We would like to thank Editor Julia Hall and Reviewer Shaun Harrigan for the additional
comments that improved the manuscript. Our responses to the comments raised (underlined
and in italic) are provided below.

Comments from the Editor

Additionally, please check again that you have addressed ALL comments from the first round of

reviews. There are several points that were ‘promised to be corrected/amended’ in your

response to the referees but were never incorporated into the final document.

We have reviewed the entire manuscript and we hope now that all comments (including from
the first round of reviews) are satisfactorily addressed.

Generally, the word ‘somewhat’ is used very often in the manuscript. You might want to

consider rephrasing for some instances.

We have removed some instances and rephrased some sentences to address this comment.

P2 L14: Please specify which processes you are refereeing to.

It is now specified in the revised manuscript (P2 L14).

P4 L17: I’'m not sure if this reference is appropriate, as the reference given does not contain any

information that would assist the reader with further information. | suggest giving the

percentage of floods in this season instead. This has already been mentioned by one of the

reviewers and it was ‘promised’ that this would be added but has not been added so far.

We have removed the reference and provided the percentage of floods during this period (P4
L16).

P5 [11-13. Please rephrase the sentence for clarity and check grammar.

We have rephrased this sentence.

P5 L17-22 Please add references to all general statements presented in this section.

Please note that we are not aware of a specific paper that has addressed this issue. This
section is based on our observations from data and our experience in the region. For this
reason, we cannot add additional references here.



P8 L1: Please gquantify what ‘main rainy season’ entails and add reference for that statement.

We have clarified this in the revised manuscript.

P8 L6: ‘The understanding ... will be qualitatively explored’. Please rephrase sentence, currently

it reads as if the understanding is explored, which is confusing.

We agree and we have rephrased this sentence.

P9 L7-9: Please rephrase sentences. Currently the meaning of the sentence is not clear and/or

the grammar seems not correct to me.

We have rephrased this sentence.

P9 L30: ‘neurons 3 and 4’ need to be replaced with ‘neurons 3 and 2’

We have corrected it. Thank you!

P 10L3-L13: I think it would be beneficial to the reader if the description of the anomalies would

focus more on the positive rainfall anomalies. E.q. for t-5 and t-4 for neuron 2 the rainfall field

is not just ‘somewhat homogenous’ but appears to be a larger scale positive anomaly and the

progression of neqgative rainfall anomalies (rainfall less than the long-term average) at later

time steps seems to be of less importance for the flood generation. This applies similarly to the

other neurons as well.

We generally agree that the positive anomalies are more relevant to this paper. But, in our
opinion, the negative rainfall anomalies constitute a spatial pattern that is worth mentioning in
the text. One of the fascinating issues in our study area is (often rapid) changes between dry
and wet cycles. For this reason, we have included few sentences on the negative anomalies.

P10 L14-L17: This paragraph is somehow repetitive of the first paragraph on this page. |

suggest combining the two. Additionally, when looking at Figure 2 | think the last sentence

should read ‘The shortest distance is obtained between neurons 3 and 4, followed by the

distances of neurons 2 and 4 and neurons 1 and 3’, to preserve the decreasing order of the

distances.

We have removed this last sentence and rephrased the last sentence of the first paragraph.



P10 [28 — P11 L14 Please elaborate for the interdisciplinary readership of ESD that a negative

divergence field (i.e. convergence) indicates that rainfall can occur (brief description of the

processes involved), but please also make the reader aware that rainfall does not necessarily

have to occur.

We have added a statement to the revised paper (P11 L2-3) to address this issue.

P11 L1: ‘negative events’ of what? Please elaborate.

We have removed the term negative events.

P11 L2: ‘The SALLJ is weak’ it is not clear to me to which part of the text before this statement

refers to. Please clarify.

We have rephrased this sentence.

P11 L9 For clarity, please add ‘positive’ before ‘divergence’.

Ok.

P11 L11-13: ‘Neuron 4 has a moisture transport pattern somewhat similar to that of neuron 2,

but the origin of thefluxes are more associated with the South Atlantic, with meridional fluxes

7’

west of the basin, and a less intense but still relatively homogeneous moisture convergence.

From Fig. 4, | am not able to come to the conclusions that are written after the word ‘but’ in the

above sentence. The two panels look very similar to me. Please check again and rephrase.

We have removed the sentence after ‘but’.

P11 L 15-27: Please add a sentence explaining to the interdisciplinary readership the reasons
behind choosing to analyse the 850 and the 500 mb (i.e. what different type of conclusions can
be drawn at the different levels).

These two levels (850 and 500 mb) are common thresholds for studying large-scale patterns in

the region. We have highlighted the different conclusions from these thresholds in the main
manuscript (P11, L15-21).



P 11 L16 Please specify to the reader what kind of wave activity and what dynamic forcing you

are refereeing to by better describing the mechanisms involved.

We refer to divergence in the upper levels. We have clarified this issue in the revised version
(P11, L18).

P 11 L23: The attribute ‘through’ only applies when specifically talking about a wave, however

here it is used in connection with the word ‘circulation’. Please rephrase statement for added

clarity (see also sentence describing neuron 3).

We think that the word “trough” can also be used in connection with atmospheric circulation
when the flow has a wave kind of pattern. For instance, we observe in many bulletins (e.g.
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/bulletin 1201 /extra.shtml) and

textbooks (e.g. Wallace and Hobbs, Atmospheric Science) the term “trough” used in
connection with atmospheric circulation.

P 11 L24: Please be more specific where ‘southwestern of it’ is located (similar to how the

location was described in detail for Figure 5).

Ok.

P 11 L28 replace ‘is shown’ with ‘are shown’

Ok.

P 12 L1: For clarity please specify the altitude, where the described ‘El Nifio region’ is located

and what definition of Nino is being used. This has already been mentioned by one of the

reviewers before but has not been incorporated yet!

There are different definitions for the El Nino region. For instance, there are several indices
(NINO1+2, NINO3, NINO3.4 and NINO4) to indicate regions of the eastern Tropical Pacific that
experience positive anomalies in the SST and that we could call an El Nino event. There is also
the Modoki El Nino that is based on information from the Central Pacific. In this discussion, we
are not referring to a specific definition. Hence, we have added “eastern tropical Pacific” to
generally describe the ‘El Nino region’.

P 12 L5 please add ‘whether’ between ‘or’ and ‘they.

Done.


http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/bulletin_1201/extra.shtml�

P 12 L8-10: What does ‘(3)’ refer to? Figure 3 ? Additionally please elaborate what ‘the results
of Doyle and Barros (2002)’ were. And please also add the latitude location of the tropics and

subtropics for ease of interpretation.

We have added “Fig. 3” and rephrased the sentence. We have also added the latitude location
of tropics and subtropics.

P 12L19: when rounding the number in Table 1 it is probably ‘17%’ and not ‘18%’.

Ok. Thanks.

P12 L 22: ‘neuron 4 (Fig. 3)’ should probably read ‘neuron 3’?

We have corrected this sentence.

P 121 24: The sequence should be 3 -> 1 ->2 -> 4 -> 3. His has already been mentioned by one

of the reviewers but has not been changed yet!

Ok.

P13 L 7 I’'m not sure if ‘remarkably’ is the correct term to use here. From all the analysis done

before in the paper this does not seem to be ‘remarkable. Please rephrase.

We have dropped the word “remarkably”.

P 13L19: Suggest replacing ‘average flow’ with ‘average flood flow’

Ok.

P 14 L 6: Replace ‘the edges the ...” with the ‘the branches represent the....”

We have used the exact term employed in the literature of complex networks where the
original theory comes from, so we prefer to keep the term “edge”. But to clarify, in
parenthesis, we have added the term branches.

P 14 L 10-20 You might want to consider linking this also to Fig 3, by discussing the location of

the areas with strong positive rainfall anomalies.

