
We would like to thank Editor Julia Hall and Reviewer Shaun Harrigan for the additional 
comments that improved the manuscript. Our responses to the comments raised (underlined 
and in italic

 

) are provided below. 

Comments from the Editor 

We have reviewed the entire manuscript and we hope now that all comments (including from 
the first round of reviews) are satisfactorily addressed.   

Additionally, please check again that you have addressed ALL comments from the first round of 
reviews. There are several points that were ‘promised to be corrected/amended’ in your 
response to the referees but were never incorporated into the final document. 

 

We have removed some instances and rephrased some sentences to address this comment.  

Generally, the word ‘somewhat’ is used very often in the manuscript. You might want to 
consider rephrasing for some instances. 

 

It is now specified in the revised manuscript (P2 L14). 

P2 L14: Please specify which processes you are refereeing to. 

 

We have removed the reference and provided the percentage of floods during this period (P4 
L16 ). 

P4 L17: I’m not sure if this reference is appropriate, as the reference given does not contain any 
information that would assist the reader with further information. I suggest giving the 
percentage of floods in this season instead. This has already been mentioned by one of the 
reviewers and it was ‘promised’ that this would be added but has not been added so far. 

 

We have rephrased this sentence. 

P5 L11-13. Please rephrase the sentence for clarity and check grammar. 

 

Please note that we are not aware of a specific paper that has addressed this issue. This 
section is based on our observations from data and our experience in the region. For this 
reason, we cannot add additional references here.  

P5 L17-22 Please add references to all general statements presented in this section. 



 

We have clarified this in the revised manuscript. 

P8 L1: Please quantify what ‘main rainy season’ entails and add reference for that statement. 

 

We agree and we have rephrased this sentence. 

P8 L6: ‘The understanding … will be qualitatively explored’. Please rephrase sentence, currently 
it reads as if the understanding is explored, which is confusing. 

 

We have rephrased this sentence. 

P9 L7-9: Please rephrase sentences. Currently the meaning of the sentence is not clear and/or 
the grammar seems not correct to me. 

 

We have corrected it. Thank you! 

P9 L30: ‘neurons 3 and 4’ need to be replaced with ‘neurons 3 and 2’ 

 

We generally agree that the positive anomalies are more relevant to this paper. But, in our 
opinion, the negative rainfall anomalies constitute a spatial pattern that is worth mentioning in 
the text. One of the fascinating issues in our study area is (often rapid) changes between dry 
and wet cycles.  For this reason, we have included few sentences on the negative anomalies. 

P 10L3-L13: I think it would be beneficial to the reader if the description of the anomalies would 
focus more on the positive rainfall anomalies. E.g. for t-5 and t-4 for neuron 2 the rainfall field 
is not just ‘somewhat homogenous’ but appears to be a larger scale positive anomaly and the 
progression of negative rainfall anomalies (rainfall less than the long-term average) at later 
time steps seems to be of less importance for the flood generation. This applies similarly to the 
other neurons as well. 

 

We have removed this last sentence and rephrased the last sentence of the first paragraph. 

P10 L14-L17: This paragraph is somehow repetitive of the first paragraph on this page. I 
suggest combining the two. Additionally, when looking at Figure 2 I think the last sentence 
should read ‘The shortest distance is obtained between neurons 3 and 4, followed by the 
distances of neurons 2 and 4 and neurons 1 and 3’, to preserve the decreasing order of the 
distances. 

 



We have added a statement to the revised paper (P11 L2-3) to address this issue. 

P10 L28 – P11 L14 Please elaborate for the interdisciplinary readership of ESD that a negative 
divergence field (i.e. convergence) indicates that rainfall can occur (brief description of the 
processes involved), but please also make the reader aware that rainfall does not necessarily 
have to occur. 

 

We have removed the term negative events. 

P11 L1: ‘negative events’ of what? Please elaborate. 

 

We have rephrased this sentence. 

P11 L2: ‘The SALLJ is weak’ it is not clear to me to which part of the text before this statement 
refers to. Please clarify. 

 

Ok. 

P11 L9 For clarity, please add ‘positive’ before ‘divergence’. 

 

P11 L11-13: ‘Neuron 4 has a moisture transport pattern somewhat similar to that of neuron 2, 
but the origin of the fluxes are more associated with the South Atlantic, with meridional fluxes 
west of the basin, and a less intense but still relatively homogeneous moisture convergence.’ 
From Fig. 4, I am not able to come to the conclusions that are written after the word ‘but’ in the 
above sentence. The two panels look very similar to me. Please check again and rephrase

We have removed the sentence after ‘but’. 

. 

 

These two levels (

P11 L 15-27: Please add a sentence explaining to the interdisciplinary readership the reasons 
behind choosing to analyse the 850 and the 500 mb (i.e. what different type of conclusions can 
be drawn at the different levels). 

850 and 500 mb

 

) are common thresholds for studying large-scale patterns in 
the region. We have highlighted the different conclusions from these thresholds in the main 
manuscript (P11, L15-21).  

 

 



We refer to divergence in the upper levels. We have clarified this issue in the revised version 
(P11, L18).  

P 11 L16 Please specify to the reader what kind of wave activity and what dynamic forcing you 
are refereeing to by better describing the mechanisms involved. 

 

We think that the word “trough” can also be used in connection with atmospheric circulation 
when the flow has a wave kind of pattern. For instance, we observe in many bulletins (e.g. 

P 11 L23: The attribute ‘through’ only applies when specifically talking about a wave, however 
here it is used in connection with the word ‘circulation’. Please rephrase statement for added 
clarity (see also sentence describing neuron 3). 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/bulletin_1201/extra.shtml) and 
textbooks (e.g. Wallace and Hobbs, Atmospheric Science) the term “trough” used in 
connection with atmospheric circulation.   

 

Ok. 

P 11 L24: Please be more specific where ‘southwestern of it’ is located (similar to how the 
location was described in detail for Figure 5). 

 

Ok. 

P 11 L28 replace ‘is shown’ with ‘are shown’ 

 

There are different definitions for the El Nino region. For instance, there are several indices 
(NINO1+2, NINO3, NINO3.4 and NINO4) to indicate regions of the eastern Tropical Pacific that 
experience positive anomalies in the SST and that we could call an El Nino event. There is also 
the Modoki El Nino that is based on information from the Central Pacific. In this discussion, we 
are not referring to a specific definition. Hence, we have added “eastern tropical Pacific” to 
generally describe the ‘El Nino region’.  

P 12 L1: For clarity please specify the altitude, where the described ‘El Niño region’ is located 
and what definition of Nino is being used. This has already been mentioned by one of the 
reviewers before but has not been incorporated yet! 

    

Done. 

P 12 L5 please add ‘whether’ between ‘or’ and ‘they. 

 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/bulletin_1201/extra.shtml�


We have added “Fig. 3” and rephrased the sentence. We have also added the latitude location 
of tropics and subtropics. 

P 12 L8-10: What does ‘(3)’ refer to? Figure 3 ? Additionally please elaborate what ‘the results 
of Doyle and Barros (2002)’ were. And please also add the latitude location of the tropics and 
subtropics for ease of interpretation. 

 

Ok. Thanks.  

P 12L19: when rounding the number in Table 1 it is probably ‘17%’ and not ‘18%’. 

 

We have corrected this sentence. 

P12 L 22: ‘neuron 4 (Fig. 3)’ should probably read ‘neuron 3’? 

 

Ok. 

P 12L 24: The sequence should be 3 -> 1 -> 2 -> 4 -> 3. His has already been mentioned by one 
of the reviewers but has not been changed yet! 

 

We have dropped the word “remarkably”.  

P13 L 7 I’m not sure if ‘remarkably’ is the correct term to use here. From all the analysis done 
before in the paper this does not seem to be ‘remarkable. Please rephrase. 

 

Ok. 

P 13L19: Suggest replacing ‘average flow’ with ‘average flood flow’ 

 

We have used the exact term employed in the literature of complex networks where the 
original theory comes from, so we prefer to keep the term “edge”. But to clarify, in 
parenthesis, we have added the term branches.  

P 14 L 6: Replace ‘the edges the …’ with the ‘the branches represent the….’ 

 

We thank the Editor for the suggestion and this has been linked by mentioning the neurons. 

P 14 L 10-20 You might want to consider linking this also to Fig 3, by discussing the location of 
the areas with strong positive rainfall anomalies. 



 

Ok. 

P15 L6 replace ‘peak’ with ‘peaks’? 

