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Abstract. Inferred Effective Climate Sensitivity (ECSinf) is estimated using a method combining radiative forcing (RF) time 

series and several series of observed ocean heat content (OHC) and near-surface temperature change in a Bayesian framework 15 

using a simple energy balance model and a stochastic model. The model is updated compared to our previous analysis by using 

recent forcing estimates from IPCC, including OHC data for the deep ocean, and extending the time series to 2014. In our 

main analysis, the mean value of the estimated ECSinf is 2.0°C, with a median value of 1.9°C and a 90% credible interval (CI) 

of 1.2-3.1°C. The mean estimate has recently been shown to be consistent with the higher values for the equilibrium climate 

sensitivity estimated by climate models. The transient climate response (TCR) is estimated to have a mean value of 1.4°C 20 

(90% CI 0.9 - 2.0°C), and in our main analysis the posterior aerosol effective radiative forcing is similar to the range provided 

by the IPCC. We show a strong sensitivity of the estimated ECSinf to the choice of a-priori RF time series, excluding pre-1950 

data and the treatment of OHC data. Sensitivity analysis performed by merging the upper (0-700m) and the deep ocean OHC 

or using only one OHC data set (instead of four in the main analysis), both give an enhancement of the mean ECSinf by about 

50% from our best estimate. 25 

1 Introduction 

A key question in climate science is how the global mean surface temperature (GMST) responds to changes in greenhouse 

gases or other forcings. The climate sensitivity is determined by complex feedbacks that operate on very different timescales 

and may depend on the transient climate state. The standard metric for climate sensitivity is the equilibrium climate sensitivity 

(ECS) (or Charney sensitivity) given as the change in temperature at equilibrium for a doubling of CO2, neglecting long-term 30 

feedbacks associated with the vegetation changes, carbon feedbacks and ice sheet dynamics. Estimates of the ECS are either 

based on complex climate models or observations of past climate (Collins et al., 2013;Knutti et al., 2017). The 
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Intergovernmental Panel on Climate Change (IPCC) presented a likely (>66% probability) range for ECS of 1.5 to 4.5°C 

(Collins et al., 2013). 

Regarding the Earth as a climate laboratory and the changes in atmospheric composition and land use over the historical record 

as a perturbation experiment, observational based analysis of Earth’s Energy Budget have been used to infer the climate 

sensitivity (Forster, 2016). Since the current climate is in a non-equilibrium state, observationally based methods can only 5 

account for the feedbacks operating during the historical period. These methods using the historical period with observations 

are referred to as inferred estimates (Armour, 2017;Forster, 2016) and have only the capability to derive an effective climate 

sensitivity and are generally significantly lower than ECS estimates from Atmosphere-Ocean General Circulation Models 

(AOGCMs) (Armour, 2017;Knutti et al., 2017). 

Since IPCCs fifth assessment report (AR5) there has been an improved understanding of the causes of the differences in 10 

estimates of climate sensitivity from climate models and observational based methods, directed to two main reasons. First, 

recent analysis of time-varying feedbacks in AOGCMs simulations from Coupled Model Intercomparison Project Phase 5 

(CMIP5) (Proistosescu and Huybers, 2017;Armour, 2017;Andrews et al., 2015) have indicated that in most AOGCMs the net 

feedbacks become more positive over time as a new equilibrium is approached. This is most likely due to evolution of the 

pattern of sea surface temperature increase in the Pacific and Southern Ocean and associated cloud feedbacks. Whether this 15 

slow warming has manifested itself in the climate record used for the analysis is the difference between effective and 

equilibrium climate sensitivity (Armour, 2017;Knutti et al., 2017). Second, ECS formally refers to global near-surface air 

temperature (‘tas’ in CMIP5 nomenclature) and in observational based methods observed surface temperature records that are 

a blend of air temperature over land and sea surface temperature (SST) over ocean are used in the estimation. Several observed 

surface temperature records exist with different methods to account for gap in the observations. Differences in historical surface 20 

temperature warming among various analysis is more than 0.1°C (Haustein et al., 2017) arising mainly due to approaches 

taken in regions missing or limited spatial coverage of observations. According to Richardson et al. (2016), there is a general 

bias in the surface temperature records since water heats slower than the air above and due to undersampling in fast warming 

regions (e.g. the Arctic). Taking both effects into account, Armour (2017) shows that previous estimates of ECSinf of about 

2.0°C are consistent with estimates of ECS of 2.9°C from climate models. 25 

Although it is now established that the ECS estimated by the use of complex climate models and ECSinf estimated by using 

historical observations would differ, there is still considerable spread in ECS estimates from models and between 

observationally based ECSinf estimates. The observational based methods and using complex models are complementary 

approaches to quantify the net effect of the feedbacks that determines the climate sensitivity. Complex climate models include 

processes that are highly parameterized, in particular the representation of clouds, precipitation and convection, and associated 30 

feedbacks, which are crucial for estimating the ECS (Bony et al., 2015;Tan et al., 2016). There are also a large spread in 

observational based estimates (Knutti et al., 2017). Better understanding of the feedbacks in the complex models as well as 

improvements and understanding differences among the observational based methods are needed.  
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Observational estimates of climate sensitivity can be improved using longer data series of higher quality (e.g. correcting for 

observational biases in temperatures or better forcing estimates) (Urban et al., 2014). Estimates can also be improved by 

including observational data on other climate variables, which were not previously available. Several studies indicate that the 

temporary slowdown in GMST in the beginning of the millennium coexisted with increased accumulation of heat in the deep 

ocean (e.g. Meehl et al., 2011;Meehl et al., 2013;Balmaseda et al., 2013;Watanabe et al., 2013;Chen and Tung, 2014;Lyman 5 

and Johnson, 2013). Johansson et al. (2015) found that if OHC change below 700m over this period were included in their 

observational based methods the mean value of ECSinf increased.  