We thank the Editor for the suggestion and this has been linked by mentioning the neurons.



P15 L6 replace ‘peak’ with ‘peaks’?

Ok.

P16 L 14: Please make sure that the link provided is working and that the link directs the reader

directly to data source. Currently the link seems broken...

We have double checked and the link is directing to the data source at the time of this
revision.

Figure 1 please change colour scheme, as the red — green combination of colours will make it

difficult to understand the Figure for people that are colour blind.

All of our maps have been tested for back and white print. Please note that the colors are not
green and red. They are green and pink and they are distinctly different in back and white
print. Also, the choice of color is not a significant part of the story. If someone is color blind
then they will have potential problems with all color figures.

Figure 2: Please increase either the size of the red coloured numbers (both Figures same font

size) or chose a different colour that has a better contrast with the grey surrounding, as

currently the red numbers will be difficult to decipher once the Figure is scaled the correct size

used for publication.

We have updated the figure as suggested.

Figure 4-8: Please make sure that the 'zero' on Figs. 4-8 is the same colour (e.q. white), so the

Figures are easily interpretable (i.e. it does not make sense that the zero line goes through the

blue shading when a divergent colour scale is being used (e.q. in Fig. 4)). Additionally, to avoid

confusion, please make sure that the colour code (i.e. red is negative & blue is positive) is the

same for all of the above Fiqures (currently Fig 7 & 8 are the other way around).

We thank the Editor for these suggestions. We have updated the figures as suggested.

Figure 4: Additional to the changes mentioned above, please provide a proper legend (with at

least 3 arrows of different length) for the scale of the moisture fluxes, as currently one does not

know how the arrows are scaled. Please also add to the Figure caption, that the arrows show

the moisture fluxes and the colours the divergent field.




Please note that we are more interested in the directions of the fluxes rather than its
magnitude, which is more important for displaying divergence fields. For this reason, the scale
of the arrows is not so relevant for the interpretation of the figure. We believe that one arrow
(as is commonly done in the literature) showing the scale (right bottom side of neuron 4) is
sufficient to provide an idea of the magnitude of the moisture fluxes. This also avoids
overcomplicating the figure.

Figures 5,6,8 Please add the zero line.

We have included zero line in Figure 8. We don’t think that adding a zero line to Figures 5 and
6 will provide more information.

Figure 13 & 14: The arrows are not visible, particularly in Fig 14. Please make them clearly

visible (maybe a different colour for the arrow head or increasing the size of the arrow head

might help).

Figure 14: You might want consider adding a box around the networks for clarity.

Additionally, once the Figure is scaled the correct size in the final publication, | suspect that the

font used to identify the neurons might be too small. Please increase font size of the labels.

We agree and we have increased the size of the arrow heads and labels and added boxes to
the panels.

General Comment on References:

Please make sure that the references contain all necessary information and are written as

outlined in: https://www.earth-system-

dynamics.net/Copernicus Publications Reference Types.pdf

Please make sure that all journal nhames are abbreviated according to the ISl Journal Title

Abbreviations Index (https://www.library.caltech.edu/journal-title-abbreviations). For example,

‘Journal of Hydrology’ should be written ‘J. Hydrol.”

We have corrected all references to comply with these requirements.


https://www.library.caltech.edu/journal-title-abbreviations�

Reviewer # 2:

The revised manuscript is improved over the original submission and | recommend it for

publication in ESD. It is an interesting paper and makes an important contribution to the

literature on flood hydroclimatology. | have a few minor suggestions that the authors may wish

to take on board:

Pg3;19-10 &Pg4;L13-14: range of drainage areas  repeated, remove __ one.

We have removed one.

Pg 4; 17: As per my original comment, can’t see the % number of total annual floods that occur
Nov-March here?

We have added the % number of total floods that occur Nov-Mar.

Pg4; 21-22: As per my original comment: “events with inter-arrival times larger than 15 days,

which _we _ believe _is a _ consistent __interval __to  quarantee __independence

between flood events considering the different rainfall mechanisms that cause floods in UPRB”.

Unless a formal independence criteria was applied, which there is no mention?, then there is no
quarantee.

Please note that here we are not investigating/sampling individual flooding events here. Our
focus is on independent atmospheric mechanisms responsible for flooding. It is very unlike
that the same rainfall mechanism will persist for more than 15 days and cause multiple major
floods. In fact, most mechanisms responsible for the rainfall in the region last less than 3 days
(P7, L24 and references therein). Hence, we believe that inter-interval times beyond 15 days
are sufficient to guarantee independence.

Interesting plot in response to my query on the range of peaks-over-threshold events. It might

be of interest to other readers to include the range from 76-131 within Pg4;L23 of the revised
manuscript.

We have added the range to the revised manuscript.
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Abstract. Floods are the main natural disaster in Brazil, causingtanktial economic damage and loss of lives. Studies
suggest that some extreme floods result from a causal clichaia. Exceptional rain and floods are determined by largkesc
anomalies and persistent patterns in the atmospheric asghimccirculations, that lead to space and time structutéen
expression of these extremes. Moreover, floods can resutt different generating mechanisms. These factors cantriw
assumptions of homogeneity, and often stationary, in FEreduency Analysis. Here we outline a methodological fraor&
based on clustering using Self-Organizing Map (SOM) thiatna linking large scale processes to local scale obsenvati
The methodology is applied to flood data from several sitéherflood prone Upper Parana River Basin (UPRB) in southern
Brazil. The SOM clustering approach is employed to clagigy/six-day rainfall field over UPRB into four categories,igfh
are then used to classify floods into four types based on #gosgemporal dynamics of the rainfall field prior to the ebged
flood events. An analysis of the vertically integrated mostfluxes, vorticity and high level atmospheric circulatrevealed
that these four clusters are related to known tropical anichgropical processes, including the South America lewel jet
(SALLJ), extra-tropical cyclones and the South Atlanticn@ergence Zone (SACZ). Persistent anomalies in the seacsurf
temperature fields in the Pacific and Atlantic oceans arefalsod to be associated with these processes. Floods agsbcia
with each cluster present different patterns in terms afdescy, magnitude, spatial variability, scaling and syanfzation

of events across the sites and sub-basins. These new msigggest new directions for flood risk assessment, foiagastd

management.

1 Introduction

The assumptions of homogeneity, stationarity and randsmimetraditional flood frequency studies, have been questidn

To make progress on understanding and modeling the readlfiodd process one needs to better understand how the complex
interactions among weather, climate, hydrology, bashibaties and antecedent conditions evolve over space ard tim
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Historically, flood studies have followed two distinct raseh lines: hydrometeorology of floods and flood frequen@han
sis. Flood hydrometeorology focuses on understandingdjddynamics of the rainfall-runoff process during floo@ets; ii)
spatial structure of local rainfall events that are asgediwith floods; iii) soil-atmosphere response and largkesteculation

patterns associated with the forecast and diagnosis déafiérents. Some examples inclu@éaddex-1983:Kunkelet-al-1994:Pal-ar

There is also an extensive literature related to the statisinalysis and modeling of flood frequency from local aggional
data of rainfall, streamflow and water basin attributedyiding non-stationary approachesg-Fhemasand-Bensen1970:-Stedinget

In this study, we investigate floods in the Upper Parani RBasin (hereafter, UPRB) in southern Brazil from a hydro-
climatology framework to understand the flood generatinglmaisms (Hirschboeck, 1988). The overarching goal isnto li
frequency of flood events to flood generating mechanismsaage a better understanding of the underlygngeessgzhysical
processegMoftakhari et al., 2017) The underlying assumptions in flood frequency studies eas@rbiched by a formal con-
sideration of the physical mechanisms responsible forgeioa of extreme floods. This includes a recognition of taairal
climate variability associated with persistence and &city regimes (e.qg., El Nifio) across different time scééeg., intean-
nual, decadal, etc) as well as climatic changes in resporeethropogenic changes in atmosphere, soil and land use.