 

We have double checked and the link is directing to the data source at the time of this 
revision.  

P16 L 14: Please make sure that the link provided is working and that the link directs the reader 
directly to data source. Currently the link seems broken… 

 

All of our maps have been tested for back and white print. Please note that the colors are not 
green and red. They are green and pink and they are distinctly different in back and white 
print. Also, the choice of color is not a significant part of the story. If someone is color blind 
then they will have potential problems with all color figures. 

Figure 1 please change colour scheme, as the red – green combination of colours will make it 
difficult to understand the Figure for people that are colour blind. 

 

We have updated the figure as suggested. 

Figure 2: Please increase either the size of the red coloured numbers (both Figures same font 
size) or chose a different colour that has a better contrast with the grey surrounding, as 
currently the red numbers will be difficult to decipher once the Figure is scaled the correct size 
used for publication. 

 

We thank the Editor for these suggestions. We have updated the figures as suggested.  

Figure 4-8: Please make sure that the 'zero' on Figs. 4-8 is the same colour (e.g. white), so the 
Figures are easily interpretable (i.e. it does not make sense that the zero line goes through the 
blue shading when a divergent colour scale is being used (e.g. in Fig. 4)). Additionally, to avoid 
confusion, please make sure that the colour code (i.e. red is negative & blue is positive) is the 
same for all of the above Figures (currently Fig 7 & 8 are the other way around). 

 

Figure 4: Additional to the changes mentioned above, please provide a proper legend (with at 
least 3 arrows of different length) for the scale of the moisture fluxes, as currently one does not 
know how the arrows are scaled. Please also add to the Figure caption, that the arrows show 
the moisture fluxes and the colours the divergent field. 



Please note that we are more interested in the directions of the fluxes rather than its 
magnitude, which is more important for displaying divergence fields. For this reason, the scale 
of the arrows is not so relevant for the interpretation of the figure. We believe that one arrow 
(as is commonly done in the literature) showing the scale (right bottom side of neuron 4) is 
sufficient to provide an idea of the magnitude of the moisture fluxes. This also avoids 
overcomplicating the figure. 

 

We have included zero line in Figure 8. We don´t think that adding a zero line to Figures 5 and 
6 will provide more information.  

Figures 5,6,8 Please add the zero line. 

 

Figure 13 & 14: The arrows are not visible, particularly in Fig 14. Please make them clearly 
visible (maybe a different colour for the arrow head or increasing the size of the arrow head 
might help). 

Figure 14: You might want consider adding a box around the networks for clarity. 

We agree and we have increased the size of the arrow heads and labels and added boxes to 
the panels. 

Additionally, once the Figure is scaled the correct size in the final publication, I suspect that the 
font used to identify the neurons might be too small. Please increase font size of the labels. 

 

 

General Comment on References: 

Please make sure that the references contain all necessary information and are written as 
outlined in: https://www.earth-system-
dynamics.net/Copernicus_Publications_Reference_Types.pdf 

 

Please make sure that all journal names are abbreviated according to the ISI Journal Title 
Abbreviations Index (https://www.library.caltech.edu/journal-title-abbreviations). For example, 
‘Journal of Hydrology’ should be written ‘J. Hydrol.’ 

We have corrected all references to comply with these requirements.   

 

 

 

https://www.library.caltech.edu/journal-title-abbreviations�


Reviewer # 2: 

 

 

The revised manuscript is improved over the original submission and I recommend it for 
publication in ESD. It is an interesting paper and makes an important contribution to the 
literature on flood hydroclimatology. I have a few minor suggestions that the authors may wish 
to take on board: 

We have removed one. 

Pg3;L9-10 &Pg4;L13-14: range of drainage areas repeated, remove one. 
 

 

We have added the % number of total floods that occur Nov-Mar. 

Pg 4; 17: As per my original comment, can’t see the % number of total annual floods that occur 
Nov-March here? 

 
 

Please note that here we are not investigating/sampling individual flooding events here. Our 
focus is on independent atmospheric mechanisms responsible for flooding. It is very unlike 
that the same rainfall mechanism will persist for more than 15 days and cause multiple major 
floods. In fact, most mechanisms responsible for the rainfall in the region last less than 3 days 
(P7, L24 and references therein). Hence, we believe that inter-interval times beyond 15 days 
are sufficient to guarantee independence.    

Pg4; 21-22: As per my original comment: “events with inter-arrival times larger than 15 days, 
which we believe is a consistent interval to guarantee independence 
between flood events considering the different rainfall mechanisms that cause floods in UPRB”. 
Unless a formal independence criteria was applied, which there is no mention?, then there is no 
guarantee.  

  
 

We have added the range to the revised manuscript. 

Interesting plot in response to my query on the range of peaks-over-threshold events. It might 
be of interest to other readers to include the range from 76-131 within Pg4;L23 of the revised 
manuscript. 
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Abstract. Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of lives. Studies

suggest that some extreme floods result from a causal climatechain. Exceptional rain and floods are determined by large scale

anomalies and persistent patterns in the atmospheric and oceanic circulations, that lead to space and time structure inthe

expression of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the

assumptions of homogeneity, and often stationary, in FloodFrequency Analysis. Here we outline a methodological framework5

based on clustering using Self-Organizing Map (SOM) that allows linking large scale processes to local scale observations.

The methodology is applied to flood data from several sites inthe flood prone Upper Parana River Basin (UPRB) in southern

Brazil. The SOM clustering approach is employed to classifythe six-day rainfall field over UPRB into four categories, which

are then used to classify floods into four types based on the spatio-temporal dynamics of the rainfall field prior to the observed

flood events. An analysis of the vertically integrated moisture fluxes, vorticity and high level atmospheric circulation revealed10

that these four clusters are related to known tropical and extra-tropical processes, including the South America low-level jet

(SALLJ), extra-tropical cyclones and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface

temperature fields in the Pacific and Atlantic oceans are alsofound to be associated with these processes. Floods associated

with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling and synchronization

of events across the sites and sub-basins. These new insights suggest new directions for flood risk assessment, forecasting and15

management.

1 Introduction

The assumptions of homogeneity, stationarity and randomness in traditional flood frequency studies, have been questioned in

numerous studies(e.g., Jain and Lall, 2001; Smith et al., 2011; Hirschboeck et al., 2000; Milly et al., 2002; Alila and Mtiraoui, 2002; Kwon et

To make progress on understanding and modeling the real world flood process one needs to better understand how the complex20

interactions among weather, climate, hydrology, basin attributes and antecedent conditions evolve over space and time.
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Historically, flood studies have followed two distinct research lines: hydrometeorology of floods and flood frequency analy-

sis. Flood hydrometeorology focuses on understanding: i) hydrodynamics of the rainfall-runoff process during flood events; ii)

spatial structure of local rainfall events that are associated with floods; iii) soil-atmosphere response and large scale circulation

patterns associated with the forecast and diagnosis of rainfall events. Some examples include(Maddox, 1983; Kunkel et al., 1994; Pal and Eltahir

There is also an extensive literature related to the statistical analysis and modeling of flood frequency from local and regional5

data of rainfall, streamflow and water basin attributes, including non-stationary approaches(e.g., Thomas and Benson, 1970; Stedinger et al., 1993

In this study, we investigate floods in the Upper Paraná RiverBasin (hereafter, UPRB) in southern Brazil from a hydro-

climatology framework to understand the flood generating mechanisms (Hirschboeck, 1988). The overarching goal is to link

frequency of flood events to flood generating mechanisms to provide a better understanding of the underlyingprocesses
:::::::

physical

::::::::

processes
::::::::::::::::::::

(Moftakhari et al., 2017). The underlying assumptions in flood frequency studies can be enriched by a formal con-10

sideration of the physical mechanisms responsible for generation of extreme floods. This includes a recognition of the natural

climate variability associated with persistence and oscillatory regimes (e.g., El Niño) across different time scales(e.g., intean-

nual, decadal, etc) as well as climatic changes in response to anthropogenic changes in atmosphere, soil and land use.