In this study we use our estimation model that were first documented in Aldrin et al. (2012) and further developed in Skeie et 

al. 2014. Our method is more complex than the common energy balance based estimates (Forster, 2016) in that we  embed a 

simple climate model into a stochastic model with radiative forcing time series as input, treating the northern and southern 10 

hemisphere (NH and SH) separately and includes a vertical resolution of the ocean (40 layers). The radiative forcing time 

series are linked to the observations of OHC and temperature change through the simple climate model and the stochastic 

model, using a Bayesian approach. A unique feature with our method is that we use several observational datasets. The method 

estimates not only the ECSinf but simultaneously also provides posterior estimates of the radiative forcing, as well as posterior 

uncertainty estimates in the observations datasets and correlations between them. In this study we further develop our 15 

estimation model with additional observational datasets, including heating rates of the deep ocean (below 700m), new forcing 

time series from the IPCC AR5 as well as extended time series from 2010 to 2014 to update our estimate of ECSinf. We carry 

out a number of sensitivity experiments to investigate causes of differences in observational based ECSinf estimates due to 

differences in the input data (observations of surface temperature, OHC and RF). 

2 Data and methods 20 

2.1 The model 

Our full model consists of a simple climate model (SCM) with an idealized representation of the Earth's energy balance, a data 

model that describes how observations are related to the process states, and finally a parameter model that expresses our prior 

knowledge of the parameters (Aldrin et al., 2012).  

The core of our model framework is the SCM, a deterministic energy balance/upwelling-diffusion model (Schlesinger et al., 25 

1992). The SCM calculates annual hemispheric near-surface temperature change (blended SST and surface air temperature) 

and changes in global OHC as a function of estimated RF time series. The vertical resolution of the ocean is 40 layers down 

to 4000m. The output of the SCM can be written as 𝒎𝑡(𝒙1750:𝑡, 𝜽), where 𝒙1750:𝑡 (the RF from 1750 until year t) and 𝜽 are 

the true, but unknown, input values to the SCM. 𝜽 is a vector of seven parameters, each with a physical meaning. One of these 

parameters is the climate sensitivity, and the other parameters determine how the heat is mixed into the ocean, which includes 30 

the mixed layer depth, the air-sea heat exchange coefficient, the vertical diffusivity in the ocean and the upwelling velocity 

(see Schlesinger et al. (1992) and Aldrin et al. (2012) for details). 
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The true state of some central characteristics (𝒈𝒕) of the climate system in year t with corresponding observations can then be 

written as 𝒈𝑡 = 𝒎𝑡(𝒙1750:𝑡, 𝜽) + 𝒏𝒕, where  𝒏𝒕 is a stochastic process, with three terms, representing long-term and short-term 

internal variability and model error. For the short-term internal variability, we use the Southern Oscillation index (Table 1) to 

account for the effect of ENSO. The term for the long-term internal variability were implemented in Skeie et al. (2014) and 

the dependence structure of this term (i.e. correlations over time and between the three elements) is based on control 5 

simulations with a GCM from CMIP5 (see Skeie et al., 2014 for details) This term will also represent other slowly varying 

model errors due to potential limitations of the SCM and forcing time series. The third error term is included to account for 

more rapidly varying model errors. 

For the (available) long-term observational data that defines 𝒈𝒕  we consider the surface temperatures separately for the 

northern and southern hemispheres and the OHC separately for 0-700m and below 700m. Each of these elements of 𝒈𝒕 are 10 

associated with one or more corresponding observational-based data series (Table 1), with individual error terms. To gain as 

much information as possible, we use several data sets for the same physical quantity (e.g. OHC above 700m) simultaneously 

(Aldrin et al., 2012;Skeie et al., 2014). Most of the data series are provided with corresponding yearly standard errors (Fig. 

S7a). However, we only use the temporal profiles of the reported errors and estimate their magnitudes within the model, taking 

into account the possibilities that the reported standard errors may under- or overestimate the true uncertainty (Appendix A 15 

and Aldrin et al., 2012; Skeie et al., 2014).  

The unknown quantities are given prior distributions as presented in Skeie et al. (2014). The ECS is given a vague prior, 

uniform (0,20) and the informative priors for 𝜽 based on expert judgment are listed in Table S1. We apply a Bayesian approach 

in the spirit of Kennedy and O'Hagan (2001) on calibration of computer models and use Markov Chain Monte Carlo (MCMC) 

techniques to sample from the posterior distribution (Aldrin et al., 2012).  20 

2.2 Set up 

The starting point, here called case A, is the main results from Skeie et al. (2014) (hereafter named Skeie14) with some 

modifications (see Appendix A). These modifications changed the mean ECSinf value from 1.8°C  (median 1.7°C, 90% credible 

interval (CI) 0.92-3.2°C) to 2.0°C (median 1.8°C, 90% CI 1.0-3.4°C) (Fig. 1a, case A). The transient climate response (TCR) 

is calculated by running the model with 1% per year increase in CO2 using the joint posterior distribution of the model 25 

parameters. These modifications increased the mean value of TCR from 1.4 to 1.5°C and the 90% CI shifted slightly to larger 

values (Fig. 1b). 

In case A, we used four hemispheric pairs of observational based estimates of surface temperatures from about 1880 to 2010 

and three series for OHC above 700m from about 1950 to 2010, and RF from Skeie et al. (2011,2014) (Table 1). The forcing 

time series used in case A are hereafter named Forc_Skeie2014 and the priors of each forcing mechanisms included (Table 30 

S2) are described in detail in the appendix D of Skeie14.  

The potential for improving the constraint of the estimate of the climate sensitivity using observationally based methods, 

depends crucially on the quality of the input forcing data and the quality and amount of observational data. In case B, we 



5 

 

include new and improved knowledge of the forcing time series and add new data for OHC below 700m and observational 

data are extended to 2014. More specific in case B we 1) replaced the Forc_Skeie14 prior with the AR5 effective radiative 

forcing (ERF) estimates (Myhre et al., 2013) hereafter named Forc_AR5. The priors for the forcing mechanisms included 

(Table S2) are constructed to be consistent with the uncertainties provided in AR5 and the same relative uncertainty for the 

prior forcing is used over the entire time period. ERF includes rapid adjustments allowing the full influence on clouds except 5 

through surface temperature changes (Sherwood et al., 2014;Boucher et al., 2013;Myhre et al., 2013). 2) Include data for OHC 

below 700m (ORAS4) and add one extra data series for OHC above 700m (also ORAS4). Note that the deep ocean OHC is 

added as a separate dataset and not merged with the upper ocean. Including data on OHC in the deep ocean thus has the 

potential to better constrain the parameters in the SCM that determine how the heat is mixed into the ocean as well as the 

posterior estimates of the effective radiative forcing. 3) Use updated versions of the data prior to 2010, and 4) extend the time 10 

series from 2010 to 2014.  

