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Abstract. The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. 

country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land 

changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth 

System Models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes 

for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we 15 

extract gross and net land change dynamics from large-scale and high-resolution (30-100m) remote sensing products to create 

a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross 

and net changes with the results of future simulation models, by accounting for the gross and net change addressed by the land 

use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that 

gross land change within 0.5-degree grid cells were substantially larger than net changes in all parts of the world. As 0.5-20 

degree grid cells are a standard resolution of Earth System Models, this leads to an underestimation of the amount of change. 

This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied 

in a future scenario, the consideration of gross land changes led to approximately 50% more land changes globally compared 

to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land 

uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes 25 

decreased over time due to further polarization and intensification of land use. Our results serve as empirical database for land 

change dynamics that can be applied in Earth System Models and Integrated Assessment Models. 

1 Introduction 

Land change dynamics (e.g. changes in land cover or land use) play a major role in the Earth System. They have far-reaching 

consequences by altering many biophysical and biogeochemical ecosystem processes (e.g. albedo, greenhouse gas fluxes, 30 
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transpiration, water balance and surface roughness), which directly or indirectly drive the climate on continental to global scale 

(Ciais et al., 2013; Gaillard et al., 2010; Houghton et al., 2012; Shevliakova et al., 2009; Teuling et al., 2017; Zaehle and 

Dalmonech, 2011). Earth System Models (ESMs) are used to explore the impacts of land changes on future climate, 

biogeochemical cycling, and vegetation dynamics. Information on the extent and amount of land changes is usually provided 

by land-use change models (LUCMs) or the land-use modules of Integrated Assessment Models (IAMs). Land-change 5 

dynamics can be provided by LUCMs and IAMS either by a ‘net change approach’, i.e. area gains minus area losses per grid 

cell, or by a ‘gross change approach’, i.e. area gains plus area losses per grid cell. Not accounting for gross land changes has 

been shown to substantially underestimate the amount of land changes and related climate effects (Arneth et al., 2017; Bayer 

et al., 2016; Fuchs et al., 2015, 2016; Peng et al., 2016; Prestele et al., 2016). Thus, gross changes need to be considered in 

future model development.  10 

The implementation of gross land changes faces, however, various difficulties. First, LUCMs and IAMs mostly have limited 

abilities to account for gross land changes at the scale of modelling. Most land-use models only account for land changes in 

one direction. For instance, if the model has to allocate increasing area for a specific land cover type, it is often not able to 

model for area losses of the same class at the same time. Second, land-use models typically simulate land changes at a spatial 

resolution of 5 arcmin (ca. 10 km at the equator) or coarser, but do not account for area gains and losses happening within 15 

these grid cells. Thus, their spatial resolution is still too coarse to capture many land changes at the small scales where they 

occur.  Third, ESMs that implement land-change data provided by IAMs and LUCMs typically run at a resolution of 0.25-2 

degrees and miss large amounts of land changes if they do not account for gross changes by aggregating from the LUCM/IAM 

grid to their native grid. 

As part of the Coupled Model Inter-Comparison Project Phase 6 (CMIP6) many ESMs are potentially able to account for gross 20 

land changes (Arneth et al., 2017). However, empirically based gross land change data that can directly be implemented in 

assessment models are currently lacking on a global scale. This lack of data availability hampers a comprehensive integration 

of gross land change information in LUCMs and, since LUCMs often feed into ESMs and IAMs, also in ESMs and IAMs 

(Bayer et al., 2016; Prestele et al., 2017). Moreover, in recent years, the focus of assessing the impact of gross land changes 

on the climate was mainly based on the historical period (Bayer et al., 2016; Fuchs et al., 2015, 2016; Hurtt et al., 2006; 25 

Wilkenskjeld et al., 2014). The role of gross land changes in future land use projections remained unclear, mostly because of 

the unknown magnitude of present-day gross land changes, but also the lack of understanding of how gross land change 

dynamics would develop with time (Arneth et al., 2017; Hurtt et al., 2011; Stocker et al., 2014). This inhibits a precise appraisal 

of future mitigation and adaptation potentials (Arneth et al., 2017). Currently, the Land Use Harmonization data (LUH; Hurtt 

et al. (2011) and its updated CMIP 6 version LUH2; Hurtt et al., in prep) are the only global data sets accounting for gross 30 

land changes. However, in these datasets gross land changes are assumed to only occur in shifting cultivation areas of the 

tropics (Bayer et al., 2016). A global quantification of other bi-directional changes like cropland expansion and abandonment 

or afforestation and deforestation within grid-cell sizes of ESMs or IAMS is missing completely (Prestele et al., 2017).  
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Empirical data, such as from remote sensing or land cover statistics, that contains information on area gains and area losses, 

can be used to inform LUCMs and IAMs about land changes below their native resolution (further on referred to as land 

changes on ‘sub-pixel’ scale). Such empirical data has recently become available at very high spatial resolutions (30-100 m) 

at continental (Bossard et al., 2000; European Environment Agency (EEA), 2006; Meiyappan et al., 2016; MoEF, 2015; 

RCMRD, 2016; Roy et al., 2015; Vogelmann et al., 2001; Wickham et al., 2010, 2013) or even  global scale (Jun et al., 2014).  5 

The objective of this paper is to improve the current representation of gross land changes in LUCMs and IAMs by 

conductingdoing an empirical analysis of gross land use changes and proposing an approach that implements empirically 

derived gross land changes in a global land-use model. We account for both, the gross land changes at the model scale (5-arc 

minute spatial resolution) and the gross land changes at sub-pixel scale. Specifically, we (1) characterize global scale 

relationships between gross and net change analysing empirical data, (2) apply these findings to a future land-use change 10 

simulation, and (3) demonstrate how the consideration of gross land changes, in contrast to net land changes, can lead to 

substantially different results with respect to land-use composition, future land-change dynamics, and consequences for global 

change studies, e.g. on the global carbon cycle. Moreover, we translate the total gross and net land change into metrics that 

ESMs are able to use at a common resolution of 0.5 degree and thus provide a new global dataset on future gross land changes. 