Many studies have investigated the interactions between basin attributes and atmospheric circulation leading to extreme or

exceptional floods (in the context of this work, it means floods with exceedance probability of 70%). However, there is limited15

knowledge as to how evolving large scale climate modes at theinterannual scale change thechancesof local precipitation and

soil moisture altering the probability distribution/occurrence of floods
::::::::::::::::::

(Sun and et al., 2016). It is argued that the frequency

of flood events is very sensitive to modest changes in climate(Knox, 1993)
::::::::::::::::::::::::::::

(Knox, 1993; Sun and et al., 2016). We explore

the Hirschboeck’s hypothesis (Hirschboeck, 1988) thatexceptional floods in basis of all sizescould be related to anomalies

in the large scale atmospheric circulation. This flood hydroclimatology perspective has been applied to identify the moisture20

transport and large scale climate patterns associated withfloods in the United States (Hirschboeck, 1988; Budikova et al., 2010;

Nakamura et al., 2013; Lu and Lall, 2016; Mallakpour and Villarini, 2016), Europe(Prudhomme and Genevier, 2010; Jacobeit et al., 2003; Bárdossy

other parts of the world (Kahana et al., 2002). However, suchflood studies are rare in South America.

Intuitively, a rainfall system that persists over a given locale with a continuous and sufficient supply of moisture (from advec-

tion and recycling) has a high likelihood of generating an exceptional flood. For sufficiently large drainage areas, an extreme25

flood may require an external flux of advective moisture, i.e., local convective processes may not tend to produce exceptional

floods in these basins. Moreover, such an influx of large scaleadvective moisture can lead to an increased potential for large

floods as the drainage area and return period increase. Hirschboeck (Hirschboeck, 1988; Hirschboeck et al., 2000) notesthat

the scale of convective storms that can generate intense short rainfall is typically ofsome
::::::::

10−−102
:

km2 and is therefore it is

unlikely that such convective processes are the main sourceof exceptional floods over large areas. On the other hand, mesoscale30

convective systems (MCS), such as convective complex (MCC)and squall lines, tend to cover large areas and persist for several

hours and are sources of heavy rainfall in some regions of theUSA (Schumacher and Johnson, 2005, 2006) and also Brazil

(Salio et al., 2007; Zipser et al., 2006; Durkee and Mote, 2009; Durkee et al., 2009; Marengo et al., 2012)
:::::::::::::::::::::::::::

(Zipser et al., 2006; Salio et al., 2007

in particular the MCCs to the east of the Andes that impact theLa Plata Basin. However, there is evidence (Maddox, 1983;

Corfidi et al., 1996) that the maintenance and development ofsuch systems is related to large-scale atmospheric circulation35
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features. Thus, tropical and extratropical cyclones and associated fronts become important in the production of extreme rainfall

over large areas and are directly related to atmospheric circulation patterns of large scale and with storm paths or welldefined

regions of moisture transport in the atmosphere.

We explore extreme floods in UPRB through a hydroclimatic analysis of flood series across 33 nested-basin sites with

drainage areas ranging from 2,588 to 823,555 km2. The spatio-temporal dynamics of daily rainfall over the basin in the days5

that preceded the largest flood events is analyzed and classified into clusters of similar patterns based on a Self-Organizing

Map (Kohonen, 2001) clustering algorithm. This way, we intend to take into account the persistence and alignment of the

storm path with the drainage basin that produces a given flood. The associated large scale atmospheric circulation for each

cluster is then analyzed in terms of moisture transport and convergence, high level circulation and vorticity. Teleconections

with the Atlantic and Pacific oceans are evaluated by composite analysis of the sea surface temperature (SST) field. For each10

rainfall cluster, the attributes (frequency, magnitude, scaling and synchronization) of floods across UPRB are analyzed in order

to produce and characterized a typology for floods in the region according to the dynamics of rainfall patterns and associated

atmospheric circulation. Floods generated by snowmelt, tropical cyclones and storm surges do not affect the UPRB and are

thus not investigated in this study. The paper is organized as follows. In the next section we present the region of study and

data. In section 3 we introduce the clustering algorithm. Insection 4 we present the results and finally in section 5 we offer a15

summary and discussion.

2 Region of Study and Hydroclimate Dataset

2.1 The Upper Paraná River Basin, streamflow and rainfall dataset

The Upper Paraná River Basin is located in southern Brazil (Fig. 1) and is part of the La Plata basin, which is the second largest

basin in South America after the Amazon basin. UPRB concentrates a large population of Brazil and is of utmost importancefor20

the country in terms of flood control, hydropower generationand agriculture. The rainfall season over UPRB is mostly marked

by a peak during the austral summer (summer monsoon system) related to the South American monsoon system (SAMS) and

associated South Atlantic Convergence Zone (SACZ, see Barros et al., 2000; Jones and Carvalho, 2002; Berbery and Barros,

2002; Carvalho et al., 2004; Marengo et al., 2012), particularly in the region north of20◦S, where the monsoon system is the

dominant forcing (Berbery and Barros, 2002). Rainfall interannual variability has been associated with SST anomaliesin the25

Tropical Pacific and South Atlantic oceans(Grimm et al., 1998; Robertson and Mechoso, 2000; Doyle and Barros, 2002; Grimm, 2003, 2004;

Intra-seasonal and decadal variability of rainfall and streamflow have been also the subject of many studies(Carvalho et al., 2004; Robertson and

Most of the moisture that reaches UPRB is from the Amazon region (Drumond et al., 2008; Carvalho et al., 2011), and the

rainfall mechanisms are also associated with Mesoscale Convective Systems (MCSs) along the South-American low-leveljet

(SALLJ, see Velasco and Fritsch (1987); Marengo et al. (2004); Salio et al. (2007)) and transient systems related to extratropi-30

cal cyclones and cold fronts (Mendes et al., 2007; Silva and Ambrizzi, 2010). El Niño events have also been linked to extreme

rainfalls and floods in UPRB (Camilloni and Barros, 2003; Grimm and Tedeschi, 2009; Muza et al., 2009; Cavalcanti et al.,

2015; Antico et al., 2016).
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We use mean daily streamflow data from 33 sites in UPRB (Fig. 1). These sites are located strategically to provide the

inflow into the main hydropower reservoirs in UPRB, which areused not only for generation of electrical energy but also

for flood control, water supply and agriculture. The datasetis offered by the National Operator of the System (ONS), which

defines the operational rules of all interconnected hydropower reservoirs in the country. The streamflow data is available from

January/1931 to December/2013, but in order to be consistent with the availability of the rainfall dataset, we perform all5

analysis considering the streamflow data restricted to the 1980–2013 period.Thecatchmentbasinareasrangefrom 2,588to

823,555km2. All series have gone through a consistency process by ONS andrepresent naturalized flows from artificial and

natural streamflow gauges, which means that any reservoir operation upstream of the streamflow gauge is removed from the

original series.

We limit our analysis to thewarm
:::

wetseason (November through March), whenmostfloodsoccur(Lima and Lall, 2011)
::::

over10

::::

75%
::

of
:::

the
:::::

floods
:::::

occur. For each site, we obtain partial duration series of floods bytaking the values in which the daily flow

exceeds a given threshold. In order to keep a relatively large number of exceptional flood events in each rainfall cluster, we set

this threshold as the 70th empirical flood quantile for thewarm
:::

wetseason. We analyze only independent floods by declustering

the series (Lang et al., 1999) and taking events with inter-arrival times larger than 15 days, which we believe is a consistent

interval to guarantee independence between flood events considering the different rainfall mechanisms that cause floods in15

UPRB. From this procedure, we obtain dates and magnitudes ofabout 98 flood events
::::::

(ranging
:::::

from
::

76
::

to
::::

131
::::::

events)for each

of the sites in UPRB analyzed here.

Daily gridded rainfall data
:::::

(0.25◦
::

x
:::::

0.25◦)
:

for the period 1980–2013 are provided by Xavier et al. (2016). These data con-

sist of interpolated daily rainfall observations from 3625rainfall gauges and 735 weather stations across Brazil available

from different institutions (INMET, ANA and DAEE). The interpolation schemes and validation procedures are describedin20

Xavier et al. (2016). The rainfall data is delimited by the UPRB boundary as shown in Fig. 1. For each grid point, daily anoma-

lies of rainfall are obtained after removing, from the observed value, the respective long term monthly mean for that grid point

based on the 1980–2013 period.

2.2 Moisture Fluxes, Vorticity, Upper Level Winds and Sea Surface Temperature

Mean daily data of vertically integrated moisture fluxes andthe associated divergence field (Evaporation - Precipitation along25

an atmospheric column), low and high level relative vorticity and high level (500 mb) winds are obtained from the ERA-Interim

reanalysis data (Dee et al., 2011). It covers the period from1980 to 2013 and are retrieved for the region defined by15◦N-60◦S

and270◦W-330◦W.