Previous studies using similar methods have obtained different results with respect to the estimated ECSinf (Knutti et al., 2017). 

We perform three sensitivity experiments to investigate the effects of different choices about how to  use  OHC data (cases C 

and D, sect. 4.1) and how sensitive the results are to pre-1950 data (case E, sect. 4.2). 

3 Improved estimate of inferred effective climate sensitivity 15 

Here we present our revised estimate of ECSinf by replacing the RF prior with IPCC data, including OHC data below 700m 

and extending the time series to 2014 (Case B). We consider this analysis using the IPCC forcing estimates, including deep 

ocean OHC and extending the length of the input data series as the most trustworthy and physical based case and thus regard 

it as our main estimate of the ECSinf, with a mean of 2.0°C (median 1.9°C, 90% CI 1.2-3.1°C). The mean value is similar while 

the 90% CI is narrower compared to the refined Skeie14 estimate (Fig. 1a). The individual influence of the four major updates 20 

between case A and B is shown in Fig. S1 and described at the end of this section. The mean value of TCR in case B is 1.4°C 

(median 1.3°C, 90% CI 0.9-2.0°C) (Fig. 1b). As for the ECSinf estimate, the TCR mean value is similar and the 90% CI is 

narrower compared to the refined Skeie14 estimate (Fig. 1b). The GMST change is well reproduced (Fig. 2, case B), and less 

of the recent GMST change is attributed to long term internal variability compared to the refined Skeie14 estimate (Fig. S5a-

b).  25 

The rate of change in anthropogenic forcing is larger between 1940 and 1970 using Forc_AR5 compared to Forc_Skeie14 

(Fig. 3). The fit to the GMST in the 1980s-1990s improved (Fig. 2 case B vs. A), where the  root mean square error between 

1980 and 1999 decreased from 0.12 to 0.077°C. Figure S5 shows posterior estimates of the long-term internal variability, the 

ENSO term and the model errors. Parts of the increase in GMST over the last decades are explained as long-term internal 

variability, but the amplitude decreases in case B compared to case A (Fig. S5a-b). In case B, the estimated amplitude of the 30 

multi-decadal internal variability (about 0.2°C in each hemisphere, cf.  Figure S5) is in good agreement with the decadal trends 
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in global surface temperatures found in unforced control simulations in the multi-model ensemble from CMIP5 (0.2-0.4°C,  

Palmer and McNeall, 2014). 

The prior anthropogenic mean forcing in 2010 increased from 1.5 to 2.3 Wm-2 from case A to case B when Forc_AR5 replaced 

Forc_Skeie14. For case A, the posterior forcing is shifted to higher values compared to the prior, suggesting that the historical 

data and our method supports higher forcing than the Forc_Skeie14 prior. When the prior is changed to Forc_AR5 in case B, 5 

the posterior for the anthropogenic forcing is much closer to the prior (Fig. 3), which indicates that the method and 

observational data is more in accordance with the new prior than the old one. The same holds for the total forcing (Fig. S4). 

The 90% CI for the posterior anthropogenic forcing was 1.3 to 2.8 Wm-2 in case A compared to 1.3 to 3.4 Wm-2 in case B. The 

upper limit of the 90% CI is shifted to larger values. The most uncertain part of the forcing time series is associated with 

aerosols. The difference between the two forcing priors is mainly due to a much weaker aerosol forcing in Forc_AR5 than in 10 

Forc_Skeie14 (compare the two dashed-dotted error bars in Fig. 4a). While the posterior aerosol forcing where shifted to 

smaller negative values in case A, the prior and posterior for aerosol forcing is similar in case B (Fig. 4b). A relative weak 

aerosol-cloud interaction as included in Forc_AR5 is consistent with the recent findings in Malavelle et al. (2017) on how 

sulphate aerosols from volcanic emissions influences clouds.  

The ERFs in AR5 are based on an assessment of several studies reflecting improved knowledge of the forcing mechanisms 15 

compared to the one-model RF results used in Skeie14. The new ERFs gave a better posterior estimate of GMST (Fig. 2) and 

reduced change from prior to posterior forcing (Fig. 3). Remark that the number of forcing time series that can be combined 

was 18 in Skeie14, including three timeseries for volcanic and eight for aerosols, compared to only one time series for each of 

these forcing mechanisms in Forc_AR5 (Table S2). This gives less flexibility in the time development of the forcing in case 

B compared to case A, however the GMST change is better reproduced in the 1980s-1990s using Forc_AR5 compared to 20 

Forc_Skeie14. 

