We would like to thank the Reviewer for his/her valuable comments and efforts to make the paper more readable and compressible. A detailed answer follows below. We provide replies to the reviewers' comments in bold. As well, corrections included in the manuscript are marked in red.

Answers to the Referee

The authors have clarified the objectives of their study as well as the scope of their results. The manuscript is now much clearer to me. If I understand correctly, the manuscript uses the Lyapunov exponents at 850 hPa as a proxy of tropospheric mixing, and then characterizes mixing in this way:

1. Link between mixing and baroclinic instabilities: The correlation between Eady growth rate (used as a proxy of baroclinicity) and FTLEs (used as a proxy of kinematic mixing) is found with a peak at 5 days of integration time for the FTLE. This value corresponds to the lifetime of extratropical cyclones, and therefore is interpreted as an indication of a mechanistic relation between baroclinic instabilities and tropospheric mixing.

2. Link between mixing and modes of climate variability: the inter-annual variability of FTLEs show the typical spatial pattern of El Nino ("the warm pool"), hence in the tropics the authors make a link between mixing and ENSO.

3. Link between mixing and atmospheric rivers: the authors show that over the Atlantic the FTLE activity is above their local average in correspondence of land falling atmospheric rivers.

I find acceptable the use of FTLEs for representing tropospheric mixing, interesting the structure of the paper and in particular the characterisation of mixing in terms of baroclinic instabilities, modes of climate variability, and atmospheric rivers.

Considering that three different classes of processes are considered, the manuscript remains however extremely short. At the very least, there are two issues that should be addressed (and a deeper analysis would be very welcomed).

1. The comparison between Eady growth rates and FTLEs is made by correlating time averaged maps, in which most of the regional patterns are smoothed out. The longitudinal patterns are very weak compared to the latitudinal ones. The time-averaged latitudinal patterns are very simple: a minimum at the equator and a maximum at the middle latitudes. One can wonder whether the correlation is dominated just by these two large-scale extrema, or whether smaller scale features have also a role in the correlation. This can be found out relatively easy, by computing the average of the day-by-day correlation and not only the correlation of the averaged maps. The outcome of the analysis should help to further elaborate on the role of extratropic cyclones (which should have a stronger signature on the day-by-day correlation).

This a good question. High baroclinic Eady growth rates and the FTLEs may not coincide on a day timescale basis. This is quite expectable, since baroclinic instabilities require time-scales larger than 1 day to develop. Tropospheric mixing, measured in terms of the FTLEs, is not only due to baroclinic instabilities; a time averaging is needed in order to filter other effects. A further solution could be to isolate each phenomenon individually in order to identify their correlation and avoid any ambiguity, but this requires a further analysis which is outside the scope of this paper.

We have correlated spatial fields of the Eady growth rate instabilities and the FTLE field (tau=5 days) averaged over different periods. The mean correlation coefficient calculated over the 35 year period increases with the averaging period as shown in the Table below. Note that the correlation coefficient converges to the obtained correlation coefficient in Fig.2b for averaging time scales above the seasonal one.
2. The ENSO analysis is based just on the visual identification of a pattern over the equatorial Pacific. The presence of this pattern is intriguing, but in order to claim a modulation of the FTLEs by ENSO and more in general a study of the link between climate variability and mixing variability, I would have expected at least a temporal correlation between FTLE activity over the warm pool and the ENSO index, for instance looking at the FTLEs inter-annual anomalies in the years with positive ENSO and the years with negative ENSO. This is a good suggestion. We have incorporated a new figure (now Fig.4) showing the correlation between the monthly backward and forward FTLEs and the multivariate ENSO index (MEI) time series for the Pacific Warm Pool Region. The same was also repeated for the Southern Oscillation Index (SOI) (figure S3 in the supporting information document). See text in the paper for a description of the figure.
Other minor issues:

Thank you for carefully reading the manuscript. Except where indicated in bold, we have modified the corresponding sentences indicated below. In the new version of the paper large modifications are signaled in red.

