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Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator 

of ecosystem functioning.  Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with 

environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal 

patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon basin. We used 

in-situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. 15 

We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual 

ET was found in the northern Rio Negro basin (~1497 mm year-1) and the lowest values in the Solimões River basin (~986 

mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across 

climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are 

driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. 20 

In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, 

when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness 

across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in 

seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that 

neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon. 25 

1. Introduction 

Evapotranspiration (ET) in the Amazon rainforest exerts large influences on regional and global climate patterns (Spracklen 

et al., 2012). Although exact figures vary, it is broadly known that the Amazon River basin transfers massive volumes of water 

from the land surface to the atmosphere every day, thereby having massive influence on the global energy budget (Aragão, 

2012; Christoffersen et al., 2014; Hasler and Avissar, 2007; Restrepo-Coupe et al., 2016). ET is also an indicator of ecosystem 30 
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functioning, given its intrinsic association with CO2 fluxes during the transpiration process. Hence, any modification of ET 

over Amazon tropical forests would likely alter the global carbon cycle and further feedback to the rate of a changing climate. 

Nonetheless, the spatial and temporal characteristics of ET across the Amazon basin, as well as the relative contribution of the 

multiple drivers to this process, are still uncertain. This may be attributed to the lack of high quality validation data over the 

full range of ecoregions across the basin, and the thus far unclear influence of climate on vegetation functioning. Recent studies 5 

suggested that vegetation phenology, as indicated by leaf demography (Lopes et al., 2016; Restrepo-Coupe et al., 2013; Wu et 

al., 2016), further increases the complexity of quantifying the relative importance of biotic and abiotic drivers of ecosystem 

functioning over the Amazon.  These uncertainties are reflected in simulations by land surface models (LSMs) and global 

circulation models (GCMs), hindering the delineation of more reliable climate change scenarios (Karam and Bras, 2008; 

Restrepo-Coupe et al., 2013, 2016; Werth and Avissar, 2004). 10 

Comprehensive assessments on ET have recently been carried out at local scales using eddy-covariance (EC) methods, which 

substantially contributed to the understanding of ET seasonality and its drivers in the Amazon (Christoffersen et al., 2014; 

Fisher et al., 2009; Hasler and Avissar, 2007). EC assessments are, however, limited to small areas. Due to the diversity of 

vegetation and climatic conditions across the Amazon basin, EC measurements cannot provide a broader overview of the 

spatial characteristics of ET across the region. The most comprehensive studies carried out so far are based on the data from 15 

five to seven flux towers (Christoffersen et al., 2014; Fisher et al., 2009), which although distributed in different ecoregions, 

cannot represent the full complexity of the Amazon basin. For instance, none of these towers is located in the western Amazon, 

or in the very wet Rio Negro basin. Furthermore, some sub-basins are characterized by a complex mosaic of land cover types 

and ecotones, making it impossible to describe the total ET based on unevenly distributed measurements.  

Although hydrometeorological models have been implemented to provide spatially explicit assessments of ET in the Amazon, 20 

the poor understanding of drivers of ecosystem functioning hinder a more robust parameterization of models (Han et al., 2010). 

For instance, the spatio-temporal variation of ET is strongly linked to how vegetation assimilates available energy and water 

(Hasler and Avissar, 2007; Nepstad et al., 1994), a process which just recently started being elucidated (Restrepo-Coupe et al., 

2013; Wu et al., 2016). Hence, generally ET models are shown to perform poorly in Amazon forest ecosystems (Karam and 

Bras, 2008; Restrepo-Coupe et al., 2016; Werth and Avissar, 2004).  25 

Given these bottlenecks, a better understanding of ET seasonality, as well as its relationship with key climate forcings, are 

needed before model results can be reliably evaluated across the entire Amazon Basin. Water balance approaches are useful 

in these situations, as they do not necessarily rely on model assumptions and calibration, and therefore can be applied when 

there is a lack of in situ ET data or when the drivers of the ET process are not fully understood.  

