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Abstract. Floods are the main natural disaster in Brazil, causingtanktial economic damage and loss of lives. Studies
suggest that some extreme floods result from a causal clithaia. Exceptional rain and floods are determined by largkesc
anomalies and persistent patterns in the atmospheric asghimccirculations, that lead to space and time structutéen
expression of these extremes. Moreover, floods can resutt @ifferent generating mechanisms. These factors cantriw
assumptions of homogeneity, and often stationary, in FEreduency Analysis. Here we outline a methodological fraor&
based on clustering using Self-Organizing Map (SOM) thiatna linking large scale processes to local scale obsenmvati
The methodology is applied to flood data from several sitéherflood prone Upper Parana River Basin (UPRB) in southern
Brazil. The SOM clustering approach is employed to clagigy/six-day rainfall field over UPRB into four categories,igfh
are then used to classify floods into four types based on #gosgemporal dynamics of the rainfall field prior to the ebged
flood events. An analysis of the vertically integrated mostfluxes, vorticity and high level atmospheric circulatrevealed
that these four clusters are related to known tropical anichéropical processes, including the South America lewel jet
(SALLJ), extra-tropical cyclones and the South Atlanticn@ergence Zone (SACZ). Persistent anomalies in the seacsurf
temperature fields in the Pacific and Atlantic oceans arefalsod to be associated with these processes. Floods assbcia
with each cluster present different patterns in terms afdescy, magnitude, spatial variability, scaling and syanfzation

of events across the sites and sub-basins. These new msigggest new directions for flood risk assessment, foiagastd

management.

1 Introduction

The assumptions of homogeneity, stationarity and randsmimetraditional flood frequency studies, have been questidn
numerous studies (e.g., Hirschboeck et al., 2000; Jain ald2001; Milly et al., 2002; Alila and Mtiraoui, 2002; Kwoet al.,
2008; Villarini et al., 2009; Smith et al., 2011; Westra anss8n, 2011; Vogel et al., 2011; Neiman et al., 2011; Seo.et al
2012; Villarini et al., 2013; Merz et al., 2014; Lima et alQ15). To make progress on understanding and modeling tte rea
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world flood process one needs to better understand how thplernmteractions among weather, climate, hydrology,fbasi
attributes and antecedent conditions evolve over spacéraad

Historically, flood studies have followed two distinct raseh lines: hydrometeorology of floods and flood frequen@han
sis. Flood hydrometeorology focuses on understandingdjddynamics of the rainfall-runoff process during floo@ets; ii)
spatial structure of local rainfall events that are asgediavith floods; iii) soil-atmosphere response and larg&esteculation
patterns associated with the forecast and diagnosis dhfia@vents. Some examples include (Maddox, 1983; Kunkal.et
1994; Pal and Eltahir, 2002; Schumacher and Johnson, 20@&n4ual et al., 2007; Viglione et al., 2010; Li et al., 2013).
There is also an extensive literature related to the staisanalysis and modeling of flood frequency from local aad r
gional data of rainfall, streamflow and water basin attelsyincluding non-stationary approaches (e.g., Thoma8andon,
1970; Stedinger and Cohn, 1986; Stedinger et al., 1993; Knal Stedinger, 1998; Kwon et al., 2008; Lima and Lall, 2010;
Cheng et al., 2014; Luke et al., 2017).

In this study, we investigate floods in the Upper Parana Rdain (hereafter, UPRB) in southern Brazil from a hydrocli-
matology framework to understand the flood generating nr@shes (Hirschboeck, 1988). The overarching goal is to Inek f
quency of flood events to flood generating mechanisms to geavbetter understanding of the underlying physical pseses
(Moftakhari et al., 2017). The underlying assumptions imdldrequency studies can be enriched by a formal considerati
of the physical mechanisms responsible for generation wéme floods. This includes a recognition of the natural aten
variability associated with persistence and oscillat@gimes (e.g., El Nifio) across different time scales (emgeannual,
decadal, etc) as well as climatic changes in response tocaenic changes in atmosphere, soil and land use.

Many studies have investigated the interactions betwesim lztributes and atmospheric circulation leading toexg
or exceptional floods (in the context of this work, it mean®ds with exceedance probability of 70%). However, there is
limited knowledge as to how evolving large scale climate asdt the interannual scale changethancesf local precip-
itation and soil moisture altering the probability distriton/occurrence of floods (Sun and et al., 2016). It is adghat the
frequency of flood events is very sensitive to modest chaimgemate (Knox, 1993; Sun and et al., 2016). We explore the
Hirschboeck’s hypothesis (Hirschboeck, 1988) #ateptional floods in basis of all sizesuld be related to anomalies in the
large scale atmospheric circulation. This flood hydroctofagy perspective has been applied to identify the mogsttans-
port and large scale climate patterns associated with flootdse United States (Hirschboeck, 1988; Budikova et all(®20
Nakamura et al., 2013; Lu and Lall, 2016; Mallakpour andavihi, 2016), Europe (Jacobeit et al., 2003; Bardossy ali| Fi
2005; Prudhomme and Genevier, 2010; Lu et al., 2013) and pérts of the world (Kahana et al., 2002). However, such flood
studies are rare in South America.

Intuitively, a rainfall system that persists over a givendl® with a continuous and sufficient supply of moisturer(fro
advection and recycling) has a high likelihood of generptin exceptional flood. For sufficiently large drainage graas
extreme flood may require an external flux of advective moéstue., local convective processes may not tend to produce
exceptional floods in these basins. Moreover, such an infllacge scale advective moisture can lead to an increaseshfait
for large floods as the drainage area and return period iserétirschboeck (Hirschboeck, 1988; Hirschboeck et aD020
notes that the scale of convective storms that can genertatese short rainfall is typically afo — 102 km? and is therefore
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it is unlikely that such convective processes are the maimcgoof exceptional floods over large areas. On the other,hand
mesoscale convective systems (MCS), such as convectivplerrMCC) and squall lines, tend to cover large areas and
persist for several hours and are sources of heavy rainfabiine regions of the USA (Schumacher and Johnson, 2005) 2006
and also Brazil (Zipser et al., 2006; Salio et al., 2007; @erknd Mote, 2009; Durkee et al., 2009; Marengo et al., 2012),
particular the MCCs to the east of the Andes that impact thélada Basin. However, there is evidence (Maddox, 1983;
Corfidi et al., 1996) that the maintenance and developmentiofi systems is related to large-scale atmospheric diiaula
features. Thus, tropical and extratropical cyclones asd@ated fronts become important in the production of exéreainfall

over large areas and are directly related to atmosphedulaiion patterns of large scale and with storm paths or deflhed
regions of moisture transport in the atmosphere.