The use of FTLE to imply mixing has been done in the past, but is not trivial, as Lyapunov exponents are used in some cases to identify transport barriers and sometimes mixing. Can the authors clarify on this point in the text? Something like: "forward FTLEs act as a precondition for mixing by stretching and filamenting air parcels. For this reason, we use here FTLEs as proxies of mixing".

The FTLE may be considered as a measure of the efficiency of mixing as described in Ottino’s book (1989). A sentence was added in Section 2.

Climate sources: the authors use the expression "climate sources" that I find misleading. I would use "modes of climate variability".

Page 1:

L16: atmospheric mixing -> tropospheric mixing (?)

L21: due to climate sources: what is a climate source? I would rephrase as: "activity associated to climatic variability", or "activity associated to modes of climate variability"

L23: in the same way -> In particular

L21-23: "changes in the atmospheric circulation are important, affecting the transport of energy, momentum and water vapour thus the mixing processes present in the atmosphere." This sentence should be rephrased (it is obvious that the atmospheric circulation affects transport of energy etc.). The sentence may look obvious, but in fact we express the role of advection to transport energy and momentum out of the place where they may have been originated, thus affecting tropospheric mixing miles away.

the local mixing rates -> "the local stretching rates (typically, a precondition to mixing)"
L22: bloom -> I find this single reference about the ocean and plankton out of context.

Page 2
L28: "to support this idea": I do not understand exactly which idea. Please explicit it.
L29: we go though (through ??).. -> we analyse the effect of baroclinic instabilities.
ok
"Therefore, we focus.." This sentence repeats the previous one.
"Note as well that there is some longitudinal variability in the mixing that arises from the longitudinal variability in the Lyapunov exponents." I found this sentence tautological, because the authors do not have independent estimations of mixing and Lyapunov exponents. They identify mixing and Lyapunov exponents. It is therefore not possible to make a causality link between the two.
L31 convergence -> confluence (in order to avoid the possible misunderstanding that convergence is divergence with a minus sign)
We changed it where appropriate but we keep it in some places as it is the usual term.

P5
L1: Please add a reference.
The following reference was added,

@book{hartmann2015,
 title={Global physical climatology},
 author={Hartmann, Dennis L},
 volume={103},
 year={2015},
 publisher={Newnes}
}

P6
L20: true-false -> presence - absence

P7
"revealing how the climate sources affect mixing processes within a few days scale." I find this statement too bold in respect to what is actually shown in this paper. There is no mechanistic analysis of the relation between "climate sources" (see my comment above about this term) and mixing processes. Even the statistical analysis that is done only suggests some possible links between some atmospheric processes (baroclinic instabilities, ENSO, or atmospheric rivers) and mixing.

Page 7-8, final statement:
"atmospheric mixing, as shown in terms of large FTLE values, is a potential state variable to define the state of the atmosphere..." I find this statement too vague. Either the authors are able to elaborate more about the role of the FTLEs as state variable, or this sentence should be removed.
We have re-written the sentence.
Climatology of Lyapunov exponents: The link between atmospheric rivers and large-scale mixing variability

Daniel Garaboa-Paz1, Jorge Eiras-Barca1, and Vicente Pérez-Muñuzuri1

1Group of Nonlinear Physics. Faculty of Physics. University of Santiago de Compostela. 15782 Santiago de Compostela, Spain.

Correspondence to: D. Garaboa-Paz (angeldaniel.garaboa@usc.es) and V. Pérez-Muñuzuri (vicente.perez@cesga.es)

Abstract.

Large-scale tropospheric mixing and Lagrangian transport properties have been analyzed for a long-term period 1979-2014 in terms of the finite-time Lyapunov exponents (FTLEs). Wind fields reanalysis from the European Centre for Medium-Range Weather Forecasts were used to calculate Lagrangian trajectories of large ensembles of particles. Larger values of the inter and intra-annual mixing variabilities highlight El Niño Southern Oscillation, the storm track or the Intertropical Convergence Zone among other large-scale structures. The mean baroclinic instability growth rate and the mean atmospheric river occurrence show large correlation values with the FTLEs climatology as an indication of their influence in tropospheric mixing in mid-latitudes. As a case study, the role that land falling atmospheric rivers have on the large-scale tropospheric mixing and the precipitation rates observed in the Sahara-Morocco and British Isles regions have been analyzed. Atmospheric rivers contribution to tropospheric mixing is found to decrease from 15\% in Sahara-Morocco to less than 5\% for UK-Ireland regions, in agreement to their contribution to precipitation that is 40\% larger in the former than for the latter region.