Many studies have investigated the interactions betwesim ladtributes and atmospheric circulation leading toesre or
exceptional floods (in the context of this work, it means floadth exceedance probability of 70%). However, there istéoh
knowledge as to how evolving large scale climate modes d@hteeannual scale change tbleance®f local precipitation and
soil moisture altering the probability distribution/oecoence of floodgSun and et al., 2016)it is argued that the frequency
of flood events is very sensitive to modest changes in cliffatex-+993)(Knox, 1993; Sun and et al., 2016YVe explore
the Hirschboeck’s hypothesis (Hirschboeck, 1988) thateptional floods in basis of all sizesuld be related to anomalies
in the large scale atmospheric circulation. This flood hgtinoatology perspective has been applied to identify théstoce
transport and large scale climate patterns associatedladitis in the United States (Hirschboeck, 1988; Budikovd.e2@10;
Nakamura et al., 2013; Lu and Lall, 2016; Mallakpour andavihi, 2016), EuropéPrudhemmeand-Genevier2010;Jacobeitetal-
other parts of the world (Kahana et al., 2002). However, dladid studies are rare in South America.

Intuitively, a rainfall system that persists over a givetdl® with a continuous and sufficient supply of moisturertfiexdvec-
tion and recycling) has a high likelihood of generating aoeptional flood. For sufficiently large drainage areas, dreexe
flood may require an external flux of advective moisture, iozal convective processes may not tend to produce excegpti
floods in these basins. Moreover, such an influx of large sodkective moisture can lead to an increased potential fgela
floods as the drainage area and return period increase hHosck (Hirschboeck, 1988; Hirschboeck et al., 2000) nibtas
the scale of convective storms that can generate intenserahdall is typically ofsemel( — —10% km? and is therefore it is
unlikely that such convective processes are the main sefioeeptional floods over large areas. On the other handysoake
convective systems (MCS), such as convective complex (MED@)squall lines, tend to cover large areas and persistyerale
hours and are sources of heavy rainfall in some regions ot/&#& (Schumacher and Johnson, 2005, 2006) and also Brazil

ser et al., 2006; Salio et ¢

in particular the MCCs to the east of the Andes that impactlLth®lata Basin. However, there is evidence (Maddox, 1983;

Corfidi et al., 1996) that the maintenance and developmestici systems is related to large-scale atmospheric dii@ula
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features. Thus, tropical and extratropical cyclones asd@ated fronts become important in the production of enéeainfall
over large areas and are directly related to atmosphedulaiion patterns of large scale and with storm paths or deflhed
regions of moisture transport in the atmosphere.

We explore extreme floods in UPRB through a hydroclimatidysis of flood series across 33 nested-basin sites with
drainage areas ranging from 2,588 to 823,555 Kfine spatio-temporal dynamics of daily rainfall over theihadn the days
that preceded the largest flood events is analyzed andf@dssito clusters of similar patterns based on a Self-Omjagi
Map (Kohonen, 2001) clustering algorithm. This way, we imtt¢o take into account the persistence and alignment of the
storm path with the drainage basin that produces a given .flbloe associated large scale atmospheric circulation fon ea
cluster is then analyzed in terms of moisture transport amye@rgence, high level circulation and vorticity. Teleeotions
with the Atlantic and Pacific oceans are evaluated by contgasialysis of the sea surface temperature (SST) field. febr ea
rainfall cluster, the attributes (frequency, magnituaaliesg and synchronization) of floods across UPRB are aedlyizorder
to produce and characterized a typology for floods in theoregccording to the dynamics of rainfall patterns and assedi
atmospheric circulation. Floods generated by snowmelpi¢al cyclones and storm surges do not affect the UPRB aad ar
thus not investigated in this study. The paper is organizefbiéows. In the next section we present the region of stuty a
data. In section 3 we introduce the clustering algorithnsdation 4 we present the results and finally in section 5 wer aff
summary and discussion.

2 Region of Study and Hydroclimate Dataset
2.1 The Upper Parana River Basin, streamflow and rainfall daaset

The Upper Parané River Basin is located in southern Braigjl (f and is part of the La Plata basin, which is the secorgkktr

basin in South America after the Amazon basin. UPRB conatsgia large population of Brazil and is of utmost importdoce

the country in terms of flood control, hydropower generatiod agriculture. The rainfall season over UPRB is mostlykeadr

by a peak during the austral summer (summer monsoon sysééaigd to the South American monsoon system (SAMS) and
associated South Atlantic Convergence Zone (SACZ, seeo8atral., 2000; Jones and Carvalho, 2002; Berbery and Barros
2002; Carvalho et al., 2004; Marengo et al., 2012), pauityin the region north 020°S, where the monsoon system is the
dominant forcing (Berbery and Barros, 2002). Rainfall intenual variability has been associated with SST anomalitie

Tropical Pacific and South Atlantic oce&i®

Intra-seasonal and decadal variability of rainfall andatnflow have been also the subject of many stuydiesvathe-et-al-2004:-Rebert
Most of the moisture that reaches UPRB is from the Amazorore¢Drumond et al., 2008; Carvalho et al., 2011), and the

rainfall mechanisms are also associated with Mesoscalgectime Systems (MCSs) along the South-American low-|@tel
(SALLJ, see Velasco and Fritsch (1987); Marengo et al. (208dlio et al. (2007)) and transient systems related t@exipi-

cal cyclones and cold fronts (Mendes et al., 2007; Silva amibizzi, 2010). El Nifio events have also been linked to enére
rainfalls and floods in UPRB (Camilloni and Barros, 2003;rar and Tedeschi, 2009; Muza et al., 2009; Cavalcanti et al.,
2015; Antico et al., 2016).
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We use mean daily streamflow data from 33 sites in UPRB (FigThgse sites are located strategically to provide the
inflow into the main hydropower reservoirs in UPRB, which as&d not only for generation of electrical energy but also
for flood control, water supply and agriculture. The datésetffered by the National Operator of the System (ONS), Whic
defines the operational rules of all interconnected hydregpoeservoirs in the country. The streamflow data is aveslabm
January/1931 to December/2013, but in order to be consistigih the availability of the rainfall dataset, we perforrh a
analysis considering the streamflow data restricted to 88912013 periodFhecatchmenbasirareasangefrom2,588t6
823.555km*-All series have gone through a consistency process by ONSepmesent naturalized flows from artificial and
natural streamflow gauges, which means that any reservenatipn upstream of the streamflow gauge is removed from the
original series.

We limit our analysis to therarmwetseason (November through March), w i ; ver
75%of thefloodsoccur For each site, we obtain partial duration series of floodtaking the values in which the daily flow
exceeds a given threshold. In order to keep a relativelylatgnber of exceptional flood events in each rainfall clysterset
this threshold as the 70th empirical flood quantile fortleemwetseason. We analyze only independent floods by declustering
the series (Lang et al., 1999) and taking events with intéved times larger than 15 days, which we believe is a cdests
interval to guarantee independence between flood evensdewimg the different rainfall mechanisms that cause #oiod
UPRB. From this procedure, we obtain dates and magnitudssmft 98 flood evenisangingfrom 76to 131eventsyor each
of the sites in UPRB analyzed here.

Daily gridded rainfall datg0.25° x 0.25°) for the period 1980-2013 are provided by Xavier et al. (20TGgse data con-
sist of interpolated daily rainfall observations from 362fnfall gauges and 735 weather stations across Braziladlai
from different institutions (INMET, ANA and DAEE). The intpolation schemes and validation procedures are desciribed
Xavier et al. (2016). The rainfall data is delimited by theRB’boundary as shown in Fig. 1. For each grid point, daily asom
lies of rainfall are obtained after removing, from the olveervalue, the respective long term monthly mean for thak goint
based on the 1980-2013 period.