Ultimately, global climate change is governed by the radiative imbalance at the top of the atmosphere (TOA) and modulated 

by the internal variability. Forcing by greenhouse gases and aerosols as well as albedo changes, feedback processes and the 

radiative responses to temperature changes determine this imbalance. With a positive net imbalance at TOA, energy 

accumulates in the Earth system, mainly as increasing OHC (Church et al., 2011). Since OHC is the dominant energy storage 25 

in the system, these data series have profound influence on the ECSinf estimates (Tomassini et al., 2007;Skeie et al., 2014;Aldrin 

et al., 2012;Johansson et al., 2015). In case B, we have extended our use of OHC data, so in addition to the three OHC data 

series above 700m we have included the ORAS4 data above and below 700m (Table 1) as two separate data sources. Including 

the deep ocean OHC data gives a stronger constraint on the overall accumulation of heat in the system, and the posterior 

estimates of the parameters of 𝜽 that determine the vertical transport of heat in the ocean, the effective diffusivity and the 30 

upwelling velocity increase by 44 and 31%, respectively. Having separate data series for the two ocean layers also provides 

information that influences the balance between negative (by aerosols) and positive forcings, since these forcings have different 

evolution over time (cf. sect. 4.1).  
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In Fig. 5 the observed and fitted OHC for case A and B are shown. Including data on OHC change below 700m increases the 

total heat uptake. The increase in the fitted OHC above 700m over the last decade is larger in case B compared to case A. In 

case B the increase in the fitted OHC above 700m is larger than the observational data, while below 700m, the observed OHC 

increase is higher than the fitted one (Fig.5). This is to be expected since the parameters of 𝜽 do not change over time. Thus, 

the observed rapid change in OHC below 700m over the last years with corresponding slower warming above 700m, is 5 

attributed to long-term internal variability (a part of the 𝒏𝒕 term) in the model (Figure S5c-d). Remark that the Ishii and Kimito 

series is out of the 90% CI. The reason is that the assumed observational errors for all series are much larger back in time than 

in the recent years (see Appendix A). Therefore, the various data series are aligned quite close to each other in the recent years, 

and since the Ishii and Kimoto series has a much weaker trend than the others, it lies above the 90% CI in the first part of the 

data history.  10 

The update of the ECSinf from case A to B was done stepwise in four steps (Fig. S1f, g, i and j). The new ERFs were first 

implemented. The posterior forcing is much closer to the prior using Forc_AR5 instead of Forc_Skeie14, and also the fit to 

the GMST in the 1980s-1990s improved with a decrease in the root mean square error between 1980 and 1999 from 0.12 to 

0.087ºC compared to case A. The stronger forcing resulted in a shift of the ECSinf estimate to lower values (Fig. S1f vs. e), 

with an ECSinf mean value of 1.5ºC (90% CI 0.9-2.3ºC). So far, only OHC data in the upper 700m were used, leaving the 15 

model unconstrained with respect to the heating of the deeper ocean.  

We then included the ORAS4 data above and below 700m as two separate data sources. Similar to Johansson et al. (2015) we 

found that including the OHC change below 700m increases the total heat uptake and thus the mean value of ECSinf from 1.5 

to 1.7°C (Fig. S1g vs. f). The 90% CI shifted to larger values ranging from 1.0-2.8°C. 

The last two steps to update the ECSinf estimate from case A to case B was to use the most recent version of the data prior to 20 

2010 and to extend the data series used from 2010 to 2014 (Table 1). Some of the observational data series have been updated 

by the data suppliers, so first we use refined data up to 2010 before we extend the data series to 2014 (cf. Appendix B). Using 

the refined data up to 2010, the estimated mean ECSinf increased from 1.7 to 2.0°C (Fig. S1i) and the 90% CI was shifted again 

to larger values ranging from 1.1-3.3°C. Further, when the data series were extended from 2010 to 2014 the upper bound of 

the 90% CI decreased from 3.3 to 3.1°C while the lower bound remained unchanged and the mean estimate slightly reduced 25 

(Fig. S1j).  

In total, the changing from case A to Case B did not change the mean value of ECSinf  (it is 2.0ºC in both cases), but the 90% 

CI was reduced from 1.0-3.4 ºC to 1.2-3.1ºC. The reduction in ECSinf in the first step of the update is more or less counteracted 

by the subsequent steps. 
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4 Sensitivity tests – the use of input data 

We now investigate possible causes of differences in observational based ECSinf estimates due to the use of input data. We 

analyze the impacts of different usage of the OHC data (cases C and D) and the treatment of uncertainties in the GMST data 

(case E). 

4.1 The role of the use of OHC data 5 

The vertical transport of heat in the SCM (with 40 vertical layers) is quite simple. Turbulent diffusion mixes heat down from 

the surface, while downwelling transports heat directly to the deepest layer, i.e. no detrainment to intermediate layers (Aldrin 

et al., 2012). Therefore, it is of interest to investigate whether a constrain of the model with OHC data for the total depth of 

the ocean instead of above and below 700 m. In Case C we do not separate the 0-700m from the deeper ocean. We use four 

data sets for total OHC by adding the ORAS4 below 700m data to each of the four OHC above 700m estimates. Merging the 10 

OHC above and below 700m (Case C) results in a substantial decrease in the posterior ERF from 2.5 to 1.8 Wm-2 (Fig. S6b-

c) and an increase in the ECSinf estimate from a mean value of 2.0°C (median 1.9°C) to 3.2°C (median 2.9°C) (Fig. 1a). Without 

the separate constraint on the OHC above and below 700m, the posterior warming of the ocean increases faster (compared to 

case B) over the last 20 years (Fig. 6). This is mainly caused by enhanced warming in the upper 700m (Fig. 7). This allows for 

a stronger negative ERF estimate for aerosols (Fig. 4a). While the prior and posterior radiative forcing in Case B is similar, in 15 

case C the posterior aerosol ERF is shifted to lower values (Fig. 4a), the posterior net forcing is shifted towards lower values 

(Fig. 4a and Fig. S6c) and hence a higher estimated ECSinf (Fig. 1) compared to case B. This anti-correlation between aerosol 

forcing and ECSinf is illustrated in Fig. 4c for case B. However, the observations show a stronger recent increase in heat in the 

deep ocean (c.f. sect. 3) and not in the upper 700m, so this test where this information is not used is likely to overestimate the 

aerosol forcing strength and hence overestimate the ECSinf. Since the IPCC best estimate of -0.9 Wm-2 was published in 2013 20 

for aerosols ERF, studies point towards weak aerosol-cloud interaction (Gordon et al., 2016;Malavelle et al., 2017;Toll et al., 

2017). These recent studies indicate that there is no firm evidence to revise the IPCC AR5 aerosol ERF best estimate yet. We 

therefore keep case B as our best estimate, since having separate data series for the two ocean layers provides information that 

constrain the balance between negative and positive forcings, due to their different time evolution. 

