agents on 
higher levels from Table~\ref{tab:levels}, e.g., firms or countries. 
The ``preferences'' of such groups of individuals at all levels introduced in 
Table~\ref{tab:levels}. are often represented 
\emph{Social choice theory} explores how individual preferences can be 
aggregated to social welfare, a measure of collective desirability of an 
outcome. Furthermore, it analyzes how group choices can be determined best in 
voting procedures, in which group members choose between different options and 
the collective choice is determined by some formal rules. 



As in Section~\ref{sec:rational_choice}, utility functions can form the basis 
for modeling \emph{preferences of groups} by a ``social utility''. Individual 
utilities can be aggregated into a \emph{social welfare function} by making the 
assumption that individual agents have a common scale-measurable unit of utility 
(``util''), which represents an amount of satisfaction, happiness or sometimes 
simply a monetary value. 
Most often, modelers use the linear and inequality-neutral utilitarian welfare 
function, taking the average over the $N$ individuals in the group, $U(x) = 
\sum_i u_i(x) / N$. Sometimes this is motivated by the assumption that groups 
may redistribute utility internally to mitigate inequality (\emph{transferable 
utility}). 
by using  as the optimization target a \emph{social welfare function}, 
which aggregates the members' utility functions, either additively 
(``utilitarian'' welfare) 
or in some nonlinear way to represent inequality aversion 
\citep[e.g., the 
Gini-Sen, Atkinson-Theil-Foster, or egalitarian welfare 
functions;][]{Dagum1990}. 
To do so, a common scale of utility must be assumed. 
For example, individual utility in many economic models equals the logarithm of 
the total monetary value of the individual's consumption. 
In reality, social welfare functions are indeed used to find optimal 
policy, e.g. in \emph{cost-benefit analysis} \citep{Feldman2006}. 
For example, consider a village of farmers growing crops, which need different 
amounts of water, 
so that water management policies affect farmers' incomes. 
The effects of a water policy could then be evaluated using either the 
average, minimal or average-logarithmic income of farmers as 
a measure of social welfare. 
The policy option maximizing the chosen indicator should be implemented. 

However, it is highly debated that utilities of different individuals  
can really be compared and substituted  
in the sense that a drop in collective welfare resulting from an actor's  
decrease in utility can be compensated by increasing the utility of  
another actor. Though, when only considering ordinal preference relations 
instead of cardinal (scale-measurable) utility into account, general statements 
about aggregated preferences are very limited \citep{Arrow1950}. 
Inequality-averse groups can be modeled using $U(x) = \sum_i f(u_i(x)) / N$ for 
some concave function $f$, or via welfare functions based on inequality measures 
such as the Gini-Sen welfare function, $U(x) = \sum_{i,j} min(u_i(x),u_j(x)) / 
N^2$ \citep{Dagum1990}, the Atkinson-Theil-Foster welfare function 
\citep{Dagum1990} or, in the extreme case, the egalitarian welfare function 
$U(x) = \min_i u_i(x)$. In economic contexts, welfare functions are often based 
on monetary values such as wealth, income or total value of consumption. 
Defining suitable group preferences becomesis especially complicatedhard when 
the group  
composition or size $N$ changes over time as in intergenerational models 
\citep[e.g.,][]{Millner2013}. 
Once a social welfare function is constructed, one may identify the social 
welfare associated with different collective actions and choose the one with the 
maximal value. The social welfare is used for instance as a criterion to 
evaluate which policy in a bundle of options leads to the social optimum. 
Welfare maximization reduces to \emph{cost-benefit analysis} if the utilities 
are simply added up and are equated with monetary values \citep{Feldman2006}. An 
alternative to such policy evaluation tools is multi-criteria decision making 
\citep{Huang2011}. However, cost-benefit analysis remains one of the most 
applied decision models to normatively evaluate policies and can therefore also 
be used to model government decisions descriptively. 

An example from the land-use context illustrates the concept of ``social 
utility''. In a village farmers grow crops that each need specific amounts of 
water. Water management policies thus affect the incomes of the farmers in 



different ways. The effect of a policy on the village can be evaluated using 
either the average or the minimal income of the farmers or some more complex 
aggregation. Then, the policy should be taken that maximizes this indicator of 
social welfare. Analogous criteria might be used in policy-making on higher 
levels of social organization from towns to countries. In complex organizations, 
however, the actual decision might be non-optimal and a more explicit modeling 
approach of actual decision procedures might describe the decisions better, e.g. 
using a game-theoretical model with voting or bargaining procedures. 

In \emph{voting theory}, a set of \emph{voters} partitioned into factions with 
similar preferences can decide over the group's joint actions by means of a 
formal bargaining or voting protocol. The protocol is designed to find a 
compromise between the factions' preferences (\emph{cooperative game theory}). 
\citep{Millner2013}. 
Also, in complex organizations, real decisions might be non-optimal for 
the group and more explicit models of actual decision procedures may be 
needed. 
Models in subfields of game theory (bargaining, voting, or social choice theory) 
explore the outcomes of formal protocols that are designed to aggregate the 
group member's heterogeneous preferences. 
Under different voting methodsor bargaining protocols, subgroups may dominate 
the decision or the group may be able to reach a compromise 
\citep[cp.][]{{Heitzig2012}, also depending on the individual's strategies. 
Voting methods can be seen as an aggregation mechanism for individual (and 
possibly heterogeneous) preferences.}. 
In the above example, the farmers may not agree on a social welfare  
measure that a policy should optimize  
but instead on a formal protocol that would allow them to determine a  
policy for water usage that is acceptable for all. 

\subsection{Aggregation via markets: economic models and representative agents} 
\label{sec:macroeconomics} 

Nowadays, aA major part of the relevant interaction of contemporary societies 
with the Earth system is closely linkedrelated to the organization of production 
and consumption organized on markets. Markets do not only mediate between the 
spheres of production and consumption, they can also be seen as a mechanism to 
aggregate agents' decisions and behavior. Economic theory builds on rational 
choice theory to askexplores how goods and services are allocated and 
distributed among the various activities (sectors of the economyproduction) and 
agents (firms, households, governments) in an economy. Goods and services may be 
consumed or can be the input factors to economic production. Input factors for 
production are usually labor and physical capital, but can also include 
financial capital, land, energy, natural resources and intermediate goods. In 
markets, the coordination between \emph{demand} and \emph{supply} of goods is 
mediated through \emph{prices} that are assumed to reflect information about the 
abundance or scarcity and production costs of goods. Economics compares 
different kinds of market setting (e.g., auctions, stock exchanges, 
international trade) with respect to different criteria such as allocative 
efficiency criteria. 

MicroeconomicBuilding on rational choice theory for modeling the decisions of 
individual agents, microeconomic models in the tradition of neoclassical 
economics analyze the conditions for an equilibrium between supply and demand on 
a single marketmarkets (\emph{partial equilibrium theory}) and between all 
markets in an economy. (\emph{general equilibrium theory}). The behavior of 
households and firms is usually modeled as utility maximization under budget 
constraints and profit maximization under technological constraints in the 
production, respectively. 
A central ideaassumption is that an economy is characterized by \emph{decreasing 
marginal utility} and production\emph{diminishing returns}: The additional 
individual utility derived from the consumption of one additional unit of some 
good (or of one additional hour of leisure) is declining. Similarly, it is 



assumed that the additional amount of a production derived from one additional 
unit of some input factor is declining with its absolute amount. The output of 
the production process is described as a \emph{production function} that has 
input factors as argumentsis declining. 
Decreasing marginal utility andSimilarly, the additional production implies that 
utility andderived from an additional unit of a single input factor is declining 
with its absolute amount when holding other input factors fixed. 
Accordingly, the output of the production functions areprocess is described as a 
\emph{production function}, which is concave in theirits input factor arguments 
(i.e., they have a negative second derivative).. 

Assuming that there is \emph{perfect competition},} between producers, resources 
and goods would beare allocated in a \emph{Pareto-efficient} way so that no 
further redistribution is possible that benefits somebody without making 
somebody else worse off \citep{Varian2010}. It has been shown that this leads to 
the emergence of an equilibrium price for each good as the market is cleared and 
supply meets demand \citep{Arrow1954}. 
The idea of this \emph{market equilibrium} can be understood by the associated 
prices: The rational market participants trade goods as long as there is 
somebody who is willing to offer some good at a lower price than what somebody 
else is willing to pay for it.  
However, in markets dominated by only a few or very heterogeneous agents perfect 
competition cannot be assumed, and price wars, hoarding, and cartel formation 
can occur. Such situations can be described in models of oligopoly, bargaining 
or monopolistic competition but are sometimes difficult to integrate into 
macroeconomic frameworks. 