We explore extreme floods in UPRB through a hydroclimatidysis of flood series across 33 nested-basin sites with
drainage areas ranging from 2,588 to 823,555 Kfine spatio-temporal dynamics of daily rainfall over theihan the days
that preceded the largest flood events is analyzed andf@dssito clusters of similar patterns based on a Self-Omagi
Map (Kohonen, 2001) clustering algorithm. This way, we mut¢o take into account the persistence and alignment of the
storm path with the drainage basin that produces a given .flbloe associated large scale atmospheric circulation fcin ea
cluster is then analyzed in terms of moisture transport amyergence, high level circulation and vorticity. Teleeotions
with the Atlantic and Pacific oceans are evaluated by congpasialysis of the sea surface temperature (SST) field. febr ea
rainfall cluster, the attributes (frequency, magnitudalisg and synchronization) of floods across UPRB are aedlyzorder
to produce and characterized a typology for floods in theoregccording to the dynamics of rainfall patterns and assedi
atmospheric circulation. Floods generated by snowmelpi¢al cyclones and storm surges do not affect the UPRB and ar
thus not investigated in this study. The paper is organizcidiéows. In the next section we present the region of stuty a
data. In section 3 we introduce the clustering algorithnsdation 4 we present the results and finally in section 5 wer aff

summary and discussion.

2 Region of Study and Hydroclimate Dataset
2.1 The Upper Parana River Basin, streamflow and rainfall daaset

The Upper Parana River Basin is located in southern Braiil. (B and is part of the La Plata basin, which is the second
largest basin in South America after the Amazon basin. UPRRentrates a large population of Brazil and is of utmost
importance for the country in terms of flood control, hydrayeo generation and agriculture. The rainfall season oveRBJP

is mostly marked by a peak during the austral summer (sumnoasaon system) related to the South American monsoon
system (SAMS) and associated South Atlantic Convergenoe Z8ACZ, see Barros et al., 2000; Jones and Carvalho, 2002;
Berbery and Barros, 2002; Carvalho et al., 2004; Marengb,e2@12), particularly in the region north @b°S, where the
monsoon system is the dominant forcing (Berbery and Ba2082). Rainfall interannual variability has been asseciat
with SST anomalies in the Tropical Pacific and South Atlanteans (Grimm et al., 1998; Robertson and Mechoso, 2000;
Grimm et al., 2000; Doyle and Barros, 2002; Grimm, 2003; @saand Nobre, 2004; Grimm, 2004; Cardoso and Dias, 2006;
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Jorgetti et al., 2014). Intra-seasonal and decadal véitiabf rainfall and streamflow have been also the subject ahynstud-

ies (Robertson and Mechoso, 2000; Robertson et al., 20Qidy Zhd Lau, 2001; Paegle and Mo, 2002; Carvalho et al., 2004).
Most of the moisture that reaches UPRB is from the Amazorore¢drumond et al., 2008; Carvalho et al., 2011), and the
rainfall mechanisms are also associated with Mesoscalgddtive Systems (MCSs) along the South-American low-lg@tel
(SALLJ, see Velasco and Fritsch (1987); Marengo et al. (2084dlio et al. (2007)) and transient systems related t@exipi-

cal cyclones and cold fronts (Mendes et al., 2007; Silva amibizzi, 2010). El Nifio events have also been linked to exére
rainfalls and floods in UPRB (Camilloni and Barros, 2003;rmar and Tedeschi, 2009; Muza et al., 2009; Cavalcanti et al.,
2015; Antico et al., 2016).

We use mean daily streamflow data from 33 sites in UPRB (FigThgse sites are located strategically to provide the
inflow into the main hydropower reservoirs in UPRB, which ased not only for generation of electrical energy but also
for flood control, water supply and agriculture. The datésetffered by the National Operator of the System (ONS), Whic
defines the operational rules of all interconnected hydrgpaeservoirs in the country. The streamflow data is avkdlab
from January/1931 to December/2013, but in order to be stardi with the availability of the rainfall dataset, we enh
all analysis considering the streamflow data restrictedh¢o1t980-2013 period. All series have gone through a consigte
process by ONS and represent naturalized flows from artiicid natural streamflow gauges, which means that any reéservo
operation upstream of the streamflow gauge is removed frerotiiginal series.

We limit our analysis to the wet season (November throughcilamwhen over 75% of the floods occur. For each site, we
obtain partial duration series of floods by taking the vaineshich the daily flow exceeds a given threshold. In orderdegk
a relatively large number of exceptional flood events in eadfifall cluster, we set this threshold as the 70th emgifload
quantile for the wet season. We analyze only independertglbg declustering the series (Lang et al., 1999) and takiegte
with inter-arrival times larger than 15 days, which we bediés a consistent interval to guarantee independence betihsod
events considering the different rainfall mechanisms daaise floods in UPRB. From this procedure, we obtain dates and
maghnitudes of about 98 flood events (ranging from 76 to 13mteyéor each of the sites in UPRB analyzed here.

Daily gridded rainfall data((.25° x 0.25°) for the period 1980—-2013 are provided by Xavier et al. (30TI8ese data con-
sist of interpolated daily rainfall observations from 362bnfall gauges and 735 weather stations across Braziladolai
from different institutions (INMET, ANA and DAEE). The intpolation schemes and validation procedures are descirbed
Xavier et al. (2016). The rainfall data is delimited by theRB’boundary as shown in Fig. 1. For each grid point, daily asom
lies of rainfall are obtained after removing, from the olvgervalue, the respective long term monthly mean for thak goint
based on the 1980-2013 period.

2.2 Moisture Fluxes, Vorticity, Upper Level Winds and Sea Stface Temperature

Mean daily data of vertically integrated moisture fluxes #trelassociated divergence field (Evaporation - Precipitationg
an atmospheric column), low and high level relative votyieind high level (500 mb) winds are obtained from the ER Aeflimh
reanalysis data (Dee et al., 2011). It covers the period 880 to 2013 and are retrieved for the region definetlis-60°S
and270°W-330°W.
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We also use daily SST data from the ERA Interim global seaasaerfemperature archive for the 1980-2013 period. Daily
SST anomalies for each grid point are calculated by suliiggdtom the observed value, the monthly mean for that goiciip
and related month based on the 1980—-2013 period. The SSTsfidéddimited by the regiof0°N-80°S and210°W-20°E.