A unique feature with our method is that we use data from more than one observational dataset. It is obvious that, as long as 25 

the various data series for the same quantity (here OHC above 700m) differ, it is easier to fit a model to one data series, thus 

giving less uncertainty in the posterior estimates. In case D we test the effect of using one alternative time series for OHC. We 

choose to use the Levitus2000 time series, that is the same OHC data as used in Johansson et al. (2015). The pentadal heat 

content are used from 1955 to 2012, treated as annual observations, and extended to 2014 using the yearly OHC data for the 

upper 2000m from the same data source. We use the OHC data for the upper 2000m as they were data for the total OHC. 30 

Observed energy stored below 2000m is not included in the estimation and hence the ECS might be underestimated. Energy 

stored below 2000m is uncertain. Purkey and Johnson (2010) found an increase in OHC in the abyssal and deep Southern 
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Ocean in the 1990s and 2000s based on sparse observations from ships, but it is not clear if it is a long-term trend. Llovel et 

al. (2014) could not detect deep-ocean (below 2000 meter) contribution to sea level rise and energy budget between 2005 and 

2013 using ocean observations and satellite measurements, however the uncertainties are large. 

As in case C, we do not separate the OHC data above and below 700m. Quite similar to case C, there is a more rapid increase 

in the posterior estimate of total OHC (Fig. 6) compared to case B, the increased warming is mostly in the upper 700m (Fig. 5 

7) and the posterior forcing is shifted to lower values than in the prior (Fig. 4a and Fig. S6d). In case D the estimated mean 

ECSinf is 2.8°C (median 2.6°C, 90% CI 1.5-4.6ºC) (Fig 1a, case F). This is higher than in case B, but lower than for case C.  

The estimated total OHC has a narrower range when OHC above and below 700m are merged (Fig. 6, left panel). The range 

is also narrower in case D than in case C. As expected, using several data series for OHC (Case B: 5, Case C: 4, Case D: 1) 

increase the posterior observational error. Note that the magnitude of the observational errors are estimated (Aldrin et al., 10 

2012;Skeie et al., 2014). In case D, the posterior standard deviation of the observed OHC is similar to the reported standard 

deviation (Fig. S8), while using several OHC time series the posterior standard deviation is larger (Fig. S7) and arguably more 

correct than reported due to the large variability among the datasets (Appendix A). Hence, larger uncertainties in the observed 

OHC data result in larger uncertainties in the estimated OHC.  

Johansson et al. (2015) used the same OHC data series as in our case D and a similar method, however their 90% CI for the 15 

OHC in the upper 2000m (their Fig. S5) is even narrower. This might not only be due to the use of one OHC dataset. While 

we estimate the magnitude of the observational error, Johansson et al. (2015) use the error given by the OHC data provider. In 

Johansson et al. (2015) the estimated uncertainties in OHC were smaller than the given observational uncertainties (their Fig. 

S5). The narrower ECSinf range may primarily be because Johansson et al. (2015) assumed very small measurement errors in 

the most informative data (OHC), secondly that they ignored time correlation in observational errors and did not take into 20 

account long-term internal variability in the same degree as in our method.  

To sum up, using several observational series (and estimate observational errors) increase the estimated observational errors 

to more realistic values, since data series are not well correlated, and hence increase the range of estimated OHC with 

implications on estimated ECSinf. 

4.2 The role of uncertainty estimates in the temperature series 25 

The prior standard deviation for the surface temperature data are quite different among the data sets (Fig. S7a). The NCDC 

data has 3 to 5 times larger standard error prior to 1950 compared to after 1950, while it is more constant back to the 19th 

century for the three other data sets.  

To investigate this, we re-estimated our model using data only after 1950, which is equivalent to assuming a very large 

uncertainty prior to 1950. The estimated magnitude of the ENSO signal increases (Fig. S5a-b) since the data series are more 30 

correlated in the latter part of 20th century. For temperature, the model fits well to the observations of GMST, but with a larger 

90% CI range (Fig. 2) and the observed NH and SH temperatures are well within the 90% CI of the model (Fig. S9). The mean 

ECSinf increases from 2.0 (median 1.9 ºC) to 2.2ºC (median 2.1ºC) and the upper 90% CI limit increases from 3.1 to 3.8ºC 
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(Fig. 1a, case E vs. B). The mean TCR increases from 1.4 to 1.5ºC and the 90% CI is shifted slightly to lower values compared 

to the range from IPCC by 0.1ºC (Fig. 1b). 

Johansson et al. (2015) used only the NCDC data for GMST, thus the data prior to 1950 was given little weight when fitting 

the model. Our ENSO signal is now (case E) of similar magnitude as in Johansson et al. (2015) (their Fig. 1b). The ECSinf 

uncertainty in this study is still larger and our mean value is slightly higher than their lower limit of 2ºC. 5 

Excluding data before 1950 also excludes the late 19th century period with a large volcanic eruption where the signal in the 

GMST data is small and quite uncertain (Santer et al., 2016). Santer et al. (2016) argued that the method in Johansson et al. 

(2015) down weights the volcanic forcing due to the small response of the Krakatau eruption in the temperature data. Johansson 

et al. (2016) responded that the observational uncertainty was large so the GMST data at that time will have a limited effect.  

In our results, excluding observations before 1950, the GMST response following the Pinatubo eruption in 1991 increases 10 

(Fig. 2) and are similar to observations due to the larger ENSO signal and stronger posterior volcanic signal. 

In the early period, the aerosol forcing had a larger relative contribution to total ERF causing a more uncertain forcing trend 

in the early period.  Uncertainty in the temporal trend of the forcing is not included, and better representation of forcing 

uncertainties than the scaling approach is needed (Tanaka et al., 2009). Omitting data before 1950 (case E), when the net 

forcing is more uncertain (Stevens, 2013), makes it easier to fit the model to observations but the uncertainty in estimated 15 

ECSinf, TCR and GMST and increases (Fig. 1 and 2). 