We also use daily SST data from the ERA Interim global sea surface temperature archive for the 1980–2013 period. Daily

SST anomalies for each grid point are calculated by subtracting, from the observed value, the monthly mean for that grid point30

and related month based on the 1980–2013 period. The SST fieldis delimited by the region30◦N-80◦S and210◦W-20◦E.

All data are interpolated for a grid of2.5◦ x 2.5◦.
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3 Technical Approach

The spatio-temporal dynamics of daily rainfall over UPRB inthe days that preceded the largest flood events is analyzed and

classified into clusters based on a Self-Organizing Map (Kohonen, 2001) clustering algorithm, which is described in thefol-

lowing subsection. By doing this, we consider the persistence and alignment of the storm path with the drainage basin that

produces a given flood. For each rainfall cluster, the associated large scale atmospheric and ocean circulations are evaluated5

through composite analysis of moisture transport and convergence, high level circulation, vorticity and the Atlanticand Pacific

SST fields. The attributes (frequency, magnitude and regional scaling) of floodsacrossUPRB associated with each rainfall

cluster are also analyzedin order to produceandcharacterized.
::::

We
:::::::

propose
::::

thena typology for floods in the region accord-

ing to the rainfall patterns andassociated
::::::::::::

correspondingatmospheric and ocean circulation. Finally, we employ the ideas of

event synchronization and complex networks to explore the spatial dynamics of floods over UPRBaccordingto eachrainfall10

cluster
::::::::::

conforming
:::

the
::::::

rainfall
:::::::

clusters. The methodology to evaluate the synchronization of flood events is presented in sub-

section 3.2.

3.1 Rainfall Clustering

A flood event, defined as a crossing of river stage above its bank height, can vary in duration from a few minutes to months

and in spatial extent from a few square kilometers, to several 106 km2. A large number of flood studies have focused on the15

understanding of physical processes associated with floodsin basins of small scale due to the ease of observing criticalevents

in these basins
:::::::::::::::::::::::::

(e.g., Gupta and Dawdy, 1995), while over large areas the focushasbeen
:::::

tends
::

to
::

be
:

on the problem to predict

flood quantiles, with lesser emphasis on the understanding of the physical mechanisms associated with extreme floods. For

instance, the relation of soil moisture and a given rainfallevent in producing some floods over small areas and homogeneous

soils is relatively easy to evaluate. On the other hand, the problem becomes considerably more complicated as we consider20

large basins, with drainage areas over104km2, since i) the potential of a high heterogeneity in the initial soil moisture field

is high and ii) the location and direction of the storm path along the basin leads to a significant heterogeneity in the spatial

and temporal distribution of the rainfall event. Since the influx of large scale advective moisture may be a particular factor to

overlie the initial heterogeneities of the surface conditions for larger basins, we will assume that the spatio-temporal variability

(i.e., magnitude, persistence and alignment of the storm path with the drainage basin) of rainfall is the key factor of producing25

floods across the UPRB sites evaluated in this work.

Consider that the information regarding the spatio-temporal patterns of rainfall associated with the major flood events is

contained in a rainfall dataset represented by a matrixX= [x1x2 . . .xT ], wherext is a column vector containing all the

relevant information about the spatial variability and persistence of daily rainfall over UPRB along dayst−τ , t−τ −1 , . . . , t,

for some time delayτ . T is the total number of effective days during the australwarm
:::

wet
:

season (November–March) over30

the 1980–2013 period. Our goal is to extract information aboutX through clustering. We use the Self-Organizing Map (SOM)

approach to cluster rainfall information as expressed inX. SOMs are a particular case of competitive neural networks and

have been developed by the machine learning community in the1990’s (Kohonen, 2001) for cluster analysis and classification.
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They have been successfully applied to find clusters in climate systems (e.g., Cavazos, 2000; Hewitson and Crane, 2002;

Johnson et al., 2008; Lee and Feldstein, 2013; Bao and Wallace, 2015; Li et al., 2015; Mioduszewski et al., 2016; Xu et al.,

2016; Li et al., 2016). An extended review of applications inClimate Science is provided by Liu and Weisberg (2011). SOMs

are also known as Kohonen neural networks and the basic idea is to obtain a 2-d topology consisting of nodes (or neurons) that

are associated with the input spaceX, preserving yet its topological features.5

For the sake of clarity and understanding of the SOM properties and tuned parameters (i.e., parameters that can be sub-

jectively set) used in this work, we describe here the key aspects of SOM. We refer the reader to Kohonen (2001) for more

details about SOM. Let us assume that we haveK neurons, then initiallyK representatives (or prototypes, synaptic weight

vectors, reference vectors) are randomly chosen from the input spaceX and associated with theK neurons. An input vectorxt

is randomly selected from the data setX and the Euclidean distance betweenxt and each representativemk, k = 1, . . . ,K, is10

computed. The neuron whose representative yields the smallest distance toxt is the winner neuronk∗ or Best-Matching Unit

(BMU):

k∗ = arg k
min
{||xt−mk||}. (1)

In the next step, the neurons that are neighbors (neighborhood set) of the winning nodek∗ are found based on the Euclidean

distance and a given thresholdc. The representatives corresponding to each grid neighbor of the wining neuronk∗ are then15

updated according to the rule:

mk←mk +α · (xt−mk), k ∈Nc(k
∗), (2)

whereα, 0≤ α≤ 1, is the so-called learning rate andNc(k
∗) denotes the set of points in the neighborhood ofk∗ given the

parameterc. The process is then arbitrarily repeated a large number of times (epochs), since there is no explicit error criterion

to minimize (Lee and Verleysen, 2007).20

Variants of the update rule in equation (2) include a time varying learning rateα and weighted distances based on the

proximity ofmk and the winning neuronmk∗ :

mk←mk +α(j) ·h(||mk−mk∗ ||) · (xt−mk), k ∈Nc(k
∗), (3)

whereα(j) is the learning rate at epochj andh(|| · ||) is a neighborhood function around the winner neuronk∗. Common

functions forα(j) include the linear, power and inverse functions with a decrease rate over time. A common function for25

h(|| · ||) is the Gaussian kernel:

h(||mk −mk∗ ||) = exp

{

−||mk−mk∗ ||
2 ·σ2

}

Ik∈Nc(k∗),
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whereσ is the width of the kernel (or neighborhood radius) andI the indicator function.

In the batch version of the SOM, instead of presenting each time a single data vector, the entire data setX is presented to

the SOM before any weights are updated and the BMUmk∗ is obtained for each input dataxt at each epoch, so that each data

vectorxt will belong to a given neuron and the new neurons are updated as:

mk←
∑

t∈Nc(k)
wtxt

∑

t∈Nc(k)
wt

, (4)5

where the weight functionwt can be a rectangular function, which is equal to 1 for the neighbors ofmk and 0 otherwise, or be

a smooth functionh(||mt−mk||). In this sense, each new neuron is a weighted average of the data samples that belong to its

neighborhood neurons.

For a given number of neuronsK, learning rateα, thresholdc and fixed number of epochs, the trained SOM can encode any

pointxt by giving the indexk of the closest neuronmk, where the distance is computed similarly to equation (1). In this way,10

each data point of the entire dataset of rainfall informationX can be assigned (or clustered) into one of the categories1, . . . ,K.

