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Abstract. Robustness and resilience are concepts in systems thinking that have grown in importance and popularity. 10 

For many complex social-ecological systems, however, robustness and resilience are difficult to quantify and the 

connections and trade-offs between them difficult to study. Most studies have either focused on qualitative approaches 

to discuss their connections or considered only one of them under particular classes of disturbances. In this study, we 

present an analytical framework to address the linkage between robustness and resilience more systematically. Our 

analysis is based on a stylized dynamical model that operationalizes a widely used conceptual framework for social-15 

ecological systems. The model enables us to rigorously delineate the boundaries of conditions under which the coupled 

system can be sustained in a long run, define robustness and resilience related to these boundaries, and consequently 

investigate their connections. The results reveal the trade-offs between robustness and resilience. They also show how 

the nature of such trade-offs varies with the choices of certain policies (e.g., taxation and investment in public 

infrastructure), internal stresses and uncertainty in social-ecological settings. 20 

1. Introduction 

The concepts of “resilience” and “robustness” have grown considerably in popularity as desirable properties for a 

wide range of systems. Terms like “resilient communities” and “robust cities” have been used more frequently in 

public discourse (e.g., Chang and Shinozuka, 2004; Longstaff et al., 2010; Chang et al., 2014). The UK’s Water Act 

2014 even included “primary duty to secure resilience” as one of the general duties of its Water Services Regulation 25 

Authority (Water Act, 2014). Growing with that popularity is some confusion and potential misuse of the terms 

“robustness” and “resilience” due to imprecision, vagueness, and multiplicity of their definitions. Such lack of 

consistency and rigor hinders advances in our understanding of the interplay between these two important system 

properties. 

Relatively speaking, robustness has been defined more consistently and rigorously—as it can be linked to a more 30 

familiar concept of sensitivity. For example, according to Carlson and Doyle (2002), robustness in engineering 

systems refers to the maintenance of system performance either when subjected to external disturbances or internal 

uncertain parameters. In other words, in robust systems, performance is less sensitive to disturbances or uncertainty.  
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Robustness may very well be a desirable property of a system, but it seems to come with a price. Recent research 

shows that tuning a system to be robust against certain disturbance regimes almost always reduces system performance 

and likely increases its vulnerability to other disturbance regimes (Ostrom et al., 2007; Anderies et al., 2007; Bode, 

1945; Csete and Doyle, 2002; Wolpert and Macready, 1997). Now, if resilience is also a desirable property of the 

same system, does it also come at the expense of performance and robustness? Put it another way, is there a trade-off 5 

among performance, robustness, and resilience? Such a trade-off, if exists, is a crucial consideration for governing 

and/or managing social-ecological systems (SESs). 

But resilience, as alluded to above, is trickier to define. According to Holling (1973), resilience refers to the amount 

of change or disruption required to shift the maintenance of a system along different sets of mutually reinforcing 

processes and structures. In other words, resilience can be thought of as how far the system is from certain thresholds 10 

or boundaries beyond which the system will undergo a regime shift or a quantitative change in system structure or 

identity. Holling (1996) categorized resilience into two types, engineering resilience, which refers to the ability of a 

system to return to steady state following a perturbation, and ecological resilience, which refers to the capacity of 

system to remain in a particular stability domain in the face of perturbations. The latter category is used by many 

researchers to discuss resilience of SESs, or more generally, coupled infrastructure systems (CISs) (Carpenter et al., 15 

2001; Folke, S et al., 2002; Anderies et al., 2006; Folke, 2006; Folke et al., 2010; Biggs et al., 2012; Barrett and 

Constas, 2014; Redman, 2014; Walker et al.,2002; Gunderson et al., 1995; Berkes and Folke, 1998;  Carpenter et al., 

1999a, 1999b; Scheffer et al., 2000; Berkes et al., 2003; Walker et al., 2004; Carpenter and Brock, 2004; Janssen et 

al., 2004; Folke et al., 2002; Anderies et al., 2006; Folke et al., 2016; Cote and Nightingale, 2012; Mitra et al., 2015; 