2 Data and Methods 15 

2.1 Empirical data 

 

Figure 1: Spatial coverage of high-resolution land change datasets, based on remote sensing, that were used in this study to derive 

gross land changes dynamics within 0.5-degree grid-cells; National Land Cover Data (NLCD),  Coordination of Information on the 
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Environment (CORINE), Regional Centre for Mapping of Resources for Development (RCMRD), Ministry of Forestry Indonesia 

(MoFor). 

 

In total, we used 13 independent empirical datasets, based on remote sensing, to assess land changes on sub-pixel scale. The 

spatial coverage of all datasets used in this study is depicted in Fig. 1. The individual features, accuracies and available years 5 

are shown in Table 1. Since our objective was to describe future land-change dynamics, we first focused on datasets that cover 

the most recent years (from 2000 onwards). Some datasets contain data for years before 2000. They were pre-processed and 

analysed but not used in this study. Secondly, we selected datasets that had a minimum spatial resolution of 100m, in order to 

account for the fine-scale land changes. However, most of the datasets that we included had a 30m resolution. Thirdly, we 

examined theused available accuracy assessments of the datasets for individual years, made by the individual institutions, only 10 

including those with reasonable quality (around 80% or higher), a sufficient sampling scheme and reference data. At the time 

of assessment, accuracy assessments of land changes were found to be lacking for most of the data sets. Usually, if available, 

the accuracy of the change products is lower than those of the individual years (e.g. see Wickham et al., 2010, 2013). If an 

accuracy assessment was not available, we checked visually for the quality by comparing with other datasets that were available 

for the same larger region (Fig. 2). The accuracy of Globeland30 for the year 2010 was higher than 80% (Chen et al., 2014). 15 

However, for the year 2000, no accuracy assessment is available yet (official release was summer 2016, an extended accuracy 

assessment is planned). Regional accuracy assessments of Globeland30 yielded lower accuracies, e.g. for Dar Es Salaam 

(Tanzania) and Kathmandu (Nepal) accuracies were 61% and 54%, respectively (Fonte et al., 2017), while in Kenya it was 

found to be 56-64% (See et al., 2017). Accuracies for Italy (Brovelli et al., 2015), Germany (Jokar Arsanjani et al., 2016a) and 

Iran (Jokar Arsanjani et al., 2016b) were greater than 78% (See et al., 2017). Although a comprehensive accuracy assessment 20 

for both years is currently not available, we decided to use this dataset for both years because of its global coverage, the high 

spatial resolution and reasonable quality of land cover and changes in areas of overlap with the other datasets used in our 

analysis (Fig. 1). This allowed us to describe land dynamics in areas that were not covered by other datasets. 

2.2 The CLUMondo model and the future scenario 

To assess gross and net land changes for a future scenario, we used simulation output from the land system model CLUMondo 25 

(van Asselen and Verburg, 2012; Van Asselen and Verburg, 2013). This model uses a land system classification instead of the 

more traditional land cover classification (van Asselen and Verburg, 2012). Land systems are described by a set of fractional 

land cover classes consisting of built-up, cropland, grassland, forest and other land, co-occurring in spatial simulation units of 

9.25x9.25 km pixel. To account for regional differences, the fractional amounts of land cover per land system differ per world 

region. Further, land management activities such as livestock and crop production, as well as sequestered carbon are used to 30 

describe each land system. These differ for each land system per world region. A land system map for the baseline year 2000, 

which is based on census and remote sensing data (van Asselen & Verburg, 2012), can be seen in Fig. 3. Land systems are 

allocated using local empirical relationships of land systems with explanatory biophysical and socioeconomic data, such as 
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irrigation, population density and market accessibility (van Asselen and Verburg, 2012; Van Asselen and Verburg, 2013). 

Land system changes are simulated based on a demand/supply approach.  

 

Figure 2: Comparison of regional/continental remote sensing products (left) with global Globeland30 (right) for overlapping areas 

and roughly the same time spans, showing (a) CORINE land cover (2000-2012) for Greater Berlin; (c) NLCD (2001-2011) for Greater 5 

Washington; (e) Indian LCand Cover (1995-2005) for Greater Delhi; (g) RCMRD Tanzania (2000-2010) for Greater Dar es Salaam; 
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(i) MOFOR (2000-2009) for Greater Jakarta; (b), (d), (f), (h), (j) Globeland30 (2000-2010) depicting areas of their 

regional/continental counterparts. Note: Cultivated land of Globeland30 comprises both cropland and pastures but is depicted in 

the figure with the same colour as croplands. 

 

Thereby, tThe model allocates the land systems to fulfil the demand for goods described by a scenario. The model is able to 5 

simulate gross land changes inherently by expanding a land system at one place while contracting it at another place. Within 

the model algorithm, each location is assigned the land system with the highest competitive power at that place. For some land 

systems conversion restrictions are applied, e.g. to avoid that urban development is converted back to agricultural use and to 

account for conversion costs. Allowing such co-occurring area gains and losses of the same land system within a world region 

the model accounts for gross change dynamics at the scale of modelling. However, gross changes at sub-pixel scale are not 10 

taken into account.  

In this study, we used a reference scenario for the period 2000 to 2040 to demonstrate the feasibility of our approach to include 

gross land change dynamics in a land use model. This reference scenario is driven by the demand for crop production, ruminant 

livestock production, and the provision of built-up areas (Eitelberg et al., 2016). The scenario is based on the United Nations 

Food and Agriculture Organization’s (FAO) report: World Agriculture Towards 2030/2050, the 2012 revision (Alexandratos 15 

and Bruinsma, 2012) and characterizes the development of crop and livestock systems from 2010 to 2050. Regional-level 

future demands of crop production and livestock are provided by the integrated assessment model IMAGE (Stehfest et al., 

2014). Further details on the scenario can be found in Eitelberg et al. (2016). 

2.3 Methods 

2.3.1 General methods 20 

To assess the gross or net land change dynamics at a spatial resolution relevant for ESMs and IAMs, we analysed all land 

changes (at the scale of modelling and sub-pixel scale) at the common spatial resolution of ESMs and IAMs (0.5-degree). 