ET assessments using water balance methods have also been undertaken in the Amazon basin, though generally these studies 30 

treated the Amazon basin as a whole (Karam and Bras, 2008; Ramillien et al., 2006; Werth and Avissar, 2004). Given the large 

scale of previous studies, assessments on the drivers of ET have in some cases been inconclusive (e.g. Werth and Avissar, 

2004) or reached a single solution for the entire Amazon basin. For instance, Karam and Bras (2009) concluded that Amazonian 

ET is primarily limited by energy availability. These results provide important advances in our understanding of water and 
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energy balance in the Amazon region, but more refined studies are necessary to resolve regional variations. Consequently, 

water balance assessments at smaller sub-basin scales are needed to evaluate ET limiting factors and their seasonality over a 

larger range of bioclimatic condition.  

Given that plant transpiration is associated with CO2 absorption through leaf stomata, ET is closely linked to ecosystem gross 

primary production (GPP). For this reason, remotely sensed proxies of photosynthetic activity, in particular vegetation indices 5 

(VIs), have often been incorporated into models of ET  (e.g. Glenn et al., 2010; Yang et al., 2013). Assessing the relationships 

between ET and vegetation greenness measured by VIs can also lead to a better understanding of vegetation phenology 

determinants of ET and ecosystem functioning in general, fostering the improvement of model parameterization. However, 

studies have found contrasting results on the relationship between canopy greenness measured by VIs and GPP patterns in 

Amazon forests (Huete et al., 2006; Jones et al., 2014; Maeda et al., 2014). Recent assessments helped clarify this discrepancy, 10 

showing that in some parts of the Amazon GPP is driven by the synchronization of new leaf growth with dry season litterfall, 

increasing the proportion of younger and more light-use efficient leaves, highlighting the importance of leaf phenology (Wu 

et al., 2016).  

The objective of this study was to utilize a water-balance approach to describe seasonal patterns of watershed scale ET across 

Amazon forests, and relate seasonal patterns with climatic drivers and vegetation greenness. The research questions addressed 15 

were: (1) How do seasonal patterns of ET vary across five sub-basins of the Amazon basin? (2) Are the environmental controls 

of ET similar among sub-basins and across time? (3) How does ET seasonality relate with greenness seasonality? Finally, we 

compare our ET results with those estimated by a LSM and remote sensing based ET retrievals. 

 

2. Material and methods 20 

2.1. Evapotranspiration calculation using water-balance approach 

This analyses were carried out at the watershed level, considering the drainage area of the five major rivers inside the Amazon 

basin: the Negro, Solimões, Purus, Madeira and Tapajós Rivers (Figure 1). These basins are distributed within different 

ecoregions inside the Amazon basin. The size and number of sub-basins were, however, limited by the availability of reliable 

river discharge data, which is a critical element for the water balance calculation. The ET in each watershed was calculated 25 

using the following water budget equation: 

𝐸𝑇 = 𝑃 − 𝑅 −
𝑑𝑆

𝑑𝑇
       (1) 

where ET is the monthly evapotranspiration, P is the monthly rainfall, R is the river discharge and dS/dT is the change in 

terrestrial water storage.  

Monthly river discharge measurements were obtained from the Environmental Research Observatory (ORE) HYBAM 30 

(Geodynamical, hydrological and biogeochemical control of erosion/alteration and material transport in the Amazon basin).  
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Changes in water storage (dS) were calculated using Total Water Storage Anomalies (TWSA) estimated from NASA’s Gravity 

Recovery and Climate Experiment (GRACE) satellites (Landerer and Swenson, 2012; Tapley et al., 2004) using the following 

equation (Swenson and Wahr, 2006): 

𝑑𝑆𝑛 = (𝑇𝑊𝑆𝐴𝑛+1 − 𝑇𝑊𝑆𝐴𝑛−1)    (2) 

where TWSAn-1 and TWSAn+1 are the TWSA values for the months preceding and succeeding month n, respectively.  5 