All data are interpolated for a grid @f5° x 2.5°.

3 Technical Approach

The spatio-temporal dynamics of daily rainfall over UPRBtle days that preceded the largest flood events is analyzed
and classified into clusters based on a Self-Organizing Mapgnen, 2001) clustering algorithm, which is describethia
following subsection. By doing this, we consider the peesise and alignment of the storm path with the drainage hihain
produces a given flood. For each rainfall cluster, the aasetilarge scale atmospheric and ocean circulations ahgated
through composite analysis of moisture transport and agevee, high level circulation, vorticity and the Atlangind Pacific

SST fields. The attributes (frequency, magnitude and redjgealing) of floods associated with each rainfall clusteraso
analyzed. We propose then a typology for floods in the regigomling to the rainfall patterns and corresponding atiesp

and ocean circulation. Finally, we employ the ideas of ewynichronization and complex networks to explore the spatia
dynamics of floods over UPRB conforming the rainfall clustéfhe methodology to evaluate the synchronization of flood
events is presented in subsection 3.2.

3.1 Rainfall Clustering

A flood event, defined as a crossing of river stage above itk baight, can vary in duration from a few minutes to months
and in spatial extent from a few square kilometers, to séve¥dkm?”. A large number of flood studies have focused on
the understanding of physical processes associated walslm basins of small scale due to the ease of observingatriti
events in these basins (e.g., Gupta and Dawdy, 1995), widlelarge areas the focus tends to be on the problem to predict
flood quantiles, with lesser emphasis on the understanditiigegphysical mechanisms associated with extreme floods. Fo
instance, the relation of soil moisture and a given rairdaéint in producing some floods over small areas and homogeneo
soils is relatively easy to evaluate. On the other hand, thelpm becomes considerably more complicated as we canside
large basins, with drainage areas ovetkm?, since i) the potential of a high heterogeneity in the ihisi@il moisture field
is high and ii) the location and direction of the storm patbngl the basin leads to a significant heterogeneity in theadpat
and temporal distribution of the rainfall event. Since thiuix of large scale advective moisture may be a particuleofao
overlie the initial heterogeneities of the surface cowdisifor larger basins, we will assume that the spatio-teaipariability
(i.e., magnitude, persistence and alignment of the stotimyith the drainage basin) of rainfall is the key factor odgucing
floods across the UPRB sites evaluated in this work.

Consider that the information regarding the spatio-terappatterns of rainfall associated with the major flood esesat
contained in a rainfall dataset represented by a ma&rix [x; x» ...x7|, wherex; is a column vector containing all the
relevant information about the spatial variability andgigtence of daily rainfall over UPRB along daysr,t—7—1,...,¢t,
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for some time delay. T is the total number of effective days during the austral wassn (November—March) over the 1980—
2013 period. Our goal is to extract information ab&uthrough clustering. We use the Self-Organizing Map (SOM)rapch

to cluster rainfall information as expressedXn SOMs are a particular case of competitive neural netwonksteave been
developed by the machine learning community in the 1990&h@6en, 2001) for cluster analysis and classification. Tiasye
been successfully applied to find clusters in climate syst@ng., Cavazos, 2000; Hewitson and Crane, 2002; Johnsdn et
2008; Lee and Feldstein, 2013; Bao and Wallace, 2015; Liep@al5; Mioduszewski et al., 2016; Xu et al., 2016; Liet al.,
2016). An extended review of applications in Climate Sceeisqrovided by Liu and Weisberg (2011). SOMs are also known
as Kohonen neural networks and the basic idea is to obtaid eBo@elogy consisting of nodes (or neurons) that are assutia
with the input spac&, preserving yet its topological features.

For the sake of clarity and understanding of the SOM progeiind tuned parameters (i.e., parameters that can be sub-
jectively set) used in this work, we describe here the kegetspof SOM. We refer the reader to Kohonen (2001) for more
details about SOM. Let us assume that we h&veeurons, then initiallyX' representatives (or prototypes, synaptic weight
vectors, reference vectors) are randomly chosen from fheé spaceX and associated with th€ neurons. An input vectat,
is randomly selected from the data 3&tand the Euclidean distance betwegrand each representative,, £ = 1,..., K, is
computed. The neuron whose representative yields theeshdistance ta; is the winner neurok* or Best-Matching Unit
(BMU):

K =argk {|ix, —myl} &)

In the next step, the neurons that are neighbors (neighbdrbet) of the winning node* are found based on the Euclidean
distance and a given threshaldThe representatives corresponding to each grid neightibieonining neuront™ are then
updated according to the rule:

mk<—mk—|—a-(xt—mk), k‘ENC(kJ*), (2)

whereq, 0 < « < 1, is the so-called learning rate af¥l(k*) denotes the set of points in the neighborhoodofjiven the
parameter. The process is then arbitrarily repeated a large numbémestepochs, since there is no explicit error criterion
to minimize (Lee and Verleysen, 2007).

Variants of the update rule in equation (2) include a timeyway learning ratex and weighted distances based on the

proximity of m; and the winning neuromy,-:

my < 1my -I-Oé(]) . h(||mk — My~ ) . (Xt — mk), k S N(‘(k*)7 (3)

wherea(y) is the learning rate at epoghandh(||-||) is a neighborhood function around the winner neukbnCommon
functions fora(j) include the linear, power and inverse functions with a deseerate over time. A common function for
h(|]-1|) is the Gaussian kernel:



10

15

20

25

my — My~
)= exp{—“T} IkeNu(k*ﬁ

whereo is the width of the kernel (or neighborhood radius) drte indicator function.

In the batch version of the SOM, instead of presenting eawt # single data vector, the entire dataXes presented to
the SOM before any weights are updated and the BiLJ is obtained for each input datg at each epoch, so that each data
vectorx; will belong to a given neuron and the new neurons are updated a

WX
my, ZteNc(k) t t7 (4)
ZteNc(k) Wy

where the weight functiom; can be a rectangular function, which is equal to 1 for the m@dgs ofm,, and 0 otherwise, or be
a smooth functiork(||m; — my||). In this sense, each new neuron is a weighted average of thsamples that belong to its
neighborhood neurons.