1 Introduction

Large-scale tropospheric mixing and transport barriers to air masses play an important role to characterize weather. Together with the Coriolis effect and the distribution of the continents, the conversion of thermal into kinetic energy is the main triggering mechanism ruling the large scale atmospheric circulation. Extratropical cyclones and jets outside of the tropics, monsoons, and hurricanes in the tropics, among others, are the main structures for tropospheric mixing.

Many efforts have been devoted to study the state of the atmosphere in terms of spatial distributions and intensity of the mentioned structures based on GCM (Global Circulation Models) and reanalysis data to analyze the current and future climate scenarios. The identification of storms tracks \cite{Bengtsson2006, Ulbrich2007, Lehmann2014}, jets in middle latitudes \cite{Barnes2013} and their activity associated to modes of climate variability show that changes in the atmospheric circulation are important, affecting the transport of energy, momentum, and water vapour thus the mixing processes present in the atmosphere.

In particular, the atmospheric or tropospheric rivers (ARs) have been shown to play a key role in extratropical tropospheric dynamics \cite{Newel1994, Zhu1998, Gimeno2016}. These structures are narrow and elongated filaments
that transport moisture from the tropics into mid-latitudes over a period of a few days, once a baroclinic structure develops. For some ARs events, a filament pattern develops living enough time to be considered as a Lagrangian coherent structure (Garaboa-Paz et al., 2015). The advection and convergence of moisture by ARs is a key process for the Earth’s sensible and latent heat redistribution and has a strong impact on the water cycle of the mid-latitudes increasing tropospheric mixing.

Additionally, the importance of a better understanding of ARs is beyond all doubt, since they have been shown to be closely related to extreme precipitation and flooding events in different parts of the world (Dettinger et al., 2011; Ralph et al., 2011; Lavers et al., 2013; Eiras-Barca et al., 2016).

Considering all sources of large-scale tropospheric mixing necessary for a detailed mixing climatology would be overwhelming, makes necessary to find new variables or proxys to measure the current climate state and the main variability sources in terms of mixing. Lehmann et al. (2014) have reported the link between large-scale baroclinicity, represented by the maximum Eady growth rate and the storm track. Baroclinicity, is one of the main mechanisms that addresses the transport of air masses within the troposphere in mid-latitudes (Lindzen and Farrell, 1980; Hoskins and Valdes, 1990). These regions are dominated by cyclone and anticyclone activity increasing tropospheric mixing, in contrast to tropical and subtropical latitudes.

Other approach to characterize mixing and transport is by calculating Lagrangian trajectories of passive tracers in the atmosphere. The link between transport and climate, in terms of long term statistics of Lagrangian quantities (James, 2003; Stohl, 2006), and the global climate change variability of tropospheric mixing (Holzer and Boer, 2001) has been previously studied. Among the different statistics that can be calculated (dispersion, diffusivity, etc), finite-time Lyapunov exponents (FTLEs) measure the separation rate of two trajectories over time from initially nearby starting points, i.e. the local stretching rates at a finite time. FTLEs have been used to identify the presence of barriers to mixing in the atmosphere between the tropics and extratropics (Pierrehumbert and Yang, 1993), to study the zonal stratospheric jet (Beron-Vera et al., 2008), jet-streams (Tang et al., 2010), hurricanes (Rutherford et al., 2012), transient baroclinic eddies (von Hardenberg and Lunkeit, 2002), or the polar vortex (Koh and Legras, 2002). The predictability of the atmosphere for long periods of time has also been studied using the FTLEs (Yoden and Nomura, 1993; Huber et al., 2001; Stohl, 2001; Garny et al., 2007; d’Ovidio et al., 2009; Ding et al., 2015; Garaboa-Paz et al., 2017). Moreover, identification of ridges of maximum FTLEs (Shadden et al., 2005) allows the detection of potential Lagrangian coherent structures or kinematic transport barriers that control the flow mixing and folding over a period of time for the examples cited above.