Cumming and Peterson, 2017). The term coupled infrastructure systems (CISs) has been introduced to generalize the 20 

notions of coupled natural-human systems (CNHSs) and social-ecological systems (SESs); in this context, 

infrastructure is broadly defined to include human-made, social, and natural infrastructure (see, e.g., Anderies et al., 

2016). The problem is that these CISs are complex and thus identifying thresholds and potential regime shifts 

associated with those thresholds is often difficult, if not impossible. In many cases, major aspects of resilience in CISs 

may not be directly observable and must be actualized indirectly via surrogate attributes (Carpenter et al., 2005; Kerner 25 

and Thomas, 2014). Recent significant advances have been made toward identifying early-warning signals that 

indicate whether a critical threshold is being approached for a wide class of systems (Scheffer et al., 2009 and 2012). 

Still, there are gaps in our understanding of how indicators of resilience and robustness will behave in more complex 

situations. This lack of a rigorous metric for resilience makes the investigation into their connections, interplay, and 

trade-offs with robustness and performance impossible. 30 

But these knowledge gaps need to be filled if one wishes to make advances in understanding the interplay between 

social dynamics and planetary boundaries. Given the magnitude of impacts that human activities have on pushing 

Earth systems toward their planetary boundaries, we need clearer understanding of how social and biophysical factors 

come together to define the nature of these boundaries. This paper is a step in that direction. In particular, we will 

build on recent work that mathematically operationalizes the Robustness of SES framework (Anderies et al., 2004) 35 

into a formal stylized dynamical model (Muneepeerakul and Anderies, 2017). We will exploit the relative simplicity 
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of the model to rigorously define robustness and resilience of the coupled system. The modelled system will be subject 

to fluctuations in external drivers, which will affect the well-defined robustness and resilience, thereby enabling us to 

investigate the interplay and trade-offs between these important properties, as well as how the nature of the interplay 

and trade-offs are affected by policies implemented by social agents. 

2. Methods 5 

Here we analyse a mathematical model developed by Muneepeerakul and Anderies (2017) by subjecting the coupled 

system to uncertainty in ecological and social factors. The model captures the essential features of a system in which 

a group of agents shares infrastructure to produce valued flows. Such a system is the archetype of most, if not all of 

human sociality: groups produce infrastructure that they cannot produce individually (security, defence, irrigation 

canals, roads, markets, financial systems, coordination mechanisms, etc.) that significantly increases productivity. The 10 

challenge is maintaining this shared infrastructure (e.g. decaying infrastructure is a major problem in the US at the 

time of writing (ASCER CIA Advisory Council, 2013). The model allows for mathematical definitions of the 

boundaries of policy domain that result in a sustainable system in which both human-made and natural infrastructure 

can be maintained over the long run. Based on these boundaries and uncertainty in the exogenous factors, we define 

metrics of resilience and robustness associated with each policy choice and investigate the trade-off between them. 15 

The basic model presented by Muneepeerakul and Anderies (2017) is described in the Appendix. 

Here a policy is defined as a combination of taxation level 𝐶 and the proportion of tax revenue invested in 

infrastructure maintenance 𝑦 that the public infrastructure providers (PIPs) decide to implement in the system. The 

infrastructure (e.g. canals) enable resource users (RUs) to produce valued goods from a natural resource. The two 

fluctuating exogenous factors are the replenishment rate of the natural resource 𝑔 and the wage 𝑤 that resource users 20 

(RUs) would earn from working outside the system—a combination of 𝑔 and 𝑤 defines a “social-ecological setting” 

or simply “setting.” There are two boundaries that, once crossed, will cause the system will collapse. The first 

boundary is called PIP participation constraint (PPC): when the PIPs must invest too much in maintaining the public 

infrastructure (exceeding the opportunity cost of 𝑤 ) and/or cannot retain enough revenue for themselves, they will 

abandon the system for another. The second boundary is the stability condition of the non-trivial equilibrium point 25 

(i.e., the “society” in which both PIPs (e.g. the state) and RUs (e.g. citizens) participate in the system and public 

infrastructure is sufficiently maintained in a long run). Together, these two boundaries delineate a set of policies (𝐶-