The idea of the \emph{market equilibrium} can most easily be understood by the 
associated prices: The rational market participants trade goods as long as there 
is somebody who is willing to offer a unit of some good at a lower price than 
what somebody else is willing to pay for it (bid price). In a competitive 
setting, offer prices will go up and bid prices down after each trade because of 
decreasing marginal utility that the agents can derive from obtaining more of 
the same products. Under some conditions, one can show that this leads to the 
emergence of an equilibrium price for each good to which all local offer and bid 
prices converge as the market is cleared and supply meets demand. %\red{[Arrow-
Debreu]} 

Macroeconomic models are often builtbuild on this micro-economicmicroeconomic 
theory incorporatingby modeling decision making of firms and households with the 
representative agent approach. A representative agent stands for an ensemble of 
identical agents or an average agent of a population that can be heterogeneous 
to some degree. However, an. An underlying assumption is that heterogeneities 
and local interactions cancel out for large numbers of agents. 
The behavior of theseWhile representative households and firms is usually 
modeled as utility and profit maximization, respectively. Furthermore, theymodel 
the supply of different sectors, the demand is determined by one or several 
representative households. Representative firms and households are assumed to 
act as if there would be perfect competition and they had no \emph{market 
power}, i.e. that they takeoptimize their production or consumption taking the 
prices of inputsgoods and outputsproduction factors as given and cannot 
influence them.. The dynamicsprices of the economy is then the result of the 
optimizing behavior under various constraints. 

In simple \emph{general equilibrium} (GE) models, different sectors of the 
economy are modeled by representative firms and the demand is determined by one 
or several representative household. The representative agents interact on 
perfect markets for all factors of production and consumer goods. In other 
words, it is assumed that all sectors pay the same wage for an hour of some type 
of labor, the same interest on financial capital, and the same price for any 
other input factor. These pricesproduction factors are assumed to equal the 
value of what they are able to produce additionally by using one more hour of 
labor or one moreadditional unit of the respective input factor, i.e. their 



\emph{marginal product}. The household can consume goods worth the capital and 
labor income it receives. This leads toIn simple macroeconomic models, 
representative agents interact on perfect markets for all production factors and 
goods. The solution of the associated optimization problem (with constraints 
given by a system of nonlinear algebraic equations in prices and quantities that 
may be solved by convex optimization, resulting an allocation of input factors, 
their prices and the resulting output from it. The implication of these 
equilibrium arguments are full employment of labor and capital in models that 
allow for substitution of production factors. 

As an example from land use, consider the effect of the introduction of a new 
technology which requires more capital and less labor for the same production of 
the same good: In a general equilibrium framework, this could be modeled by a 
closed agrarian sector with two representative agents and a fixed amount of 
labor and capital. When the representative agent using the old technology has to 
compete against the one with the new technology, the wages would fall and 
interest rates would rise until an equilibrium is reached. In this equilibrium, 
the prices) specifies the quantity and allocation of input factors are such that 
the producer with the old technology can produce at the same price as the 
producer with the new one. An interpretation of this model at the micro-level is 
that farmers would switch to the new technology until the prices of input 
factors adjust to the new demand, their prices (wages and interest rates), and 
the production and allocation of consumer goods. 
A change in one constraint therefore can lead to adjustments in all sectors and 
new equilibrium prices. 
For example, in an economy with only two sectors, industry and agriculture, 
modeled by two representative firms and a representative household, increases in 
agricultural productivity may lead to the reallocation labor into the industrial 
sector and changes in wages. 

In reality, prices can undergo rapid fluctuations, which challenges the validity 
of equilibrium assumptions at least in the short run. Models captureFurthermore, 
production factors may not be fully employed as general equilibrium 
considerations suggest. Other deviations from equilibrium byefficient equilibria 
are discussed as \emph{market imperfections} such as transaction costs, 
asymmetries in available information and stochastic shocks due to new 
information as well as changes of production functions due to technological 
change. non-competitive market structures. 
\emph{Dynamic stochastic general equilibrium} (DSGE) models account for 
imperfections by applying stochastic shocks to technological developments and 
prices. They model the expectations of economic agents and the corresponding 
consumption and investment decisions of economic agents under uncertainty. Most 
and explore the consequences of stochastic shocks on public information or 
technology for macroeconomic indicators. 
Many modern DSGE models also incorporate short-term market frictions such as 
barriers to nominal price adjustments (``sticky'' prices, which have 
consequences for inflation) and imperfect competition) or other market 
imperfections \citep{Wickens2008}. However, these models still build on the key 
concept of general equilibrium because they assume that the state of the economy 
is always near such an equilibrium and market clearance is fast. 

In the land-use context, a DSGE approach was used to model land-price dynamics 
\citep{Liu2013}. The investment decision of the representative firm in the model 
is not unconstrained as in a general equilibrium framework but constrained by 
having to provide security in the form of physical capital and land when 
borrowing financial capital for investment. When subject to several types of 
shocks (in housing demand, labor supply, or credit availability), the dynamics 
describes off-equilibrium land price evolution. 

In addition to the equilibration between supply and demand through prices, the 
dynamical evolution of economic quantities, as captured in \emph{Economic growth 
models}, is important for modeling aggregate human impacts in the Earth system. 
For example, economic growth is an important driver of energy and resource } are 



used to study the long-term dynamics of production and consumption as well as 
changes in the agricultural sector \citep{Mundlak2000}. 
In standard and are therefore an important approach for Earth system modeling. 
In simple growth models, a quantity $Y(t)$ of a homogeneous product is produced 
per time unit according to an aggregate production function depending on 
productive physical capital $K(t)$, labor and possibly some other 
inputs\footnote{Standard aggregate production functions are characterized by 
decreasing marginal productivity and constant returns to scale (i.e., if all the 
inputs are doubled, the output also doubles).}. 
. A part of the output iscan be saved and invested intoas new capital, while the 
rest can be remaining output is consumed.  
The evolution of the capital stock $K$ is describedgiven by a differential 
equation, e.g., $dK / dt = s Y(t) - \delta K(t)$. Here, the fraction $s$ of the 
output is as new capital and the capital depreciates with a rate $\delta$. 
taking into account investments and capital depreciation. 
In the typical \emph{standard neoclassical growth model} \citep{Ramsey1928, 
Cass1965, Koopmans1965}, the fraction of saving $s(t)$ is, the savings are 
endogenously determined by inter-temporal optimization of a representative 
household. It is assumed that the and equal investments.  
The household maximizes an exponentially discounted utility stream 
$U(t)$ (compare Section~\ref{sec:rational_choice}), which is a function of its 
consumption $C(t) = \left( 1 - s(t) \right) Y(t)$ \citep{Acemoglu2009}. 
The central decision of the representative household is thus how much of the 
produced output it saves and invests at each point in timeto increase production 
in the future and therefore cannot consume and enjoy directly. The Such inter-
temporal optimization problemproblems can be solved either computationally by 
discretization in time or analytically by applying variational calculus 
(techniques from optimal control theory\footnote{Optimal control theory deals 
with the problem of finding thean optimal choice for some control variables 
(often called policy) given by a set of differential equations for the control 
variables that optimizeof a dynamical system that optimizes a certain objective 
function of a (dynamical) system (under constraints), see, using for example 
\citetvariational calculus \citep{Kamien2012}.}).}.}. 
Besides population growth, the only long-term drivers of growth in the standard 
neoclassical growth model are changes in the production function representing 
technological changes, i.e. model are exogenously modeled increases in factor 
productivity. While through technological change is exogenous in standard growth 
models, it is modeled explicitly in. In contrast, so-called endogenous growth 
models exhibit long-run growth and endogenously account for increases in 
productivity, for example through innovation, human capital or knowledge 
accumulation  \citep{Romer1986, Aghion1998}. 

The assumptionuse of representative agents in macroeconomic models has 
theoretical implications that stem from the implicit assumption that the 
representative agent has the same properties as an individual of the underlying 
group \citep{Kirman1992, Rizvi1994}: First, the approach neglects that single 
agents in the represented group have to coordinate themselves, leaving out 
problems that arise due to incomplete and asymmetric information. Second, a 
group of individual maximizers does not necessarily imply collective 
maximization, challenging the equivalence of the equilibrium outcome. Finally, 
the representative agent approach may neglect emergent phenomena from 
heterogeneous micro-interactions \citep{Kirman2011}. 