The final embedding ofX can be evaluated by the mean quantization error (MMQE) of theSOM, which essentially measures

the average distance of each inputxt to its representative in the output space:

MMQE =
1

T

T
∑

t=1

||xt−mxt
||, (5)

wheremxt
refers to the best matching unit of the correspondingxt.15

In order to capture the spatio-temporal dynamics of the rainfall field over UPRB, including the information of antecedent

rainfall for a given dayt of the record, we will concatenate the rainfall field over a time windowτ = 5 days:

xt = [rt−5 rt−4 rt−3 rt−2 rt−1 rt]
′

(6)

wherert is a row vector representing the observed rainfall field overthe Upper Paraná River Basin (Fig. 1) at dayt, with

dimension 1178 (number of grid points), so thatxt has dimension 7068.20

It is interesting to note that asτ increases, the number of dimensions ofxt increases as well and the associated rainfall

pattern may not be necessarily connected with the flood events. Based on the results discussed in the next section and the

lifetime of about 3 days of extratropical cyclones (Simmonds and Keay, 2000) and 3 days of SACZ events (Carvalho et al.,

2004), we believeτ = 5 days is an appropriate choice to extract the relevant information regarding the rainfall field during

flood events.25

We
::

To
:::

be
:::::::

coherent
::::

with
:::

the
:::::

flood
::::

data
::

as
::::::::

described
:::

in
::::::

section
:::

2.1,
:::

we
:

focus on the November–March daily rainfall, which

is themainrainyseasonfor UPRB.Therainfall .
::::

Thedataset covers the period from January 1st 1980 to December 31st 2013

with a total of 5143 data points. After concatenating the rainfall field as explained in equation (6), the number of data points

reduces to 5138, starting now in January 6th 1980 and ending in December 31st 2013. This results in a 5138 x 7068 input data

matrixX to the SOM.30
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3.2 Flood Event Synchronization

Theunderstandingof howeachneuronproducesagivenspatial dynamics of floods across UPRB
::::::::

produced
::

by
::::

each
::::::

neuron
:

will

be qualitatively exploredherethrough the concepts of event synchronization and complex networks, which have been success-

fully applied in many fields (Quiroga et al., 2002) and also climate science(Marwan and Kurths, 2015; Malik et al., 2012)
:::::::::::::::

(Malik et al., 2012;

including for prediction of floods in South America (Boers etal., 2014). Following the nomenclature of Quiroga et al. (2002),5

let us define the time series of flood event dates (obtained from the partial duration series) for two given streamflow sitesx and

y astxi andtyj , wherei = 1, . . . ,mx andj = 1, . . . ,my. We define twosynchronousflood events whenever the distance between

txi andtyj is less than a given time lagτ . Let thencτ (x|y) be the number of time in which a flood event inx follows, within the

time lagτ , a flood event iny:

cτ (x|y) =
mx
∑

i=1

my
∑

j=1

Jτ
ij (7)10

where

Jτ
ij =















1 if 0< txi − tyj ≤ τ

1/2 if txi = tyj

0 otherwise.

(8)

Similarly, we can calculatecτ (y|x). We will define then a measureQτ for the event synchronization:

Qτ =
cτ (x|y)+ cτ (y|x)
√
mx ·my

, (9)

where0≤Qτ ≤ 1, andQτ = 1 suggest fully synchronization.15

The delay behavior (ordirection of flow) of the flood events can be measured by:

qτ =
cτ (x|y)− cτ (y|x)
√
mx ·my

, (10)

where−1≤ qτ ≤ 1, andqτ = 1 implies that flood events inx always precede flood events iny.

When combining all streamflow sites,Qτ will be the elements of a square symmetric matrix whileqτ will be the entries of a

square antisymmetric matrix. The matrix generated fromQτ can then be converted into a square binary matrix, where entries20

will represent only relevant connected sites. This can be accomplished by constructing the adjacency matrixA:

A==







1 if Qτ > T

0 otherwise,
(11)
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whereT is a given threshold.

Methods to estimateT usually involve a bootstrap procedure, so that only a certain percentage of the total number of grid

points (e.g. 5%) are connected(Boers et al., 2014; Malik et al., 2012)
:::::::::::::::::::::::::::::::

(Malik et al., 2012; Boers et al., 2014). In the particular

case of this work, we are more interested, for agivengauge,in themost
:

in
:::

the
:

gauges that havesomehowsynchronized flood

events withit
:

a
::::::

specific
::::

one. Hence, we will defineT = 0.5, so that we define synchronized gauges when at least 50% of their5

flood events occur simultaneously.

The time lagτ should be less than half the minimum inter-event distance, so that one single flood event is not synchronized

with two events in another site. Based on this, a simple mathematical formulation is presented in Quiroga et al. (2002). In our

case, in order to consider independent flood events, we have defined the partial duration series so that flood events are at least

15 days apart. Hence,τ = 7. The average direction in which the flood event propagates will be simply evaluated by the sign of10

qτ .

4 Results

4.1 Rainfall Clustering

We chose a 2x2 hexagonal grid to define the SOM, and the rainfall field is classified intoK = 4 clusters. This choice is made

primarily to associate a relatively large number of flood events in each rainfall cluster. The neighborhood radiusc is initially set15

as 3 and monotonically decreases to 1 (equivalent to 6 neighbors for a central neuron in an hexagonal grid) when the number

of epochs is equal to 100. This is the so-called ordering phase, where a global order is achieved for the map (Kohonen, 2001).

From 100 epochsc is set to 1 (tuning phase). Since the SOM grid consists of fourneurons, then only two neighbors will have

the size of its neighborhood affected byc (see Fig. 2 and related discussion). The weight functionh in equation (4) is the

rectangular function. The total number of epochs is set to 1000, but we do not observe any significant difference in the mean20

quantization error (MMQE) after the first 200 epochs. At 1000epochs we obtained MMQE = 777.69. We also evaluate MMQE

for a 2x3 and a 3x3 hexagonal grids and observe that the valuestend to oscillate around MMQE = 777.69 as a function of the

number of epochs, so that any significant differences for the2x2 grid are observed. The SOM clustering algorithm is obtained

using a commercial Neural Network Toolbox (MATLAB, 2014).

Figure 2 shows the final SOM after 1000 epochs in terms of hits in each neuron (left panel) and neighbors and weight25

distances (right panel). The number of hits is almost evenlydistributed among neurons 1, 2 and 3. Neuron 4 has almost the

double of hits of the other neurons. Due to the hexagonal gridlayout, neurons3 and4
:

2
:::

and
::

3 are connected to all the remaining

neurons, while neurons 1 and 4 are connected only to neurons 3and 2 (right panel of Fig. 2). The shortest distance is
:::::::

obtained

between neurons 3 and 4while the largestdistanceis betweenneurons,
::::::::

followed
::

by
:::

the
::::::::

distances
:::

of
::::::

neurons
::

1
::::

and3 and2.

::::::

neurons
::

2
:::

and
::

4.
:

30

The above analysis is complemented by looking at the weightsof each neuron (Fig. 3), which basically contain the informa-

tion about the rainfall anomaly field over UPRB from dayt−5 to dayt. Neuron 1 has a north-south seesaw pattern at dayt−5

and progressively moves towards an homogeneous field, with astrong rainfall peak at dayt− 3 centered in the northeastern
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part of the basin. The north-south dipole structure returnsstronger at dayt−2 and persists until dayt, but now with a decrease

in the rainfall peak. At this point it is worth mentioning that the negative anomalies in the rainfall field do not necessarily imply

absence of rainfall, but just that the rainfall in that specific grid point is below its long term monthly average. Neuron 2starts

with a somewhat
:::::

nearly
:

homogeneous rainfall field at timest− 5 andt− 4, from which negative rainfall anomalies start in

the southern part and cover approximately the entire basin at time t. Neuron 3 starts at timet− 5 with a northeast-southwest5

dipole structure with positive anomalies in the southwest,which progress over time until almost the entire basin is covered by

positive anomalies at timet. Neuron 4 has an homogeneous rainfall pattern over the entire basin, with negative anomalies from

time t− 5 to timet.

Combining the information from Figures 2 and 3, we observe that the rainfall field represented by neuron 4 is somehow

connected to the rainfall patterns expressed by neurons 2 and 3 through specific regions of negative anomalies of rainfall.10

Neurons 2 and 3 have also some connection with neuron 1.Theshortestdistanceisobtainedbetweenneurons3and4,followed

by thedistancesof neurons1 and3andneurons2and4.

Considering that each neuron represents a given state of therainfall field during the course of 6 days, we estimate transition

probabilities across the states and show them in Table 1. We note that there is a general tendency of the rainfall field to remain

in its state (neuron), but the transition probabilities aredifferent among neurons. Neuron 1 is more likely to transition to neuron15

2, which is more likely to transition to neuron 4. Neuron 3 hasthe highest probability to transition to neuron 1, while neuron 4

will more likely stay at its own state, with just a small probability to transition to neuron 3. We discuss further and contextualize

these transitions in the next section when we analyze the atmospheric circulation associated with each neuron.

4.2 Atmospheric Circulation, Moisture Transport and Sea Surface Temperature

The analysis of key atmospheric and ocean variables in each neuron class is conducted here through a composite analysis con-20

sidering the days correspondent to each neuron class. In this sense, the patterns will reflect the average conditions (climatology)

for dayst throught− 5 as showed in Fig. 3.