For a given number of neurods§, learning ratey, threshold: and fixed number of epochs, the trained SOM can encode any
pointx; by giving the index: of the closest neuromy, where the distance is computed similarly to equation ¢lL)his way,
each data point of the entire dataset of rainfall informa¥ocan be assigned (or clustered) into one of the categbries K.

The final embedding aX can be evaluated by the mean quantization error (MMQE) oBtil, which essentially measures
the average distance of each ingutto its representative in the output space:

T
1
MMQE:f;th—mxtH, (5)

wheremy,, refers to the best matching unit of the corresponding
In order to capture the spatio-temporal dynamics of thefallifield over UPRB, including the information of antecetlen
rainfall for a given day of the record, we will concatenate the rainfall field ovemadiwindowr = 5 days:

Xt = [yo5Te_a Tp_3 Ty a1 1y] (6)
wherer; is a row vector representing the observed rainfall field dlierUpper Parana River Basin (Fig. 1) at dayvith
dimension 1178 (number of grid points), so tlkathas dimension 7068.

It is interesting to note that asincreases, the number of dimensionsxgfincreases as well and the associated rainfall
pattern may not be necessarily connected with the flood sv8aised on the results discussed in the next section and the
lifetime of about 3 days of extratropical cyclones (Simmeadd Keay, 2000) and 3 days of SACZ events (Carvalho et al.,
2004), we believer = 5 days is an appropriate choice to extract the relevant irdtion regarding the rainfall field during
flood events.
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To be coherent with the flood data as described in sectiom2 focus on the November—March daily rainfall. The dataset
covers the period from January 1st 1980 to December 31st @h3a total of 5143 data points. After concatenating the
rainfall field as explained in equation (6), the number ofadatints reduces to 5138, starting now in January 6th 1980 and
ending in December 31st 2013. This results in a 5138 x 706& ithgta matrixX to the SOM.

3.2 Flood Event Synchronization

The spatial dynamics of floods across UPRB produced by eastonevill be qualitatively explored through the concepts
of event synchronization and complex networks, which haenbsuccessfully applied in many fields (Quiroga et al., 2002
and also climate science (Malik et al., 2012; Marwan and k&yr2015), including for prediction of floods in South Americ
(Boers et al., 2014). Following the nomenclature of Quiregal. (2002), let us define the time series of flood event dates
(obtained from the partial duration series) for two givereainflow sitesz andy ast¢} and tjy wherei =1,...,m, and
j=1,...,m,. We define twasynchronoudlood events whenever the distance betwgéandt? is less than a given time lag

7. Let thenc™ (z|y) be the number of time in which a flood eventirfollows, within the time lagr, a flood event iny:

aly) =D > T (7)
i=1j=1
where
1 if 0<tf—tf<r
Jii=19 1/2 if tr =ty (8)

0 otherwise

Similarly, we can calculate” (y|z). We will define then a measutg, for the event synchronization:

c"(xly) + " (y|x
0. — Claly) +eyla) ©
Ny
where0 < @, <1, and@, = 1 suggest fully synchronization.
The delay behavior (atirection of flow) of the flood events can be measured by:

L ) = ) 10

where—1 < ¢, <1, andq, = 1 implies that flood events im always precede flood eventsijn
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When combining all streamflow site®,- will be the elements of a square symmetric matrix whilevill be the entries of a
square antisymmetric matrix. The matrix generated ftgpcan then be converted into a square binary matrix, wheresentr
will represent only relevant connected sites. This can beraplished by constructing the adjacency matkix

A—e 1 if Q->T (1)
0 otherwise
whereT is a given threshold.

Methods to estimat@ usually involve a bootstrap procedure, so that only a aenp@&rcentage of the total number of
grid points (e.g. 5%) are connected (Malik et al., 2012; Ba#ral., 2014). In the particular case of this work, we areemor
interested in the gauges that have synchronized flood ewétiits specific one. Hence, we will defilé= 0.5, so that we
define synchronized gauges when at least 50% of their floatt®eecur simultaneously.

The time lagr should be less than half the minimum inter-event distanzéhat one single flood event is not synchronized
with two events in another site. Based on this, a simple nmadtieal formulation is presented in Quiroga et al. (2002)uir
case, in order to consider independent flood events, we lefireed the partial duration series so that flood events aesaat |
15 days apart. Hence,= 7. The average direction in which the flood event propagatébe/simply evaluated by the sign of

Gr-

4 Results
4.1 Rainfall Clustering

We chose a 2x2 hexagonal grid to define the SOM, and the rhiiefial is classified intaX” = 4 clusters. This choice is made
primarily to associate a relatively large number of floodregeén each rainfall cluster. The neighborhood radiissinitially set
as 3 and monotonically decreases to 1 (equivalent to 6 neigtbr a central neuron in an hexagonal grid) when the number
of epochs is equal to 100. This is the so-called orderingghalsere a global order is achieved for the map (Kohonen, 2001
From 100 epochsis set to 1 (tuning phase). Since the SOM grid consists of fieurons, then only two neighbors will have
the size of its neighborhood affected bysee Fig. 2 and related discussion). The weight function equation (4) is the
rectangular function. The total number of epochs is set @1But we do not observe any significant difference in thermea
quantization error (MMQE) after the first 200 epochs. At 1800chs we obtained MMQE = 777.69. We also evaluate MMQE
for a 2x3 and a 3x3 hexagonal grids and observe that the vidnddo oscillate around MMQE = 777.69 as a function of the
number of epochs, so that any significant differences foRi#egrid are observed. The SOM clustering algorithm is oletdi
using a commercial Neural Network Toolbox (MATLAB, 2014).

Figure 2 shows the final SOM after 1000 epochs in terms of hitsaich neuron (left panel) and neighbors and weight
distances (right panel). The number of hits is almost evdidiributed among neurons 1, 2 and 3. Neuron 4 has almost the
double of hits of the other neurons. Due to the hexagonallgsidut, neurons 2 and 3 are connected to all the remaining
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neurons, while neurons 1 and 4 are connected only to neurand 3 (right panel of Fig. 2). The shortest distance is okthin
between neurons 3 and 4, followed by the distances of nedrand 3 and neurons 2 and 4.