In spite of the deficiencies of the representative agent approach, its 
application to markets allows to aggregate behavior in simple and analytically 
tractable forms. Modelers who wish to describe economic dynamics at an aggregate 
level can rely on a well developed theory that describedescribes many economic 
growthphenomena in a plausible way.good approximation. In the following section, 
we will discuss how this approach is used in combination with the to analyze 
impacts of this economic engineactivities on Earth systemthe environment. 

\subsection{Modeling of decisions in integrated assessment models: social 
planner and economic policy} 



Starting from economic growth and equilibrium models discussed above, 
environmental economics developed models to account for various environmental 
externalities in the economy \citep[see e.g.,][]{Perman2003}. Externalities are 
defined as benefits from and damages to the natural system that are not 
reflected in prices. Such models allow evaluating\emph{Integrated assessment 
models} (IAMs) comprise a large modeling family that combine economic with 
environmental dynamics. However, the majority of currently used IAMs draws on 
ideas from environmental economics. Using the concept of environmental 
\emph{externality}, they evaluate the extraction of exhaustible resources, 
environmental pollution and overexploitation of ecosystems economically. They 
alsoExternalities are benefits from or damages to the environment that are not 
reflected in prices and affect other agents in the economy \citep[see, 
e.g.,][]{Perman2003}. These models therefore help to designassess economic 
policies tothat tackle the associated environmental problems. 

\emph{Integrated assessment models} (IAMs) draw on these ideas and State-of-the-
art global IAMs combine macroeconomic models with detailed representations of 
sectors that are closely linked to the environment. They arelike the most 
commonenergy and land system with models that combine both a micro-of the 
biophysical bases and a macro-description of human activities at a scales with 
relevant consequences for the global environment. IAMs couple economic 
activities to environmental variables by incorporating material flows 
explicitlyimpacts of these sectors. For example, CO$_2$ emitted from burning 
fossil fuels is linked to economic production by carbon intensities and energy 
efficiencyefficiencies in different production technologies. 
IAMs usuallyIAMs often model technological change endogenously, for example with 
investments in R\&D or learning-by-doing (i.e., decreasing costs with increasing 
utilization of a technology). Because of the possibility to induce technological 
change, the models capture path-dependencies of investment decisions. 
Many IAMs take the perspective of a social planner, who makes decisions on 
behalf of society by optimizing a social welfare function (see 
Section~\ref{sec:social_welfare}). It is assumed that the social optimum equals 
the perfect market outcome with a policyeconomic regulations that 
internalizesinternalize all external effects.\ (e.g., emission trading 
schemes).\footnote{This argument is based on the second fundamental theorem of 
welfare economics, see for example \citet[][pp. 63--70]{Feldman2006}.} 

IAMs are oftenmostly computational (general or partial) equilibrium models, 
using large data sets for parametrization and calibration of initial conditions. 
Regarding modeling technique, IAMs can be broadly categorized with respect to 
(1) their scope of representation and (2) their inter-temporal modeling. (1) 
General equilibrium models represent the whole economy and assume 
simultaneousdescribing market- clearing between all sectors. They often combine 
a top-down macroeconomic model with bottom-up sectoral models. Partial 
equilibrium models, on the other hand, only incorporate parts of the economy 
explicitly, such as the land and energy system. Projections or using exogenous 
projections of macroeconomic variables (interest rates, wages, etc.) then drive 
these sectoral models exogenously. (2) Intercp. 
Section~\ref{sec:macroeconomics}). 
They also differ with respect to inter-temporal allocation: While inter-temporal 
optimization models use discounted social welfare functions to allocate 
investments and consumption optimally over time. They use discounted social 
welfare functions as discussed above as objective functions in an optimization 
procedure. Recursive dynamics, recursive dynamic models solve an equilibrium for 
every time step. The dynamics is usually prescribed by difference equations that 
are derived from considerations about optimal allocation. In these models the 
inter-temporal allocation is generally non-optimal \citep{Krey2014, 
Babiker2009}. 
Furthermore, IAMs differ with respect to the representation of technological 
change, model flexibility in capital reallocation between sectors and regions, 
and the implementation of trade between subregions. Investment choices between 
different technology options have long-term effects because the relative prices 
of technologies can be reduced by induced technological change. Models typically 



use \emph{constant elasticity of substitution} (CES) production functions that 
allow for shifts between different (intermediate) products. IAMs represent 
technological change in different ways: technological parameters such as energy 
efficiencies or production costs are given as model input or are represented for 
example by learning-by-doing effects on costs with increasing installation or 
endogenous investments in R\&D. The implementation of trade between subregions 
depends on the model type: If the model is solved by global optimization, trade 
between regions emerges endogenously. Other models determine the trade between 
regions exogenously. 

With respect to their objectives, it is common to distinguish between two 
categories of IAMs \citep{Weyant1996}: First, are designed for (1) either 
determining optimal environmental outcomes of a policy optimization models (POM) 
makeby making a complete cost-benefitwelfare analysis between the costs of 
mitigation policies in terms of consumption or welfare losses and the costs of 
climate change impacts and adaptation. Thereby, they determine the optimal 
emission target. The costs are usually represented in highly aggregated damage 
functions and have led to extensive discussion about the validity of such 
models. Second, different policy evaluation models (PEMs) assess policy options 
and socio-economicor (2) evaluating different paths to reach a political target 
with respect to their cost-effectiveness to achieve certain emission targets. 
They usually \citep{Weyant1996}. In the context of climate change for example, 
many IAMs have emission targets as constraints in thetheir optimization 
procedure and determine the best way to reach them \citep[see for instance the 
most recent IPCC report,][]{{Clarke2014}. 

For the analysis of global land-use, IAMs combine geographical and economic 
modeling frameworks \citep{Darwin1996, Lotze-Campen2008, Hertel2009, 
Havlik2011}. These models are used for example to investigate interactions 
between land allocation and price mechanisms,the competition between different 
land uses (forestry, bioenergy and food production) and trade-offs between 
agricultural expansion and intensification. They often assume thatWith the 
optimization, land- uses can beare instantaneously and globally allocated, only 
constrained by environmental factors such as soil quality and water 
availability, as well as climate and protection policies. 

IAMs differ from ESMs not only inregarding their modeling technique (mostly 
optimization) but also inregarding their purpose from Earth system models: They 
help policy advisors to assess normative paths that the economy could take to 
reach environmental policy goals. Because IAMs represent 
While the supply side in much detail, they are used to evaluate investment 
decisions under different policy choices, for instance between different energy 
production technologies. Thus, whiledecision about the policy decision is 
exogenous to the model, the investmentsinvestment decisions within and between 
sectors are only modeled as a reaction to the political constraints. It would be 
a promising exercise to couple the policy decision in an IAM with some opinion 
dynamics that depends on the development of the economy. Furthermore, there is 
already a continuing effort to couple approaches from  
However, most IAMs do not account for possible changes on the demand side, e.g., 
through changes in consumer's preferences for green products. 
A better cooperation between the IAM and ESM communities, as called for by 
\citet{vanVuuren2016} in this Special Issue, is certainly desirable because some 
of the problems that arise when including human decision making into ESMs have 
already been dealt with in IAMs. However, when considering the coupling of IAMs 
and ESMs with different methods \citep{vanVuuren2012}. However, this could prove 
very difficult due to the incompatible modeling approaches, especially}, 
modelers have to keep in mind not only technical compatibility (e.g. regarding 
the treatment of time in inter-temporal optimization models) but also the  
possibly conflicting modeling purposes. 

\subsection{Modeling agent heterogeneity via distributions and moments} 



As discussed in Section~\ref{sec:macroeconomics}, the representative agent 
approach can hardly capture heterogeneity in human behavior and interaction. In 
this section we describe analytical techniques that allow to capture at least 
some forms of thisagent heterogeneity. 

An ensemble of similar agents can be modeled via statistical distributions if 
the agents are heterogeneous regarding only some quantitative properties. Such 
properties could for example becharacteristics, e.g. endowments such as income 
or wealth or parameters in utility functions.  In simple models, techniques from 
\emph{statistical physics} and theoretical ecology can be used to derive a 
macro-description from micro-decision processes and interactions. For instance, 
the distribution of agent properties representing an ensemble of agents can be 
described via a small number of statistics such as mean, variance and other 
moments or cumulants. The dynamics in form of difference or differential 
equations of such statistical parameters can be derived by different kinds of 
approximations. A common technique is \emph{moment closure} that expresses the 
dynamics of lower moments in terms of higher order moments. At some order, the 
approximation is made by neglecting all higher order moments or approximating 
them by functions of lower-order ones \citep[see, e.g.,][]{Goodman1953, 
Keeling2000, Gillespie2009}. 