Three monthly GRACE solutions, from different processing centers, were used to compile monthly TWSA: the GFZ 

(GeoforschungsZentrum Potsdam), CSR (Center for Space Research at University of Texas, Austin), and JPL (Jet Propulsion 

Laboratory) (Landerer and Swenson, 2012). The three solutions were combined by simple arithmetic mean of the gravity 

fields, which according to recent studies is the most effective approach for reducing the noise in the gravity field solutions 

(Sakumura et al., 2014). Given that these products provide observations for the middle of each month, with varying dates, 10 

TWSA values were adjusted for the first day of each month using linear interpolation.  

Rainfall data were obtained from the TRMM 3B43 V7 product. The 3B43 V7 product consists of monthly average precipitation 

rate (mm hr-1), at 0.25o x 0.25o spatial resolution, which combines the estimates generated by sensors on board of the TRMM, 

geostationary satellites and ground data (Huffman et al., 2007). The ground data were obtained from NOAA’s Climate 

Anomaly Monitoring System (CAMS), and the global rain gauge product produced by the Global Precipitation Climatology 15 

Center (GPCC) (Huffman et al., 2007).  

To facilitate the visualization of ET seasonal patterns, ET for each month was calculated using a three-month sliding window. 

Hence, the changes in water storage for a certain month were assessed by evaluating the changes in TWSA between the 

previous and following month (equation 2). The rainfall and river discharge were then calculated accordingly, providing the 

average volumes inside the averaged window period. 20 

 

2.2. Climate drivers of ET 

We evaluate the influence of energy and water input on ET seasonal patterns across all sub-basins. Monthly incident shortwave 

radiation flux data were obtained from CERES SYN1deg product, version 3A (Kato et al., 2011). Shortwave radiation refers 

to radiant energy with wavelengths in the visible, near-ultraviolet, and near-infrared spectra. The SYN1deg product provides 25 

radiation variables calculated for all-sky, clear-sky, pristine (clear-sky without aerosols), and all-sky without aerosol 

conditions. In this study, we used the product made for all-sky. The incident radiation flux from SYN1deg product was shown 

to have a good relationship with photosynthetically active radiation (PAR) measured at flux towers in central Amazon (Maeda 

et al., 2014). Monthly rainfall values were obtained from the TRMM 3B43 product, as described in the previous section. 

The influence of climate forcings on ET seasonal patterns was assessed using a modified Budyko analysis (Chen et al., 2013; 30 

Du et al., 2016). The original Budyko framework (Budyko, 1958) was created to describe the links between climate and 

catchment hydrological components, resulting in what is known as the “Budyko curve”. In this framework, ET is limited by 

the supply of either water or energy. The type and degree of limitation is determined by the dryness index, which is the ratio 
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of potential ET (PET) to rainfall (P). The PET provides a proxy of the available energy, and represents the maximum possible 

value of evapotranspiration under given conditions. Hence, dryness indices lower than 1 represent energy-limited 

environments, while values higher than 1, water-limited (Budyko, 1958; Donohue et al., 2007). Monthly PET estimates were 

obtained from the MODIS MOD16A2 (collection 5) product (Mu et al., 2007). In MOD16 product, PET is calculated using 

the Penman-Monteith equation driven by surface and remote sensing derived input (Cleugh et al., 2007; Mu et al., 2007). 5 

The other component of the Budyko framework is the evaporative index (ET/P), which describes the partitioning of P into ET 

and R. In this case, R is proportional to the distance between the curve and a water limit line (i.e. evaporative index=1) and 

sensible heat is proportional to the distance between the curve and an energy limit line (i.e. when evaporative index=dryness 

index) (Budyko, 1958; Donohue et al., 2007). 