The above analysis is complemented by looking at the wefteach neuron (Fig. 3), which basically contain the informa
tion about the rainfall anomaly field over UPRB from day 5 to dayt. Neuron 1 has a north-south seesaw pattern at ey
and progressively moves towards an homogeneous field, vgtioag rainfall peak at dat/— 3 centered in the northeastern
part of the basin. The north-south dipole structure retstrger at day— 2 and persists until dag but now with a decrease
in the rainfall peak. At this point it is worth mentioning thihe negative anomalies in the rainfall field do not necélgsar
imply absence of rainfall, but just that the rainfall in ttsmecific grid point is below its long term monthly averageuhte
2 starts with a nearly homogeneous rainfall field at timess andt — 4, from which negative rainfall anomalies start in the
southern part and cover approximately the entire basimatitiNeuron 3 starts at time— 5 with a northeast-southwest dipole
structure with positive anomalies in the southwest, whidgpess over time until almost the entire basin is coverepldsjtive
anomalies at timeé. Neuron 4 has an homogeneous rainfall pattern over theedpdisin, with negative anomalies from time
t —5to timet.

Combining the information from Figures 2 and 3, we obsena the rainfall field represented by neuron 4 is somehow
connected to the rainfall patterns expressed by neurongl Bdhrough specific regions of negative anomalies of rdinfal
Neurons 2 and 3 have also some connection with neuron 1.

Considering that each neuron represents a given state dditifall field during the course of 6 days, we estimate trizonsi
probabilities across the states and show them in Table 1.0t¢ethat there is a general tendency of the rainfall field toai@
in its state (neuron), but the transition probabilitiesdifierent among neurons. Neuron 1 is more likely to transito neuron
2, which is more likely to transition to neuron 4. Neuron 3 tteshighest probability to transition to neuron 1, while rosu4
will more likely stay at its own state, with just a small prdildy to transition to neuron 3. We discuss further and eatuialize
these transitions in the next section when we analyze thesgtheric circulation associated with each neuron.

4.2 Atmospheric Circulation, Moisture Transport and Sea Suface Temperature

The analysis of key atmospheric and ocean variables in eaalon class is conducted here through a composite anatysis ¢
sidering the days correspondent to each neuron classslsghse, the patterns will reflect the average conditiomsgtdlogy)
for dayst throught — 5 as showed in Fig. 3.

The vertically integrated moisture flux and the associateerdence field (Evaporation - Precipitation along an ajphesic
column) averaged over each neuron class is shown in Fig. 4calfesee this as a climatology of the moisture transport
associated with the rainfall patterns indicated in Fig. @8uMn 1 shows an intense moisture transport from the Amazon
region, possibly associated with SALLJ episodes (Marengh 2004). The divergence field is negative in the northern
portion of UPRB, suggesting intense rainfall along thissagand positive in the southern part (dry conditions)eexting to
50°S. This dipole structure has been reported in several stiieig., Nogués-Paegle and Mo, 1997; Diaz and Aceituno,;2003
Liebmann et al., 2004) and is also observed in the rainfddl issociated with neuron 1 at timébottom panel of Fig. 3). The
circulation is similar to the pattern described by Noguéegte and Mo (1997), where convection in the SACZ in enhanced
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and more likely to occur during El Nifio episodes, while theLEAis weak (Liebmann et al., 2004; Silva and Berbery, 2006).
But note that a negative divergence field only indicatesriafall can potentially occur. This is not a sufficient cdioh and
a negative divergence does not necessarily lead to rainfall

The moisture transport in neuron 2 is dominated by a northiksmeridional flow crossing the entire basin, with a rekltiv
homogeneous convergence of moisture over the basin, réisgratso the rainfall pattern at timefor neuron 2 (bottom panel
of Fig. 3). This pattern seems to be associated with a wea@Z%nd stronger SALLJ, as described in Nogués-Paegle and Mo
(1997) for positive events.

The moisture transport in neuron 3 is also affected by a gt®ACZ and moisture fluxes from the Amazon region but,
when compared with neuron 1 (Fig. 4), the positive divergdjoc inhibited precipitation) is far south of the basin aodears
a smaller area. The moisture divergence pattern is agaitesita the rainfall field at time for neuron 3 (bottom panel of
Fig. 3). Neuron 4 has a moisture transport pattern similéinab of neuron 2, but the origin of the fluxes are more assediat
with the South Atlantic, with meridional fluxes west of thesbaand a less intense moisture convergence. This reflets th
rainfall field for neuron 4 (Fig. 3) and is likely associatedhnthe average conditions of moisture transport into trggome
(Doyle and Barros, 2002; Carvalho et al., 2004).

The dynamics of the moisture transport associated with raahon class is complemented by analyzing the low level (850
mb) relative vorticity (Fig. 5), which can indicate zonedm# pressure and cyclonic rotation. A distinguished patteffound
for neuron 1, with negative relative vorticity or cycloniatation over the entire basin and positive relative vasticentered
arounds0°W 30°S, which suggests upper level wave activity and dynamicalrig (divergence in the upper levels) associated
with neuron 1. This pattern has been identified in other stufliiebmann et al., 1999; Robertson and Mechoso, 2000yadeu
3 also shows cyclonic rotation (negative relative voryicin the southern part of UPRB, extending uBty'S. Neurons 2 and
4 do not show any sign of intense cyclonic flow over the basin.

The high level (500 mb) atmospheric circulation and re&tierticity associated with each neuron class is shown in6=ig
Neuron 1 shows a strong trough in the upper level circuldtiah extends to the entire UPRB, with negative vorticityrabe
entire basin and positive vorticity southwestern of it teeed around5°W 30°S). This pattern confirms our hypothesis that
this neuron is also associated with upper level wave aigs/itNeuron 3 shows also a trough over the basin, but it is @reak
and negative vorticity appears only in the south. NeuronsZashow more a zonal kind of circulation south26fS, which
resembles the climatology of high level circulation.

Anomalies in the near surface air temperature associatddesch neuron are shown in Fig. 7. Neurons 1 and 4 have,
respectively, negative and positive anomalies that cdwveentire UPRB. Neuron 3 has a sharp contrast of negative aliesm
in the south and positive anomalies in the north, suggestimgal activities. Neuron 2 has also a sharp contrast ofrelies
but with opposite sign as compared with neuron 3 and therpagteggests that it results from the advection of moist ananwva
air from the Amazon.