To aggregate simple interactions between single nodes in network models, similar 
techniques can be used to describe the frequencies of particular simple 
subgraphs with differential equations how the occurrence of simple sub-graphs 
(motifs) changes with the dynamics on and of the network. 
In network theory, these approaches are often also called moment closure, 
although the closure here refers here to neglecting more complicated subgraphs 
\citep[see e.g.,][]{Do2009, Rogers2012, Demirel2014}. For example, the simple 
\emph{pair approximation} only considers different subgraphs consisting of two 
vertices (agents) and one link. To abstract from the finite-size effects of 
fluctuations at the micro-level in stochastic modeling approaches and arrive at 
deterministic equations, analytical calculations often take the limit of the 
agent number going to infinity \citep[in statistical physics called the 
thermodynamic limit, see e.g.,][]{cp.][]{Reif1965, Castellano2009a}. 

The following illustration shows how these techniques could be applied in the 
land-use context: Consider a model that describes the interaction between 
farmers who can decide on the amount of fire clearing on their land depending 
its soil quality and policy choices by a government. The farmers interact on a 
social network and imitate actions that are profitable under an imposed policy. 
Such a system can be described by a continuous variable measuring the fraction 
of farmers that apply fire clearing. The dynamics of this variable would depend 
on of the success of the different types of farmers, which in turn would depend 
on the soil quality of the farmers' land. The latter could be described by the 
mean and variance of the soil qualities of the two factions of farmers. The 
resulting system would describe the dynamics of the statistical measures and 
could be analyzed analytically with methods from statistical physics. 

Techniques based on moment closure and network approximations can beare used in 
order to aggregate the dynamics of processes like opinion formation on networks. 
This This might be especially useful to reduce computational complexity when 
modeling social processes at intermediate levels of aggregation and could allow 
to investigateinvestigating the interplay of suchmeso-scale social processes 
with natural dynamics of the Earth system, e.g. coupled through resource 
extraction or emissions \citep[cp.][]{Wiedermann2015}.. 

\subsection{Aggregation in agent-based models} 
\label{sec:abm} 

Agent-based modeling (ABM) is a computational approach to modeling the emergence 
of macro- or system-level outcomes from micro-level interactions between 
individual, autonomous agents and between agents and their social and/or 



biophysical environment and studying their emergent macro-level outcomes 
environments \citep{Epstein1999, Gilbert2008, Heckbert2010, Edmonds2013, 
Hamill2016}. In \emph{agent-based models} (ABMs), human behavior is not 
aggregated to the system level a priori nor is it assumed that individual 
behavioral diversity can be represented by a single representative agent as in 
many macroeconomic models (cp. Section~\ref{sec:macroeconomics}). Instead, 
population level dynammics emerge from the interactions of heterogeneous agents. 
ABMInstead, the behavior of heterogeneous agents or groups of agents is 
explicitly simulated to study the resulting aggregate outcomes. As each action 
of an individual agent is interdependent, i.e. it depends on the decisions or 
actions of other agents within structures such as networks or space, local 
interactions can give rise to complex, emergent patterns of aggregate behavior 
at the macro-level \citep{Page2015}. ABMs allow exploring such non-linear 
behavior in order to understand possible future developments of the system or 
assess possible unexpected outcomes of disturbances or policy interventions. 
Agent-based modeling is widely used to study complex systems in computational 
social science \citep{Conte2014}, land-use science \citep{Matthews2007}, 
political science \citep{deMarchi2014}, computational economics 
\citep{Tesfatsion2006}, for the study of, Heckbert2010, Hamill2016}, social-
ecological systems research \citep{Schlueter2012, An2012}, as well as inand 
ecology \citep[where it is often called individual-based 
modeling,][]{{Grimm2005}.\}, among others.\footnote{Note that in some scientific 
communities, this class of modeling approaches is also known as multi-agent 
simulations \citep[MAS,][]{Bousquet2004} or individual-based modeling 
\citep{Grimm2005}.} 

Agents in ABMs can be individuals, households, firms or other collective actors 
as well as elements of the biophysical environment, for exampleother entities or 
groups thereof, such as fish, fish populations. Agent behavior can be modeled at 
the individual level with any of the approaches introduced in 
Section~\ref{sec:individual_behavior} or other theories that can be formalized 
in equations, decision trees or rules.  or plant functional types. Agents are 
assumed to be diverse and heterogeneous, i.e. representingthey can belong to 
different types of agents that areand can vary within one type, respectively. 
Agent types can be characterized by specificdifferent attributes and decision 
making models (e.g., large and commercial versus small and traditional farms). 
AgentsHeterogeneity within a type areis often also quantitatively 
heterogeneousrepresented through quantitative differences in that they possess 
varying values of these attributes (e.g. regarding market access, social or 
financial capital). Agents interact on structures such as networks and their 
behavior is interdependent. They can adapt their behavior and learn. Together 
these characteristics can give rise to complex, often unpredictable aggregate 
behavior, patterns or functions \citep{Page2015}. 

Because ABMs integrate individualThe decision making, heterogeneity and 
interactions between agents as well as between social and environmental 
processes, they are particularly suitable to study social-ecological systems as 
\emph{complex adaptive systems} \citep{Levin1998, Miller2007}, which are 
characterized by self-organization, adaptation, non-linear behavior and cross-
scale emergence. \emph{Self-organization} refers to the lack of a central 
control and the path-dependent evolution of patterns within the model (e.g. of 
groups of similar agents) through micro-level interactions over time. The system 
evolves through adaptations of heterogeneous and diverse agents and their 
behavioral strategies to the endogenously changing conditions of their social 
and ecological environment. ABMs therefore allow exploring non-linear behavior 
at the system level that emerges from interactions of micro-level structures and 
studying unexpected outcomes of micro- or macro-level disturbances or 
interventions in the system. In this way, ABM helps to develop a mechanism-
behavior of the agents can be modeled with any of the approaches introduced in 
Section~\ref{sec:individual_behavior} or be based understanding of system-level 
phenomena \citep{Epstein1999, Hedstrom2010}. However, because of their 
potentially high complexity and dimensionality in state- and parameter space, 



ABMs are often difficult to analyze and may require high computational 
capacities to understand their dynamics beyond single trajectories.   

In addition to the behavior of the agents, ABMs of social-ecological systems 
incorporate the dynamics of the environment resulting from natural processes and 
human action insofar as it is relevant for the agents' behavior or for answering 
a research question about its environmental and social consequences. 
For example, the decision to intensively use a land plot as pasture may lead to 
overgrazing and change the nutrient content of soils. This can ultimately make 
the land unusable and may force the agent to adapt a new strategy. 
Most ABMs of social-ecological systems describe agents as boundedly rational 
decision makers (see Section~\ref{sec:bounded_rationality}) or profit maximizers 
that take into account information from the environment and other agents or 
social learners that imitate other agents (see Section~\ref{sec:interaction}).  

In ABMs that describe systems at the local and regional level, agent behavior is 
often modeled through on data or observations that are formalized in equations, 
decision trees or other formal rules. In empirical ABMs agents are often 
classified into empirically-based agent types \citep{Smajgl2014} or described 
by , which are characterized by attributes and decision heuristics based on 
empirical observations ofderived from empirical data obtained through interviews 
or surveys \citep{Smajgl2014}. Increasingly, social science theories of human 
behavior beyond the rational actor are being used in ABMs to represent more 
realistic human behaviordecision making. However, many challenges remain to 
translate these theories for usage in specific situationsABMs \citep{Conte2014}. 
Furthermore,Schlueter2017}. 

Probabilistic and stochastic processes are often used to capture uncertainty in 
and the impact of random events on human decision making and assess the 
consequences for macro-level outcomes. For example, random events at the local 
level such as a random encounter between two agents that results in a strategy 
change by an individualof one agent or a system-level environmental variation 
can give rise to non-linear macro-dynamics such as a sudden shift into a 
different system state \citep{Schlueter2016}. 