𝑦 combinations) that correspond to sustainable outcomes. The resilience metric to be developed below can be thought 

of as a metric of how far the system is from these boundaries. As the two exogenous factors defining settings, namely 

𝑔 and 𝑤, fluctuate, the two boundaries and thus the resilience metric, too, fluctuate with them. How sensitive the 30 

resilience metric is to these fluctuating settings is used to define robustness. Here, it is worth noting that, while it is 

possible to examine recovery-based resilience (or the so-called “engineering resilience”), this paper focuses on regime 

shift-based resilience (traditionally called “ecological resilience”) and its robustness. Quantification of and trade-offs 

between resilience and robustness is a novel concept that requires expositional clarity. Presenting several metrics of 

resilience, let alone studying their trade-offs with potentially different metrics of robustness, may confuse the matter 35 
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and dilute the key messages we attempt to convey. As such, in what follows, we will focus on developing a metric for 

regime shift-based resilience. With the scope of analysis clarified and suitably bounded, we will now define resilience 

and robustness more formally. 

2.1. Resilience metric 

Direct measurement of above-mentioned resilience, as a specified form of resilience (Walker et al., 2004), in SES’s 5 

is difficult because boundaries and thresholds that separate domains of dynamics for SES’s are difficult to identify 

(Carpenter et al., 2005; Scheffer et al., 2009 and 2012). In this stylized model, however, such boundaries can be clearly 

identified by the stability condition (SC) and the PPC. Here, we are interested in the resilience of system’s ability to 

provide sufficient livelihoods for the PIPs and resource users. The basin of attraction for system resilience is defined 

by those system states (i.e. infrastructure state) in which this is possible, and these system states are directly mapped 10 

to the SC and PPC. We will thus define resilience metrics based on the SC and PPC boundaries. Here our goal is to 

develop resilience metrics that can be meaningfully compared to one another. As such, we identify some desired 

properties that guide the definitions of these resilience metrics. First, they should be zero at their respective boundaries. 

Second, positive values indicate greater resilience of the system in a desirable state. These first two properties align 

with how resilience has been measured, i.e., the distance from the boundary of a basin of attraction (e.g., Anderies et 15 

al., 2002; S. R. Carpenter et al., 1999). Third, to facilitate the consideration of relative risks associated with different 

types of regime shifts that the system may be facing, the metrics should be comparable in magnitude. These properties 

guide us toward the following definitions of the resilience metrics. 

We define the resilience of the system against abandonment by PIPs as follows: 

𝑅 = (𝜋 /𝑤 ) − 1, (1) 20 

where 𝜋  is the net revenue that PIPs collect and 𝑤  is the opportunity cost that they will earn if they choose to work 

with another system. Positive values of 𝑅  indicate that the system is resilient against being abandoned by PIPs, 

while negative values indicate that the system will eventually collapse due to the PIPs’ abandonment. It is important 

to note that 𝜋  results from the coupled dynamics of the CIS; this means that 𝑅  has already integrated the dynamics 

of infrastructure, resource, and resource users (Eqs. A1, A4 and A5), making it a metric of the system, not of an 25 

individual component. 

Numerical analysis of the model indicates that the equilibrium becomes unstable when the following Routh-Hurwitz 

condition (e.g., May, 2001; Kot, 2001) is violated: 

𝐷 − 𝑇 𝐽 , 𝐽 , + 𝐽 , 𝐽 , + 𝐽 , 𝐽 , + 𝐽 , 𝐽 , > 0, (2) 

where, 𝐷, 𝑇, and 𝐽′𝑠 are determinant, trace, and entries, respectively, of the Jacobian matrix of the dynamical system 30 

(Eqs. A1, A4, and A5) evaluated at the nontrivial equilibrium point (Eq. A6)—when such an equilibrium point exists. 

Here, it is worth noting that we focus on the equilibrium point related to the non-trivial sustainable long-term outcome.  