The vertically integrated moisture flux and the associated divergence field (Evaporation - Precipitation along an atmospheric

column) averaged over each neuron class is shown in Fig. 4. Wecan see this as a climatology of the moisture transport associ-

ated with the rainfall patterns indicated in Fig. 3. Neuron 1shows an intense moisture transport from the Amazon region,possi-25

bly associated with SALLJ episodes (Marengo et al., 2004). The divergence field is negative in the northern portion of UPRB,

suggesting intense rainfall along this region, and positive in the southern part (dry conditions), extending to50◦S. This dipole

structure has been reported in several studies (e.g., Nogués-Paegle and Mo, 1997; Díaz and Aceituno, 2003; Liebmann et al.,

2004) and is also observed in the rainfall field associated with neuron 1 at timet (bottom panel of Fig. 3). The circula-

tion is similar to the pattern described by Nogués-Paegle and Mo (1997)for negativeevents, where convection in the SACZ30

in enhanced and more likely to occur during El Niño episodes. The ,
:::::

while
:::

the
:

SALLJ is weak, consistentwith otherstudies

(Liebmann et al., 2004) ,includingmodel-basedones(Silva and Berbery, 2006) .
::::::::::::::::::::::::::::::::::::::::

(Liebmann et al., 2004; Silva and Berbery, 2006) .

:::

But
::::

note
:::

that
::

a
:::::::

negative
:::::::::

divergence
::::

field
::::

only
::::::::

indicates
:::

that
::::::

rainfall
::::

can
:::::::::

potentially
:::::

occur.
::::

This
::

is
:::

not
:

a
::::::::

sufficient
::::::::

condition
::::

and

:

a
:::::::

negative
:::::::::

divergence
::::

does
:::

not
::::::::::

necessarily
::::

lead
::

to
::::::

rainfall.
:
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The moisture transport in neuron 2 is dominated by a north-south meridional flow crossing the entire basin, with a relatively

homogeneous convergence of moisture over the basin, resembling also the rainfall pattern at timet for neuron 2 (bottom panel

of Fig. 3). This pattern seems to be associated with a weaker SACZ and stronger SALLJ, as described in Nogués-Paegle and Mo

(1997) for positive events.

The moisture transport in neuron 3 is also affected by a strong SACZ and moisture fluxes from the Amazon region but,5

when compared with neuron 1 (Fig. 4), the
::::::

positive
:

divergence (or inhibited precipitation) is far south of thebasin and covers

a smaller area. The moisture divergence pattern is again similar to the rainfall field at timet for neuron 3 (bottom panel of

Fig. 3). Neuron 4 has a moisture transport patternsomewhatsimilar to that of neuron 2, but the origin of the fluxes are more

associated with the South Atlantic, with meridional fluxes west of the basin, and a less intensebutstill relativelyhomogeneous

moisture convergence. This reflects the rainfall field for neuron 4 (Fig. 3) and is likely associated with the average conditions10

of moisture transport into the region (Doyle and Barros, 2002; Carvalho et al., 2004).

The dynamics of the moisture transport associated with eachneuron class is complemented by analyzing the low level

(850 mb) relative vorticity (Fig. 5), which can indicate zones of low pressure and cyclonic rotation. A distinguished pattern

is found for neuron 1, with negative relative vorticity or cyclonic rotation over the entire basin and positive relativevor-

ticity centered around60◦W 30◦S, which suggestsdynamicalforcing and upper level wave activity
:::

and
:::::::::

dynamical
:::::::

forcing15

:::::::::

(divergence
:::

in
:::

the
:::::

upper
::::::

levels)associated with neuron 1. This pattern has been identified inother studies (Liebmann et al.,

1999; Robertson and Mechoso, 2000). Neuron 3 also shows cyclonic rotation (negative relative vorticity) in the southern part

of UPRB, extending up to30◦S. Neurons 2 and 4 do not show any sign of intense cyclonic flow over the basin.

The high level (500 mb) atmospheric circulation and relative vorticity associated with each neuron class is shown in Fig. 6.

Neuron 1 shows a strong trough in the upper level circulationthat extends to the entire UPRB, with negative vorticity over the20

entire basin and positive vorticity southwestern of it
::::::::

(centered
::::::

around
:::::

45◦W
::::::

30◦S). This pattern confirms our hypothesis that

this neuron is also associated with upper level wave activities. Neuron 3 shows also a trough over the basin, but it is weaker

and negative vorticity appears only in the south. Neurons 2 and 4 show more a zonal kind of circulation south of20◦S, which

resembles the climatology of high level circulation.

Anomalies in the near surface air temperature associated with each neuronis
:::

areshown in Fig. 7. Neurons 1 and 4 have,25

respectively, negative and positive anomalies that cover the entire UPRB. Neuron 3 has a sharp contrast of negative anomalies

in the south and positive anomalies in the north, suggestingfrontal activities. Neuron 2 has also a sharp contrast of anomalies

but with opposite sign as compared with neuron 3 and the pattern suggests that it results from the advection of moist and warm

air from the Amazon.

Potential SST persistent patterns associated with each neuron are analyzed here by passing a 15-day high frequency filter30

on the daily SST anomalies, which are calculated by subtracting, from the daily SST, the average of the correspondent month

for the January/1980 – December/2013 period. The results are shown in Fig. 8. Neuron 1 and neuron 3 show both positive

anomalies in the El Niño region
::::::

(eastern
::::::

tropical
:::::::

Pacific), in the central Pacific and Tropical Atlantic. A dipole kind of structure

appears in both neurons along the southern coast of South America but they are out-of-phase. The negative SST anomalies off

the South America coast associated with neuron 1 have been identified in other studies (Doyle and Barros, 2002) during SACZ35
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activities and it is not clear whether they are a response to the reduced income radiation from the intense rainfall band that

extends from the Amazon to the South Atlantic or
::::::

whether
:

they are in fact acting to produce the observed circulation pattern.

The SST pattern of neuron 3 is similar to that of neuron 1, except that the anomalies off the South America coast near30◦S

are positive, which issomehowconsistent with the positive rainfall anomalies in the southwestern part of the basin (3) andthe

resultsof
:::

Fig.
:::

3)
::

as
::::::::

described
::

in
:

Doyle and Barros (2002). Neurons 2 and 4 show a similar pattern along the South Atlantic,5

with positive anomalies in thetropics
::::::::

equatorial
:::::

region
:::

(up
:::

to
::::

about
::::::

20◦S), negative in thesubtropics
::::::::

subtropic
::::::::

(centered
:::::

about

:::::

30◦S) and positive south of around40◦S. The SST pattern in the Pacific ocean for neuron 2 is diffuse,with no remarkable

feature. Neuron 4 shows positive and negative anomalies that intercalate across the Pacific, with negative anomalies along the

El Niño region. The SST anomalies in the Atlantic for neuron 2are very similar to those observed for neuron 1.

Combining all the analyses, we can shed some light on the transition probabilities, hits and connectivity among neuronsas10

displayed in Fig. 2 and Table 1. Neuron 4 has individually themost hits and likely reflect the average circulation during the wet

season, with a strong persistence but reduced SACZ activities. Eventually it precedes neuron 3 (probability = 11%) and most

likely succeeds neuron 2 (probability = 22%), which issomehowexpected given the rainfall pattern as shown in Fig. 3 and the

atmospheric circulation and SST anomalies in Figures 4 to 8.Neuron 2 has also a slightly probability (12%) of precede neuron

3 and most likely (probability = 35%) succeeds neuron 1.15

When we connect these results with the transition probabilities in Table 1, we can describe the most probable sequence of

rainfall states. The dynamical forcing and active SACZ of neuron 1 is most likely preceded by neuron 3 (probability =18
::

17%),

which is marked by active SACZ, high level waves and cold fronts, and will most likely be followed by the rainfall pattern

of neuron 2 (probability = 35%), which issomewhatcoherent with the surface air temperature march as inferredfrom Fig. 7.

Neuron 4 will most likely be followed by neuron4
:

3
:

(Fig. 3). Neurons 1 and 4 are not connected and the transitionprobabilities20

between them are practically zero. In summary, the most likely sequence of neuron transitions, arbitrarily starting atneuron

3, is:3→ 2→ 2→ 4→ 3
:::::::::::::::::

3→ 1→ 2→ 4→ 3. But also note that transition probabilities from one neuron to another one are

generally smaller than the probabilities to remain in the state (see Table 1).