In the context of land-use science, ABMs are mostlyIn addition to the behavior 
of the agents, ABMs of human-environment systems incorporate the dynamics of the 
biophysical environment resulting from natural processes and human actions 
insofar as it is relevant for the agents' behavior and to understand feedbacks 
between human behavior and environmental processes. For example, in an ABM by 
\citet{Martin2016}, a number of cattle ranchers can move their livestock between 
grassland patches in a landscape. Overgrazing in one year decreases feed 
availability in the following year because of the underlying biomass regrowth 
dynamics. Agents decide how many cattle to graze on a particular land patch 
based on their individual goals or needs, information on the state of the 
grassland, beliefs about the future and interactions with other ranchers. The 
model can reveal the interplay and success of different land-use strategies on 
common land and assess their vulnerability to shocks such as droughts.  Most 
ABMs in the context of land-use science have so far been developed for local or 
regional study areas, taking into account local specificities and fitting 
behavioral patterns to data acquired in the field \citep{Parker2003, 
Parker2008a, Matthews2007, Groeneveld2017}. They are often combined with 
cellular automaton models that describe the dynamics and state of the physical 
land system \citep[e.g.,][]{Heckbert2013}. In these ABMs, the spatial embedding 
of agents usually plays an important role \citep{Stanilov2012}.  

The following example from the literature illustrates the ABM approach in the 
context of land-use science: \citet{Martin2016} model a number of cattle 
ranchers on a landscape that have to decide how to move their livestock on 
grassland patches. The patches are described by equations for biomass regrowth 
depending on the precipitation in the area. Therefore, overgrazing in one year 
decreases feed availability in the following year. Agents decide when, where and 
how many cattle to graze on a particular land patch based on their individual 



goals or needs, information on the state of the grassland, beliefs about the 
future and interactions with other ranchers. Such a model can reveal the 
interplay of different land-use strategies on common land and help to assess the 
vulnerability of land-use strategies to shocks such as droughts. 

Because ABMs can integrate a diversity of individual decision making, 
heterogeneity of actors and interactions between agents constrained by social 
networks or space as well as social and environmental processes, they are 
particularly suitable to study feedbacks between human action and biophysical 
processes. In the context of ESM these may include human adaptive responses to 
environmental change such as effects of climate change on agriculture and water 
availability, to policies such as bioenergy production or the global 
consequences of shifts in diets in particular regions. Agent-based modeling is 
also a useful tool to unravel the causal mechanisms underlying system-level 
phenomena \citep{Epstein1999, Hedstrom2010} and thus enhance understanding of 
key human-environment interactions that may give rise to observed Earth system 
dynamics. However, because of their potentially high complexity and 
dimensionality in state and parameter space, ABMs are often difficult to analyze 
and may require high computational capacities and sophisticated model analysis 
techniques to understand their dynamics beyond single trajectories. 

Agent-based approaches can be applied without modeling each individual agent 
explicitly. It suffices to model a representative statistical sample of agents 
that depictdepicts the important heterogeneities of the underlying population. 
To capture major types of human behavior, a recent proposal are \emph{agent 
functional types}\footnote{\citet{Arneth2014} make the analogy to plant 
functional types in vegetation models.} based on a} based on a theoretically 
derived typology of agent attributes, interactions and roles \citep{Arneth2014}. 
This proposal is explored for modeling the adaptation of land-use practices to 
climate change impacts \citep{Murray-Rust2014a}. Agent-functional types 
represent a typology that is theoretically constructed instead of an empirically 
derived data-driven typology, which is common in empirically-based ABMs. Such 
agentAgent-based approaches are promising for Earth system modeling with respect 
tobecause they allow addressing questions of interactions across levels, for 
instance how regional or global patterns of land use emerge from interdependent 
regional and local or regional land-use decisions thatwhich are in turn 
constrained by the results of local interactions atemerging global patterns. 
Furthermore, they would allow the respective level.integration of uncertainty, 
agent heterogeneity and aggregation of detailed technological and environmental 
changes \citep{Farmer2015}. 

\subsection{Dynamics at the system level: System dynamics, stock-flow consistent 
and input-output models} 

This final subsection discusses modeling approaches without explicit micro-
foundations. Decisions in such models are not modeled directlyexplicitly with 
one of the options discussed in Section~\ref{sec:individual_behavior} but, as 
policy decisions in integrated assessment models, through the construction of 
different scenarios for the evolution of crucial exogenous parameters in the 
model. Because the dynamics are not explained by decisions of individual agents, 
such approaches deviate from the standards of methodological individualism. 

Global \emph{Systemsystem dynamics} models describe the economy, population and 
crucial parts of the Earth system as well as their dynamic interactions at the 
level of aggregate dynamic variables, usually modeling the dynamics as ordinary 
differential equations or difference equations to mapproject future 
developments. The equations are often built on stylized facts about the dynamics 
of the underlying subsystems and are linked by functions with typically many 
parameters. Modelers employ systemssystem dynamics models to develop scenarios 
based on different sets of model parameters and assess system stability and 
transient dynamics of a system. In comparison to equilibrium approaches, 
systemssystem dynamics models capture the inertia of socio-economicsocioeconomic 
systems at the cost of a higher dimensional parameter space. This can lead to 



more complex dynamics, e.g. oscillatory., oscillations or overshooting, 
dynamics. Systems. System dynamics models can be very detailed, like the World3 
model commissioned by the Club of Rome for their famous report on ``Limits to 
Growth'' \citep{Meadows1972, Meadows2004}, the GUMBO model \citep{Boumans2002a}, 
or the International Futures model \citep{Hughes1999}. Subsystems of such models 
comprise human population (sometimes disaggregated between regions and age 
groups), the agricultural and industrial sector, as well as the state of the 
environment (e.g. pollution and resource availability). Simpler models describe 
the dynamics of only a few aggregated variables at the global level 
\citep{Kellie-Smith2011} or confined to a region \citep{Brander1998b}. 

SystemOther system-level approaches to macroeconomic modeling often emphasize 
self-reinforcing processes in the economy and point at positive feedback 
mechanisms, resulting in multi-stability or even instability (e.g., increasing 
returns to scale in capital accumulationproduction and self-amplification of 
expectations during economic bubbles). 
For example, post-Keynesian and ecological economists use \emph{stock-flow 
consistent models} to describe a circulartrack the complete monetary flows in an 
economy in which low aggregate demand can lead to underutilization of production 
factors and the state plays an active role to stabilize the economy 
\citep{Godley2007}.. In these models, a social accounting matrix provides a 
detailed framework of transactions (e.g., monetary flows, i.e. per-time 
quantities) between representative agents in the economy such as households, 
firms and the government, which hold stocks of financial and physical assets and 
commodities \citep{Godley2007}. 

While stock-flow models often focus on the monetary dimension of capital and 
goods, ecological modeling approaches focus on material accounting or try to 
integrate material with financial stocks and flows in one framework 
\citep[e.g.,][]{Berg2015}.\\emph{Input-output modeling} focuses on the material 
side of economicmodels} track flows to much more detail between different 
industries or sectors of production \citep{Leontief1986, TenRaa2005, Miller2009} 
and can be extended to analyze the industrial metabolism, i.e. }. Each industry 
the material and energy flows and its environmental impacts in modern economies 
\citep{FischerKowalski1997, Ayres2002, Suh2009}. Input-output models consider 
different sectors or production sites of the economy and the material inputs 
that are needed to produce a desired good together with unwanted side-products 
such as waste and pollution. Each sector or production siteprocess is modeled by 
a fixed proportions (``Leontief'') production function, which is characterized 
by linear factors that depend on the available technology. Given a final demand, 
the required production of all intermediate goods and the resulting 
environmental footprint can be calculated by linear programming techniques. 
Regional input-output models also account for spatial heterogeneity and are used 
for example to estimate the environmental footprints of industrialized countries 
in other regions \citep{Wiedmann2009} or to evaluate possible impacts of extreme 
climate events on the global supply chain \citep{Bierkandt2014}. 

In the context of land-use changeFor example, an input-output model couldcan 
describe which primary input factors such as land, fertilizer, machinery, 
irrigation water and labor are required for satisfying the demand of an 
agricultural commodity by a specificmix of production technique. Sometechniques. 
The model would consider that some of these primary inputs have to be produced 
themselves, using other inputs. Outputs and outputs may also includebe unwanted 
side-products such as manure in cattle production or externalities such as 
environmental degradation. The model could be used to compare different 
technologies or. Such models are used for instance to explore how changes in 
demand would lead to higher-order effects along the supply chain. 
Regional input-output models also account for spatial heterogeneity and are used 
for example to evaluate possible impacts of extreme climate events on the global 
supply chain \citep{Bierkandt2014}. 

While the approaches discussed above focus on the monetary dimension of capital 
and goods, models from ecological economics \citep{vandenBergh2001} track 



material flows or integrate material with financial accounting. For example, 
input-output modeling has been extended to analyze the industrial metabolism, 
i.e. the material and energy flows and its environmental impacts in modern 
economies \citep{FischerKowalski1997, Ayres2002, Suh2009}. , for instance 
differences between intensive agriculture (mono-cultures for animal feed) and 
extensive land-use such as cattle ranching. 