2.2 Moisture Fluxes, Vorticity, Upper Level Winds and Sea Stface Temperature

Mean daily data of vertically integrated moisture fluxes #trelassociated divergence field (Evaporation - Precipitationg
an atmospheric column), low and high level relative votyieind high level (500 mb) winds are obtained from the ERAetlimb
reanalysis data (Dee et al., 2011). It covers the period 880 to 2013 and are retrieved for the region defineddsN-60°S
and270°W-330°W.

We also use daily SST data from the ERA Interim global seaasarfemperature archive for the 1980-2013 period. Daily
SST anomalies for each grid point are calculated by sulitiggdtom the observed value, the monthly mean for that goithip
and related month based on the 1980-2013 period. The SSTsfiddimited by the regioB0°N-80°S and210°W-20°E.

All data are interpolated for a grid @f5° x 2.5°.
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3 Technical Approach

The spatio-temporal dynamics of daily rainfall over UPRBhe days that preceded the largest flood events is analyzed an
classified into clusters based on a Self-Organizing Map ¢Relm, 2001) clustering algorithm, which is described infiie
lowing subsection. By doing this, we consider the persisteand alignment of the storm path with the drainage basin tha
produces a given flood. For each rainfall cluster, the aasetilarge scale atmospheric and ocean circulations aheated
through composite analysis of moisture transport and agevee, high level circulation, vorticity and the Atlandéind Pacific
SST fields. The attributes (frequency, magnitude and regiscaling) of floodseressdPRB-associated with each rainfall
cluster are also analyziederderto-preduceandcharacterized We proposethena typology for floods in the region accord-
ing to the rainfall patterns anasseciate@orrespondingtmospheric and ocean circulation. Finally, we employ teas of
event synchronization and complex networks to explore plagia dynamics of floods over UPREB:cordingto-cachrainfall
etlusteconformingthe rainfall clusters The methodology to evaluate the synchronization of flocghewis presented in sub-
section 3.2.

3.1 Rainfall Clustering

A flood event, defined as a crossing of river stage above itk baight, can vary in duration from a few minutes to months
and in spatial extent from a few square kilometers, to séuéfskm?. A large number of flood studies have focused on the
understanding of physical processes associated with fiodaissins of small scale due to the ease of observing crigioahts

in these basinge.g., Gupta and Dawdy, 1995)vhile over large areas the fochasbeentendsto beon the problem to predict
flood quantiles, with lesser emphasis on the understanditiygegphysical mechanisms associated with extreme floods. Fo
instance, the relation of soil moisture and a given rairdaéint in producing some floods over small areas and homogeneo
soils is relatively easy to evaluate. On the other hand, tbblpm becomes considerably more complicated as we canside
large basins, with drainage areas ovetkm?, since i) the potential of a high heterogeneity in the ihisi@il moisture field

is high and ii) the location and direction of the storm patbngl the basin leads to a significant heterogeneity in thaadpat
and temporal distribution of the rainfall event. Since thifuix of large scale advective moisture may be a particuleofao
overlie the initial heterogeneities of the surface cowdisifor larger basins, we will assume that the spatio-teaipariability
(i.e., magnitude, persistence and alignment of the stotimyith the drainage basin) of rainfall is the key factor odgucing
floods across the UPRB sites evaluated in this work.

Consider that the information regarding the spatio-terappatterns of rainfall associated with the major flood esesat
contained in a rainfall dataset represented by a m&rix [x; x2 ... x|, Wherex; is a column vector containing all the
relevant information about the spatial variability andgigence of daily rainfall over UPRB along daysr,t—7—1,...,¢t,
for some time delay. 7' is the total number of effective days during the austratmwet season (November—March) over
the 1980-2013 period. Our goal is to extract information&Bothrough clustering. We use the Self-Organizing Map (SOM)
approach to cluster rainfall information as expresseXinrSOMs are a particular case of competitive neural netwonks a
have been developed by the machine learning community ib386’s (Kohonen, 2001) for cluster analysis and classitioat
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They have been successfully applied to find clusters in ¢énsgstems (e.g., Cavazos, 2000; Hewitson and Crane, 2002;
Johnson et al., 2008; Lee and Feldstein, 2013; Bao and Wal@15; Li et al., 2015; Mioduszewski et al., 2016; Xu et al.,
2016; Li et al., 2016). An extended review of application€limate Science is provided by Liu and Weisberg (2011). SOMs
are also known as Kohonen neural networks and the basicide@btain a 2-d topology consisting of nodes (or neuroras) th
are associated with the input spa€epreserving yet its topological features.

For the sake of clarity and understanding of the SOM progeiind tuned parameters (i.e., parameters that can be sub-
jectively set) used in this work, we describe here the kegetspof SOM. We refer the reader to Kohonen (2001) for more
details about SOM. Let us assume that we h&veeurons, then initiallyX' representatives (or prototypes, synaptic weight
vectors, reference vectors) are randomly chosen from fheé spaceX and associated with th€ neurons. An input vectat,
is randomly selected from the data 3etand the Euclidean distance betwegrand each representativey, £ = 1,..., K, is
computed. The neuron whose representative yields theeshdiktance tea; is the winner neurok* or Best-Matching Unit
(BMU):

K =arg b {]fx —myll} &

In the next step, the neurons that are neighbors (neighbdrbet) of the winning node* are found based on the Euclidean
distance and a given threshaldThe representatives corresponding to each grid neightibieavining neurork* are then
updated according to the rule:

mk<—mk—|—a-(xt—mk), k‘ENC(kJ*), (2)

whereq, 0 < a < 1, is the so-called learning rate af¥l(k*) denotes the set of points in the neighborhoodofyiven the
parameter. The process is then arbitrarily repeated a large numbémestepochs, since there is no explicit error criterion
to minimize (Lee and Verleysen, 2007).

Variants of the update rule in equation (2) include a timeyway learning ratex and weighted distances based on the
proximity of m;, and the winning neuromy,-:

my, < my + a(j) - h(]|mg — my-

) (x¢ —my), ke N(k%), 3

wherea(y) is the learning rate at epoghandh(||-||) is a neighborhood function around the winner neukbnCommon
functions fora(j) include the linear, power and inverse functions with a deseerate over time. A common function for
h(|]-1|) is the Gaussian kernel:

h(||my — my-

my — My~
)= exp{—“W} Teen, (k)
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whereo is the width of the kernel (or neighborhood radius) drtie indicator function.
In the batch version of the SOM, instead of presenting eawh 8 single data vector, the entire dataXes presented to
the SOM before any weights are updated and the BidlJ is obtained for each input data at each epoch, so that each data

vectorx; will belong to a given neuron and the new neurons are updated a

my Doten. (k) wtxt7 4
ZteNu(k) wy

where the weight functiom; can be a rectangular function, which is equal to 1 for the m@dgs ofm,, and 0 otherwise, or be

a smooth functiork(||m; — my||). In this sense, each new neuron is a weighted average of thsamples that belong to its

neighborhood neurons.

For a given number of neurods§, learning ratey, threshold: and fixed number of epochs, the trained SOM can encode any
pointx; by giving the index: of the closest neuromy, where the distance is computed similarly to equation (iL)his way,
each data point of the entire dataset of rainfall informa¥ocan be assigned (or clustered) into one of the categbries K.

The final embedding aX can be evaluated by the mean quantization error (MMQE) oBt®, which essentially measures

the average distance of each ingutto its representative in the output space:

T
1
MMQE:f;th—mxtH, (5)

wheremy,, refers to the best matching unit of the corresponding
In order to capture the spatio-temporal dynamics of thefallifield over UPRB, including the information of antecetlen
rainfall for a given day of the record, we will concatenate the rainfall field ovemadiwindowr = 5 days:

/

Xt = [I't—5 i 4Ty 3T 2T¢1 I‘t] (6)

wherer; is a row vector representing the observed rainfall field dlierUpper Parana River Basin (Fig. 1) at dayvith
dimension 1178 (number of grid points), so tlkathas dimension 7068.