Analyzing other bifurcations related to other equilibria may be mathematically interesting, but it could make the study 

less accessible and dilute its key message about the resilience-robustness trade-off of different policies aiming at 

keeping the system in the basin of attraction of the non-trivial sustainable long-term outcome. 35 
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Following the guideline provided by the three desirable properties above, we rearrange terms in Eq. (2) and define the 

resilience of the system against instability (increased probability of collapse of infrastructure) as follows: 

𝑅 =
𝐷

𝑇 𝐽 , 𝐽 , + 𝐽 , 𝐽 , + 𝐽 , 𝐽 , + 𝐽 , 𝐽 ,

− 1, (3) 

This formulation is parallel to that of the first resilience metric (Eq. 1); it possesses the three properties: 𝑅  of 

zero indicates the boundary between stability and instability; positive 𝑅  means the system at the equilibrium 5 

point is stable; and the magnitudes of 𝑅  are comparable to those of 𝑅  (see Fig. 1). Note that 𝑅 , 

too, is determined from the coupled dynamics of the CIS; this means that it has integrated the dynamics of 

infrastructure, resource, and resource users (Eqs. A1, A4 and A5). 

This allows us to meaningfully define the overall system resilience as the minimum between the two resilience metrics, 

namely: 10 

𝑅 =
𝑀𝑖𝑛 𝑅 , 𝑅 ,∧ 𝑅 , 𝑅 ≥ 0

0,∧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4) 

Equation (4) implies that 𝑅  is positive only when the nontrivial equilibrium point (Eq. A6) exists and is stable; 

otherwise, the system is considered not resilient and denoted by 𝑅 = 0. 𝑅  thus represents the tension 

between the PIPs being too greedy (high C, low y) whereby they get close to the stability boundary and “not greedy 

enough,” i.e., low C and high y whereby they get close to the PPC, given a particular choice for 𝑤 . Note that the 15 

values of w and 𝑤  represent the socio-economic embedding of the CIS. Therefore, the biophysical structure of the 

CIS along with the socio-economic context in which it is embedded co-determine the maximum resilience that can be 

achieved. Given that the nontrivial equilibrium point exists and is stable, if the system is at a greater risk of being 

abandoned by the PIPs (and eventually collapsing), 𝑅 = 𝑅 ; if the system is at a greater risk of becoming 

unstable (and eventually collapsing), 𝑅 = 𝑅 . Figure 1 illustrates the relationships between 𝑅  , 20 

𝑅 , and 𝑅 .  

Figure 1: Resilience metrics for a specific setting (a 𝑔-𝑤 combination) inside the sustainable region in the policy space 

(i.e., 𝐶-𝑦 plane): (a) 𝑅  contours; (b) 𝑅  contours; and (c) 𝑅  contours. The black star in panels (a), 

(b), and (c) indicate the policy with the highest 𝑅 , 𝑅 , and 𝑅 , respectively. 

2.2. Linking Robustness and resilience  25 

As discussed earlier, robustness can be thought of as the opposite of sensitivity. A commonly used measure of 

sensitivity is variance. Thus, variance of a given function under specific disturbance or uncertainty regimes may be 

used to indicate robustness of that function against those disturbance or uncertainty regimes (robustness of what to 

what). In this case, the system function of interest is the system resilience 𝑅 . By choosing 𝑅  as our 

function, we can usefully link these concepts. If we use a ball and cup metaphor for resilience, the robustness of 30 
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resilience refers to the degree at which the geometry of the cup changes as a result of external disturbances and/or 

parameter changes. However, as we will argue below, relating high variance of 𝑅  to low robustness may be 

misleading and should not be used in evaluating a given policy. By definition, the variance treats “good deviations” 

and “bad deviations” from the mean equally. For functions with preferred values, such as resilience or profit, values 

greater than the mean and those lower should not be treated in the same way. Specifically, contribution to a high 5 

variance from a heavy tail in the good direction should not be translated to less robustness. This problem also arises 

in assessing financial risk: what makes an asset risky is the values on the “bad tail” of the distribution (i.e., low or 

negative profits). This has motivated more and more analyses to switch to considering other measures of risk, such as 

the conditional value at risk, in evaluating their portfolios of investment (Rockafellar and Uryasev, 1999; Krokhmal 

et al., 2001; Sarykalin et al., 2008; Zymler et al., 2013). Intuitively, this means that the shape of the “cup” can be 10 

asymmetric and we need to take this into account.  