Here, two scientific objectives are addressed: first, we study the large scale mixing variability in the lower troposphere at synoptic timescales for the current climate period. And second, we study the role played by different sources of mixing. Thus, we analyze the effect of baroclinic instabilities and Eady Growth Rate, as well as the effect that the advective moisture transport from (sub)tropics leaded by ARs, play on tropospheric mixing.

To address the first objective, we investigate the long-term variability in tropospheric mixing using the FTLE, focusing on the role that large-scale structures with a timescale of days play on the global horizontal transport in the lower troposphere. To that end, we have calculated a climatology of FTLEs for the period 1979 – 2014 using wind fields retrieved from the European Center for Medium-Range Weather Forecast (ECMWF) reanalysis, ERA-Interim (Dee et al., 2011). Intra and inter-annual
changes in the FTLEs time series over this long term period of time have been studied. We show that the mean FTLE and its
variability reveal inhomogeneities in mixing determined by regions of strong or weak mixing and barriers to air exchange.
Second, baroclinic instability regions and the occurrence of atmospheric rivers have been calculated for the same period as
the FTLEs showing a large correlation between both global patterns, mostly for mid-latitudes. A case study over the Atlantic
region has been carried out to analyze mixing effects at smaller scales. Particularly, the contribution of land falling ARs to
tropospheric mixing was found to decrease from a 15% in Sahara-Morocco to a 5% for the British Isles, in agreement with a
larger contribution to precipitation in the southern region.

2 Data and Methods

The atmospheric transport has been studied using wind field data retrieved from the European Center for Medium-Range
Weather Forecast reanalysis, ERA-Interim (Dee et al., 2011), with a horizontal spatial resolution of 0.7°, a vertical resolution
of 100 hPa and a temporal resolution of 6 hours.

In a longitude-latitude-pressure coordinate system \((\phi, \theta, P)\), the position of an air particle \(r(t) = (\phi(t), \theta(t), P(t))\) is calculated as
\[
\dot{\phi}(t) = \frac{u(r(t), t)}{R \cos(\theta(t))},
\]
\[
\dot{\theta}(t) = \frac{v(r(t), t)}{R},
\]
\[
\dot{P}(t) = w(r(t), t)
\]
where \(u, v \) and \(w\) are the eastward, northward and vertical wind components, respectively, and \(R \approx 6370\) km is the Earth’s mean radius.

A fine grid of particles with an initial separation of 0.35°is uniformly distributed on the 850 hPa level to avoid the interfer-
ence of most of the turbulence effects from the boundary layer covering the domain \(r(t_0) = \{(\theta_0, \phi_0) \in [0, 360] \times [-85, 85]\}\) at
time instant \(t_0\). Then, 3D Lagrangian simulations have been performed so that particle trajectories \(r(t; t_0, r_0)\) are computed in-
tegrating Eq. (1) using a 4-th order Runge-Kutta scheme with a fixed time step of \(\Delta t = 1.5\) hours, and multilinear interpolation
in time and space.