4.3 Flood Reponse

4.3.1 Frequency and Magnitude25

The total proportion of flood events in neurons 1 to 4 is equal to 35%, 34%, 20% and 11%, respectively. The frequency of

floods in each neuron for the streamflow gauges analyzed here is shown in Fig. 9. Neurons 1 and 2 dominate most floods across

UPRB. Neuron 3 dominates the floods along the gauges located in the Paranapanema sub-basin (see Fig. 1), while neuron 4 is

most associated with floods in the gauges along the Paraná river, particularly with the Itaipu gauge located in the basin outlet,

which interestingly is not directly affected by the wave activity of neuron 1 (see following discussion).30

The magnitude of floods associated with each neuron class is analyzed by calculating, for each site, the empirical ex-

ceedance probability for each data point in the partial duration series, aggregating all estimates across the sites andthen

estimating the density of such probabilities conditional on the neuron class of the data points. The results are shown inFig.
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10. Neurons 1 and 2 have the peak and largest density in small values of exceedance probability, suggesting that the biggest

floods along UPRB are associated with these patterns of rainfall (Fig. 3) and moisture transport and convergence (Fig. 4). It is

worth mentioning that neuron 2 has a rainfall dynamics that is not associated with El Niño events (Fig. 8), but still produces

large floods.
::::

This
:::::::::

highlights
:::

the
:::::::::

uncertainty
::::

and
:::::::::

complexity
::

to
:::::::

quantify
:::

the
:::::

flood
::::::

hazard
::::::

during
::::::

ENSO
:::::

events
::

as
:::::::::

described
::

in

::::::::::::::::::

Emerton et al. (2017) .
:

The pattern of neuron 3 is more associated with intermediatemagnitude flood events while neuron 45

is remarkablyassociated with the smallest flood events, although some large flood events are possible, particularly in the sites

where this neuron dominates the frequency of occurrence (Fig. 9).

4.3.2 Spatial Scaling

The literature on the scale of flood properties (e.g. quantiles) with drainage area(Farquharson et al., 1992; Gupta and Dawdy, 1995; Gupta et al.

that the type of precipitation (e.g. convective versus frontal) and the attributes of the drainage network will jointlydetermine10

the different behaviors of the scaling process of flow and drainage area. It is not clear whether such scaling relations will hold,

if a mixture of mechanisms can interact to produce large floods. Here we explore the scaling of the first and second sample

moments of the flood events with respect to the neuron classes.

Since each flood event at a given site can be assigned to a neuron class, we can easily calculate the sample moments (mean

and variance in our case) in each neuron class for each gauge and evaluate how the scaling law of flow moments and drainage15

area change as a function of the spatio-temporal variability of the rainfall field. Figure 11 shows the scaling of the average

::::

flood
:

flow and drainage area for each neuron class. The magnitudes of the slope and intercept coefficients clearly change as a

function of the neuron class, but more remarkable differences appear between neurons 1/2 and neurons 3/4. In fact, both slope

and intercept estimates of either neurons 1 or 2 are significantly different at the 5% significance level from the estimates for

neurons 3 and 4 using a standard t-test.20

The magnitude of these coefficients also reflects the intensity of rainfall and the spatial pattern associated with each neuron,

as shown in Figure 3. As the rainfall intensity increases, itis expected that the intercept will increase, while the slope is more

related to the spatial homogeneity of the rainfall field: as it becomes more homogeneous across the basin, we expect the slope

will approach 1. The intercept values as shown in Fig. 11 increase from neuron 4 to neuron 1, which qualitatively agrees with

the rainfall patterns showed in Fig. 3, whose overall magnitude increases from neuron 4 to 1. The slope estimates suggestthat25

the less homogeneous rainfall fields occur in neurons 1 and 2,which is consistent with the pattern displayed in Fig. 3. Neurons

3 and 4 have the largest slope estimates and thus more homogeneous rainfall field, which is again consistent with the results of

Fig. 3.

The scaling of the sample variance with the drainage area foreach neuron class is shown in Fig. 12. As for the average

flow scaling, the largest differences among the coefficientsare observed between the pair of neurons 1 and 2 and the pair of30

neurons 3 and 4. Visually, the scaling is clearer for neurons1 and 2. Neuron 4 shows more dispersed values along the least

squares regression line, suggesting that the mechanisms bywhich this rainfall pattern produces a given flood across thegauges,

particularly for small gauges, are different (see subsequent discussion).
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4.3.3 Flood Event Synchronization

Figure 13 shows a directed network obtained from the adjacency matrixA and the delay behavior matrixqτ considering all

flood events across sites and not taking into account the neuron classes. The nodes represent the streamflow gauges in their

geographical position while the edges
::

(or
:::::::::

branches)the existence of synchronization between two sites. The arrow shows the

dominant direction of the flood propagation. The flow patterns generally follow the drainage basin direction (Fig. 1): east-west5

and north-south. But some exceptions can also be observed, indicating that the size and movement of the storm path may also

affect how the sites are synchronized.

If we cluster the flood events into the neuron classes, we can obtain specific adjacency and delay behavior matrices for each

neuron. The resulting directed networks are shown in Fig. 14. Now we can observe that the rainfall pattern described by neuron

1 produces the largest synchronization of flood events, given by the number of arrows, including inter- and intra-subbasins10

connectivity. In general, the cascade of flood events tend toend up in the outlet of the sub-basins (see Fig. 1 for the name

and location of the sub-basins). Neuron 2 has a more intra-subbasin connectivity pattern, that tends to follow the riverflow

direction and suggest that rainfall upstream of the basin isthe more likely cause of floods. The Itaipu site located in thebasin

outlet is not connected to any site, suggesting that Itaipu floods in this neuron will likely result from the routing flow from

upstream sites. Neuron 3 has the northern sites disconnected while a connectivity within and across sub-basins is observed.15

The Tietê subbasin seems to be disconnected from all other subbasins. Finally, neuron 4 show less connections, were mostof

them are within the subbasins. The Itaipu site is again completely disconnected, so most of its floods associated with neuron 4

are due to routing of upstream flow and floods caused by rainfall of this and other types.

5 Summary and Conclusions

A general, statistical approach to classify flood generation mechanisms, the areal scaling of floods, and the synchronization20

potential of flooding in a large river basin, was developed and demonstrated with data from the Upper Paraná River Basin,

Brazil. This is the first attempt to describe such floods in a broad, hydroclimate context. A Self-Organizing Map algorithm

was employed to find the spatio-temporal dynamics of the rainfall field over the basin in the days that preceded the major

flood events. For each cluster, we analyzed the large scale moisture transport into the region as well the upper level structure

and teleconnections associated with SST. The flood responseassociated with each rainfall pattern was evaluated in terms of25

magnitude, frequency, spatial scaling and events synchronization.

Four distinct patterns of rainfall were observed and associated with the atmospheric circulation and moisture transport. The

first cluster exhibits strong rainfall concentrated in the northeastern part of the basin, with a peak two days before theflood

events. It was associated with the moisture transport from the Amazon and intense SACZ, with the presence of cyclones - a

pattern that have also been reported in the literature (Liebmann et al., 1999; Robertson and Mechoso, 2000). These events are30

associated with positive SST anomalies in the tropical Pacific and Atlantic oceans and a dipole structure off the easterncoast

of South America, which has also been observed in other studies (e.g., Doyle and Barros, 2002). On average, 35% of all floods
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happen during these conditions. The Itaipu streamflow gaugelocated in the basin outlet is less affected, at least directly, by this

rainfall pattern. These type of floods are strongly synchronized across all sites.

The third neuron shows features of SACZ episodes associatedwith extratropical disturbances, possibly fronts and cyclones.

The rainfall field is however less intense than that of neuron1 andpeak
::::

peaks
:

in the southwestern part of the basin. The

composite analysis for the SST field has a pattern similar to that of neuron 1, but the seesaw structure off the eastern South5

America coast is reverse. On average, 20% of the floods happento occur in neuron 3, but this frequency is larger for sites

located in the southern part of the basin, particularly in the Paranapanema subbasin. The magnitude of these type of floods are

intermediate and there is a synchronization intra- and across the central and southern subbasins, suggesting connectivity due to

the storm track extension and movement and the flood routing along the stream channels. Both neurons 1 and 3 have positive

SST anomalies in the ENSO region
:::::::

(eastern
::::::

tropical
:::::::

Pacific), which has been also associated with extreme rainfall events in10

the region (Camilloni and Barros, 2003; Grimm and Tedeschi,2009; Cavalcanti et al., 2015).
:::::::::

Therefore,
:::::

about
::::

55%
::

of
::::::

floods

:::

(i.e.
::::

35%
::

in
::::::

neuron
::

1
::

+
::::

20%
::

in
::::::

neuron
::

3)
::

in
:::

the
::::::

UPRB
:::

are
:::::

linked
:::

to
::

El
::::::::

Niño-like
::::

SST
:::::::

patterns
::

in
:::

the
::::::

eastern
:::::::

Tropical
:::::::

Pacific.