Following this logic, we propose to use a “below-mean mean” as a new robustness metric: the mean of all resilience 

values lower than the mean. This new definition of the robustness metric has several desirable features. First, it can 

now be appropriately thought of as a robustness metric in the sense that the higher the value, the more robust the 

system (unlike the variance for which low variance means high robustness). Second, by using the mean as the threshold 15 

value for bad deviations, we remove some arbitrariness associated with prescribing a certain quantile (e.g., 5th or 10th 

quantile) in calculating the conditional value at risk. Third, it still carries some information about the sensitivity of the 

resilience metric to outside factors—the information that variance conveys; that is, the higher the “below-mean mean” 

(i.e., the bad deviations from the mean are small and the below-mean mean is close to the mean), the less sensitive—

and thus more robust—the resilience metric. 20 

In this study, we subject the modelled system to uncertainty in one natural factor and one social factor, namely, the 

natural replenishment rate of the resource𝑔, and the payoff that a RU earns from working outside the system 𝑤. Thus, 

we are computing how the resilience of the system to shocks/variation in state variables changes as the parameters 𝑔 

and 𝑤 change (i.e., we are uncertain about the underlying social-ecological setting of the system). In particular, we 

assume that 𝑔 is uniformly distributed over the range [75, 125] and 𝑤 is uniformly distributed over the range [0.75, 25 

1.75]. A social-ecological setting, or setting, is defined as a combination of 𝑔 and 𝑤. For a given policy (a 𝐶 − 𝑦 

combination), we calculate 𝑅  for 10,000 settings (i.e., 10,000 𝑔 − 𝑤 combinations) (see Fig. 2). Then, from 

these 10,000 values of the resilience metric 𝑅 , we calculate the mean, 𝜇 = 𝐸 𝑅 , and use it 

as the resilience metric of the coupled system with a given policy, and the below-mean mean, 𝜇 =

𝐸 𝑅 ∨ 𝑅 < 𝜇 , as the metric for robustness of resilience. This metric measures the 30 

robustness of the capacity of the system to cope with variation in state variables 𝐼 , 𝑅, and 𝑈 to fundamental 

uncertainty about the underlying setting of the system.   
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Figure 2: Variation of 𝑅  of a CIS with a fixed policy (𝐶, 𝑦) over 10,000 settings associated with uncertainty 

characterized by {𝑔 ∈ [75,125], 𝑤 ∈ [0.75,1.25]}: (a) 𝑅  surface and (b) 𝑅  contours.  The values 

of 𝑅  are used to calculate the mean, 𝜇 , and the below-mean mean, 𝜇 . In this particular case, the 

resilience does not change much when 𝑔 is greater than about 100, but becomes more sensitive to both 𝑔 and 𝑤 when 

𝑔 is lower than 100. 5 

3. Results 

The surfaces and contours of the system resilience metric, 𝜇 , and associated with different policies (𝐶 − 𝑦) 

over the policy space are shown in Figs. (3a and b), respectively. The policies with sustainable outcomes are located 

in the middle of the policy space, with 𝜇  peaking in the center and declining as policies become more extreme 

in either direction. Our analysis also shows that 𝜇  is more or less proportional to the fraction of settings (𝑔-10 

𝑤 combinations) under which the system with that particular policy (a 𝐶-𝑦 combination) results in a sustainable 

outcome (𝑅 > 0). A similar concept has been used in the robust decision making literature (e.g., Groves and 

Lempert, 2007; Bryant and Lempert, 2009).  

The surfaces and contours of the robustness of, 𝜇 , associated with different policies over the policy space are 

shown in Figs. (3c and d), respectively. The 𝜇  “landscape” is more irregular, having two local maxima with one 15 

being more dominant than the other. The region with high robustness appears to be in the same general areas as the 

region with high resilience. These features reflect the nonlinear interplay between the model parameters and model 

structure and may affect the nature of the trade-off between robustness and resilience reported in Figures 4 and 5. 