Potential SST persistent patterns associated with eadlomewe analyzed here by passing a 15-day high frequenay filte
on the daily SST anomalies, which are calculated by suligdrom the daily SST, the average of the correspondentimon
for the January/1980 — December/2013 period. The reswdtstamwn in Fig. 8. Neuron 1 and neuron 3 show both positive
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anomalies in the El Nifio region (eastern tropical Pacifitjhe central Pacific and Tropical Atlantic. A dipole kind tigture
appears in both neurons along the southern coast of Southidarit they are out-of-phase. The negative SST anomdfies o
the South America coast associated with neuron 1 have beatifidd in other studies (Doyle and Barros, 2002) during 8AC
activities and it is not clear whether they are a responshdae¢duced income radiation from the intense rainfall bévad t
extends from the Amazon to the South Atlantic or whether #eyin fact acting to produce the observed circulation patte
The SST pattern of neuron 3 is similar to that of neuron 1, piteat the anomalies off the South America coast 13648

are positive, which is consistent with the positive rainfi@momalies in the southwestern part of the basin (Fig. 3)easribed

in Doyle and Barros (2002). Neurons 2 and 4 show a similaepatilong the South Atlantic, with positive anomalies in the
equatorial region (up to aboQ0°S), negative in the subtropic (centered ab®iitS) and positive south of aroudd@°S. The
SST pattern in the Pacific ocean for neuron 2 is diffuse, wittremarkable feature. Neuron 4 shows positive and negative
anomalies that intercalate across the Pacific, with negathomalies along the El Nifio region. The SST anomalies in the
Atlantic for neuron 2 are very similar to those observed feunmon 1.

Combining all the analyses, we can shed some light on thsiti@am probabilities, hits and connectivity among neurass
displayed in Fig. 2 and Table 1. Neuron 4 has individuallyrist hits and likely reflect the average circulation durimg t
wet season, with a strong persistence but reduced SACZtedivEventually it precedes neuron 3 (probability = 11%)l a
most likely succeeds neuron 2 (probability = 22%), whichxpexted given the rainfall pattern as shown in Fig. 3 and the
atmospheric circulation and SST anomalies in Figures 4 e8ron 2 has also a slightly probability (12%) of precederasu
3 and most likely (probability = 35%) succeeds neuron 1.

When we connect these results with the transition prolislin Table 1, we can describe the most probable sequence
of rainfall states. The dynamical forcing and active SACznefiron 1 is most likely preceded by neuron 3 (probability =
17%), which is marked by active SACZ, high level waves andi dobnts, and will most likely be followed by the rainfall
pattern of neuron 2 (probability = 35%), which is coherenthwthe surface air temperature march as inferred from Fig. 7.
Neuron 4 will most likely be followed by neuron 3 (Fig. 3). Neas 1 and 4 are not connected and the transition probabiliti
between them are practically zero. In summary, the modylg@guence of neuron transitions, arbitrarily startingetron 3,
is:3—1—2—4— 3. But also note that transition probabilities from one neui@another one are generally smaller than
the probabilities to remain in the state (see Table 1).

4.3 Flood Reponse
4.3.1 Frequency and Magnitude

The total proportion of flood events in neurons 1 to 4 is eqoé5%, 34%, 20% and 11%, respectively. The frequency of
floods in each neuron for the streamflow gauges analyzed$ishewn in Fig. 9. Neurons 1 and 2 dominate most floods across
UPRB. Neuron 3 dominates the floods along the gauges locatbé Paranapanema sub-basin (see Fig. 1), while neuron 4 is
most associated with floods in the gauges along the Parayaparticularly with the Itaipu gauge located in the bagitiet,
which interestingly is not directly affected by the waveiatt of neuron 1 (see following discussion).

12



10

15

20

25

30

The magnitude of floods associated with each neuron classlgzed by calculating, for each site, the empirical exeeeé
probability for each data point in the partial duration ssriaggregating all estimates across the sites and themaéat) the
density of such probabilities conditional on the neurosglaf the data points. The results are shown in Fig. 10. Nesur@md
2 have the peak and largest density in small values of exoeedaobability, suggesting that the biggest floods alongBP
are associated with these patterns of rainfall (Fig. 3) antstre transport and convergence (Fig. 4). It is worth mo@irig
that neuron 2 has a rainfall dynamics that is not associatédBl Nifio events (Fig. 8), but still produces large floodkisT
highlights the uncertainty and complexity to quantify theofl hazard during ENSO events as described in Emerton et al.
(2017). The pattern of neuron 3 is more associated withnmteiate magnitude flood events while neuron 4 is associated w
the smallest flood events, although some large flood eveatgaasible, particularly in the sites where this neuron daieis
the frequency of occurrence (Fig. 9).

4.3.2 Spatial Scaling

The literature on the scale of flood properties (e.g. quasitivith drainage area (Gupta and Waymire, 1990; Farquhatsal.,
1992; Over and Gupta, 1994; Gupta et al., 1994; Gupta and Da@d5; Pandey et al., 1998; Gupta et al., 2007) suggesdts tha
the type of precipitation (e.g. convective versus frongalll the attributes of the drainage network will jointly detene the
different behaviors of the scaling process of flow and dgénarea. It is not clear whether such scaling relations wailiih
if a mixture of mechanisms can interact to produce large 8oétére we explore the scaling of the first and second sample
moments of the flood events with respect to the neuron classes

Since each flood event at a given site can be assigned to angdass, we can easily calculate the sample moments (mean
and variance in our case) in each neuron class for each gadgevaluate how the scaling law of flow moments and drainage
area change as a function of the spatio-temporal varighufithe rainfall field. Figure 11 shows the scaling of the ager
flood flow and drainage area for each neuron class. The malgsiof the slope and intercept coefficients clearly change as
function of the neuron class, but more remarkable diffeesrappear between neurons 1/2 and neurons 3/4. In fact,lbpth s
and intercept estimates of either neurons 1 or 2 are significdifferent at the 5% significance level from the estinsafter
neurons 3 and 4 using a standard t-test.