Specifically, we derived globally for every 0.5-degree grid cell an entire land change matrix containing all land-cover 

conversion types. We did this for each year of the simulation period. From these land-cover conversion types the specific area 

gains, losses as well as net and gross changes can be derived. 25 

2.3.2 Land changes at the scale of modelling 

In order to assess gross and net land changes at the level of land-cover types, commonly used in Earth System Models, the 

land systems had to be translated back into their land cover components (e.g. grassland, cropland, forest, etc.). For the sake of 

efficiency, we focused on areas where land systems have changed (Fig. 4, upper left box). We then intersected overlayed all 

change areas with our 0.5-degree grid to calculate the land system changes per grid cell (Fig. 4, middle left box). WithinFor 30 

each 0.5-degreeof these grid cells, we converted the land systems changes into fractional land cover changes and prepared a 
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lookup table stating the land cover area gains and losses for each class (Fig. 4, middle left box). Based on the area gains and 

losses per class, we derived the net and gross area change. Subsequently, we applied the land change matrix from our empirical 

data analysis (see next Sect.) to derive land conversion types, e.g. from forest to grassland or from grassland to cropland (Fig. 

4, upper left box). By applying the empirically derived change matrix to the land system changes, we assume that the rates of 

gross change within a land system will not change in the future as long as the land system remains stable. Thus, we infer that 5 

gross changes in land cover are an inherent characteristic of the land system.  

2.3.3 Land changes at sub-pixel scale 

We first re-projected all original empirical datasets into an equal area projection (WGS84 Eckert IV). Subsequently, we 

aggregated all class legends for each product into five IPCC land categories (Intergovernmental Panel on Climate Change 

(IPCC), 2003): settlement, cropland (incl. orchards and agro-forestry), forest, grassland (pastures and natural grassland) and 10 

other land. In Supplement S1 – Sect. 1, we give an overview of how each legend was aggregated. The Globeland30 dataset 

had a class “cultivated land” that contains, besides cropland, also managed pastures that could not be separated properly. In 

this study, we considered “cultivated land” as cropland. 
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Figure 3: Land system map for the baseline year 2000 used by the CLUMondo model.  
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Figure 4: Detailed overview of the approach. The approach is divided into three major steps: pre-processing (top), processing 

(middle) and the post-processing of the results (bottom). The left panel explains the individual steps for the analysis at the scale of 

modelling, using a land system model and a reference scenario for the period 2000 to 2040. The right panel shows the individual 

steps for the analysis at sub-pixel scale, using empirical data. 5 
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We calculated one change dataset for every time step of each product with the original spatial resolution. For the CORINE 

product, we used the available change layers. For the Indian LC Land Cover 1995 to 2005 and for some regions in the 

Globeland30, we recognized a shift by 1 pixel between the individual years when calculating land changes. This caused 

problems in generating the change layers. In Supplement S1 – Sect. 2, we explain in detail how we solved these problems. 

We used a mask of each land system for the base year 2000 to clip our various change products by land system in order to 5 

retrieve land changes per land system. In parallel, we created a 0.5-degree grid cell layer and overlaid it with the clipped change 

products for each land system to create a land change matrix, containing all change areas, separately for each 0.5-degree grid 

cell. 

The tabulation of change areas per land system within each 0.5-degree grid cell allowed us to calculate the gross/net ratio, the 

net change fraction and the change matrix (Fig. 4, upper right box). The gross/net ratio explains the underestimation of changes 10 

by the net change approach compared to the gross change approach (see Fuchs et al., 2015). To derive the gross/net ratio, we 

first retrieved the net change area (area gains minus area losses) and the gross change area (area gains plus area losses) and 

second we divided our gross changes by the net changes and multiplied it with 100 to get the gross/net ratio in percent (Eq1).  

(Eq1)  𝑔𝑟𝑜𝑠𝑠/𝑛𝑒𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑔𝑟𝑜𝑠𝑠 𝑐ℎ𝑎𝑛𝑔𝑒

𝑛𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒
× 100 

The net change fraction refers to the net change of each class as fraction of the total class area. The change matrix contains the 15 

absolute and relative areas of all land conversion types. In order to retrieve change parameters for each land system, we 

averaged the gross/net ratios and change matrices of each land system for each product and time step. For the net change 

fraction, we took the median of all 0.5-degree grid cells per land system. The individual parameters for each land cover product 

can be found in Supplement S2. 

From the various change products and time steps, we calculated spatially weighted averages for the change parameters to 20 

account for the different spatial coverages of each product. In Supplement S1 – Sect. 5, we provide an overview for each 

dataset and its fractional contribution per land system to the final weighted average. Further, we annualized every time step of 

the individual products to make datasets with different time spans comparable in their change dynamics (Fig. 4, upper right 

box). One-year time steps are the regular time intervals of many land-use models, including the one used here.  

Subsequently, we applied our derived change parameters (net change fraction, gross/net ratio and change matrix) from the 25 

empirical study onto the reference scenario (Sect. 2.2). This allowed us to account for sub-pixel processes in the future 

simulation scenario (Fig. 4, middle right box). A detailed example of this procedure is found in Supplement S1 – Sect. 3. 

2.3.4 Post-processing 

In the post-processing phase, we combined our results from the land changes derived at the scale of modelling (Sect. 2.3.2) 

and land changes derived on sub-pixel scale (Sect. 2.3.3). We aggregated both datasets at 0.5-degree grid cell resolution (Fig. 30 

4 bottom box) by adding the values of both data streams together. To achieve this, we rescaled land changes derived on sub-
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pixel scale to 0.5-degree while keeping the sub-pixel information. One dataset was generated that contained net land changes 

and one that contained gross land changes. This way we could compare the differences between the two methods.  

3 Results 

3.1 Empirical gross land changes 

In Table 2, we list all gross/net ratios that we retrieved from the empirical data for each land system, separated by land cover 5 

class. All gross/net ratios are provided as spatially weighted averages of all empirical datasets contributing to these values. 

Overall, the gross/net ratio of the settlement land cover ranged from 113% to 143% for the different land systems containing 

settlements, for cropland from 116% to 285%, for forest from 125% to 226%, for grassland from 123% to 212% and for other 

land from 121% to 165%. Typically, cropland, forest and grassland components have on average the highest gross/net ratios 

over all land systems (149%, 149%, and 162% respectively). These classes are mostly affected by bi-directional changes, 10 

meaning gains and losses occurring at the same time within a pixel of 0.5-degrees. These changes are mostly caused by swaps 

of the abovementioned land cover classes, due to cultivation practices, for example shifting cultivation (temporarily cultivation 

of one plot, after cultivation the plot is abandoned which restores natural vegetation while a neighbouring plot is cultivated in 

the meanwhile). In contrast to these high gross/net ratios, settlement and other land have lower gross/net ratios (settlement 

122%, other land 136%), i.e. these classes develop more one-directionally. Settlement changes are mainly characterized by 15 

urbanization. Other land is comprised primarily of inaccessible land areas (e.g. mountainous area, bare land, etc.) that rarely 

change and is therefore less prone to swaps with other land cover classes. 