Figure 3: the mean, 𝜇 , and the below-mean meanof 𝑅 , 𝜇 , over entire decision space: (a) 

Surface of the resilience metric, 𝜇 ; (b) Contours of 𝜇 ; (c) Surface of the robustness, the below-20 
mean mean (𝜇 ); (d) Contours of the robustness, the below-mean mean (𝜇 )  

We explore the interplay between 𝜇  and 𝜇  in Fig. 4. Figure 4 shows that there are no perfect policies in 

the sense that no policies yield both maximum resilience and maximum robustness. Recall that the robustness indicates 

how sensitive 𝑅  itself is to uncertainty in the underlying setting of the system (e.g., 𝑔 and 𝑤). The best policies 

are those along the Pareto frontier in the resilience-robustness space: among this set of Pareto-optimal policies, an 25 

increase in resilience is necessarily accompanied by a decrease in robustness, clearly illustrating the trade-off between 

robustness and resilience. Fig. 5 illustrates where the Pareto-optimal policies are located in the policy space. 

Figure 4: Resilience-robustness trade-off. Each point represents, 𝜇 and𝜇  of the coupled system with a 
given policy. The black dots represent a set of Pareto-optimal policies. 

Figure 5: Pareto optimal policies, represented by black dots, in the policy space (𝐶-𝑦 plane), superimposed with resilience 30 
(𝜇 ) (a) and robustness (𝜇 ) contours (b). 
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4. Discussion and conclusions 

In this paper, we exploit the simplicity of a stylized model to quantitatively link resilience and robustness by computing 

how the CIS’s resilience to shocks in state variables changes with parameters. In this way, we compute the robustness 

of CIS resilience to uncertainty in the underlying CIS setting. The resilience metric developed here is a measure of 

how far the CIS is from the boundaries beyond which it will collapse. The model affords us with expressions of these 5 

boundaries, which clearly show how social and biophysical factors interplay to define these boundaries. With a 

concrete definition of resilience, resilience itself can be considered as the “of what” in the “robustness of what to 

what” notion. In particular, we use the below-mean mean of the quantitatively defined resilience metric as the metric 

of robustness. Consequently, this enables us to rigorously investigate the interplay between the two important, but not 

always well-defined, system properties. A key finding is the fundamental trade-off between resilience and robustness: 10 

there are no perfect policies in governing a CIS, only Pareto-optimal ones. Specifically, policies designed to maximize 

the resilience of a CIS to shocks on timescales at which the state variables play out may be very sensitive to being 

wrong about our understanding of the underlying dynamics of the CIS in question.  

Importantly, we hope this work will stimulate further advances in rigorous studies of CISs that address such subtle, 

policy-relevant questions, a few of which we briefly discuss here. More dimensions can be considered in defining 15 

Pareto-optimality. Figure 5 may give an impression that the set of Pareto-optimal policies is confined to a small region 

in the policy space, which would imply that PIPs do not have that many choices—even in a simple CIS like the one 

studied. But that would be a wrong impression. In addition to resilience and robustness (as defined here), a policy 

maker or a social planner may be interested in other types of robustness with different “of what” and “to what” 

components. She may also be concerned about other system properties, e.g., productivity, user participation, etc. As 20 

more dimensions are considered, the set of Pareto-optimal policies grow. In the same spirit as that of the work done 

here, these other dimensions should be defined rigorously. 

This work also lends itself to more rigorous studies of “adaptive governance.” In the present study, the governance 

structure, represented by a policy (a combination of 𝐶 and 𝑦), is fixed. A natural next step is to explore if a policy is 

allowed to change, how one may improve the resilience and robustness of a CIS and/or alter the nature of their inherent 25 

trade-offs.  For example, if 𝐶 and 𝑦 are to be functions of other factors, e.g., resource availability and outside 

incentives, what functional forms should they take to improve the system’s resilience and robustness? Indeed, in the 

absence of transparent metrics, attempts to explore such adaptive policies are severely limited. 

Additionally, agents in a CIS may have the capacity to change their behaviour in response to changes in policy, 

environmental conditions, technological changes, and the like.  In this study, strategic behaviour and decision-making 30 

process are assumed unchanged in the analysis.  Adaptation in strategic behaviour of agents will subsequently alter 

the nature of resilience, its robustness, and their trade-offs.  Capturing such effects of adaptation requires structural 

changes to the model, e.g., in terms of specification of payoffs or even the formulation of the dynamical equations.  