Regionalized versions of such models can for instance be used to estimate the 
environmental footprint that industrialized countries have in other regions 
\citep{Wiedmann2009}. 
In the emerging field of ecological macroeconomics \citep[see][for a detailed 
review of modeling approaches]{Hardt2017}, stock-flow consistent and input-
output models have been combined into one framework tracking financial as well 
as material flows \citep{Berg2015}. 
Other ecological models use the flow-fund approach by \citet{Georgescu-
Roegen1971} or combine it with stock-flow consistent modeling approaches 
\citep{Dafermos2017}. While the flow concept refers to a stock per time, a fund 
is the potentiality of a system to provide a service. The important difference 
lies in the observation that a stock can be depleted or accumulated in one time 
step while a fund can provide its service only once per time step. This 
distinction reflects physical constraints on the production process that have 
important consequences for modeling the social metabolism. 
\citet{Garrett2015} and \citet{Jarvis2015} in this Special Issue provide an 
extreme view on the dynamics of social metabolism based only on thermodynamic 
considerations without taking human decision making or agency into account. 

In order to make these techniquesapproaches that only consider the system level 
useful for modeling the impact of humans on the Earth system, they could be 
combined with approaches that model the development of new production 
technologies and how they arethe deployment of new technologies is affected by 
decisions at different levels (consumers, firms and governments). Even if this 
integration with decision models may prove difficult, the approaches discussed 
in this section can help linking social and environmental dynamics in new ways, 
providing an important methodology to policy makers).include humans into ESMs. 

%t 
\begin{table*}[t] 
\caption{Summary table for aggregation and system level descriptions} 
\label{tab:aggregation} 
\begin{tabular}{p{4cm}p{4cm}p{4cm}p{4cm}} 
\tophline 
Approaches and frameworks & Key considerations & Strengths & Limitations \\ 

\middlehline 
Social utility and welfare: Aggregate individual utility, possibly taking 
inequalities into account & 
How is inequality evaluated? 
How is welfare compared between societies and generations? & 
Base for cost-benefit analysis, a widely applied decision model for policy 
evaluation & 
Assumes that individual utility can be compared on a common scale 
\\ 

\middlehline 
Aggregation via markets: Representative agents in economic models & 
Which goals or preferences do representative agents have? 
Which How efficient do market mechanisms allocate on which spatial and temporal 
scales do price mechanisms span? Which market imperfections are there? 
& 
Well developed formalism that makes the connection between micro- and 
macroeconomics analytically traceable & 
Assumes that aggregated agent properties are similar to individual ones to 
derive economic equilibrium, coordination effort between agents neglected 



\\ 

\middlehline 
Social planner and economic policy in integrated assessment models: Model 
possibilitiesways to internalize environmental externalities  & 
Which economic policy instruments internalize environmental externalities best? 
What are plausible scenarios for policy implementation? 
How do agents react to changes in policy? & 
Allows to determine optimal paths for reaching societal goals & 
Models focus on production and investment in the economy 
\\ 

\middlehline 
Distributions and moments: Model heterogeneous agent attributes via statistical 
properties of distributions & 
Which heterogeneities are most important for the macro-outcome? & 
Systematic way to analytically treat heterogeneities & 
Only applicable for rather simple behaviors and interactions 
\\ 

\middlehline 
Agent-based models: Simulate agent behavior and interactions explicitly to study 
emergent macro-dynamics computationally & 
Which kind of agents types are important? How do they make decisions? 
How do the agents interact with each other and the environment? & 
Very flexible framework regarding assumptions about decision rules and 
interactions & 
Models often with many unknown parameters, difficult to analyze mathematically 
\\ 

\middlehline 
Dynamics at the system level & 
Which crucial parameters in the model can be influenced by decision makers? 
& 
Allows to explore possible dynamical properties of the system based on macro-
mechanisms & 
No explicit micro-foundation 
\\ 

\bottomhline 
\end{tabular} 
\belowtable{} % Table Footnotes 
\end{table*}     

% 
================================================================================ 
% 
================================================================================ 

\section{Discussion} 
\label{sec:discussion} 

In the previous three sections, we reviewed different showed that there is a 
diversity of approaches to model  individual human decision making and behavior, 
to describe interactions between agents and to aggregate these processes. We 
illustrated them with examples from the land-use context and discussed their 
potential application in Earth system modeling with the aim of modeling complex 
feedback dynamics between natural and social components. 

One intentionThe discussion of this review is to draw the attentionstrengths and 
limitations of the reader to the differentmodeling approaches showed possible 
underlying assumptions and connections to theories about human decision making 



and behavior that are possible to describe with specific modeling approaches and 
point to their strengths and limitations. 
Someof human behavior. While some modeling techniques are compatible with almost 
any theorymany theories of human behavior or decision making that can be 
formalized and can thus be used with manya variety of assumptions about human 
behavior. Other modeling , other techniques significantly constrain possible 
assumptions about human behavior and decision making. 

Therefore it is important to first decide on% paragraph: when is it useful to 
model humans dynamically 
For many relevant questions in global environmental change research, a dynamical 
representation of humans in ESMs may not be necessary. If behavioral patterns 
are not expected to change over the relevant time scales or feedbacks between 
natural and social dynamics are sufficiently weak, modelers can simply use 
conventional scenario approaches. 

However, if behavioral patterns are expected to change over time and give rise 
to strong feedbacks with the environment, then an explicit representation of 
human decision making will provide new insights into the joint dynamics. 
In this case, modelers have to choose carefully which assumptions about human 
behavior and decision making are reasonable in the context of a research 
question and then choose the techniques accordingly. 
To put it the other way around, the choice of aplausible for their specific 
modeling technique may have considerable consequences for the types of 
meaningfully answerable research questions and kinds of analysis that they can 
providepurpose. 
Modeling choices require a constant interplay between model development and the 
research questions that drive it. In Table~\ref{tab:summary}, we summarized the 
approaches we discussed in this paper and collected important questions 
regarding the different categories. We think a modeler who needs to make 
decisions on which approaches and techniques to use in order to include humans 
into Earth system models should be aware of the questions and considerations, 
which we discuss in the following. 

RegardingBecause there is no general theory of human decision making and 
behavior, especially not for social collectives, we cannot provide a specific 
recipe for including humans into ESMs. 
In Table~\ref{tab:summary}, we summarize the approaches we discussed in this 
paper and collect important questions to guide the choice of appropriate model 
assumptions and approaches. 
To find the right assumptions for a specific context, modelers can furthermore 
build on and consult existing social-scientific research, even though 
ambiguities due to a fragmentation of the literature between opposing schools of 
thought and difficulties to generalize single case studies from their local or 
cultural specificities can make some of the research difficult to access.  
In case of doubt, modelers can team up with social scientists to conduct 
empirical research in the specific context needed to select the appropriate 
approach. 
The selection of a modeling technique compatible with the chosen assumptions 
also has to consider its limitations for meaningfully answerable research 
questions and analyses that it can provide. In the following, we discuss some 
important considerations regarding individual decision making, interactions and 
aggregation. 

% discussion of individual decisions 
Concerning individual agents, we identified three important determinants in 
decision models: motives, restrictions and decision rules. Assumptions about 
each of these three determinants Modelers need to be made with great care, as 
there are take the many factors into account that might influence which motives, 
restrictions, and decision rules are relevantassumptions about each of these 
three determinants are applicable in a given context. For instance, modelers can 
make different assumptions about whether decision makersagents only consider 
financial incentives or whether also soft incentivestake into account other 



criteria, such as a desire for fair outcome distributions \citep{Fehr2002}, are 
relevant \citep{Opp1999}.}, depending, e.g., on whether a situation is more or 
less competitive or cooperative. Research shows that the relevance of motives 
and goals can vary over time and that surprisingly subtle cues can change 
thetheir importance of motives \citep{Lindenberg1990, Tversky1985}. Likewise, 
the choice of a plausible decision rule depends on the studied context. For 
instance, a decision rule that requires complex calculationscomputations may be 
relatively plausible in contexts where individualsagents make decisions with 
important consequences and where they have the information and time needed to 
compare alternatives. When stakes are low and time to decide is limited, 
however, more simple decision rules are certainly more plausible. Cognitively 
demanding decision rules are also more plausible when decision makers are 
collectives, such as companies and governments. Sometimes, it may even be 
reasonable to assume that actorsagents use combinations of the different 
decision models \citep{Camerer1999}. 