If we separate the different land systems based on their land cover composition, it can be seen that on average homogeneous 

land systems have lower gross/net ratios than mosaic land systems (Fig. 5). Mosaic land systems are characterized by a large 

heterogeneity of land cover classes and the spatial distribution of land cover within these land systems (indicated by the term 20 

‘mosaic’ in the land system classification). Many of these land systems represent areas of smallholder farming with small 

parcels of land. Often these land systems have multiple land uses or perform rotational systems (e.g. shifting cultivation) that 

cause these higher gross/net ratios due to bi-directional changes. This is particularly the case for cropland and grassland, where 

the difference in gross/net ratio is the largest compared to homogeneous agricultural systems (Fig. 5). In contrast, homogeneous 

classes comprise large parcels of land to minimize land management efforts and to increase land use intensity. These systems 25 

are typically more stable in terms of land changes, since production output will be achieved by intensification rather than 

expansion or rotation between land cover types. Therefore, the gross/net ratios of homogenous land system are lower than the 

ones of mosaic land systems. 
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Figure 5: Gross/net ratios for mosaic land systems (all land systems that start with ‘mosaic’ in their name) and homogeneous land 

systems (all other land systems) per land cover class and all together. 

3.2 Gross changes projected by the model 

To demonstrate our approach for deriving gross change in future scenarios, we used a reference scenario for the period 2000-5 

2040 based on the United Nations Food and Agriculture Organization’s (FAO) report: World Agriculture Towards 2030/2050 

(Alexandratos and Bruinsma, 2012) (see Sect. 2.2. for details). In Fig. 6, we show the different area gains and losses based on 

this scenario for each land cover component over the entire modelling period (2000-2040). The left panels (Fig. 6a, c, e, g) 

refer to gains and losses derived by land system changes (scale of modelling). The right panels (Fig. 6b, d, f, h) refer to the 

combination of changes at both the scale of modelling and the sub-pixel scale. 10 

Based solely on the simulated changes at model scale (Fig. 6 left panel), the main areas of land use change were found in the 

east coast of the United States, in Brazil and Argentina, the Sahel zone in Africa, large parts of Europe, some regions of the 

Middle East, India, China and Southeast Asia. Except for Eastern Europe, some parts of India, China and Mexico these changes 

led to widespread cropland area gains. In the East Coast of the United States, Eastern Europe, India, Argentina and Southeast 

Asia, this came at the expense of forest. In Brazil, the Sahel zone, the Middle East and Northern China cropland gains occurred 15 

at the cost of grassland and other land losses. However, large parts of the world remained unaltered in the modelled scenario 

(see yellowish colours for each land cover class in the left panel of Fig. 6). 

The combination of changes at the scale of modelling and sub-pixel scale changed the overall picture of area gain and loss 

(Fig. 6 right panels). Spatial patterns of changes appeared more diversified and subtle, depending on the occurrence and the 

empirical parametrization of land change dynamics of each individual land system type. For instance, forest changes (Fig. 6b) 20 

appeared more widespread. Large parts of Africa and South America outside of the tropical rainforest, the boreal region, China 

and Australia were now subject to strong forest dynamics including reforestation  
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Figure 6: Overall area gains (blue) and losses (red) per land cover class shown as change rate per year in percent for the period 2000 

to 2040. Left figure panels (a, c, e, g) refer to gains and losses derived at scale of modelling. Right panels (b, d, f, h) refer to combined 

changes at scale of modelling and sub-pixel scale. Upper row (a, b) shows gains and loss in forest area; second row (c, d) grassland; 

third row (e, f) cropland; and bottom row (g, h) other land, respectively. Note: Settlement changes are not shown here due to small 5 

areas affected by changes.  
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Likewise, areas of large forest losses, on the east coast of the United States and South East Asia were amplified as at the same 

time some reforestation is happening in these regions. Similar results were found for all other land cover classes. Additionally, 

the magnitude of changed area per pixel increased considerably by adding sub-pixel processes. When combining changes at 

scale of modelling and sub-pixel scale, the land system model and scenario implementation accounted for 20% of all gross 

and net land changes, while the other 80% of changes originated sub-pixel changes. For forest and grassland, this led to larger 5 

area gains, while for cropland and other land this led to a higher magnitude of area losses. Moreover, the overall trends of 

gains and losses for some land-cover classes in some regions (for instance grassland in the United States) even reversed by 

adding sub-pixel processes (Fig. 6d) compared to the approach without including these (Fig. 6c). 

3.3 Regional differences in accounting for net and gross land changes 

In Figure 7, we added the absolute area gains and losses of all land cover classes together, comprising changes at the scale of 10 

modelling and sub-pixel scale. We depict the total net changes (Fig. 7a), total gross changes (Fig. 7b) and their difference (Fig. 

7c), expressed as change rate per year and pixel in percent. Major change areas (net and gross) occurred in the eastern United 

States, Mexico, Colombia, Argentina, the Sahel zone, the Atlas region in northern Africa, eastern and southern Europe, Turkey, 

central Asia, northern India and China. The implementation of gross changes into the future scenario led to higher change 

rates. While net land changes had a global average of 0.92% area change per year in this scenario, the consideration of gross 15 

land changes yielded 1.36% per year. The difference in net and gross land changes occurred mostly in large farming regions 

because of the scenario conditions where new agricultural areas were established (Fig. 7c). Hot spots with larger differences 

between net and gross land changes appeared in Mexico, Spain, Eastern Europe, parts of the Sahel zone, Central Asia, India 

and China mostly due to the high rates of land cover change in these regions. 

In Figure 8, we illustrate the relative contribution of land cover classes to the gross change rates at modelling scale and sub-20 

pixel scale. The individual contributions of land cover classes varied quite strongly over the whole globe. Forest changes 

(reddish colours) contributed most to the changes in the boreal region. Grassland changes (greenish colours) occurred most 

dominantly in the western United States, the Andes region, major parts of sub-Saharan Africa, Central Asia and Australia. 