However, these approximations can only be used at steady-state conditions, assuming dS~0. Hence, the original Budyko 10 

framework is usually recommended for annual or longer time-scales. For shorter time-scales, studies have shown that inter-

annual water storage change should be considered to properly represent the ratio between ET and R (Wang et al., 2009; Zhang 

et al., 2008). The difference between rainfall and storage change was shown to be a good approach for representing effective 

precipitation in seasonal models (Chen et al., 2013; Du et al., 2016). Here, we follow this modified Budyko framework, in 

which the effective precipitation is represented by P-dS, so that the evaporative index is ET/(P-dS) and the dryness index is 15 

PET/(P-dS). 

 

2.3. Vegetation greenness proxy 

Seasonal patterns of vegetation greenness were assessed using the enhanced vegetation index (EVI) obtained from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Huete et al., 2002). For this study we used the MODIS MAIAC 20 

product, which is processed using MODIS Collection 6 Level 1B (calibrated and geometrically corrected) observations. 

MAIAC uses an adaptive time series analysis and processing of groups of pixels for advanced cloud detection, aerosol 

retrievals and atmospheric correction (Lyapustin et al., 2012). This dataset provides geometrically-normalized spectral 

reflectances (BRFn), which were used in this study. EVI was calculated considering a fixed sun-sensor geometry, with sun 

zenith angle of 45 degrees and nadir view angle. We used observations from the Terra and Aqua satellites collected between 25 

2001 and 2012, and data were obtained from the Atmosphere Archive and Distribution System (LAADS Web: 

ftp://ladsweb.nascom.nasa.gov/MAIAC). 

 

2.4. Comparison with modelled ET 

We compare our ET estimates with two model-based estimates. The first modelled ET dataset was obtained from the NOAH 30 

2.7.1 Land Surface Model (LSM) in the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004). The data have 

a 0.25 o spatial resolution and the temporal resolution is monthly. The NOAH LSM comprises three components of latent heat: 
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bare soil evaporation, transpiration, and evaporation from canopy-intercepted water (Chen et al. 1996, Ek et al. 2003). Bare 

soil evaporation and wet canopy evaporation are calculated scaling potential evaporation by soil moisture saturation in the 

upper soil layer and saturation of canopy interception, respectively. Transpiration is determined by potential evaporation, 

canopy resistance including soil moisture stress, and canopy wetness. Potential evaporation is calculated by Penman approach 

of Mahrt and Ek (1984) 5 

The second modeled ET dataset was obtained from the MODIS MOD16A2 product (Mu et al., 2007). The MOD16 ET is 

calculated by a modified Penman–Monteith ET method, which uses ground-based meteorological observations and remote 

sensing data from MODIS to provide global estimates of ET. For both modeled ET datasets, NOAH and MOD16, data were 

obtained from January 2001 to December 2014. 

3. Results 10 

3.1. Spatial and seasonal variations in ET across five Amazon sub-basins 

A summary of the components used for the water balance equation (eq 1), for the period between 2001 and 2014, are presented 

in Table 1. The largest river discharge and rainfall volumes were observed in the Rio Negro basin, with an annual mean of 

1692 mm year-1 and 3285 mm year-1, respectively. The lowest values were observed in the Madeira River, where mean 

discharge was 584 mm year-1 and mean rainfall 1716 mm year-1 (Table 1). Seasonal variations in total water storage are larger 15 

in the Tapajós River basin, where the mean maximum was 132 mm month-1 (i.e. increasing water storage) and mean minimum 

was  -123 mm month-1 (i.e. decreasing water storage) (Table 1).  