It is interesting to note that as increases, the number of dimensionsxgfincreases as well and the associated rainfall
pattern may not be necessarily connected with the flood sv8atsed on the results discussed in the next section and the
lifetime of about 3 days of extratropical cyclones (Simmsadd Keay, 2000) and 3 days of SACZ events (Carvalho et al.,
2004), we believe- = 5 days is an appropriate choice to extract the relevant irdtion regarding the rainfall field during
flood events.

We-To be coherenwith theflood dataasdescribedn section2.1, we focus on the November—March daily rainfadthich
isthemainrainyseasedorUPRB-Therainfall-, Thedataset covers the period from January 1st 1980 to DecenibeR313
with a total of 5143 data points. After concatenating thefadi field as explained in equation (6), the number of datatso
reduces to 5138, starting now in January 6th 1980 and endibgéember 31st 2013. This results in a 5138 x 7068 input data
matrix X to the SOM.
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3.2 Flood Event Synchronization

Theunderstandingfhoweachhredrerpreducesagivenspatial dynamics of floods across UPBEBducedy eachneuronwill

be qualitatively explorederethrough the concepts of event synchronization and compexarks, which have been success-

fully applied in many fields (Quiroga et al., 2002) and alsmelte sciencéMarwan-and-Kurths;2015;-Malik-etal--203@Malik et al., 20
including for prediction of floods in South America (Boersaét 2014). Following the nomenclature of Quiroga et al. 020

let us define the time series of flood event dates (obtained fine partial duration series) for two given streamflow sitesd

y ast? andt?, wherei = 1,...,m, andj = 1,...,m,. We define twesynchronouflood events whenever the distance between

t7 andt} is less than a given time lag Let thenc™ (z|y) be the number of time in which a flood eventirfollows, within the

time lagr, a flood event iny:

Taly) =N T (7)
i=1j=1
where
1 if 0<tf—ti<rt
Ji=19 1/2 if ty =14 (8)

0 otherwise
Similarly, we can calculate” (y|z). We will define then a measutg, for the event synchronization:
_ T (zly) + 7 (ylz)

Q= ©)

where0 < Q. < 1, and@. = 1 suggest fully synchronization.

The delay behavior (atirection of flow) of the flood events can be measured by:

4= c”(zly) — CT(yI%)’ (10)
NaR

where—1 < ¢, <1, andgq, = 1 implies that flood events im always precede flood eventsgjn

When combining all streamflow site,- will be the elements of a square symmetric matrix whilevill be the entries of a
square antisymmetric matrix. The matrix generated ftgcan then be converted into a square binary matrix, whergsntr
will represent only relevant connected sites. This can lberaplished by constructing the adjacency mafkix

1 if s >T
A @ (11)
0 otherwise
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whereT is a given threshold.

Methods to estimaté’ usually involve a bootstrap procedure, so that only a aegarcentage of the total number of grid
points (e.g. 5%) are connectiBeers-et-al—2014:-Malik-et-al-201MMalik et al., 2012; Boers et al., 2014)n the particular
case of this work, we are more interestdédragivergaugeinthemestin the gauges that havesmehewsynchronized flood
events withita specificone Hence, we will defind” = 0.5, so that we define synchronized gauges when at least 50%iof the
flood events occur simultaneously.

The time lagr should be less than half the minimum inter-event distarcéhat one single flood event is not synchronized
with two events in another site. Based on this, a simple nmadtieal formulation is presented in Quiroga et al. (2002)uir
case, in order to consider independent flood events, we tedireed the partial duration series so that flood events aemaat |
15 days apart. Hence,= 7. The average direction in which the flood event propagatébe/simply evaluated by the sign of

Gr-

4 Results
4.1 Rainfall Clustering

We chose a 2x2 hexagonal grid to define the SOM, and the rhifiefial is classified intak” = 4 clusters. This choice is made
primarily to associate a relatively large number of floodresén each rainfall cluster. The neighborhood radiissinitially set

as 3 and monotonically decreases to 1 (equivalent to 6 neigtibr a central neuron in an hexagonal grid) when the number
of epochs is equal to 100. This is the so-called orderingghalsere a global order is achieved for the map (Kohonen, 2001
From 100 epochsis set to 1 (tuning phase). Since the SOM grid consists offieurons, then only two neighbors will have
the size of its neighborhood affected bysee Fig. 2 and related discussion). The weight function equation (4) is the
rectangular function. The total number of epochs is set @1But we do not observe any significant difference in thermea
quantization error (MMQE) after the first 200 epochs. At 18p0chs we obtained MMQE = 777.69. We also evaluate MMQE
for a 2x3 and a 3x3 hexagonal grids and observe that the vidnddo oscillate around MMQE = 777.69 as a function of the
number of epochs, so that any significant differences foP##egrid are observed. The SOM clustering algorithm is otedi
using a commercial Neural Network Toolbox (MATLAB, 2014).

Figure 2 shows the final SOM after 1000 epochs in terms of hitsaich neuron (left panel) and neighbors and weight
distances (right panel). The number of hits is almost evdidiributed among neurons 1, 2 and 3. Neuron 4 has almost the
double of hits of the other neurons. Due to the hexagonalayout, neuron8-and4-2 and3 are connected to all the remaining
neurons, while neurons 1 and 4 are connected only to neurand 2 (right panel of Fig. 2). The shortest distancelined
between neurons 3 anaviile-thelargestdistanceisbetweemeurons, followed by the distancef neuronsl and3 and2-
neurong and4.

The above analysis is complemented by looking at the wefteach neuron (Fig. 3), which basically contain the informa
tion about the rainfall anomaly field over UPRB from day5 to dayt. Neuron 1 has a north-south seesaw pattern at edy
and progressively moves towards an homogeneous field, vgtioag rainfall peak at dat/— 3 centered in the northeastern
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part of the basin. The north-south dipole structure retatrtger at day— 2 and persists until dag but now with a decrease
in the rainfall peak. At this point it is worth mentioning ththe negative anomalies in the rainfall field do not necdlgsarply
absence of rainfall, but just that the rainfall in that sfieajrid point is below its long term monthly average. Neurost&rts
with a semewhanearlyhomogeneous rainfall field at timeés- 5 and¢ — 4, from which negative rainfall anomalies start in
the southern part and cover approximately the entire basimat. Neuron 3 starts at time— 5 with a northeast-southwest
dipole structure with positive anomalies in the southwekich progress over time until almost the entire basin iseced by
positive anomalies at time Neuron 4 has an homogeneous rainfall pattern over theedydsin, with negative anomalies from
timet — 5 to timet.

Combining the information from Figures 2 and 3, we obsenat the rainfall field represented by neuron 4 is somehow
connected to the rainfall patterns expressed by neurongl Bdhrough specific regions of negative anomalies of rdinfal
Neurons 2 and 3 have also some connection with neurBhdshertestlistancdsebtaineebetweeme urons3and4-followed
SrhedisenesnerreRs e s D nsRnerreRs e s

Considering that each neuron represents a given state dditifall field during the course of 6 days, we estimate trizosi
probabilities across the states and show them in Table 1.0t¢ethat there is a general tendency of the rainfall field toai@
in its state (neuron), but the transition probabilitiesdifeerent among neurons. Neuron 1 is more likely to transito neuron
2, which is more likely to transition to neuron 4. Neuron 3 tteshighest probability to transition to neuron 1, while rosu4
will more likely stay at its own state, with just a small prdildy to transition to neuron 3. We discuss further and eatuialize
these transitions in the next section when we analyze thesgtheric circulation associated with each neuron.