When focusing on the interaction of agents, important% discussion of 
interactions 
Important criteria for choosing an appropriate model of agent interactions are 
the type and setting of interactions, the assumptions that agents make about 
each other, the influence they may exert on each other and the structure of 
interactions. For example, interactions in competitive environments will only 
lead to cooperation if this is individually beneficial. In such environments, 
agents may assume that the others'others form their strategies rationally. In 
less competitive settings, where social norms and traditions play a crucial 
role, however, behavior may not be strategically chosen but rather adaptively, 
e.g., by imitating other agents. This might also be important on time scales at 
which cultural evolution happens. 
Furthermore, social settings might favor that agents influence each others' 
characteristics and primarily interact by exchanging opinions or sharing beliefs 
and influence each others' decisions in this way. 

% interaction structure 
Finally, an important criterion% discussion of aggregation 
Crucial criteria for the choice of how to model an appropriate aggregation 
technique for behavior and interactions of single elementsare the properties of 
relevant economic and political institutions (e.g., market mechanisms or voting 
procedures), decision criteria for collective agents, heterogeneity of modeled 
agents, availability of data to evaluate the model and relevant time and spatial 
scales of macro-descriptions. 
Depending on the specific research questions, modelers have to choose the 
aggregation method that fits the real-world systems of interest and describes 
their aggregation mechanisms and aggregate behavior reasonably. Whether the 
aggregate behavior of many agents is whetherbetter represented by a 
representative agent as in macroeconomic models, a distribution of agent 
characteristics, or many diverse individuals as in ABMs depends on the 
importance of agent heterogeneity and interaction structures such as networks or 
spatial embeddedness. 
The choice of an aggregation technique then determines which characteristics and 
processes of the system are modeled explicitly and which assumptions influence 
the form of the model only implicitly. 

% interaction structure 
If the local structure of interaction matters. If it does, this would require a 
gridded or networked approach, otherwise a mean field approximation is 
justified. Similar choices have to be made in classical Earth system modelsESMs: 
For example, the interaction of ocean and atmosphere temperature near the 
surface on a spatial grid could be modeled either by only taking interactions 
between neighboring grid points into account or by coupling the ocean 
temperature to the atmospheric mean field. Analogously, the interactions between 
groups of two types of agents may be modeled explicitly on a social network. 
However, it might also suffice to only consider interactions between two agents 
representing the mean of each group respectively. The question whether the 



interaction structure matters can often not be answered a priori but canmay be 
the result of a comparison between an approximation and an explicit simulation. 

For the aggregation of individual decision making and interactions, crucial 
criteria for modeling choices are the properties of relevant societal 
aggregation mechanisms, decision criteria for collective agents, heterogeneity 
of modeled agents and relevant time and spatial scales of macro-descriptions. 
We introduced different approaches to model political and economic institutions 
(markets, voting protocols) that aggregate individual decisions. Depending on 
the specific research questions, such modeling approaches can be adopted to fit 
particular real-world system and describe their aggregation.  
To model decisions between economic or environmental policies, normative 
decision models can sometimes also be used to describe such decisions if they 
take into account actual and perceived controls of policy makers and consider 
the effect of compromises between different interest groups. 

Furthermore, there are interesting parallels in choices of modeling techniques 
between classical Earth system modeling and socio-economic models at the macro-
level. We discuss here two examples: 
% heterogeneity 
First, the choice between different aggregation techniques to connect a micro- 
to the system-level% heterogeneity / level of detail and aggregation 
For the choice of an appropriate aggregation technique, modelers also have to 
decide on the level of detail to describe the system and whether the modeling of 
individuals or intermediate levels of the system is necessary or an aggregate 
description suffices. 
This choice depends on the expected importance of interactions and heterogeneity 
in an assumed set of agents. Take asAs an example from classical Earth system 
modeling consider vegetation models, in which modelers may considerchoose 
between the simulation of representative plant functional types or ensembles of 
individual adaptive plants depending on whether they consider the interaction 
and heterogeneity important for the macro-dynamics. Analogously, a model of 
social dynamics may choose for instance betweenuse a representative agent 
approach or model heterogeneous agents explicitly in an agent-based model. Of 
course the choice between a coarse-grained and a fine-grained description 
crucially depends, depending on the properties of the system and the research 
questionsquestion. 
The choice between a detailed and aggregated description depend strongly on the 
model purpose. For example, if the goal is to predict the future development of 
a system, a system-level description could already suffice, while a more 
detailed model (e.g., ABM) would be needed for understanding the mechanisms that 
explain these outcomes in terms of underlying heterogeneous responses of 
individuals. Likewise, for a normative model aiming to identify the action that 
maximizes social welfare an intermediate level of detail could suffice, taking 
only specific agent heterogeneities into account. 

% time scales 
Second,In general, the evaluation of time scales can help in many of the above-
mentioned modeling choices to decide whether elements andsocial processes and 
properties of socioeconomic units should be modeledrepresented as evolving 
inover time, can be fixed or need not be consideredmodeled explicitly at all for 
a macro-level description of the system. As an 
For example, consider the propagation of increased CO$_2$ concentration in 
global circulation models. The relatively quick convection of CO$_2$ in the 
atmosphere may not be of interest on longer time scales and the 
CO$_2$ concentration can be   can be assumed to be well-mixed.  But when 
modeling CO$_2$ concentrations in the oceans  for the atmosphere, while assuming 
this for the ocean with its slow convection would distort results on politically 
relevant time scales, the assumption that CO$_2$ is well-mixed might distort the 
results  considerably because convection between ocean layers is comparatively 
slow \citep{Mathesius2015}.  
Similarly, general equilibrium models can be a good description if the 
convergence of prices happens on fast time scales and market imperfections are 



negligible. Dynamical systemssystem models, on the contrary aremay be more 
appropriate to describe systems with a high inertia that may operate far from 
equilibrium due to continuous changes in system parameters and slow convergence. 
Questions about the relevant spatial scales and the importance of the location 
of entities can be similarly related to modeling decisions in classical Earth 
system models. 

A decisive question is therefore if the time scales of processes in the system 
allow a separation of scales. For instance, this is possible if the micro-
interactions are some orders of magnitude faster that changes in system 
parameters or boundary conditions. 
Similar considerations apply for spatial scales. 

% differences to natural science models 
As we have shown in the examples above, there are somemany similarities 
regarding the choice of modeling techniques and assumptions in Earth systemESMs 
and models and models of socio-economicof socioeconomic systems. However, 
fundamental differences between the modeled systems pose a big challenge for an 
informed choice of modeling techniques. Earth system modelsESMs can often build 
on fundamental scientificphysical laws describing micro-interactions that can be 
tested and scrutinized. Of course this can result in very complex macroscopic 
system behavior with high uncertainties. But models including human behavior on 
the other hand have to draw on a variety of accounts of basic motivations in of 
human decision making. And these motivations may change over time while 
societies evolve and humans change their actions because of new available 
knowledge. 

At this point, there isThis can lead to a crucial feedback between the real 
world and models: Agents (e.g.., policy makers) may decide differently when they 
take the information provided by model projections into account. Therefore, it 
is important to keep in mind that modeling activities including humans choices 
regarding human behavior might eventually change thethis behavior of agents 
because. This aspect of human reflexivity. This makes models of human-dominated 
systems societies fundamentally different from natural science models. 
This also pointsand is closely linked to the important difference in social 
modeling between normative and descriptive model purposes. We highlighted 
For example, models that optimize social welfare usually reflect the goal that a 
government should pursue, and therefore have a normative purpose. But if this 
difference throughout the paper but want to point outmodel is used to guide 
policy making while taking into account the actual and perceived controls of 
policy makers and considers the effect of compromises between different interest 
groups, it could also describe its importance here again: The purpose of a model 
is crucial for the choice of suitable modeling techniques, e.g. choosing a 
maximization technique or a set of differential equations to tackle the research 
question. Or to put it the other way around: The choice of a modeling approach 
may behavior.  
This example already imply basicshows the often intricate interconnections 
between normative and descriptive assumptions although the modeler may not in 
decision modeling that modelers should be aware of them and just choose. 

This is further complicated by the observation that the same assumption may be 
understood in one model as a descriptive (positive) statement whereas in another 
model it may be meant as a prescriptive (normative) one. For example, in a model 
of agricultural markets, the assumption that big commercial farms maximize their 
profits might be a reasonable descriptive approximation. for pragmatic 
reasonsHowever, in a model that asks how small-holder farms could survive under 
competitive market conditions, the same assumption gets a strong normative 
content. 