Annual mean ET values varied among five sub-basins (Table 1; Figure 2). The largest mean annual ET was observed in the 

Rio Negro basin (~1497 mm year-1), while the lowest value was observed in the Solimões River basin (~986 mm year-1) (Table 

1; Figure 2). The relative magnitude of mean ET among the Negro, Purus, Madeira and Tapajós basins are consistent with 20 

rainfall variation within these regions, i.e., the highest mean annual ET corresponds to the highest mean annual rainfall, and 

vice versa (Figure 2). The Solimões basin, however, is an exception. Despite having annual average rainfall similar to what 

was observed in Purus, its mean ET rates were significantly smaller (Figure 2). This may be explained by the lower average 

solar radiation inside the Solimões basin, with an annual average of 197 W m-2, while the average in the Purus basin was 204 

W m-2 (Figure 2). Furthermore, portions of the Solimões basin are located in the Andes region, which is characterized by 25 

higher altitudes, lower rainfall and sparse vegetation (Figure 1). 

The seasonal patterns of rainfall, radiation and ET are presented in Figure 3. Seasonal variation of ET is clearly observed in 

Solimões, Purus, Madeira and Tapajós, but less evident in the Rio Negro basin. In the Solimões basin, ET was highest in 

September and October, while the lowest values were observed in December and January (Figure 3). In the Purus, Madeira 

and Tapajós basins, ET peaks around November, February and November, respectively (Figure 3). 30 

In terms of long-term average values, ET did not exceed rainfall in any season of the year, in the Negro and Solimões basin 

sites. This indicates that, under average conditions, ET is not limited by water availability, even in the driest season. In the 
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Purus, Madeira and Tapajós sites, rainfall deficit (i.e. ET>rainfall) was  observed between June and August. Water availability 

is, therefore, a limitation for ET during the dry season. In fact, in these three basins, the smallest rate of  ET  was observed in 

May-June, period in which rainfall volumes are in steady decline.  

 

3.2. Climatic drivers of Amazon ET seasonality 5 

The modified Budyko analysis of monthly ET values are presented in Figure 4. The dryness index in the Negro basin was 

consistently below the water limit threshold (<1). For this sub-basin, the water balance analyses show the basin to consistently 

follow the energy limited line (red dashed line), indicating some degree of energy limitation. However, our results show small 

seasonal variation of ET in the Negro basin, despite clear intra-annual variation in solar radiation (mean annual amplitude of 

30 W.m-2) and rainfall (mean annual amplitude of 140 mm.month-1). These contrasting results are likely explained by the very 10 

high ET rates at the Negro basin (Table 1), which could represent an upper limit in forest water use capacity. 

In the three southern basins, Purus, Madeira and Tapajós, water limitation was consistently observed during July, August and 

September (Figure 4). This is consistent with the observation of seasonal rainfall deficits in these regions, but it contrasts with 

the ET seasonal patterns in these basins (Figure 3). In all southern basins, ET reached the lowest values before the period of 

minimum rainfall. These results suggest that in the southern Amazon ecotone, deep root water intake plays a key role in 15 

maintaining ecosystem productivity during the dry season. In the Purus and Tapajós basins, the Budyko curves are particularly 

close to the energy limit threshold during January, February and March. This shows that ET in these regions can experience 

some degree of energy limitation during the wet season.  

The Solimões basin is shown to be located in a transition region, where water limitation can occur in drier years. The energy 

constraint in the Solimões basin was also lower than that observed in the Negro basin. Given these characteristics, the Solimöes 20 

basin is the only site where ET was shown to maximize the use of both solar radiation and water. In other words, ET reaches 

its peak when the ratio between radiation and rainfall is maximum (Figure 5). 

Figure 6 shows a scatterplot of monthly radiation versus rainfall, with data points labeled by their corresponding monthly 

average ET values. This figure reveals a general pattern on the relationships among monthly rainfall, radiation and ET. As 

expected, lower monthly ET values are consistently observed when both radiation and rainfall are low. Interestingly, the 25 

highest ET values are not observed when radiation was highest, providing more evidence that water availability is also a 

limiting factor of ET, in combination with radiation. 