4.2 Atmospheric Circulation, Moisture Transport and Sea Suface Temperature

The analysis of key atmospheric and ocean variables in eaaion class is conducted here through a composite anatysis ¢
sidering the days correspondent to each neuron classslsghse, the patterns will reflect the average conditiomsgtdlogy)
for dayst throught — 5 as showed in Fig. 3.

The vertically integrated moisture flux and the associateerdence field (Evaporation - Precipitation along an ajphesic
column) averaged over each neuron class is shown in Fig. 4aWwsee this as a climatology of the moisture transport assoc
ated with the rainfall patterns indicated in Fig. 3. Neurahbws an intense moisture transport from the Amazon regussi-
bly associated with SALLJ episodes (Marengo et al., 2004¢. divergence field is negative in the northern portion of BPR
suggesting intense rainfall along this region, and pasitivthe southern part (dry conditions), extending@®S. This dipole
structure has been reported in several studies (e.g., [Se@aégle and Mo, 1997; Diaz and Aceituno, 2003; Liebmanh,et a
2004) and is also observed in the rainfall field associatetli wéuron 1 at time (bottom panel of Fig. 3). The circula-
tion is similar to the pattern described by Nogués-Paegledvm (1997jernegativeevents where convection in the SACZ
in enhanced and more likely to occur during El Nifio episedés-, while the SALLJ is weak-censistentvith-otherstudies

iebmannh-etal—2004)includingmoedel-basednesSitva-and-Berbery,2006YLiebmann et al., 2004; Silva and Berber

But notethata negativaedivergencdield only indicateshatrainfall canpotentiallyoccur.This is not a sufficientconditionand

anegativedivergenceloesnot necessarilyeadto rainfall.

2006) .

10
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The moisture transport in neuron 2 is dominated by a nortltksmeridional flow crossing the entire basin, with a relliv
homogeneous convergence of moisture over the basin, réisgratso the rainfall pattern at timefor neuron 2 (bottom panel
of Fig. 3). This pattern seems to be associated with a wea@Z%nd stronger SALLJ, as described in Nogués-Paegle and Mo
(1997) for positive events.

The moisture transport in neuron 3 is also affected by a gt®ACZ and moisture fluxes from the Amazon region but,
when compared with neuron 1 (Fig. 4), thesitivedivergence (or inhibited precipitation) is far south of thesin and covers
a smaller area. The moisture divergence pattern is agaitesita the rainfall field at time for neuron 3 (bottom panel of
Fig. 3). Neuron 4 has a moisture transport patermewhasimilar to that of neuron 2, but the origin of the fluxes are enor
associated with the South Atlantic, with meridional fluxesstwof the basirand a less intendmststilrelativelrhemegenesus
moisture convergence. This reflects the rainfall field faurnoa 4 (Fig. 3) and is likely associated with the average @@t
of moisture transport into the region (Doyle and Barros,2@xarvalho et al., 2004).

The dynamics of the moisture transport associated with eacinon class is complemented by analyzing the low level
(850 mb) relative vorticity (Fig. 5), which can indicate asnof low pressure and cyclonic rotation. A distinguishetigoa
is found for neuron 1, with negative relative vorticity orobgnic rotation over the entire basin and positive relatoe-
ticity centered aroun@0°W 30°S, which suggestdynamicalfercing-and-upper level wave activitnd dynamicalforcing
(divergencan the upperlevels)associated with neuron 1. This pattern has been identifiethier studies (Liebmann et al.,
1999; Robertson and Mechoso, 2000). Neuron 3 also showsrggabtation (negative relative vorticity) in the southgrart
of UPRB, extending up t80°S. Neurons 2 and 4 do not show any sign of intense cyclonic fi@v the basin.

The high level (500 mb) atmospheric circulation and re&tierticity associated with each neuron class is shown in6=ig
Neuron 1 shows a strong trough in the upper level circulatiab extends to the entire UPRB, with negative vorticity rahe
entire basin and positive vorticity southwestern dcgnteredaround45°W 30°S). This pattern confirms our hypothesis that
this neuron is also associated with upper level wave aiets/itNeuron 3 shows also a trough over the basin, but it is greak
and negative vorticity appears only in the south. NeuronsZashow more a zonal kind of circulation south26fS, which
resembles the climatology of high level circulation.

Anomalies in the near surface air temperature associatdesch neurors-areshown in Fig. 7. Neurons 1 and 4 have,
respectively, negative and positive anomalies that cdwveentire UPRB. Neuron 3 has a sharp contrast of negative aliesm
in the south and positive anomalies in the north, sugge#timgal activities. Neuron 2 has also a sharp contrast ofreti@s
but with opposite sign as compared with neuron 3 and therpadteggests that it results from the advection of moist ananwva
air from the Amazon.

Potential SST persistent patterns associated with eadlomewe analyzed here by passing a 15-day high frequenay filte
on the daily SST anomalies, which are calculated by suliigadirom the daily SST, the average of the correspondentimon
for the January/1980 — December/2013 period. The resudtstamwn in Fig. 8. Neuron 1 and neuron 3 show both positive
anomalies in the El Nifio regidieasterriropical Pacific) in the central Pacific and Tropical Atlantic. A dipole kinfistructure
appears in both neurons along the southern coast of Southidenmit they are out-of-phase. The negative SST anomdfies o
the South America coast associated with neuron 1 have beatifidd in other studies (Doyle and Barros, 2002) during 3AC
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activities and it is not clear whether they are a responskdadduced income radiation from the intense rainfall béuadl t
extends from the Amazon to the South Atlanticvdretherthey are in fact acting to produce the observed circulatattepn.
The SST pattern of neuron 3 is similar to that of neuron 1, piteat the anomalies off the South America coast 13648
are positive, which isemehewnconsistent with the positive rainfall anomalies in the sotgstern part of the basiB¥andthe
resultsef-Fig. 3) asdescribedn Doyle and Barros (2002). Neurons 2 and 4 show a similar pattkmg the South Atlantic,
with positive anomalies in thigepieequatoriategion(up to about20°S), negative in thesubtrepiesubtropigcenteredibout
30°S) and positive south of arount)°S. The SST pattern in the Pacific ocean for neuron 2 is diffwié, no remarkable
feature. Neuron 4 shows positive and negative anomali¢éniesacalate across the Pacific, with negative anomalmsgaihe
El Nifio region. The SST anomalies in the Atlantic for neuraar@ very similar to those observed for neuron 1.

Combining all the analyses, we can shed some light on theiti@m probabilities, hits and connectivity among neurags
displayed in Fig. 2 and Table 1. Neuron 4 has individuallyrtieest hits and likely reflect the average circulation durmgwet
season, with a strong persistence but reduced SACZ aetiviiventually it precedes neuron 3 (probability = 11%) angtm
likely succeeds neuron 2 (probability = 22%), whicl@nehewexpected given the rainfall pattern as shown in Fig. 3 and the
atmospheric circulation and SST anomalies in Figures 4 ke8ron 2 has also a slightly probability (12%) of precederapu
3 and most likely (probability = 35%) succeeds neuron 1.