Cropland and forest conversions (pinkish colours) can be seen in the east coast of the United States, Europe, India and South 

East Asia. While at the east coast of the United States and in South East Asia the main change processes comprise cropland 25 

expansions at the cost of forests, the picture in Eastern Europe and India is the opposite (see also Fig. 6). High gross land 

changes of cropland expansion at the expense of grasslands (turquoise colours) occurred mostly in heterogeneous agricultural 

areas, like Mexico, the Sahel zone, the Mediterranean region and Northern China. These regions are known for their 

smallholder, mosaic land systems, which have in general a high gross change rate due to their regional land management 

practice and shifting cultivation. Additionally, due to the scenario forcing, many new cropland areas were established on former 30 

grassland areas. In the wider Amazon region in Southern America, in regions around the Congo and in southern China 

contributions to gross land changes came from all three land cover classes (darker brownish colours).  
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Figure 7: Global patterns of combined land change rates (at scale of modelling and sub-pixel scale) per year (in percent) for a 

reference scenario for the period 2000 to 2040. Panel (a) shows yearly change rates accounting for net land changes, panel (b) shows 

yearly changes rates accounting for gross land changes and panel(c) shows the difference in change rates between net and gross 

changes. 5 
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Figure 8: Major land cover classes that cause gross land changes. Land changes comprise land changes at scale of modelling and 

sub-pixel changes depicted as RGB composite, with forest (red), grassland (green) and cropland (blue). Note: pink, turquoise and 5 

yellow colours refer to changes between two of these three classes (pinkish = cropland and forest; turquoise = cropland and 

grassland; yellowish = forest and grassland). Brighter colours refer to higher gross land changes, darker colours refer to lower gross 

land changes.    

 

4 Discussion 10 

4.1 Evaluation of methods and processing 

In this paper, we presented a first estimate of global gross land change parameters to account for gross land changes in global 

assessments. Our work was largely based on empirical high resolution data derived from remote sensing (30m to 100m). The 

individual land change products covered in total roughly 260 million km², which is an area similar to twice the entire land 

surface. The high spatial resolution allowed capturing land changes at scales where they occurred. This is a major advancement 15 

to previous studies. For example, within LUH (Hurtt et al., 2011) the transition matrices for different land types were not based 

on empirical data. Within LUH2 (Hurtt et al., in prep.) only shifting cultivation was constrained by Landsat imagery using the 

global forest change product of Hansen et al. (2013). In that respect, our database is able to provide much more nuanced change 

dynamics for all world regions and thematic classes. We applied the land dynamic parameters in a scenario model, to 

demonstrate the potential of accounting for gross change in land change projections. This way, we provide the first 20 

comprehensive estimate of future gross change dynamics. 
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In the near future, many more datasets suitable for implementation in our approach from remote sensing can be expected. For 

example, the new land cover change product on a yearly basis, recently released by the Land Cover Climate Change Initiative 

(LC-CCI) (1992 to 2015, 300m spatial resolution) (ESA-LC-CCI, 2017). New satellites for land cover change detection were 

launched (e.g. Sentinel 2A and 2B, 30m spatial resolution) (ESA, 2017), which will provide a good foundation to derive new 

land-cover datasets in the coming years. Even existing Landsat and MODIS satellite archives are currently used to derive new 5 

land cover change datasets which can be implemented in our approach, for example the Terra-Class datasets for Brazilian 

Amazonas region) (Almeida et al., 2016; Centro Regional da Amazônia, 2017). 

In this study, we considered only data from the last two decades. However, additional land change data exist dating back to 

before the year 2000. For Africa, a few RCMRD datasets provided information for 1990 (RCMRD, 2016). The NLCD and 

CORINE data also provided land-change data for the 1990’s, although with lower accuracies (Vogelmann et al., 2001). The 10 

Indian LC Land Cover dataset has land change data available back to 1980 (Meiyappan et al., 2016). More regional land-

change datasets certainly exist. Landsat satellite archives provide data back to 1970’s (USGS, 2017). For some countries, for 

example the Netherlands, data back to 1900 exist, which in principle allow to retrieve gross land changes (Kramer and Dorland, 

2009). This historic data would allow to generate time period dependent gross/net change parameters for various world regions 

and implement them in existing global historic reconstructions for recent decades to explore regional land-change dynamics 15 

(e.g. Ramankutty & Foley, 1999; Klein Goldewijk et al., 2016). 

Applying existing and upcoming datasets will help to further extend our database and strengthen the reliability of the land-

change parameters. The use of multiple datasets for every world region would allow more robust and region specific estimates. 

For this study, we had to average our gross change parameters globally for each land system, due to the limited amount of data 

for some regions. Averaging all empirical data sets for these land systems globally may lead to incorrect or inaccurate regional 20 

characterizations. Especially for grassland systems that occur over a very wide range of biomes (from Tundra to the Sahel 

zone) such averaging is not correct. Therefore, we choose to use for these different grassland systems different averages for 

the Northern Hemisphere and the sub-tropical grassland systems (see Supplement S1 – Sect. 4). Nonetheless, an overestimation 

of this particular region, the Tundra, may remain. This should be taken into account in applications using our data. 

4.2 Evaluation of results and sources of uncertainty 25 

Our empirical analysis has confirmed that gross land changes occur globally in every world region. Applied to our future 

reference scenario, net land changes led globally to an average of 0.92% area change per year. Based on gross land changes 

the average change rate was 1.35% per year, which is an increase of roughly 50% compared to the net change approach. In 

earlier approaches, that covered Europe only, a similar magnitude of difference between gross and net land changes could be 

proven outside shifting cultivation areas (Fuchs et al. 2015). Approximately 20% of all gross and net land changes originated 30 

from the scenario implementation. The other 80% of changes can be explained by sub-pixel changes identified from empirical 

data. This points to the significance of empirical data and sub-pixel processes. Over the entire modelling period, the gross/net 

ratio decreased for each land cover class by 1% to 4%. This implies that gross land changes tend to play a decreasing role in 
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later stages of the reference scenario. The main reason for this decrease was the conversion of heterogeneous, mosaic, land 

systems, which were characterized by high gross/net ratios, into more homogeneous land systems, which had lower gross/net 

ratios (compare Fig. 5). The increasing land use intensification led to a decreasing fraction of mosaic land systems in this 

scenario, and therefore also to decreasing impact of gross land changes.  