The magnitude of these coefficients also reflects the irtieokrainfall and the spatial pattern associated with eaalron,
as shown in Figure 3. As the rainfall intensity increaseis, @xpected that the intercept will increase, while the slispmore
related to the spatial homogeneity of the rainfall field:tdseicomes more homogeneous across the basin, we expedijke sl
will approach 1. The intercept values as shown in Fig. 11ease from neuron 4 to neuron 1, which qualitatively agreés wi
the rainfall patterns showed in Fig. 3, whose overall magigtincreases from neuron 4 to 1. The slope estimates subgést
the less homogeneous rainfall fields occur in neurons 1 awtiizh is consistent with the pattern displayed in Fig. 3. ideis
3 and 4 have the largest slope estimates and thus more hosmgeminfall field, which is again consistent with the resaf
Fig. 3.

The scaling of the sample variance with the drainage areadoh neuron class is shown in Fig. 12. As for the average
flow scaling, the largest differences among the coefficiartsobserved between the pair of neurons 1 and 2 and the pair of
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neurons 3 and 4. Visually, the scaling is clearer for neudoaad 2. Neuron 4 shows more dispersed values along the least
squares regression line, suggesting that the mechanismsibly this rainfall pattern produces a given flood acrosgtheayes,
particularly for small gauges, are different (see subsetgiscussion).

4.3.3 Flood Event Synchronization

Figure 13 shows a directed network obtained from the ad@ceratrix A and the delay behavior matrig- considering all
flood events across sites and not taking into account theonatlasses. The nodes represent the streamflow gaugesrin thei
geographical position while the edges (or branches) thetenge of synchronization between two sites. The arrow stilogy
dominant direction of the flood propagation. The flow patsaganerally follow the drainage basin direction (Fig. 1stesest
and north-south. But some exceptions can also be obsendidaiing that the size and movement of the storm path may als
affect how the sites are synchronized.

If we cluster the flood events into the neuron classes, we btirospecific adjacency and delay behavior matrices fdr eac
neuron. The resulting directed networks are shown in FigNb#v we can observe that the rainfall pattern described byore
1 produces the largest synchronization of flood eventsndiyethe number of arrows, including inter- and intra-suloiss
connectivity. In general, the cascade of flood events terghtbup in the outlet of the sub-basins (see Fig. 1 for the name
and location of the sub-basins). Neuron 2 has a more intshagin connectivity pattern, that tends to follow the riftew
direction and suggest that rainfall upstream of the basiha@snore likely cause of floods. The Itaipu site located inldasin
outlet is not connected to any site, suggesting that Itaipad8 in this neuron will likely result from the routing flowofmn
upstream sites. Neuron 3 has the northern sites discomhetiée a connectivity within and across sub-basins is olesr
The Tieté subbasin seems to be disconnected from all otbéasins. Finally, neuron 4 show less connections, were afost
them are within the subbasins. The Itaipu site is again cetalyl disconnected, so most of its floods associated withometi
are due to routing of upstream flow and floods caused by rawofftiis and other types.

5 Summary and Conclusions

A general, statistical approach to classify flood genenati@chanisms, the areal scaling of floods, and the synclatorz
potential of flooding in a large river basin, was developed damonstrated with data from the Upper Parana River Basin,
Brazil. This is the first attempt to describe such floods in @alr hydroclimate context. A Self-Organizing Map algarith
was employed to find the spatio-temporal dynamics of thefatiifield over the basin in the days that preceded the major
flood events. For each cluster, we analyzed the large scakturmtransport into the region as well the upper levelctne
and teleconnections associated with SST. The flood respmseeiated with each rainfall pattern was evaluated ingdeyin
magnitude, frequency, spatial scaling and events synctaton.

Four distinct patterns of rainfall were observed and asgediwith the atmospheric circulation and moisture trartspbie
first cluster exhibits strong rainfall concentrated in tlogtheastern part of the basin, with a peak two days beforédbe
events. It was associated with the moisture transport flemAmazon and intense SACZ, with the presence of cyclones - a
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pattern that have also been reported in the literature thaein et al., 1999; Robertson and Mechoso, 2000). Thesesesent
associated with positive SST anomalies in the tropicalffeaaind Atlantic oceans and a dipole structure off the easteast

of South America, which has also been observed in otheredy{dig., Doyle and Barros, 2002). On average, 35% of all §lood
happen during these conditions. The Itaipu streamflow gknogeed in the basin outlet is less affected, at least dyrdmt this
rainfall pattern. These type of floods are strongly synctoeshacross all sites.

The third neuron shows features of SACZ episodes assoaidtie@xtratropical disturbances, possibly fronts and oxels.
The rainfall field is however less intense than that of nedrand peaks in the southwestern part of the basin. The coteposi
analysis for the SST field has a pattern similar to that of oedr, but the seesaw structure off the eastern South America
coast is reverse. On average, 20% of the floods happen to imaoeiron 3, but this frequency is larger for sites locatetthen
southern part of the basin, particularly in the Paranapargmbasin. The magnitude of these type of floods are intéateed
and there is a synchronization intra- and across the cearichsouthern subbasins, suggesting connectivity due tstone
track extension and movement and the flood routing along titears channels. Both neurons 1 and 3 have positive SST
anomalies in the ENSO region (eastern tropical Pacific)clvihias been also associated with extreme rainfall eventsein t
region (Camilloni and Barros, 2003; Grimm and Tedeschi2@avalcanti et al., 2015). Therefore, about 55% of floo@s (i
35% in neuron 1 + 20% in neuron 3) in the UPRB are linked to EloNike SST patterns in the eastern Tropical Pacific.
Neuron 2 has a rainfall peak in the northeastern part of tesenbbhetween 4 and 5 days before the flood event. The average
rainfall field is less intense than neuron 1 but more intenae heuron 3. Neuron 4 shows a SST pattern similar to La Nkia-|
conditions, with negative SST anomalies in the easterndabpacific, suggesting that about 11% of floods in the UPRBdto
be linked with this large-scale phenomenon.

The moisture path shows warm and moist meridional flow adiesntire basin, resulting in rainfall possibly due to low
level convergence or eventually frontal activity. The SSdfiin the Atlantic ocean is similar to that of neuron 1, bug th
average conditions in the Tropical Pacific are neutral. Garaye, 34% of floods are of this type, particularly in the ihem
subbasins. Together with floods in neuron 1, these are tgedafloods in the region. The synchronization of type 3 floods
are more intra-subbasins. Finally, type 4 floods are caugeah ihomogeneous but persistent rainfall field, with mostsiooe
transported from the Atlantic ocean. There is no evidenahirettly extratropical activities and the SST field revelalegative
anomalies in the tropical Pacific and positive in the tropfd#antic. The near surface air temperature in this clusteswed
positive anomalies, suggesting that local convection triighalso an important factor. 11% of the total floods are céetgpe,
although this is the dominant pattern of rainfall. Thesethedess intense floods, with a synchronization that ocdorsyehe
main river channels.