5. Discussions and conclusions 

Causes of differences in observational based estimates of ECSinf due to the use of input data are analyzed and an updated ECSinf 

estimate is presented using our Bayesian estimation model. Adding observational data from 2011 to 2014, OHC data below 

700m and replacing forcing data with IPCC AR5 ERFs, the ECSinf posterior mean was 2.0°C (median 1.9°C, 90% CI 1.2- 20 

3.1°C). The mean value is similar and the range is slightly narrower than the refined Skeie14 estimated (Fig. 1 case B vs. A). 

The mean ECSinf estimate is larger than in Skeie14. Although the estimate in case A and B are quite similar, the ECSinf estimate 

shifted to lower values when Forc_AR5 replaced Forc_Skeie14 from a mean ECSinf estimate of 2.0°C to 1.5°C and shifted to 

larger values when OHC data below 700m were included to a mean ECSinf value of 1.7°C. The ECSinf estimate was very 

sensitive to the forcing data used and we showed that the ECSinf estimate was also sensitive to the assumed uncertainties in the 25 

GMST data (Case E, ECSinf mean value increased from 2.0 to 2.2°C) and how the OHC data were treated (Case C and D, with 

mean ECSinf of 3.2 and 2.8°C respectively). 

Bayesian methods have recently been reviewed by Annan (2015) and Bodman and Jones (2016) and limitation by assuming 

constant sensitivity over time, the role of the ECSinf prior distribution and equal efficacy for different forcings have been 

discussed. Implementing an alternative prior for ECSinf as in Skeie14, where 1/ECSinf is uniformly distributed, shifted the mean 30 

ECSinf to lower values from 2.0°C (median 1.9°C, 90% CI 1.2-3.1°C) to 1.6°C (median 1.6°C, 90% CI 0.97-2.5°C). The ECSinf 

estimate is sensitive to the prior, however one could argue against this alternative prior because it has high probability for low 
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climate sensitivities that may not be realistic, with 76% probability for ECSinf being lower than the pure black-body radiation 

sensitivity of 1.1°C (Aldrin et al. 2012, Skeie et al. 2014). Recently, studies have suggested that assuming equal efficacy for 

all forcings bias the ECS estimate low (Marvel et al., 2015;Shindell et al., 2015) even when ERFs are used. In our approach, 

the efficacy is implicitly included in the forcing uncertainty and thus accounted for. However, if we apply an efficacy of 1.5 

for ozone, surface albedo, BC on snow and aerosols, which is the efficacy found in the analysis of Shindell (2014), the 5 

probability density function of the ECS is shifted to larger values (Fig. S1l), with a 90% CI ranging from 1.2 to 3.7°C.   

The fit to the temperature data in the 1980s and 1990s improved using Forc_AR5 instead of Forc_Skeie14 indicating that the 

forcing trend over this period is better represented in Forc_AR5 compared to Forc_Skeie14. The trend in the forcing is more 

uncertain in the first half of the 20th century due to less dominance of CO2, and in our method the same relative uncertainty 

for the prior forcing is used over the entire time period. A sensitivity simulation omitting observations before 1950, similar to 10 

making these observations very uncertain, gave better representation of the GMST in the latter part of the 20th century and an 

increased mean ECSinf. Future work should include uncertainties in the temporal development of the forcing, and there is a 

clear need for an international effort to establish forcing time series, using a consistent forcing definition and allowing for 

uncertainties in emissions, to give a better representation of the temporal uncertainties. 

Including OHC-data below 700m shifted the ECSinf to higher values. The estimated ECSinf was found to be very sensitive to 15 

how the OHC data were used. Including four OHC time series, but merging the data above and below 700m (case C), the 

ECSinf mean value increased from 2.0 to 3.2°C. The probability of ECSinf above 4.5°C increased to 13%, values that are 

practically excluded in our main estimate (case B). Previous studies have used total column OHC data and due to the simple 

representation of the ocean one can argue that this might be more appropriate. However, in case C most of the recent increase 

in OHC in the model occurred in the uppermost 700m allowing a stronger aerosol cooling (Fig. 4a) and hence a larger ECSinf, 20 

while the observations indicate that the ocean was warming mainly below 700m. Using only the total column OHC might 

therefore overestimate the aerosol forcing strength and hence the ECSinf. We recognize structural uncertainties in the model, 

and a multi-model intercomparison of observational methods using identical input data would be of great value to investigate 

these uncertainties. 

Using only the Levitus2000 series for OHC for the total ocean column (case D), the ECSinf 90% CI was shifted to lower values 25 

with a range from 1.5-4.6°C and the range shrunk compared to case C. The historical measurements of ocean temperatures are 

sparse (Abraham et al., 2013), with large differences between the datasets. The temporal structure of the reported uncertainties 

differs, and the full uncertainties are often not assessed. Hence, relying on only one OHC series and its reported uncertainty 

may underestimate the observational uncertainties and hence overestimate the certainties in the estimated OHC with 

implications for the ECSinf estimate. 30 

Recent studies indicate that the upper-ocean warming is underestimated due to the gap-filling methods (Durack et al., 2014;Li-

Jing et al., 2015), in which case also the ECSinf will be underestimated. Refining historical OHC estimates, not only the best 

value, but also the uncertainty is crucial for observational based ECSinf estimation.  
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Other priorities are to improve the GMST series, including uncertainties, not only the recent trend (Karl et al., 2015;Cowtan 

and Way, 2014) but also for earlier time periods. Assuming a very large uncertainty prior to 1950, the GMST fit improved, 

ECSinf mean increased while the estimated uncertainty ranges increased.  

Our ECSinf posterior mean was 2.0°C with 90 % CI of 1.2 to 3.1°C. This is consistent with a mean ECS of 2.9°C (Armour, 

2017), which compares reasonably well with climate model estimates (Andrews et al., 2012;Forster et al., 2013). A final 5 

remark is that it is not obvious that the true ECS is a more relevant metric for the climate sensitivity than the ECSinf in a policy 

context (i.e. the Paris agreement). The United Nations Framework Convention on Climate Change (UNFCCC) has not adopted 

a pre-defined definition of GMST and the stronger long-term feedbacks found in analysis of CMIP5 simulations  (Proistosescu 

and Huybers, 2017) operates on a time scale longer than the timescale for reaching  2°C.   