In the simulated gross changes and in the sub-pixel gross changes, the main areas of change were related to regions with 5 

heterogeneous land systems, such as in shifting cultivation areas of Central America, the Sahel Zone and India. Mediterranean 

land systems (e.g. agro-forestry) and smallholder farming systems like in China or eastern Sub-Saharan Africa also showed 

major changes.  

The empirical data we used was subject to uncertainties as well. Occasionally it happened that the net change fraction was 

very small and let toresulting in very high gross/net ratios. When these small fractions of net change led to a gross/net ratio 10 

larger than 1000%, we excluded these numbers from our analysis. Although we chose datasets of justifiable data quality (e.g. 

high spatial resolution, large area coverage), often with an accuracy assessment, each of these datasets suffered to varying 

degrees from some form of misclassification. Especially in land change datasets, misclassifications from individual years add 

up, decreasing the overall accuracy of the change dataset. This may affect the magnitude of gross changes in our scenario by 

increasing the gross/net ratio. In general, areas that are affected by seasonal snow cover, droughts or temporal floods, such as 15 

wetlands, but also heterogeneous landscapes with multiple land cover components per pixel are often subject to 

misclassifications due to many mixed pixels that may be classified differently in separate years without an actual change. Such 

misclassifications are likely to lead to overestimations of the gross changes between the years. Small positional inaccuracies 

between years are noted as change while they are not representing change in reality. The global product, Globeland30, currently 

lacks a complete accuracy assessment and indeed major discrepancies with the regional/continental datasets can be seen e.g. 20 

for Africa (see Fig. 2), where accuracies from regional case studies were also reported to be lower (Fonte et al., 2017; See et 

al., 2017). Nonetheless, despite greater challenges for a consistent land cover classification at a global level and its inherent 

complexity to compete with regional/continental datasets, global datasets are able to provide us with a more comprehensive 

picture over the entire globe providing information also for areas that are currently underrepresented by region/continental 

datasets, e.g. South America and Central/East Asia.  25 

4.3 Adaptation of change parameters to other legends  

The approach presented in this paper used a specific future simulation model (CLUMondo) as an illustration. Other models 

using a different land cover class aggregation of the original classes may need to further aggregate our classes. For example, 

ESMs like the coupled LPJ (Smith et al., 2001) or ORCHIDEE (Ciais et al., 2005; Krinner et al., 2005) and the IAMs, like 

IMAGE (Stehfest et al., 2014) or MESSAGE-GLOBIOM (Havlík et al., 2014), are able to account for cropland, grasslands 30 

and forests. Urban areas and other land are considered as well, but neutral in terms of fluxes. Additionally, all these models 

are able to work on at least 0.5 degree and are able to account for sub-pixel processes (Bayer et al., 2016; Peng et al., 2016).  
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We aggregated our data to five common Intergovernmental Panel on Climate Change (IPCC) categories: settlement, cropland, 

forest, grassland and other land (IPCC, 2003), in order to show the potential of our approach. For each continental region, we 

averaged the individual land cover components across all available land systems and calculated the same land change dynamic 

parameter as explained in the methods. In Table 3, we show the gross/net ratios for continental regions accompanied with the 

datasets that went into the regrouping. The averaged land transition matrices for these regions can be found in Table 4. 5 

Similar to the Fig. 6, in Fig. 7 and Fig. 8 we see the highest gross/net ratios between cropland and grassland in northern and 

Central America, and Africa due to the shifting cultivation practice and smallholder farming systems. Highest gross/net ratios 

for forests could be found in North and Central America, South America and Central East Asia due to forest management 

practices in these areas. Compared to the independent forest cover change dataset of Hansen et al. (2013), we see major 

hotspots of areas gains and losses appearing in these areas either next to each other or at the same spot. Other regions in Europe, 10 

Africa and South-East Asia (except Indonesia) and Australia are less affected. The gross/net ratios of Table 3, together with 

the transition matrices of Table 4, can be applied on existing land use scenarios (historic or future) at 0.5 degree to account for 

gross land change dynamics. 

4.4 Implications for Earth System Modelling 

Using our gross change data may have various implications for Earth System Modelling, since the amount of changed area 15 

determines the dynamics and quantity of carbon fluxes and the land conversion types determine on which carbon stocks the 

land changes have to be allocated (Bayer et al., 2016; Fuchs et al., 2016). The same applies to other biogeochemical and 

biophysical variables (e.g. methane, N2O, water vapour, albedo, surface roughness) (Luyssaert, 2014; Peng et al., 2016; 

Schulze et al., 2010; Stocker et al., 2013; Teuling et al., 2017). Global patterns of greenhouse gas fluxes will alter, depending 

on the gross land change dynamics within each world region. (Erb et al., (2016); and Pongratz et al., (2017) mentioned the 20 

importance of land conversion types for Earth System Modelling as one part to attribute land management. Our study 

contributes to this research effort by providing data-driven land conversion tables for different world regions and land systems. 

Previous studies for Europe showed that the consideration of gross land changes altered carbon fluxes at pixel scale by up to 

70% (Fuchs et al., 2016). Overall, within a 60-year modelling period, the European carbon balance changed by ca. 7% when 

accounting for gross changes (Fuchs et al., 2016).  25 

Conclusions 

In this study, we could show that that, based on empirical data, gross land changes occur globally in every world region. This 

finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied to 

our future reference scenario, net land changes led globally to an average of 0.92% area change per year, while for gross land 

changes the average change rate was 1.35% per year. This is an increase of roughly 50% compared to the net change approach. 30 

Empirical data contributed ca. 80% of changes in the future scenario we used. This highlights the importance of accounting 

for sub-pixel processes in global assessments. In our scenario, gross land changes appeared in regional patterns, most dominant 
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in Eastern Europe, Turkey, the Sahel zone, the United States and development countries in transition, like the BRICS states 

(Brazil, Russia, India, China and South Africa). Large-scale and high-resolution remote sensing data was crucial for this kind 

of assessment. This highlights the increasing importance of land related remote sensing data in global assessments. With our 

approach, it is possible to further decrease uncertainties in land changes dynamics and related land atmosphere fluxes in ESMs. 