 

3.3. Relationship between ET and canopy greenness 

The relationship between ET and vegetation greenness varied across the Amazon basin (Figure 7 and Table 2). In the Negro 30 

basin, no significant relationship was found between EVI and ET. In this region, vegetation greening was observed between 

September and December, followed by a steady decline in EVI until the following August (Figure 8).  
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Significant positive correlations (p < 0.05) between EVI and ET were observed in the Purus, Madeira and Tapajós basins 

(Figure 7 and Table 2). In these regions, a clear pattern was observed, in which higher ET takes place when vegetation is 

greener and when rainfall is higher. In the Solimões basin, despite higher EVI values observed during the wet season (Figure 

7), an opposite pattern between ET and EVI was observed, i.e. higher ET takes place when EVI is lower.  In Solimões, 

vegetation greening also occurs between September and December, with declining from January until August (Figure 8).  5 

 

3.4. Comparison with ET estimated by models 

We further assessed the ability of two ET models, NOAH-LSM and MOD16 P-M, to replicate the seasonality of ET as derived 

from observation-based water balance calculation. Our results showed that neither of these two models was able to reproduce 

the timing and magnitude of seasonal ET patterns as calculated from the water-balance approach (Figure 9). In the Negro 10 

basin, NOAH-LSM estimates were consistently below the water balance and MOD16 P-M values, with an annual average of 

1241 mm year-1. In this region, both NOAH-LSM and MOD16 P-M show a decreasing ET trend from January to May, followed 

by an increasing trend (Figure 9). NOAH-LSM ET reached its maximum in September, while MOD16 P-M ET maximum was 

observed in October (Figure 9). 

In the Solimões basin, NOAH-LSM and MOD16 P-M ET showed similar seasonal patterns, but MOD16 P-M ET values were 15 

on average 25 mm month-1 larger than the NOAH-LSM estimates throughout the year (Figure 9). Nonetheless, both models 

showed ET seasonal patterns largely discrepant with the water balance calculation. Both models indicate highest ET in 

December/January, when the water balance showed the lowest seasonal values (Figure 9). 

The MOD16 P-M ET showed almost no seasonality in the Purus basin, while NOAH-LSM and water balance ET indicate a 

decrease in ET during May (Figure 9). However, the NOAH-LSM underestimated the ET recovery in the following months, 20 

in particular between August and November (Figure 9). The same pattern was observed in the Madeira and Tapajós basins, 

where both models show significantly lower ET values in August, September and October (Figure 9). 

 

4. Discussion 

Previous estimates of ET in the Amazon basin vary considerably in terms of magnitude and seasonal patterns. Water balance 25 

assessments undertaken at larger scales (e.g. the entire Amazon basin) found mean annual ET estimates varying from 767 mm 

year-1 to 1642 mm year-1 (Callede et al., 2002; Karam and Bras, 2008; Ramillien et al., 2006; Rao et al., 1996; Werth and 

Avissar, 2004).  The ET values we describe for Amazon sub-basins are within this range. We show that in some wet regions, 

such as the Rio Negro basin, mean annual ET can be above 1400 mm year-1, while in southern basins it vary from 1130 mm 

year-1 to 1350 mm year-1. Hence, we find that the lower range of 767 mm year-1 described in previous studies (Karam and Bras, 30 

2008) is likely to underestimate the average ET for the entire Amazon basin. 
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Our results show that the seasonal patterns of ET of five sub-basins across the Amazon vary in timing and magnitude. This 

spatial heterogeneity in ET seasonality is in agreement with previous studies carried out at local scale using EC method 

(Christoffersen et al., 2014; Fisher et al., 2009). Christoffersen et al. (2014) reported either a flat seasonal cycle or a slight dry 

season decrease of ET at transitional southern forests, while equatorial forest ET showed ET peaking with net radiation during 

the dry season. Despite agreeing on the main climatic forcing of ET process across these different ecoregions, our results unveil 5 

some differences on the timing of seasonal increases in ET and peak in relation to climatic variables. These differences are 

discussed in detail bellow. 