With such adaptive social agents, how should one devise adaptive governance to enhance resilience and robustness of 
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a CIS?  Addressing such a question is a theoretically intriguing future research direction with great practical 

implications. 

In keeping with the theme of “social dynamics and planetary boundaries in Earth system modelling,” our results shed 

light on how social and biophysical factors may interplay to define “boundaries” of a sustainable coupled infrastructure 

system. While the modelled system here is admittedly simple, our methodology and results constitute a step toward 5 

quantitatively and meaningfully combining social and biophysical factors into indicators of boundaries of more 

complex systems. Just as in this work, once those boundaries are clearly defined, calculation and discussion of 

resilience and robustness can become concrete. 
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APPENDIX  

Basic model. Here we briefly describe the basic model presented by Muneepeerakul and Anderies (2017). The 

model shows dynamic behaviour of three principal variables, namely, the state of the public infrastructure, 𝐼 , 

resource level, 𝑅, and the fraction of time user makes use of infrastructure, 𝑈, through Eq’s (A1, A4 and A5). The 5 

schematic diagram of this system of equations is shown in Figure A1. 

Figure A1: Schematic diagram of the dynamical system model.  Taken from Muneepeerakul and Anderies (2017). 

In this context, 𝐼  depends on PIPs in term of maintenance cost and has a positive relationship with the capacity of 

users to create resource flows. Eq. (A1) illustrates the dynamics of  𝐼  as follows: 

= 𝑀(… ) − 𝛿𝐻(𝐼 ),                                                                     (𝐴1)           10 

where, 𝛿 is the infrastructure’s depreciation rate and 𝐻(𝐼 ) states functional relationship of public infrastructure 

and productivity of each resource user. According to Muneepeerakul and Anderies (2017) many shared infrastructures 

can be modelled by threshold functions. Given that 𝐻(𝐼 ) shows threshold behavior, they used a piecewise linear 

function to capture such behavior through Eq. (A2).  

 𝐻(𝐼 ) =

0, 𝐼 < 𝐼

ℎ , 𝐼 ≤ 𝐼 ≤ 𝐼

ℎ, 𝐼 ≥ 𝐼

,                                                              (𝐴2) 15 

where, ℎ represents maximum amount of harvest by each user under no restriction and 𝐼  and 𝐼  are lower bound 

and upper bound thresholds of 𝐼  respectively. Also, 𝑀(… ) is maintenance function (Eq. A3) and depends on 

social structure of the system. 

𝑀(… ) = 𝜇 𝑦𝐶𝑝𝑅𝑈𝑁𝐻(𝐼 ),                                                              (𝐴3)           

In Eq. (A3), given the number of users 𝑁, 𝑅𝑈𝑁𝐻(𝐼 ) is the total harvest from the natural infrastructure. The 20 

resource users sell total harvest at price 𝑝 to generate revenue. Subsequently, they assign a proportion 𝐶 of revenue 

to PIP’s for their contribution. Meanwhile, the PIP’s spend proportion 𝑦 of 𝐶 on maintaining public infrastructure 

through the maintenance function 𝑀(… ). Also, 𝜇  is maintenance effectiveness of PIP’s investment. 

The second variable is resource level, 𝑅. They assumed the dynamics of resource to be: 

= 𝐺(𝑅) − 𝑅𝑈𝑁𝐻(𝐼 )                                                                        (𝐴4)    25 
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Natural infrastructure is assumed to invoke the conservation law comprising of regenerating capacity (𝐺(𝑅) = 𝑔 −

𝑑𝑅) and total unit of harvest, 𝑅𝑈𝑁𝐻(𝐼 ). The definition presented for 𝐺 is the simplest model for natural 

infrastructure where 𝑔 and 𝑑 are the natural replenishment and the loss rates, respectively.  