In order to characterize the atmospheric transport, we introduce the finite-time Lyapunov exponents (FTLEs), that measure,
at a given location, the maximum stretching rate of an infinitesimal fluid parcel over the time interval \([t_0, t_0 + \tau]\) starting at
\(r(t_0; t_0, r_0) = r_0\) and ending at \(r(t_0 + \tau; t_0, r_0)\) (Shadden et al., 2005; Sadlo and Peikert, 2007). The integration time \(\tau\) must be predfined and it has to be long enough to allow trajectories to explore the coherent structures present in the flow. The FTLEs
fields \(\lambda\) are computed along the trajectories of Lagrangian tracers in the flow as (Peacock and Dabiri, 2010),
\[
\lambda(\tau, t_0, r_0) = \frac{1}{|\tau|} \log \sqrt{\mu_{max}(\tilde{C}(\tau, t_0, r_0))},
\]
where \(\mu_{max}\) is the maximum eigenvalue of the pull-back Cauchy-Green deformation tensor
\[
\tilde{C}(\tau, t_0, r_0) = (\nabla r(t_0 + \tau; t_0, r_0))^T \times G(\theta(\tau)) \times \nabla r(t_0 + \tau; t_0, r_0)
\]
over a sphere (Haller and Beron-Vera, 2012) which does not take into account the deformation due to vertical movement and G is the metric tensor for spherical coordinates. Repelling (attracting) coherent structures for $\tau > 0$ ($\tau < 0$) can be thought of as finite-time generalizations of the stable (unstable) manifolds of the system. These structures govern the stretching and folding mechanism that control flow mixing. Ridges in the FTLEs field are used to estimate finite time invariant manifolds in the flow that separate dynamically different regions, and organize air masses transport. A positive time direction (forward FTLE) integration leads to identify lines of maximal divergence of air masses. In contrast, a negative time direction integration, leads to identify areas of maximal confluence (backward FTLE). Thus, the FTLEs may be considered as a measure of the efficiency of mixing (Ottino, 1989).

The time series of the FTLEs field has been computed by following the same steps explained previously, but varying the initial time t_0 in fixed steps $\Delta t_0 = 6$ hours in order to release a new initial tracer grid. Each FTLE field obtained for each advection from $[t_0, t_0 + \tau]$ is an element of the time series $\lambda_i = \lambda(\tau, t_0 + i \Delta t_0, r_0)$. FTLEs are computed forward ($\tau > 0$) and backward ($\tau < 0$) time direction, so two time series have been generated. The finite integration times were chosen within the range $\tau \in [1, 15]$

3 Results

We have studied the transport of air masses in terms of their FTLEs from a climatological point of view. Figure 1(a) shows the backward FTLEs for a given time at 850 hPa over the ocean. The structures reflect the large scale advection of air masses, which are stretched and folded as wind transports them. The presence of ridges correspond to attracting manifolds where fluid tends to converge. Time averaged FTLE maps for the 1979 – 2014 period are shown in Figs. 1(b,c) for forward and backward integration times, respectively. As it was expected, in both cases, three latitudinal bands can be clearly identified in coincidence with the large scale atmospheric circulation belts. For mid-latitudes, FTLE values are approximately twice higher than for the equatorial zone. A clear annual cycle is observed, and in the mid-latitudes mixing is generally higher in winter than in summer (figures S1 and S2 in the supporting information). Note as well that there is some longitudinal variability in the FTLE maps depending on the presence of continents and the large scale atmospheric circulation, as it will be shown below.

Focusing on the high-middle latitudes of the forward in time mean FTLE maps, the signal of global pressure systems can be identified. In the northern hemisphere we can observe two plumes with high FTLE values over the Atlantic and Pacific Ocean that correspond to the storm track, leading to an increase of mixing and dispersion. The same situation arises in the southern hemisphere. Moreover, the large-scale subtropical centers are apparent as elongated tongues of low values of the FTLEs extending from the equatorial zone to the west of continents. These regions contain low FTLE values and correspond to low mixing regions.

The mean backward FTLE field shows smaller values in Fig. 1(c) for high latitudes than in the forward case. Thus, the width of the region with low FTLE values near the Equator is larger than for the forward case. Low FTLE backward regions correspond to zones where the convergence of air masses to the Equator weakens.
Baroclinic instability is the dominant mechanism triggering the dynamics of mid-latitude weather systems. It shapes the cyclones and anticyclones that dominate weather in mid-latitudes and cause most of the large-tropospheric mixing in those regions (Hartmann, 2015). The largest values of the mean FTLEs have been obtained for mid latitudes in both hemispheres indicating an increase of tropospheric mixing in those regions. To further quantify the connection between mixing and baroclinicity, the Eady growth rate (Lindzen and Farrell, 1980; Hoskins and Valdes, 1990) has been calculated for the 850 hPa level as,

\[
\sigma_{BI} = 0.31 \left| \frac{f}{N} \right| \left| \frac{\partial V}{\partial z} \right|
\]

(4)

where \(f \) is the Coriolis parameter, \(N \) is the Brunt-Väisälä frequency, \(V \) is the 3D wind component and \(z \) is the geopotential height.