4.1. Climatic drivers of Amazon ET seasonality 

Discussions on the drivers of ecosystem function seasonality in the Amazon have often resulted in conflicting results. Our 

results revealed that in most cases ET seasonality is driven by a balance between radiation, rainfall and vegetation regulations, 10 

rather than being exclusively limited by any one of these factors. For instance, the peak timing of ET at five sub-basins did not 

correspond to the peak timing of either rainfall or radiation, demonstrating that the arbitrary partition of the Amazon basin into 

either energy-limited or water-limited is unrealistic and would result in large uncertainty in predicted ET patterns, as we 

showed in this study.    

We further demonstrated the degree of radiation and rainfall limitation, as well as their interactive effects on ET based on a 15 

modified Budyko analysis (Figures 4-6). Our results show that the evaporative index (ET / (P - ds)) exhibited a positive, 

nonlinear-type, dependency on climatic dryness index (PET / (P - ds)), which falls well within the modified Budyko 

framework. The modification of the classic Budyko model is the consideration of temporal changes in water-storage, in which 

total water-availability for evaporation should be quantified as the sum of monthly precipitation and water-storage change, 

termed as effective precipitation. Our results thus revealed the importance of considering plant controls in water-balance 20 

accounting over Amazon basin forests, as these evergreen trees, with their lengthy root-systems, have the ability to tap deep 

soil-/ground-water to meet atmospheric water demand.  

ET in the Solimões basin does not necessarily peak with solar radiation, but reaches a maximum when the ratio between 

radiation and rainfall is highest (Figure 5). In this case, where ET is normally not limited by water or energy input, plants do 

not need to regulate water loss, and seasonality of productivity can be regulated to reach an optimization that maximize the 25 

use of both available water and energy resources. In the Purus, Tapajós and Madeira basins, which encompass regions often 

considered to be water limited (Guan et al., 2015; Jones et al., 2014; Xu et al., 2015), ET does not necessarily reach the lowest 

values during the driest periods (Figure 3). Instead, we found increased ET before the end of the dry season, and ET rates can 

increase even in rainfall deficit conditions (Figure 4). This pattern can be explained by plants access to deep soil water (Nepstad 

et al., 1994). This argument is reinforced by the seasonal patterns of TWS demonstrated in Figure 3, which show that in 30 

southern basins TWS lags rainfall by approximately three months. Hence, during the meteorological dry season (i.e. when 

rainfall is low), soil water storage still remains relatively high. When the soils reach their lower storage volumes, 3 months 

after the peak of dry season, the rainy season has already started, providing water supply to be used by plants. 
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These results concur with previous findings showing a weak relationship between rainfall anomalies and EVI anomalies 

(Maeda et al., 2015), indicating a lower sensitivity of ecosystem functioning to rainfall extremes at transition forests in the 

southern Amazon. Furthermore, we show that besides dealing with seasonal rainfall deficit, southern basins remain limited by 

radiation energy availability during a certain period of the year (Figure 4), which explains the ET recovery before the driest 

period, i.e. when radiation starts to increase (Figure 3). 5 

However, it is important to highlight the fact that, although these analyses are based on sub-basins across the Amazon, they 

still enclose relatively large areas with substantial heterogeneities. In particular, the Madeira and Tapajós basins are 

characterized by a large latitudinal gradient and, consequently, different ecosystems are present within these sub-basins. Hence, 

it is likely that, although on average the Tapajós and Madeira basins are limited by water availability during the dry season, 

water limitation may not occur in northern (wetter) parts of these basins. 10 

 

4.2. Relationship between ET and canopy greenness 

The biophysical causes of EVI seasonality in Amazon evergreen forests have been intensively discussed in recent years (Bi et 

al., 2015; Hilker et al., 2015; Maeda et al., 2014; Morton et al., 2014; Myneni et al., 2007). Recent studies indicate that in wet 

equatorial forests, EVI is driven by a net increase in leaf production (Lopes et al., 2016). The seasonal variation in EVI was 15 

shown to be more evident in the dry season, when most plants release old leaves while simultaneously producing new leaves 

and, therefore, increase EVI. 