The strategic behavior of the resource users (RU’s) is captured by employing replicator equation. Indeed, replicator 

dynamics provide modeler with simple, realistic social mechanism where agents follow and replicate better-off 5 

strategies. The two possible strategies considered for RU’s are staying inside system with the associated payoff of 

𝜋 = (1 − 𝐶)𝑝𝑅𝐻(𝐼 ) or leaving system with the payoff of 𝜋 = 𝑤. According to replicator equation: 

= 𝑟𝑈(1 − 𝑈)(𝜋 − 𝑤)                                                                    (𝐴5)     

Replicator equation discuss the fraction of time that RU’s assign to working inside system given 𝐶 and 𝑦.  Like RU’s, 

there is also two alternatives for PIP’s, working inside system or working for another CIS which leads to system 10 

failure. Meanwhile, 𝐶 and 𝑦 characterize the strategy or policy of PIPs.  The PIPs will participate in this coupled 

system only when 𝜋 = (1 − 𝑦)𝑝𝐶𝑅𝑈𝑁𝐻(𝐼 ) ≥ 𝜋 . In other words, the PIPs maintain in the system when they 

are better-off than working outside.  This condition is termed the PIP Participation Constraint (PPC).  

Based on the system of three differential equations (Eqs. A1, A4 and A5), the sustainable equilibria, i.e., long-term 

system outcomes that satisfy the stability condition and PIP Participation Constraint (PPC), can be expressed as 15 

follows: 

𝑖∗ =
∗ ∗

𝐻(𝐼∗ ); 𝑅∗ = 1 −
∗

; 𝑈∗ =
( )

𝜙 𝑖∗ ,                                       (𝐴6)   

where 𝑖∗ ≔
∗

 ( indicates dimensionless) and 𝜙 = , a dimensionless group representing the relative 

lucrativeness of the system, namely the ratio of potential income—with the entire resource flow turned into income—relative 

to outside wage.  The results reported in this study are based on the following parameter values: ℎ = 0.0005;  𝛿 =20 

0.1; 𝐼 = 0.3; 𝐼 = 3; 𝑔 = 100; 𝑑 = 0.02; 𝑁 = 1000; 𝑟 = 0.15; 𝑝 = 10; 𝑤 = 1; 𝑤 = 100; 𝜇 = 0.001. 
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Figure 1: Resilience metrics for a specific setting (a 𝑔-𝑤 combination) inside the sustainable region in the policy space 

(i.e., 𝐶-𝑦 plane): (a) 𝑅  contours; (b) 𝑅  contours; and (c) 𝑅  contours.  The black star in panels (a), 

(b), and (c) indicate the policy with the highest 𝑅 , 𝑅 , and 𝑅 , respectively. 

 

 5 
(a)  (b) 

Figure 2: Variation of 𝑅  of a CIS with a fixed policy (𝐶, 𝑦) over 10,000 settings associated with uncertainty 

characterized by {𝑔 ∈ [75,125], 𝑤 ∈ [0.75,1.25]}: (a) 𝑅  surface and (b) 𝑅  contours.  The values 

of 𝑅  are used to calculate the mean, 𝜇 , and the below-mean mean, 𝜇 . In this particular case, the 

resilience does not change much when 𝑔 is greater than about 100 but becomes more sensitive to both 𝑔 and 𝑤 when 𝑔 10 
is lower than 100. 
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Figure 3: the mean, 𝜇 , and the below-mean mean of 𝑅 , 𝜇 , over entire decision space: (a) 

Surface of the resilience metric, 𝜇 ; (b) Contours of 𝜇 ; (c) Surface of the robustness, the below-

mean mean (𝜇 ); (d) Contours of the robustness, the below-mean mean (𝜇 )  5 

 

 

 
Figure 4: Resilience-robustness trade-off. Each point represents, 𝜇 and𝜇  of the coupled system with a 

given policy. The black dots represent a set of Pareto-optimal policies. 10 
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Figure 5: Pareto optimal policies, represented by black dots, in the policy space (𝐶-𝑦 plane), superimposed with resilience 

(𝜇 ) (a) and robustness (𝜇 ) contours (b). 

 5 

 

Figure A1: Schematic diagram of the dynamical system model.  Taken from Muneepeerakul and Anderies (2017). 
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