This again, helps to improve accuracies for future mitigation and adaptation scenarios.    5 
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Table 1: Overview of high-resolution land change datasets used in this study. Note: * refers to available years of the datasets that 

were not used in this study. 

 

Dataset / Reference Spatial coverage (area, 

name and km²) 

Temporal coverage 

(period and years) 

Reference for accuracies Accuracies Spatial resolution 

CORINE 

 

Consistent change data 

for max. 38 European 

countries (max. 5710,02 

tsd  km²) 

1990*, 2000, 2006, 

2012 

(Bossard et al., 2000; EEA, 

2007) 

n/a (2000); 

>85% (2006); >85% 

(2012) 

100m x 100m 

NLCD 

 

U.S. (w/o Hawaii and 

Alaska) (max 7784,42 

tsd km²) 

1992*, 2001, 2006, 

2011 

(Fry et al., 2011; Homer et 

al., 2007, 2015) 

78.70 % (2001); 

78.00 % (2006);  

n/a (2011) 

30m x 30m 

Globeland30 

 

Global (134940,12 tsd 

km²) 

 

2000, 2010 (Jun et al., 2014) n/a, but planned 30m x 30m 

Indian Land Cover 

LC 

 

India (3287,26 tsd km²) 1985*, 1995, 2005 (Meiyappan et al., 2016; Roy 

et al., 2015) 

94.46% (2005) 

n/a (1995) 

n/a (1985) 

100m x 100m 

RCMRD-Botswana 

 

Botswana (581,02 tsd 

km²) 

2000, 2010 (RCMRD, 2016) 92.50% (2000) 

90.24% (2010) 

30m x 30m 

RCMRD-Ethiopia 

 

Ethiopia (1047,81 tsd 

km²) 

2003, 2008 (RCMRD, 2016) 87.97% (2003) 

86.68% (2008) 

30m x 30m 

RCMRD-Lesotho 

 

Lesotho (30,56 tsd km²) 2000, 2014 (RCMRD, 2016) 89.29% (2000) 

88.73% (2010) 

30m x 30m 

RCMRD-Malawi 

 

Malawi (96,39 tsd km²) 1990*,2000, 2010 (RCMRD, 2016) 87.76% (1990) 

84.88% (2000) 

84.01% (2010) 

30m x 30m 

RCMRD-Namibia 

 

Namibia (825,79 tsd 

km²) 

2000, 2010 (RCMRD, 2016) 89.29% (2000) 

88.73% (2010) 

30m x 30m 

RCMRD-Rwanda 

 

Rwanda (25,27 tsd km²) 1990*, 2000, 2010 (RCMRD, 2016) 82.20% (1990) 

82.74% (2000) 

81.30% (2010) 

30m x 30m 

RCMRD-Tanzania 

 

Tanzania (877,57 tsd 

km²) 

2000, 2010 (RCMRD, 2016) 92.50% (2000) 

90.24% (2010) 

30m x 30m 

RCMRD-Uganda 

 

Uganda (209,59 tsd km²) 2000, 2014 (RCMRD, 2016) 90.30% (2000) 

84.22% (2014) 

30m x 30m 

RCMRD-Zambia 

 

Zambia (753,02 tsd km²) 2000, 2010 (RCMRD, 2016) 89.05% (2000) 

75.51% (2010) 

30m x 30m 

MoFor Indonesia 

 

Indonesia (1904,56 km²) 1990*, 1996*, 2000, 

2003, 2006, 2009, 

2011*, 2012* 

(MoEF, 2015; Webgis 

Kementerian Lingkungan 

Hidup Dan Kehutanan, 2017) 

n/a Initially vector 

format, but gridded 

to 30m x 30m 
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Table 2: Empirical gross/net ratios in percent for each land system, separated per land cover class components. A higher gross/net 

ratio indicates larger discrepancies between net and gross land change estimates (a gross/net ratio of 200 means that gross changes 

are double as high a net land changes). Usually, larger discrepancies occur in heterogeneous land systems, due to small–scaled bi-

directional changes within the same grid-cell. Note: gross/net ratios were weighted averaged amongst all input data and temporarily 

normalized for one-year time steps to ensure comparability.  5 

 

Land Systems classification 
Spatially weighted average and  

temporarily normalized (one year) gross/ net ratio in percent 

Land system name settlement cropland forest grassland 
other 

land 

Cropland; extensive with few livestock 143 149 128 200 131 

Cropland; extensive with bovines, goats & sheep 113 128 127 136 130 

Cropland; medium intensive with few livestock 136 161 131 163 131 

Cropland; medium intensive with bovines, goats & sheep 114 182 139 145 150 

Cropland; intensive with few livestock 125 177 154 181 149 

Cropland; intensive with bovines, goats & sheep 118 132 129 123 125 

Mosaic cropland and grassland with bovines, goats & sheep 118 142 125 145 129 

Mosaic cropland (extensive) and grassland with few livestock 127 285 186 211 126 

Mosaic cropland (medium intensive) and grassland with few livestock 114 140 143 154 128 

Mosaic cropland (intensive) and grassland with few livestock 115 144 146 151 134 

Mosaic cropland (extensive) and forest with few livestock 117 168 136 134 126 

Mosaic cropland (medium intensive) and forest with few livestock 116 131 137 156 128 

Mosaic cropland (intensive) and forest with few livestock 114 147 150 194 165 

Dense forest 119 132 146 160 152 

Open forest with few livestock 123 150 168 161 138 

Mosaic grassland and forest 124 156 160 212 135 

Mosaic grassland and bare 122 136 186 209 128 

Natural grassland 122 116 226 179 127 

Grassland with few livestock 124 144 148 152 128 

Grassland with bovines, goats and sheep 127 143 128 138 121 

Bare 120 119 140 144 157 

Bare with few livestock 126 133 185 149 149 

Peri-urban & villages 126 136 135 139 139 

Urban 119 126 133 165 147 
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Table 3: Regrouping of our empirical data to five IPCC land categories for continental regions as an example of adaptation potential 

to new legends or focus areas. The table shows region-specific gross/net ratios. High gross/net ratios indicate higher gross land 

changes than net land changes for different regions and classes. These values may serve as proxies for ESMs and IAMs to account 

for gross land changes. 