Figure 2(a) shows the time average Eady growth rate as a gridded map for the 850 hPa level for the 1979 – 2014 period in units of day\(^{-1}\). Note the storm track regions (such as the North Atlantic or North Pacific corridors) are well depicted by this measure of baroclinicity, and if compared with the mean forward in time FTLE map, Fig. 1(b), both figures are remarkably similar. In order to quantify this coincidence, the correlation between both fields have been calculated for different \(\tau \), Fig. 2(b). A correlation maximum is observed for an integration time of 5 days, which is about the mean length of the typical synoptic time scale, in line with the mean lifetime of extratropical cyclones (e.g. Trigo, 2006). Thus, the large values of tropospheric mixing observed at mid-latitudes can be related, at least in part, to baroclinic instability.

To gain insight into the transport of air masses, the variability of the FTLEs climatology has been studied in terms of the intra-annual (standard deviation of the monthly means for the 35-years) and inter-annual (standard deviation of the annual means for the 35-years) variabilities, Fig. 3. Regions where the FTLEs change between seasons correspond to a large intra-annual variability. On time scales shorter than seasonal, variability of the circulation is dominated by synoptic-scale weather systems, which prevail at mid-latitudes. The forward in time intra-annual variability, Fig. 3(a), highlights the meridional frontier between westerly extratropical circulation and Hadley cells where larger variability is observed between seasons. As an example, note in the Pacific Ocean the plume of high variability observed that connect the semi-permanent pressure system between the Aleutian Low and the North Pacific High. A similar situation can be observed between the Iceland Low and the Azores High for the Atlantic Ocean. As well, note the signal of the monsoons in the Indian Ocean.

The intra-annual variability map obtained from the FTLE backward time series, Fig. 3(b), shows regions with maximum variability through the year in the tropics. The main global mechanism which address this variability is the meridional movement of the Intertropical Convergence Zone (ITCZ). Note the importance of this variability in the African coast or the western Pacific Ocean. The interface between summer and winter ITCZ coincides with a region close to the equator with small variability.

Figure 3(c,d) shows the inter-annual variability calculated forward and backward in time, respectively. The inter-annual variability takes into account the variation through the 35 years of FTLEs computed. In this case, both, forward and backward fields behave in a similar way although some differences are observed. All periodic effects are canceled out, and the El Niño Southern Oscillation (ENSO) pattern in the Pacific Ocean is shown in the backward map. Although easterly trade winds converging across the equatorial Pacific weaken during El Niño phase, during La Niña and neutral conditions those winds
Table 1. Percentage of AR days and its associated precipitation rates out of the total for two Atlantic regions.

<table>
<thead>
<tr>
<th></th>
<th>Sahara-Morocco</th>
<th>British Isles</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR days</td>
<td>10.3% (1201 days)</td>
<td>32.5% (3800 days)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>16.8%</td>
<td>37.5%</td>
</tr>
</tbody>
</table>

are reinforced, and the inter-annual backward FTLE values should be larger in the Warm Pool region (western Pacific) (d). However, for the forward case (c), injection of Lagrangian particles into the equator zone propagates with the converging trade winds and few dispersion areas within the Tropics are observed. For the analyzed climate period, the variability introduced by this region is approximately 10% of the global mean FTLE.

Comparing the inter-annual and intra-annual scales, the values of intra-annual scale are clearly higher than the inter-annual variability in the extratropical zone, however this difference is reduced in the equator zone except for some zones of the western Pacific due to ENSO.