When we connect these results with the transition protiggslin Table 1, we can describe the most probable sequence of
rainfall states. The dynamical forcing and active SACZ afno@ 1 is most likely preceded by neuron 3 (probabiliti#&d 7%),
which is marked by active SACZ, high level waves and cold fspand will most likely be followed by the rainfall pattern
of neuron 2 (probability = 35%), which semewhatoherent with the surface air temperature march as inféroed Fig. 7.
Neuron 4 will most likely be followed by neurah3 (Fig. 3). Neurons 1 and 4 are not connected and the trangitaabilities
between them are practically zero. In summary, the moslylikequence of neuron transitions, arbitrarily startingetiron
3, is:3—2—2—4—33 = 1 = 2 — 4 — 3. But also note that transition probabilities from one neu@another one are

generally smaller than the probabilities to remain in tlages{see Table 1).
4.3 Flood Reponse
4.3.1 Frequency and Magnitude

The total proportion of flood events in neurons 1 to 4 is eqod@3%, 34%, 20% and 11%, respectively. The frequency of
floods in each neuron for the streamflow gauges analyzed$ishewn in Fig. 9. Neurons 1 and 2 dominate most floods across
UPRB. Neuron 3 dominates the floods along the gauges locatbé Paranapanema sub-basin (see Fig. 1), while neuron 4 is
most associated with floods in the gauges along the Parayaparticularly with the Itaipu gauge located in the bagitiet,
which interestingly is not directly affected by the waveiatt of neuron 1 (see following discussion).

The magnitude of floods associated with each neuron classalyzed by calculating, for each site, the empirical ex-
ceedance probability for each data point in the partial tilnmaseries, aggregating all estimates across the siteghemd
estimating the density of such probabilities conditionaltioe neuron class of the data points. The results are shoWwigin
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10. Neurons 1 and 2 have the peak and largest density in salatsof exceedance probability, suggesting that the bigge
floods along UPRB are associated with these patterns ofitb{Rfg. 3) and moisture transport and convergence (Figt 49
worth mentioning that neuron 2 has a rainfall dynamics thaiat associated with El Nifio events (Fig. 8), but still progk!
large floodsThis highlightsthe uncertaintyandcomplexityto quantifythe flood hazardduring ENSOeventsasdescribedn
Emerton et al. (2017)The pattern of neuron 3 is more associated with intermedmagnitude flood events while neuron 4
is remarkablyassociated with the smallest flood events, although sorge fedod events are possible, particularly in the sites
where this neuron dominates the frequency of occurrence @i

4.3.2 Spatial Scaling

The literature on the scale of flood properties (e.g. quesjtivith drainage ard&arguharsenetal;1992-Guptaand Dawdy;1995:-G

that the type of precipitation (e.g. convective versust@frand the attributes of the drainage network will joirdigtermine

the different behaviors of the scaling process of flow anihéige area. It is not clear whether such scaling relatioiswid,

if a mixture of mechanisms can interact to produce large Boétére we explore the scaling of the first and second sample
moments of the flood events with respect to the neuron classes

Since each flood event at a given site can be assigned to angdass, we can easily calculate the sample moments (mean
and variance in our case) in each neuron class for each gadgevaluate how the scaling law of flow moments and drainage
area change as a function of the spatio-temporal varighufithe rainfall field. Figure 11 shows the scaling of the ager
flood flow and drainage area for each neuron class. The magnittidies slope and intercept coefficients clearly change as a
function of the neuron class, but more remarkable diffeesrappear between neurons 1/2 and neurons 3/4. In fact,lbpth s
and intercept estimates of either neurons 1 or 2 are significdifferent at the 5% significance level from the estinsafter
neurons 3 and 4 using a standard t-test.

The magnitude of these coefficients also reflects the irtieakrainfall and the spatial pattern associated with eaalron,
as shown in Figure 3. As the rainfall intensity increaseis, @xpected that the intercept will increase, while the slispmore
related to the spatial homogeneity of the rainfall field:tdseicomes more homogeneous across the basin, we expedijbe sl
will approach 1. The intercept values as shown in Fig. 11ease from neuron 4 to neuron 1, which qualitatively agreés wi
the rainfall patterns showed in Fig. 3, whose overall magigtincreases from neuron 4 to 1. The slope estimates subgest
the less homogeneous rainfall fields occur in neurons 1 awtiizh is consistent with the pattern displayed in Fig. 3. ideis
3 and 4 have the largest slope estimates and thus more hosmgerinfall field, which is again consistent with the resaf
Fig. 3.

The scaling of the sample variance with the drainage areadoh neuron class is shown in Fig. 12. As for the average
flow scaling, the largest differences among the coefficiamtsobserved between the pair of neurons 1 and 2 and the pair of
neurons 3 and 4. Visually, the scaling is clearer for neudoaad 2. Neuron 4 shows more dispersed values along the least
squares regression line, suggesting that the mechanismsibly this rainfall pattern produces a given flood acrosgtheayes,
particularly for small gauges, are different (see subsetgiscussion).
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4.3.3 Flood Event Synchronization

Figure 13 shows a directed network obtained from the ad@ceratrix A and the delay behavior matrix. considering all
flood events across sites and not taking into account theonatlasses. The nodes represent the streamflow gaugesrin thei
geographical position while the edg@s branchesjhe existence of synchronization between two sites. Tr@eshows the
dominant direction of the flood propagation. The flow patseganerally follow the drainage basin direction (Fig. 1steaest
and north-south. But some exceptions can also be obsendidaiing that the size and movement of the storm path may als
affect how the sites are synchronized.

If we cluster the flood events into the neuron classes, we btirospecific adjacency and delay behavior matrices fdr eac
neuron. The resulting directed networks are shown in Fighbdv we can observe that the rainfall pattern described byare
1 produces the largest synchronization of flood eventsndiyethe number of arrows, including inter- and intra-suloiess
connectivity. In general, the cascade of flood events terghtbup in the outlet of the sub-basins (see Fig. 1 for the name
and location of the sub-basins). Neuron 2 has a more intshagin connectivity pattern, that tends to follow the riftew
direction and suggest that rainfall upstream of the badihdsnore likely cause of floods. The Itaipu site located inktagin
outlet is not connected to any site, suggesting that Itaipad8 in this neuron will likely result from the routing flowofmn
upstream sites. Neuron 3 has the northern sites discomhetiée a connectivity within and across sub-basins is olesir
The Tieté subbasin seems to be disconnected from all othéasins. Finally, neuron 4 show less connections, were afost
them are within the subbasins. The Itaipu site is again cetalyl disconnected, so most of its floods associated withometi
are due to routing of upstream flow and floods caused by rawofftiis and other types.

5 Summary and Conclusions

A general, statistical approach to classify flood genenati@chanisms, the areal scaling of floods, and the synclatorz
potential of flooding in a large river basin, was developed damonstrated with data from the Upper Parana River Basin,
Brazil. This is the first attempt to describe such floods in @alr hydroclimate context. A Self-Organizing Map algarith
was employed to find the spatio-temporal dynamics of thefakifield over the basin in the days that preceded the major
flood events. For each cluster, we analyzed the large scakturmtransport into the region as well the upper levelctne
and teleconnections associated with SST. The flood respmseeiated with each rainfall pattern was evaluated ingderin
magnitude, frequency, spatial scaling and events synctaton.

Four distinct patterns of rainfall were observed and asgediwith the atmospheric circulation and moisture trartspbe
first cluster exhibits strong rainfall concentrated in tlogtheastern part of the basin, with a peak two days beforédbe
events. It was associated with the moisture transport flemAimazon and intense SACZ, with the presence of cyclones - a
pattern that have also been reported in the literature théin et al., 1999; Robertson and Mechoso, 2000). Thesesexent
associated with positive SST anomalies in the tropicalffeaand Atlantic oceans and a dipole structure off the easteast
of South America, which has also been observed in otheretdig., Doyle and Barros, 2002). On average, 35% of all §lood

14



10

15

20

25

30

35

happen during these conditions. The Itaipu streamflow gknogged in the basin outlet is less affected, at least dyrdmt this
rainfall pattern. These type of floods are strongly synctneshacross all sites.