 5 

 No. of used 

products 
Settlement Cropland Forest Grassland Other land 

Europe 3 124 135 126 126 120 

North and Central America 3 117 157 172 191 150 

South America 1 141 133 160 154 153 

Africa 10 122 164 136 182 124 

Central-East Asia 1 117 133 188 159 154 

South-East Asia and Australia 4 126 127 150 198 134 
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Table 4: Regrouping of our empirical data to five IPCC land categories for continental regions as an example of adaptation potential 

to new legends or focus areas. The table shows averaged land transition matrices for these continental regions (conversion matrix 

on the left, change matrix on the right). Note: T0 refers to time step 0 and T1 refers to time step 1, indicating the direction of change 

in time. These values may serve as proxies for ESMs and IAMs to account for gross land changes. 

 5 

 

  Conversion matrix Change matrix 

  
settlement 

(T1) 

cropland 

(T1) 

forest 

(T1) 

grassland 

(T1) 

other land 

(T1) 
sum 

(T1) 

settlement 

(T1) 

cropland 

(T1) 

forest 

(T1) 

grassland 

(T1) 

other land 

(T1) 
sum 

(T1) 

Europe 

settlement 

(T0) 
3,7 0,1 0,0 0,0 0,0 3,8  2,4 1,0 1,0 0,4 4,8 

cropland 

(T0) 
0,1 34,0 0,1 0,2 0,0 34,4 11,9  7,7 11,2 1,0 31,8 

Forest 

(T0) 
0,0 0,1 31,9 0,1 0,0 32,1 3,8 6,2  3,9 3,1 17,0 

grassland 

(T0) 
0,0 0,2 0,1 21,5 0,1 22,0 5,0 15,1 10,4  5,6 36,1 

other land 

(T0) 
0,0 0,0 0,0 0,1 7,5 7,6 0,5 0,9 3,5 5,4  10,3 

sum 

(T0) 
3,9 34,5 32,2 21,8 7,6 100 21,3 24,6 22,6 21,4 10,1 100 

North and 

Central 

America 

settlement 

(T0) 
3,8 0,0 0,0 0,0 0,0 3,8  0,1 0,1 0,2 0,0 0,4 

cropland 

(T0) 
0,0 16,7 0,1 0,2 0,0 17,0 2,3  1,7 6,1 1,1 11,2 

forest 

(T0) 
0,0 0,1 32,7 1,0 0,1 33,8 1,5 1,9  33,0 2,0 38,5 

grassland 

(T0) 
0,1 0,2 0,8 38,8 0,1 40,0 3,6 9,5 21,0  6,8 41,0 

other land 

(T0) 
0,0 0,0 0,0 0,1 5,2 5,4 0,4 0,7 1,3 6,6  9,0 

sum 

(T0) 
3,9 17,0 33,6 40,1 5,4 100 7,8 12,2 24,1 45,9 9,9 100 

South America 

settlement 

(T0) 
0,3 0,0 0,0 0,0 0,0 0,4  0,0 0,1 0,1 0,0 0,2 

cropland 

(T0) 
0,0 11,4 0,2 0,3 0,0 12,0 0,1  2,1 3,7 0,1 6,1 

forest 

(T0) 
0,0 0,6 41,0 2,1 0,1 43,8 0,1 7,2  27,5 0,8 35,6 

grassland 

(T0) 
0,0 1,0 2,6 34,1 0,4 38,1 0,2 11,3 31,3  5,2 48,0 

other land 

(T0) 
0,0 0,0 0,1 0,6 5,0 5,7 0,0 0,3 0,8 8,9  10,0 

sum 

(T0) 
0,4 13,1 43,9 37,1 5,5 100 0,5 18,9 34,2 40,3 6,1 100 

Africa 

settlement 

(T0) 
0,4 0,0 0,0 0,0 0,0 0,4  0,1 0,0 0,1 0,0 0,2 

cropland 

(T0) 
0,0 6,9 0,3 1,1 0,1 8,4 0,2  1,7 8,5 0,9 11,3 

forest 

(T0) 
0,0 0,5 14,3 1,9 0,0 16,7 0,1 3,1  12,8 0,2 16,2 

grassland 

(T0) 
0,0 1,9 3,1 38,9 1,1 45,1 0,4 13,9 22,2  16,7 53,2 

other land 

(T0) 
0,0 0,2 0,0 1,0 28,2 29,4 0,2 2,7 0,4 15,7  19,0 

sum 

(T0) 
0,5 9,5 17,7 42,9 29,4 100 0,9 19,8 24,3 37,1 17,9 100 
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Central-East 

Asia 

settlement 

(T0) 
1,0 0,0 0,0 0,0 0,0 1,0  0,6 0,1 0,1 0,0 0,9 

cropland 

(T0) 
0,1 21,6 0,1 0,2 0,1 22,1 2,5  3,6 4,4 1,7 12,1 

forest 

(T0) 
0,0 0,2 24,9 0,3 0,0 25,4 0,4 5,8  8,2 0,8 15,2 

grassland 

(T0) 
0,0 0,4 0,4 24,7 1,4 27,0 0,6 8,4 13,1  16,4 38,5 

other land 

(T0) 
0,0 0,1 0,0 2,4 22,0 24,6 0,2 3,1 1,0 29,1  33,3 

sum 

(T0) 
1,1 22,3 25,5 27,6 23,5 100 3,7 17,9 17,8 41,8 18,9 100 

South-East 

Asia and 

Australia 

settlement 

(T0) 
0,7 0,0 0,0 0,0 0,0 0,7  0,0 0,0 0,1 0,0 0,1 

cropland 

(T0) 
0,0 12,5 0,1 0,5 0,0 13,1 0,7  1,3 4,7 0,5 7,2 

forest 

(T0) 
0,0 0,2 35,7 1,8 0,1 37,8 0,1 6,5  32,1 4,2 42,9 

grassland 

(T0) 
0,0 0,6 1,4 41,5 0,5 44,2 0,1 8,9 16,4  9,4 34,8 

other land 

(T0) 
0,0 0,0 0,2 0,8 3,2 4,2 0,1 0,5 2,9 11,4  14,9 

sum 

(T0) 
0,8 13,4 37,4 44,6 3,8 100 1,0 16,0 20,6 48,3 14,1 100 
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