Figure 4 elaborates on the connection between ENSO events and FTLE variability. Monthly backward and forward FTLE anomalies have been correlated with the Multivariate ENSO Index (MEI) (https://www.esrl.noaa.gov/psd/enso/mei/index.html) for the Western Warm Pool region between 140°E and 140°W and between 25°S and 25°N for the 35 years. To analyze the inter-annual variability of both series, we used a moving average to remove fluctuations with periods smaller than one year. Negative values of the MEI represent the cold ENSO phase, i.e. La Niña, while positive MEI values represent the warm ENSO phase (El Niño). Positive FTLE anomalies correlate with El Niño phase indicating larger FTLE values and an increase of tropospheric mixing in the studied region. On the other hand, negative FTLE anomalies correspond to small FTLE values, not favoring mixing above the sea surface. Note that backward FTLE anomalies correlate better than the forward ones in agreement with the inter-annual variability patterns described above (Fig. 3(c,d)). The obtained correlation coefficients were 0.80 and 0.64, respectively. For the Southern Oscillation Index (SOI), as expected, an anticorrelated behavior with the FTLEs anomaly was observed (figure S3 in the supporting information).

Another important source of large-scale mixing in the atmosphere are the atmospheric rivers (ARs) that play a key role in baroclinic dynamics. ARs appear in mid-latitudes as coherent filaments of water vapor triggering tropospheric mixing and the convergence of moisture in the lower levels of the troposphere with a persistence time of several days up to a week (Garaboa-Paz et al., 2015). Most of the water vapor is transported from the tropics to mid-latitudes by 4-5 persistent ARs per hemisphere. When the atmospheric rivers make landfall, they often release this water vapor in the form of rain. To characterize their role in tropospheric mixing, the database provided by Guan and Waliser (2015) has been used to identify the presence of ARs. This database identifies ARs by complex considerations on the continuity and coherence of the integrated water vapor column and water vapor flux. Since it is able to identify ARs throughout the year and worldwide, this database provides, to the best of our knowledge, the most complete AR database published nowadays (Waliser and Guan, 2017). Figure 5 shows the mean AR detections per year for the entire globe throughout the period 1979 – 2014. As it was expected, the figure identifies the main storm tracks worldwide. Such field shows high correlation ratios with the mean baroclinic index, Fig. 2(a), and the global
FTLE forward mean, Fig. 1(b), with values of 0.78 and 0.75, respectively. This supports the key role played by ARs in the large-scale mixing of the low troposphere. As a case study, we have focused on the contribution of ARs to tropospheric mixing and precipitation rates along the 1979—2014 period for two Atlantic regions: Sahara-Morocco and the British Isles. To that end, a presence-absence time series based on ARs landfall condition over these two regions was obtained and the FTLE backward time series was filtered to isolate the AR activity.

Figure 6 shows the FTLE backward time average computed only for ARs with a positive landfall condition divided by the mean backward FTLEs over Sahara-Morocco (a) and the British Isles (b). This quantity leads to identify regions where the ARs activity has a major role over the climate background in terms of backward FTLEs. Since the FTLEs ratio signal is clearly stronger for the African case, ARs should play a more prominent role in the large-scale mixing and convergence of moisture in the Sahara’s coast than in the British one. Therefore, this idea should be consistently abided when precipitation is taken into account. Table 1 shows the rainfall during AR events out of the total at each of both regions (see as well Figure S4 in the supporting information). Even when AR detections are more frequent in the British Isles (32.5% of the days) than in Sahara-Morocco (10.3% of the days), the contribution of ARs to precipitation in Sahara-Morocco is 41.7% larger than for the British Isles. The Sahara-Morocco region has lesser ARs activity than UK-Ireland but the contribution to precipitation is more important, in agreement with a larger anomaly in the FTLE backward mixing ratio.

4 Conclusions

The finite-time Lyapunov exponents (FTLEs) time series at 850 hPa level has been computed over a climate period of 35 years using wind fields retrieved from ERA-Interim reanalysis data. The FTLEs provide information on areas where the dispersion (integration forward in time) or the convergence (backward) is large and allow classification of airstreams. The statistics over these Lagrangian quantities have shown the link between the climate system and the regional transport structures in terms of tropospheric mixing.

This study, one of the first to estimate the current state of the troposphere in terms of mixing for synoptical time length of days, shows for a 35 year period, mean values, intra-annual and inter-annual variability of the FTLEs, revealing a possible link between the modes of climate variability and the mixing processes within a few days scale.