The third neuron shows features of SACZ episodes assoaidtie@xtratropical disturbances, possibly fronts and ogels.
The rainfall field is however less intense than that of neurandpeakpeaksin the southwestern part of the basin. The
composite analysis for the SST field has a pattern similanabd @f neuron 1, but the seesaw structure off the easterrhSout
America coast is reverse. On average, 20% of the floods happeccur in neuron 3, but this frequency is larger for sites
located in the southern part of the basin, particularly enRaranapanema subbasin. The magnitude of these type of domd
intermediate and there is a synchronization intra- andsadite central and southern subbasins, suggesting contyedtie to
the storm track extension and movement and the flood routomgahe stream channels. Both neurons 1 and 3 have positive
SST anomalies in the ENSO regi¢easterriropical Pacific) which has been also associated with extreme rainfall eviant
the region (Camilloni and Barros, 2003; Grimm and Tedes2009; Cavalcanti et al., 2015 herefore about55% of floods
i.e.35%in neuronl + 20%in neuron3) in the UPRBarelinked to El Nifio-like SST patterngn the easternlropical Pacific.

Neuron 2 has a rainfall peak in the northeastern part of tesenbhetween 4 and 5 days before the flood event. The average
rainfall field is less intense than neuron 1 but more intehare heuron 3Neuron4 showsa SSTpatternsimilarto La Nifia-like

conditionswith negativeSSTanomaliesn theeasterriropical Pacific,suggestinghataboutl 1% of floodsin the UPRB could

belinked with this large-scalgghenomenon.
The moisture path shows warm and moist meridional flow adiesntire basin, resulting in rainfall possibly due to low

level convergence or eventually frontal activity. The SSHidfiin the Atlantic ocean is similar to that of neuron 1, bu th
average conditions in the Tropical Pacific are neutral. Garaye, 34% of floods are of this type, particularly in the inem
subbasins. Together with floods in neuron 1, these are thedafloods in the region. The synchronization of type 3 floods
are more intra-subbasins. Finally, type 4 floods are caugeah ihomogeneous but persistent rainfall field, with mostsiooe
transported from the Atlantic ocean. There is no evidenckrettly extratropical activities and the SST field revealegative
anomalies in the tropical Pacific and positive in the tropfd#antic. The near surface air temperature in this clusteswed
positive anomalies, suggesting that local convection triighalso an important factor. 11% of the total floods are céetgpe,
although this is the dominant pattern of rainfall. Thesethedess intense floods, with a synchronization that ocdorsyehe
main river channels.

The spatial scaling exponents (slope) of floods with dragrexga (Figs. 11 and 12) are similar for floods of types 1 and 2,
and for types 3 and 4, even though the rainfall mechanismditieeent for each pair. The exponent is higher for types@4n
reflecting the higher homogeneity in the rainfall and resgopattern. The area exponents for flood variance are coablgle
higher than those for mean scaling, opening the possilofisymulti-scaling approach. However, once again the expisrae
similar for types 1 and 2, and for types 3 and 4. The scalirgtie@iships for variance are not as well constrained for oesir
3 and 4 types of events.

Distinct patterns of flood synchronization and movementadse identified for each neuron. Conditional on the storm
track, i.e., large scale atmospheric flow, these could aduuseful to improve analysis and prediction of the pagéfibod
emergence and for the operation of multi-stage flood cosgrstiems.
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The results obtained in this work are a step forward for flasklmanagement in UPRB in two possible ways: flood design
and short term prediction. Local flood frequency analysisid¢anake use of the different flood categories and employ, for
instance, mixture of distributions approaches (e.g.,aMdihd Mtiraoui, 2002) for better flood quantile estimatesyi®eal
flood frequency analysis could also consider the differealisg laws and develop a Bayesian approach (as in Lima alhd La
2010; Cheng et al., 2014; Lima et al., 2016) to better es@megional parameters.

Finally, the persistent regions with SST anomalies couldd®tl to derive climate predictors for short term flood risé-pr
diction. The synchronization of the flood events could bd@eal in more details to develop short term flood forecastetsd
conditional on the atmospheric and oceans states and flaatisn in nearby sites. Further details of the moisturedpart
and high level atmospheric circulation could be also aredym order to obtain potential climate predictors for thedlsin this

andTheproposednethod
canpotentiallybeusedto exploreotherattributesof floods,the notionof cumulativehazard§Moftakhari and et al., 2017) and
simultaneousdlooding acrossa basin(Vahedifard and et al., 2016pndwill be theme ofour future work. The timing of the

floods along thewarm-wet season and a possible association with the neuron classdsedarther explorede. In future

region.Othe butesof the distributionsasseciatedvith-eachflood typewerenetexploredhere

research, we intent to addrgssrtsomeof these topics and also explore how the tools and methog@iogployed in this work
could help evaluate the future flood risk in the UPRB regiomsitering climate changes.
6 Data availability

The streamflow data for the Upper Parané River Basin are ¢gedWdy the Brazilian National Operator of the System (ONS)
and can be accessed at http://www.ons.org.br/home/. Tifaltand temperature data are provided by Xavier et all@@nd
can be accessed at http://careyking.com/data-downlohd/ERA Interim global data set (SST, moisture fluxes, digacg
field, vorticity, wind field) are available at http://appsnewf.int/datasets/data/interim-full-moda/levtypestsf
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Figure 1. The Parana River Basin (ticker red contour) and streamflaygesused in this work (black dots). The elevation is in nseted
the location of the Parana River Basin within Brazil is shdwethe insert in the upper right corner (red line contouheThinner red line

shows the associated subbasins: 1) Paranaiba; 2) Grarilet&) 4) Parana ; 5) Paranapanema/Parané and 6) Iguacu.
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Figure 2. keft-Top panel: number of hits in each neuron (blue hexagdR&ktBottom panel: connecting neighboring neurons (red lines).
The colors in the regions containing the red lines indichgedistances between neurons, where darker colors reptesgsr distances and
lighter colors represent smaller distances.
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Figure 3. Neuron weights obtained for the Self-Organizing Map. Thesights basically represent the rainfall anomalies (in rower the
Upper Parana River Basin from day- 5 (top panels) to day (bottom panels). The black line shows the zero contour.
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Figure 5. Streamlines for the vertically integrated moisture fluxes w level (850 mb) relative vorticity (in0~°- 1/s) averaged over each

neuron class. The red contour line shows the Upper Paramd Basin.
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Figure 6. Streamlines for the high level (500 mb) wind vector and iedatorticity (in 10~°- 1/s) averaged over each neuron class. The red

contour line shows the Upper Parana River Basin.
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Figure 7. Anomalies (in°C) in the near surface air temperature averaged over eacbmelass. The red contour line shows the Upper
Parana River Basin. THauetine-shewsthezero contoutine is alsoshown
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Figure 8. 15-day filtered sea surface temperature (SST) anomaligs°jimveraged over each neuron clabBe zerocontourline is also

shown.
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Figure 9. Frequency of flood events in each neuron class for each dtaigauge. The red dots show the scale for frequencies of 10%,

50% and 90%.
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Figure 10. Density of exceedance probabilities in each neuron class.
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Figure 11.Scaling of average flood flow series in each neuron class.€gst $quare estimates of intercept and slope are showrhipaael.

The black line shows the least squares regression. aepresents the flood series whilethe drainage area (in kijof the respective

catchment.
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each panel. The black line shows the least squares regresee( represents the flood series whidethe drainage area (in kKipof the

respective catchment.
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Figure 13. A directed network for the flood events showing synchromratind flow direction (arrows). The dots show the streamflow

gauges in their geographical location (see Figure 1).
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Figure 14. A directed network for the flood events showing synchroimraand flow direction (arrows) as a function of neuron clds$se
dots show the streamflow gauges in their geographical lmtésiee Figure 1).
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Table 1. Transition probabilities among neurons

To neuron
1 2 3 4
From neuron
1 0.631 | 0.347 | 0.020 | 0.003
2 0.045| 0.621 | 0.117 | 0.217
3 0.172 | 0.067 | 0.690 | 0.071
4 0.020 | 0.026 | 0.110 | 0.843
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