Neuron 2 has a rainfall peak in the northeastern part of the basin, between 4 and 5 days before the flood event. The average

rainfall field is less intense than neuron 1 but more intense than neuron 3.
::::::

Neuron
::

4
:::::

shows
:

a
::::

SST
::::::

pattern
::::::

similar
::

to
:::

La
::::::::

Niña-like

:::::::::

conditions,
::::

with
:::::::

negative
::::

SST
::::::::

anomalies
::

in
:::

the
::::::

eastern
:::::::

tropical
::::::

Pacific,
:::::::::

suggesting
::::

that
:::::

about
::::

11%
::

of
:::::

floods
::

in
:::

the
::::::

UPRB
:::::

could15

::

be
:::::

linked
::::

with
::::

this
:::::::::

large-scale
:::::::::::

phenomenon.
:

The moisture path shows warm and moist meridional flow acrossthe entire basin, resulting in rainfall possibly due to low

level convergence or eventually frontal activity. The SST field in the Atlantic ocean is similar to that of neuron 1, but the

average conditions in the Tropical Pacific are neutral. On average, 34% of floods are of this type, particularly in the northern

subbasins. Together with floods in neuron 1, these are the largest floods in the region. The synchronization of type 3 floods20

are more intra-subbasins. Finally, type 4 floods are caused by an homogeneous but persistent rainfall field, with most moisture

transported from the Atlantic ocean. There is no evidence ofdirectly extratropical activities and the SST field revealed negative

anomalies in the tropical Pacific and positive in the tropical Atlantic. The near surface air temperature in this clustershowed

positive anomalies, suggesting that local convection might be also an important factor. 11% of the total floods are of these type,

although this is the dominant pattern of rainfall. These arethe less intense floods, with a synchronization that occurs along the25

main river channels.

The spatial scaling exponents (slope) of floods with drainage area (Figs. 11 and 12) are similar for floods of types 1 and 2,

and for types 3 and 4, even though the rainfall mechanisms aredifferent for each pair. The exponent is higher for types 3 and 4

reflecting the higher homogeneity in the rainfall and response pattern. The area exponents for flood variance are considerably

higher than those for mean scaling, opening the possibilityof a multi-scaling approach. However, once again the exponents are30

similar for types 1 and 2, and for types 3 and 4. The scaling relationships for variance are not as well constrained for neurons

3 and 4 types of events.

Distinct patterns of flood synchronization and movement arealso identified for each neuron. Conditional on the storm

track, i.e., large scale atmospheric flow, these could be further useful to improve analysis and prediction of the potential flood

emergence and for the operation of multi-stage flood controlsystems.35
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The results obtained in this work are a step forward for flood risk management in UPRB in two possible ways: flood design

and short term prediction. Local flood frequency analysis could make use of the different flood categories and employ, for

instance, mixture of distributions approaches (e.g., Alila and Mtiraoui, 2002) for better flood quantile estimates. Regional

flood frequency analysis could also consider the different scaling laws and develop a Bayesian approach (as in Lima and Lall,

2010; Cheng et al., 2014; Lima et al., 2016) to better estimate regional parameters.5

Finally, the persistent regions with SST anomalies could beused to derive climate predictors for short term flood risk pre-

diction. The synchronization of the flood events could be explored in more details to develop short term flood forecast models

conditional on the atmospheric and oceans states and flood situation in nearby sites. Further details of the moisture transport

and high level atmospheric circulation could be also analyzed in order to obtain potential climate predictors for the floods in this

region.Otherattributesof thedistributionsassociatedwith eachflood typewerenot exploredhereand
:::

The
::::::::

proposed
:::::::

method10

:::

can
:::::::::

potentially
::

be
::::

used
::

to
:::::::

explore
::::

other
::::::::

attributes
::

of
::::::

floods,
:::

the
::::::

notion
::

of
:::::::::

cumulative
:::::::

hazards
:::::::::::::::::::::::::::

(Moftakhari and et al., 2017) and

:::::::::::

simultaneous
:::::::

flooding
:::::

across
::

a
:::::

basin
::::::::::::::::::::::::

(Vahedifard and et al., 2016) ,
::::

andwill be theme of
::

our
:

future work. The timing of the

floods along thewarm
:::

wet
:

season and a possible association with the neuron classes can be further exploredtoo. In future

research, we intent to addresspart
:::::

someof these topics and also explore how the tools and methodology employed in this work

could help evaluate the future flood risk in the UPRB region considering climate changes.15

6 Data availability

The streamflow data for the Upper Paraná River Basin are provided by the Brazilian National Operator of the System (ONS)

and can be accessed at http://www.ons.org.br/home/. The rainfall and temperature data are provided by Xavier et al. (2016) and

can be accessed at http://careyking.com/data-download/.The ERA Interim global data set (SST, moisture fluxes, divergence

field, vorticity, wind field) are available at http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/.20
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Figure 1. The Parana River Basin (ticker red contour) and streamflow gauges used in this work (black dots). The elevation is in meters and

the location of the Parana River Basin within Brazil is showed in the insert in the upper right corner (red line contour). The thinner red line

shows the associated subbasins: 1) Paranaíba; 2) Grande; 3)Tietê ; 4) Paraná ; 5) Paranapanema/Paraná and 6) Iguaçu.
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Figure 2. Left
:::

Top panel: number of hits in each neuron (blue hexagons).Right
::::::

Bottompanel: connecting neighboring neurons (red lines).

The colors in the regions containing the red lines indicate the distances between neurons, where darker colors represent larger distances and

lighter colors represent smaller distances.
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Figure 3. Neuron weights obtained for the Self-Organizing Map. Theseweights basically represent the rainfall anomalies (in mm)over the

Upper Paraná River Basin from dayt− 5 (top panels) to dayt (bottom panels). The black line shows the zero contour.
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Figure 4. Vertically integrated moisture fluxes (in kg/(m· s)
:

,
::::::

showed
::

by
:::

the
:::::

arrows) and associated divergence field (in10−5 kg/(m2
· s))

averaged over each neuron class. The red contour line shows the Upper Paraná River Basin. The contour for the divergence field equals to

zero is
:::

also
:

shownby thebluelines.Theblackcontourline showsSouthAmerica.
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Figure 5. Streamlines for the vertically integrated moisture fluxes and low level (850 mb) relative vorticity (in10−5
· 1/s) averaged over each

neuron class. The red contour line shows the Upper Paraná River Basin.
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Figure 6. Streamlines for the high level (500 mb) wind vector and relative vorticity (in 10
−5

· 1/s) averaged over each neuron class. The red

contour line shows the Upper Paraná River Basin.
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Figure 7. Anomalies (in◦C) in the near surface air temperature averaged over each neuron class. The red contour line shows the Upper

Paraná River Basin. Theblueline showsthezero contour
::

line
::

is
:::

also
::::::

shown.
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Figure 8. 15-day filtered sea surface temperature (SST) anomalies (inC◦) averaged over each neuron class.
:::

The
:::

zero
::::::

contour
:::

line
::

is
::::

also

:::::

shown.
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Figure 9. Frequency of flood events in each neuron class for each streamflow gauge. The red dots show the scale for frequencies of 10%,

50% and 90%.
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Figure 11.Scaling of average flood flow series in each neuron class. The least square estimates of intercept and slope are shown in each panel.

The black line shows the least squares regression. HereQ represents the flood series whileA the drainage area (in km2) of the respective

catchment.
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Figure 12. Scaling of variance of flood flow series in each neuron class. The least square estimates of intercept and slope are shown in

each panel. The black line shows the least squares regression. HereQ represents the flood series whileA the drainage area (in km2) of the

respective catchment.
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Figure 13. A directed network for the flood events showing synchronization and flow direction (arrows). The dots show the streamflow

gauges in their geographical location (see Figure 1).
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Figure 14. A directed network for the flood events showing synchronization and flow direction (arrows) as a function of neuron class.The

dots show the streamflow gauges in their geographical location (see Figure 1).
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Table 1.Transition probabilities among neurons

X
X
X
X
X
X
X
X
X
X
X

XX

From neuron

To neuron
1 2 3 4

1 0.631 0.347 0.020 0.003

2 0.045 0.621 0.117 0.217

3 0.172 0.067 0.690 0.071

4 0.020 0.026 0.110 0.843
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