Mean Lyapunov exponents show a zonal localization; large values in the mid-latitudes for both hemispheres, while the lowest FTLE values were observed inter tropics. Especially in the tropics and Equator, mixing is strongly modulated by ENSO, while for mid-latitudes, large-scale mixing is associated to the interface between westerly extratropical circulation and Hadley cells. The meridional displacement of the ITCZ has also been well reproduced by the intra-annual backward FTLE field. Seasonal effects and ENSO are the largest effects that contribute to large-scale mixing variability over the globe. Large correlation values were obtained between the monthly backward FTLEs and the MEI/SOI indices for the Western Warm Pool region.

To support these results, we assessed the role that baroclinic instability, atmospheric rivers (ARs) and the large-scale mixing measured in terms of the FTLE plays on climate mixing patterns. First, the mean FTLE field was correlated to the Eady baroclinic growth rate. It was found that the best correlation is obtained for an integration time of $\tau = 5$ days, which is in
agreement with the typical synoptic time scale in mid-latitudes. For larger time scales, structures observed in the intra-annual and inter-annual variability fields are smeared out, while for smaller τ values those structures are not well shaped, and multiple patterns arise). This suggests that baroclinicity, among other possible causes, drives large-scale tropospheric mixing on time scales longer than a few days.

On the other hand, we have observed that the number of ARs detected worldwide highly correlates to the FTLE climatology showing the importance of the former for tropospheric mixing. To show the potential of mixing as regional variable, we focused on the impact of land falling ARs on the precipitation rates in the Atlantic Ocean. The advection of moisture by ARs is a key process for the Earth’s sensible and latent heat redistribution and has a strong impact on the water cycle of the mid-latitudes. In a previous work we found that these structures can be well described in terms of the FTLEs (Garaboa-Paz et al., 2015). Here, we find that the impact of mixing in the Sahara-Morocco region is more important than for the British Isles. Although less ARs and low precipitation rates are observed in the Sahara-Morocco if compared to UK-Ireland, rain probability during ARs events and mixing are larger for the former than for the latter region.

Finally, our results suggest that tropospheric mixing, as shown in terms of large FTLE values, provides useful information to characterize the state of the atmosphere. A further analysis with a high integration time to capture longer times structures, or filtering other signals coming for other structures, would help to understand better the spectrum of mixing inside the atmosphere, which will be useful for analysis of future climate scenarios in the context of climate change.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. ERA-Interim data were supported by ECMWF. This work was financially supported by Ministerio de Economía y Competitividad and Xunta de Galicia (CGL2013-45932-R, GPC2015/014), and contributions by the COST Action MP1305 and CRETUS Strategic Partnership (AGRUP2015/02). All these programmes are co-funded by ERDF (EU). Computational part of this work was done in the Supercomputing Center of Galicia, CESGA. We acknowledge fruitful discussions with S. Brands and G. Míguez, helpful comments by two anonymous reviewers, and Dr. Bin Guan for kindly sharing the ARs database.
References

Figure 1. Backward finite-time Lyapunov exponents λ for a given day (a). Local maxima in the plot (darker colors) are attracting coherent structures. Mean forward (b) and backward (c) FTLEs climatology for the 1989-2014 period. For all cases, $\tau = 5$ days.
Figure 2. (a) Time average for 35 years of the baroclinic Eady growth rate, Eq. (4), calculated at 850 hPa. (b) Correlation index R between σ_{BI} and the 35-year time average forward FTLE map shown in Fig. 1(b) for different integration times τ.

Figure 3. Seasonal dependence of the Finite-Time Lyapunov Exponents calculated for the 1979-2014 period. Intra-annual variability of the forward (a) and backward (b) FTLE, respectively. Inter-annual variability of the forward (c) and backward (d) FTLE, respectively. For all cases, $\tau = 5$ days.
Figure 4. Monthly time evolution of the backward/forward FTLE anomalies and the MEI Index for the 1979-2014 period.

Figure 5. Mean number of atmospheric rivers detected per year. Data were retrieved from Guan and Waliser (2015) for the period 1979—2014 with a 6 h time step.
Figure 6. Ratio of the FTLE backward time series consisting of periods with land falling atmospheric rivers and the global backward FTLE mean (Fig. 1(c)) for the Sahara-Morocco (a) and UK-Ireland (b) regions.