AAnother difficulty that we encountered in the classification and presentation 
of the material is that it is not always clear which parts of a theoryis that 
model choices are important often not only based on the most plausible 
assumptions regardingabout human behavior and which modeling decisions decision 



making but are taken because ofstrongly influenced by considerations about the 
assumption's mathematical convenience. Choosing assumptions for technical 
reasons, e.g., mathematical simplicity and tractability, may be problematic 
because it remains unexplained how they are related to the real world. 
Additionally, assumptions in one model may be understood as descriptive 
(positive) statements whereas in another model they may be meant as prescriptive 
(normative) ones, depending on the application of the modelBut because not all 
assumptions can be easily implemented in formal models, often a trade-off has to 
be found between plausibility and technical practicality of assumptions. For 
example, in a model of agricultural markets, the assumption that big commercial 
farms maximize their profits might be a reasonable descriptive approximation. 
However, in a model that asks how small-holder farms could survive under such 
market conditions, the same assumption gets a strong normative content. 

Another important insight from the reviewing effort is that the terminology 
sometimes differs between disciplinary or sub-disciplinary scientific fields. 
Therefore, different terms from two separate fields could refer to very similar 
theories whereas the same term might be used to describe quite separate 
varieties of a theory in different fields. We tried to use our terminology as 
clearly as possible and thus hope to contribute to a better understanding 
between different fields. But not only the terminology differs between fields, 
there are also important differences in focus and consequent limitations between 
different schools in the social sciences. 

We also want to point out that our survey of techniques has a bias towards 
economic modeling techniques for two simple reasons: First, economics is the 
social science discipline that has the longest and strongest tradition in formal 
modeling of human decision making. Second, economics focuses on the study of 
production and consumption as well as the allocation of scarce resources. In 
most industrialized countries today, a major part of human interactions with the 
environment is mediated through markets, central in economic analyses. 
This review goes beyond the often narrow framing of economic approaches while at 
the same time not ignoring important economic insights. For instance, 
consumption and production decisions do not only follow purely economic 
calculations but are deeply influenced for instance by behavioral patterns, 
traditions and social norms \citep{TheWorldBank2015}. 

However, many theories in the social sciences are building on verbal models 
rather than mathematical formalizations. A major part of the theoretical work in 
the social sciences is very context specific and some sub-disciplines reject 
that their findings can be meaningfully generalized \citep{Williams2012, 
Rosenberg2012}. However, including human decisions into Earth system models 
requires such generalizations. Without  them, the modeling of futures that are 
potentially very different from the past would not be possible. This makes many 
approaches in the social sciences incompatible with natural science and 
therefore difficult to include into Earth system models. It is therefore 
important to put effort into formalizing such theories, making them scalable and 
testing the consequences of their different assumptions about human behavior, 
interactions and its aggregation at different levels. 

Most global models that describe human interactions with the Earth system and we 
found in the literaturereviewed here are based on economic assumptions about the 
behavior of humans and societies and. They are often only linked in a one-way 
fashion to the biogeophysical part of the Earth system. It 
Including closed feedback loops between social and environmental dynamics into 
ESMs is thus an ongoingstill a big challenge. 
To advance this endeavor, more work is needed to include co-evolutionary 
dynamical interactions synthesize modeling approaches that can represent various 
aspects of human societies with other Earth system components into behavior in 
the context of global models. modeling, even if the need for generalizations and 
formalization of human behavior is sometimes met with skepticism or rejection by 
social scientists who emphasize the context dependence and idiosyncrasy of human 
behavior. 



Of course, models includingthat use simple theories of human decision making and 
social dynamics can notbehavior to describe human-environment interactions in 
the global context cannot claim to describecapture all real-world social 
interactions. However, they could include formal descriptions of idealized 
social mechanisms so far not considered explicitly in global models that are 
regarded as being important to explain driving forces for environmental impacts 
such as land-use change. Even though more realistic models would have to be much 
more complex if they 
If models considered the heterogeneity of agents in all relevant aspects, they 
would have to be much more complex than all models that have been developed to 
date.  
But in many real-life settings even simple conceptual models of social 
mechanisms are good descriptions of key features of the dynamics at work, as we 
have highlighted throughout this review. 
One the one hand, modeling human behavior comes with many degrees of freedom. On 
the other hand, modelers need to choose assumptions that are plausible in the 
context of their study, consulting existing social-scientific research, 
exploring whether alternative assumptions about the three determinants are 
crucial in the sense that they affect the predictions of the ESM, and conducting 
the empirical research needed to select the appropriate model. 

Including such formal descriptions of idealized social mechanisms can therefore 
be a good starting point for understanding feedbacks in the Earth system and 
their qualitative consequences so far not considered explicitly in global 
models. 

%t 
\begin{table*}[t] 
\caption{Collection of questions that may guide the choice of modeling 
approaches and assumptions.} 
\label{tab:summary} 
\begin{tabular}{p{4cm}p{10cm12cm}} 

\tophline 
Category & Important modeling questions \\ 

\middlehline 
Modeling individual decision making and behavior 
& Which goals do agents pursue? 

Which constraints do they have? 

Which decision rules are useddo agents use? 

How do agents acquire information and beliefs about their environment? 
\\ 

Modeling interactions between agents & 
Do agents interact in a competitive environment or are interactions primarily 
governed by social norms? 

What do agents assume about each other's rationality? 

Do agents choose actions strategically or adaptively? 

How are agents influenced by others regarding their beliefs and norms? 

Which structure do the interactions have and how does the structure evolve? 
\\ 

Aggregating behavior and modeling dynamics at the system level & 



Are agent decisions aggregated through political institutions (e.g., voting 
procedures) or markets? 

According to which criteria do policy makers decide and which controls do they 
have? 

Is the heterogeneity of agent characteristics and interactions important? 

Which macro-level measures are dynamic and which can be assumed to be fixed? 
\\ 

\bottomhline 
\end{tabular} 
\belowtable{} % Table Footnotes 
\end{table*}     

% 
================================================================================ 
% 
================================================================================ 

\conclusions[Summary and Conclusion] 
\label{sec:conclusion} 

In this review, we discussed common modeling techniques and theories that could 
be potentially used to include human decision making and the resulting 
responsesfeedbacks with environmental dynamics into Earth system models. (ESMs). 
Although we could only discuss basic aspects of the presented modeling 
techniques, it is apparent that modelers who want to include humans into Earth 
system modelsESMs are confronted with crucial choices of which assumptions to 
make about human behavior and which appropriate techniques to use. 

As Table~\ref{tab:summary} summarizes, we discussed techniques and modeling 
assumptions in three different categories. First, the modeling of individual 
decision makingmodeling focuses on decision processes and the resulting behavior 
of single agents and therefore has to make assumptions about how the 
determinants of choices between possible behavior comes about.behavioral 
options. Second, modelsmodel of interactions of two or severalbetween agents 
capture how decisions depend upon each other and how agents influence are 
influencedeach other regarding different decision criteria. Third, modeling 
techniques that aggregate individualagent behavior and interactions to a system 
level description. The third category is are crucial for being able to model 
human behavior at scales relevant for the Earth system butand requires key 
elementsingredients of the first and the second categories. To include human 
decision making into ESMs, techniques and assumptions from these three 
categories have to be combined. Finally, we discussed important questions 
regarding the choice of modeling approaches and their interrelation with 
assumptions about human behavior and decision making, e.g.., regarding the level 
of description, the relevant time scales but also difficulties that can arise 
due to human reflexivity and the amalgamation of normative and descriptive 
assumptions in models. 

TheMost formal models used in various disciplines to that describe human 
behavior in global environmental contexts have a bias towardare based on 
economic approaches. This is not surprising because most of the modeling 
techniques applied in the context of global environmental change today follow 
economic approaches and many human interactions with the environment are driven 
by economic forces. and economics has a stronger focus on formal models than 
other social sciences. However, we think that it is necessary to advance 
research that alsobuilds on insights from other social sciences and applies 
social modeling and simulation in the context of global environmental change. 
One important aim of such research would be to provide a theoretical basis for 



including processes of social evolution and institutional development into Earth 
system models.ESMs. If we want to explore the possible futures of the Earth, we 
need to get a better understanding of how the long-term dynamics of the Earth 
system in the Anthropocene is shaped by these cultural and social processes. 

A new generation of Earth system modelsESMs can build on various approaches, 
some of which we reviewed here, to include human decision making and behavior 
explicitly into Earth system dynamics. However, ambitious endeavors like this 
have to take into account that modeling of human behavior and social processes 
is a contested topic and the assumptions and corresponding modeling techniques 
need to be chosen carefully being aware of their strengths and limitations for 
the specific modeling purpose. 
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