Appendix A: Refinement of Skeie14 10 

A few updates/corrections to Skeie14 (Fig. S1a) had to be made prior to the analyses presented in this study. In the Skeie14 

study, the standard error of observed OHC above 700m for two out of the three series were constant in time, while for the third 

dataset the standard error decreased with time. Due to the limited observational data back in history (e.g.  Abraham et al., 

2013), it is reasonable to assume that the shape of the standard error of observed global OHC increase back in time, as for the 

CSIRO series. Therefore, we now assume a common observational uncertainty temporal profile for OHC above 700m equal 15 

to CSIRO for all the OHC time series (Fig. S1b). Note that the magnitude of the observational errors are estimated in our 

approach (Aldrin et al., 2012;Skeie et al., 2014), i.e. we account for the possibilities that the reported observational errors may 

be biased upward or downwards compared to the real observational errors. 

In fact, the results from Skeie et al. (2014, appendix B) indicated that the reported standard errors for the Levitus and the Ishii 

and Kimoto OHC series were too low. We have investigated this further by the following simple analysis:  20 

Let 𝒚𝟏𝒕  and 𝒚𝟐𝒕  be two different estimates of the true OHC in year 𝒕. Then  

𝒚𝟏𝒕 = "𝒕𝒓𝒖𝒆 𝑶𝑯𝑪" + 𝐞𝟏𝒕   and  𝒚𝟐𝒕 = "𝒕𝒓𝒖𝒆 𝑶𝑯𝑪" + 𝐞𝟐𝒕 . Here, 𝐞𝟏𝒕 and 𝐞𝟐𝒕 are error terms, with reported standard 

deviations 𝐬𝟏𝒕  and 𝐬𝟐𝒕 , and with true, but unknown standard deviations 𝝈𝟏𝒕  and 𝛔𝟐𝒕 . The difference of the series is  

𝒚𝟏𝒕 − 𝒚𝟐𝒕 = 𝐞𝟏𝒕 − 𝐞𝟐𝒕, so even if we cannot observe the errors, we can observe their difference. If the two data series are based 

on more or less the same data, as for the OHC series used here, one can expect that 𝐞𝟏𝒕 and 𝐞𝟐𝒕 are positively correlated. Then 25 

𝑽𝒂𝒓(𝒚𝟏𝒕 − 𝒚𝟐𝒕) = 𝑽𝒂𝒓(𝒆𝟏𝒕 − 𝒆𝟐𝒕) <= (𝝈𝟏𝒕
𝟐 + 𝝈𝟐𝒕

𝟐 ). 

We can estimate the average variance of the differences 𝒚𝟏𝒕 − 𝒚𝟐𝒕  over all time points by  𝑽𝒂𝒓𝒐𝒃𝒔 = 𝟏/(𝒏 −

𝟏) ∑ (𝒚𝟏𝒕 − 𝒚𝟐𝒕 − 𝒎)𝟐
𝒕 , where 𝒎 is the average of  𝒚𝟏𝒕 − 𝒚𝟐𝒕  and 𝒏 is the number of years. This could be compared to the 

corresponding reported variance under the assumption of uncorrelated errors, by 𝑽𝒂𝒓𝒓𝒆𝒑 = 𝟏/𝒏 ∑ (𝒔𝟏𝒕
𝟐 + 𝒔𝟐𝒕

𝟐
𝒕 ), and if the 

reported standard deviations are correct, then the variance ratio 𝑽𝒂𝒓𝒐𝒃𝒔/𝑽𝒂𝒓𝒓𝒆𝒑  should be less than or equal to 1. For 30 

differences of the Levitus, Ishii and Kimoto and ORAS4 (above 700m) series, the variance ratios are between 2.13 and 3.74 
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(Table A1), indicating that the reported observational errors for these series are too low, and the real uncertainty may be larger. 

This is an additional argument for using the CSIRO standard errors for all OHC series. 

Another update of Skeie14 that was needed, was to use monthly volcanic RF data (Fig. S1c) compared to yearly data in 

Skeie14. In addition to the three global mean surface temperature (GMST) time series used in Skeie14, another time series for 

GMST has been published recently (Cowtan and Way, 2014). This time series find a stronger increasing trend in temperature 5 

over the last decade compared to the HadCRUT4 data, due to their method of accounting for the unsampled regions in the 

world. This data series is now included (Fig. S1d). 

Our previous studies showed that the correlation between the observational errors in temperature data was almost uncorrelated 

with the observational errors in the OHC data. Therefore, to simplify the numerical computations, we from now on assume 

that these correlations are exactly zero (Fig. S1e). 10 

The estimated ECSinf for each step in the refinement of Skeie14 is presented in Fig. S1a-e.   

Appendix B: Extending data up to and including 2014 

When extending the analysis from 2010 to 2014, not all the time series used in the estimation is available up to and including 

year 2014. Below is a description of how the different datasets are extended if not available up to 2014.  

AR5 ERF: The end year for the forcing time series presented in AR5 is 2011 and has to be extended to 2014. For long-lived 15 

greenhouse gases the time series are extended using recent observations of global mean concentrations and the formulas 

relating concentrations and forcing used in Skeie et al. (2011). Tropospheric ozone, stratospheric ozone, aerosol ERF, land use 

change, BC on snow and volcanoes are kept constant 2011-2014. Stratospheric water vapor follow methane RF. Contrails RF 

is extended using aircraft traffic data (http://airlines.org/dataset/world-airlines-traffic-and-capacity/). Solar RF is extended 

using the Physikalisch-Meteorologisches Observatorium Davos (PMOD) composite (Frohlich and Lean, 2004). 20 

CSIRO: Data up to and including 2012 were downloaded. The time series were extended from 2012 to 2014 using the mean 

rate of change of the other OHC data. The uncertainty in 2014 and 2013 is set equal to the uncertainty in 2012. 