The spatial scaling exponents (slope) of floods with dragrexga (Figs. 11 and 12) are similar for floods of types 1 and 2,
and for types 3 and 4, even though the rainfall mechanismditieeent for each pair. The exponent is higher for types@4n
reflecting the higher homogeneity in the rainfall and resgopattern. The area exponents for flood variance are coabigle
higher than those for mean scaling, opening the possilofisymulti-scaling approach. However, once again the expisrae
similar for types 1 and 2, and for types 3 and 4. The scalirgticeiships for variance are not as well constrained for oesir
3 and 4 types of events.
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Distinct patterns of flood synchronization and movementadse identified for each neuron. Conditional on the storm
track, i.e., large scale atmospheric flow, these could lbduuseful to improve analysis and prediction of the pad¢flbod
emergence and for the operation of multi-stage flood cosyrstiems.

The results obtained in this work are a step forward for flasklmanagement in UPRB in two possible ways: flood design
and short term prediction. Local flood frequency analysisid¢anake use of the different flood categories and employ, for
instance, mixture of distributions approaches (e.g.,aMdihd Mtiraoui, 2002) for better flood quantile estimatesyi®eal
flood frequency analysis could also consider the differealisg laws and develop a Bayesian approach (as in Lima alhd La
2010; Cheng et al., 2014; Lima et al., 2016) to better es@megional parameters.

Finally, the persistent regions with SST anomalies couldubed to derive climate predictors for short term flood risk
prediction. The synchronization of the flood events coulcekplored in more details to develop short term flood forecast
models conditional on the atmospheric and oceans statefaattisituation in nearby sites. Further details of the moest
transport and high level atmospheric circulation could Ise analyzed in order to obtain potential climate predgfor the
floods in this region. The proposed method can potentiallydeel to explore other attributes of floods, the notion of datiue
hazards (Moftakhari and et al., 2017) and simultaneousithgoatross a basin (Vahedifard and et al., 2016), and wilhbene
of our future work. The timing of the floods along the wet seaand a possible association with the neuron classes can be
further explored. In future research, we intent to addressesof these topics and also explore how the tools and melibgylo
employed in this work could help evaluate the future flooH nisthe UPRB region considering climate changes.

6 Data availability

The streamflow data for the Upper Parana River Basin are ¢eddy the Brazilian National Operator of the System (ONS)
and can be accessed at http://www.ons.org.br/home/. Tifalfand temperature data are provided by Xavier et all@@nd
can be accessed at http://careyking.com/data-downldhd/ERA Interim global data set (SST, moisture fluxes, digaog
field, vorticity, wind field) are available at http://appsnewf.int/datasets/data/interim-full-moda/levtypestsf
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Figure 1. The Parana River Basin (ticker red contour) and streamflaygesused in this work (black dots). The elevation is in nseded
the location of the Parana River Basin within Brazil is shdwethe insert in the upper right corner (red line contouheThinner red line

shows the associated subbasins: 1) Paranaiba; 2) Grarilet&) 4) Parana ; 5) Paranapanema/Parané and 6) Iguacu.
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Figure 2. Top panel: number of hits in each neuron (blue hexagonsjoBpanel: connecting neighboring neurons (red lines).coiers in
the regions containing the red lines indicate the distabeéseen neurons, where darker colors represent largandess and lighter colors

represent smaller distances.
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Figure 3. Neuron weights obtained for the Self-Organizing Map. Thesights basically represent the rainfall anomalies (in rower the
Upper Parana River Basin from day- 5 (top panels) to day (bottom panels). The black line shows the zero contour.
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Figure 4. Vertically integrated moisture fluxes (in kg/(s), showed by the arrows) and associated divergence field){if kg/(m?- s))

averaged over each neuron class. The red contour line shewdpper Parana River Basin. The contour for the divergeete équals to

zero is also shown.
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Figure 5. Streamlines for the vertically integrated moisture fluxes w level (850 mb) relative vorticity (in0~°- 1/s) averaged over each

neuron class. The red contour line shows the Upper Paramd Basin.
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Figure 6. Streamlines for the high level (500 mb) wind vector and iedatorticity (in 10~°- 1/s) averaged over each neuron class. The red

contour line shows the Upper Parana River Basin.
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Figure 7. Anomalies (in°C) in the near surface air temperature averaged over eacbmelass. The red contour line shows the Upper

Parana River Basin. The zero contour line is also shown.
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Figure 8. 15-day filtered sea surface temperature (SST) anomalieS°fimveraged over each neuron class. The zero contour lineas al

shown.
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Figure 9. Frequency of flood events in each neuron class for each dtaigauge. The red dots show the scale for frequencies of 10%,

50% and 90%.
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Figure 10. Density of exceedance probabilities in each neuron class.

33




log(E(Q))
5 6 7 8 9 10

log(E(Q))

Figure 11.Scaling of average flood flow series in each neuron class.€gst $quare estimates of intercept and slope are showrhipaael.

The black line shows the least squares regression. aepresents the flood series whilethe drainage area (in kijnof the respective

catchment.
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Figure 12. Scaling of variance of flood flow series in each neuron clabe. [East square estimates of intercept and slope are shown in

each panel. The black line shows the least squares regresee( represents the flood series whidethe drainage area (in kKipof the
respective catchment.
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Figure 13. A directed network for the flood events showing synchromratnd flow direction (arrows). The dots show the streamflow

gauges in their geographical location (see Figure 1).
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Figure 14. A directed network for the flood events showing synchroimraand flow direction (arrows) as a function of neuron clds$se
dots show the streamflow gauges in their geographical lmtésiee Figure 1).
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Table 1. Transition probabilities among neurons

To neuron
1 2 3 4
From neuron
1 0.631 | 0.347 | 0.020 | 0.003
2 0.045| 0.621 | 0.117 | 0.217
3 0.172 | 0.067 | 0.690 | 0.071
4 0.020 | 0.026 | 0.110 | 0.843
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