ORAS4: Balmaseda et al. (2013) investigated the time evolution of global OHC at different depths of the ocean from 1958 to 

2009 using the European Centre for Medium-Range Weather Forecasts ocean reanalysis system 4 (ORAS4). Five ensemble 

members of ORAS4 are generated that sample plausible uncertainties in the wind forcing, observation coverage, and the deep 25 

ocean. The ORAS4 system runs automatically in operations, with numerical weather prediction forcing and observations that 

are not manually quality controlled. The 1x1-degree Ocean potential temperature up to December 2014 are made available 

through the APDRC (http://apdrc.soest.hawaii.edu/datadoc/ecmwf_oras4.php) for one ensemble member. The trend in OHC 

for the total depth and upper 700m from 2010 to 2014 based on the one ensemble member is used to extend the corresponding 

OHC data for all the five ensemble members from Balmaseda et al. (2013) up to 2014. The data after 2009 are based on the 30 

automatic ORAS4 system, and not quality controlled and the results in this paper using the data after 2009 should be interpreted 

by caution. The same method is used to extend the ORAS4 data from 2009 to 2010 (Fig. S1g-i). From the five ensemble 

members the estimate with uncertainty is calculated as the annual average and standard deviation of OHC above and below 

http://airlines.org/dataset/world-airlines-traffic-and-capacity/
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700m. The standard deviations are modified by smoothing the curve (9-year moving average) since the curve was otherwise 

very static. 
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Figure 1: Posterior 90% CI for ECSinf (a) and TCR (b) for the different analyses in this study. The estimated posterior mean is 

indicated by a dot and the median by an open triangle. The IPCC AR5 likely range (>66% probability) for ECS (a) and TCR (b) is 5 
presented as gray shadings. Fig. S2 show the corresponding probability density functions. 
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Figure 2: Observed and fitted (posterior mean) values for the GMST. The shaded areas show the 90% CI for fitted values i.e. the 

sum of the output from the deterministic SCM and the short-term internal variability excluding the terms for long-term internal 

variability and model error. Fig. S3 show three set of fitted values for the GMST for the main analysis that include the long-term 

internal variability and model error.  5 
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Figure 3: Posterior distribution of time series (a) and prior (dotted) and posterior (solid) probability density function (PDF) in 2010 

(b) for anthropogenic forcing. The shaded areas in (a) represent the 90% CI. 
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Figure 4: Posterior 90% CI for aerosol ERF in 2010 for the different analyses in this study (a). The estimated posterior mean is 

indicated by a dot. The two set of priors used is shown as dash-dotted bars with mean value as an open circle.  The IPCC AR5 90% 

probability range for aerosol ERF is presented as gray shadings.  The prior and posterior PDF of RF in 2014 the total aerosol effect 5 

in case B (b). Red color for the posterior distributions and black lines for the prior distribution. Panel c) show the relationship 

between ECSinf and aerosol ERF for case B. The posterior 90% CI is indicated by dashed lines. 
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Figure 5: Observed and fitted (posterior mean) values for the OHC. The shaded areas indicate the 90% CI. Left column: Upper 

700m. Right column: Below 700m, if data included in the analysis. 
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Figure 6: Observed and fitted (posterior mean) total OHC using several OHC dataset (case B: separate OHC data above and below 

700m and C: merge OHC data above and below 700m, left panel) and using only one dataset for the total OHC (case D, right panel). 

The shaded areas indicate the 90% CI. 
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Figure 7:  Posterior mean (solid lines) of the output from the deterministic SCM for OHC above 700m (a) and below 700m (b) for 

case B, C (total OHC four series) and D (total OHC one series).  
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Table 1: List of data used in the estimation, the abbreviation used in the text, references, in which cases the datasets are used and 

time of download. The months in parentheses are when data used in case A (see sect. 2.2) were downloaded. 

Abbreviation References Dataset used in case Downloaded  

 Surface temperature change: 

GISS (Hansen et al., 2006;Hansen et al., 2010) A, B, C, D, E March 2015 (March 2011) 

HadCRUT4 (Morice et al., 2012) A, B, C, D, E March 2015 (March 2011*)  

NCDC (Smith and Reynolds, 2005;Smith et al., 2008) A, B, C, D, E March 2015 (June 2011) 

CowtanWay (Cowtan and Way, 2014) A, B, C, D, E March 2015 (April 2014) 

 Ocean heat content upper 700 meters: 

Levitus (Levitus et al., 2009) A, B, C, E March 2015 (March 2011) 

CSIRO (Domingues et al., 2008;Church et al., 2011) A, B, C, E April 2014 (October 2011)  

Ishii and Kimoto (Ishii and Kimoto, 2009) A, B, C, E March 2015 (October 2011)  

ORAS4 (Balmaseda et al., 2013) B, C, E March 2015 

 Ocean heat content below 700 meters:  

ORAS4 (Balmaseda et al., 2013) B, C, E March 2015 

 Ocean heat content above 2000 meters: 

Levitus2000 (Levitus et al., 2012) D July 2015 

SOI-index:    

SOI Southern Oscillation index, Bureau of Meteorology, Australia 

http://www.bom.gov.au/climate/current/soihtm1.shtml 

A, B, C, D, E March 2015 (November 

2011) 

Forcing time series:    

Forc_Skeie14 (Skeie et al., 2011;Skeie et al., 2014) A  

Forc_AR5 (Myhre et al., 2013) B, C, D, E  

* HadCRUT3    
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Table A1: Variance ratios 𝑽𝒂𝒓𝒐𝒃𝒔/𝐕𝐚𝐫𝒓𝒆𝒑  for pairwise differences of OHC series. 

OHC series 1 OHC series 2 𝑽𝒂𝒓𝒐𝒃𝒔/𝐕𝐚𝐫𝒓𝒆𝒑 

CSIRO Levitus 0.21 

CSIRO Ishii and Kimoto 0.43 

CSIRO ORAS4 0.17 

Levitus Ishii and Kimoto 2.13 

Levitus ORAS4 3.74 

Ishii and Kimoto ORAS4 3.49 

 

 

 

 5 