Furthermore, studies have shown that southern and Equatorial forests have different cues for leaf flushing, i.e. plant growing 

season is initiated by different climatic factors (Wagner et al., 2016). Hence, our results indicate a decoupling between ET 

fluxes and seasonal cycles of canopy foliage. In general, relationships were better in southern basins where rainfall deficits 20 

were observed, in particular Purus and Madeira. In these cases, the climatic triggers for leaf flushing/litter and productivity 

drivers are likely to be in phase. In the southern Amazon, leaf growth was shown to be initiated by water input (Wagner et al., 

2016), which means that peak greening should be observed some months after the beginning of the wet season. In these regions, 

ET was found to decline as rainfall decreased between March and May. Nonetheless, ET trends recovered before the peak of 

the dry season, increasing with higher solar radiation – suggesting that soil water was available to the trees even during the 25 

peak of the dry season. 

In the Negro basin, ET was not significantly correlated with EVI, while in the Solimões Basin, ET and EVI were inversely 

related. In these cases, different mechanisms are likely to drive ET and canopy greenness patterns. In the wet equatorial forests, 

leaf flushing was shown to be initiated by the increase in solar radiation (Lopes et al., 2016; Wagner et al., 2016). The 

subsequent decrease in greening, however, follows a different pattern, where a slow decrease in EVI might be associated with 30 

leaves aging, epiphylls, herbivores, and leaf fall. 

Lags between forest functioning and canopy greening have been previously reported from local scale experiments. Wu et al 

(2016) suggested that these discrepancies could be explained by leaf demography, given a higher photosynthetic capacity of 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-75, 2017
Manuscript under review for journal Earth Syst. Dynam.
Published: 4 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



11 

 

mature leaves. In other words, while LAI increases during the dry season due to new leaves flushing, young leaves have lower 

photosynthetic capacity, which gradually increases as leaves become mature – but then declines as leaves senesce (Wu et al., 

2016). They, hence conclude that phenology of photosynthetic capacity, and not climate variability, is the main driver of 

ecosystem productivity (Wu et al., 2016). Our results confirm this decoupling of vegetation functioning and leaf production in 

wet evergreen forests. Nonetheless, we demonstrate that vegetation function seasonality, as described by sub-basin scale ET, 5 

is not independent from climate intra-annual variability. In fact, in some regions, such as the Solimões basin, vegetation seems 

to maximize ET (hence productivity) by balance the use of available light and water resources across time. 

 

4.3. Uncertainties of the water-balance approach and comparison with model estimates 

Assessing uncertainties of ET estimates in Amazon forests is challenging, given the lack of reference datasets. Previous studies 10 

indicate that ET estimates based on GRACE water balance approach may have higher uncertainties than LSM estimates (Long, 

2014). This assessment was, however, carried out in a region with good data quality for model parameterization, and where 

the drivers of ecosystem functioning are better understood. In the Amazon, where parameterization of models are usually more 

challenging due to low data quality and unknown biophysical parameters, water balance methods are still considered an 

adequate alternative.  15 

Assessing ET at local scales, using eddy covariance methods, Christoffersen et al. (2014) concluded that most models are not 

able to represent ET seasonality at different locations across the Amazon. They argue that models are unable to properly 

represent canopy dynamics mediated by leaf phenology, which is believed to play a significant role in regulating ET 

seasonality. Assessing spatially averaged ET for the Amazon basin, Karam and Bras (2008) reported that mean annual values 

calculated using water balance methods (including Callede et al., 2002; Ramillien et al., 2006) show significantly lower 20 

estimates when compared with output from LSMs. Although the models compared in this study are not the same, our results 

diverge from these claims. At the Negro, Purus, Madeira and Tapajós basins, mean annual ET values calculated with the water 

balance method were higher than NOAH and MOD16 estimates. Only at the Solimões basin, annual mean ET from MOD16 

was higher than the other methods. 

ET estimates from NOAH-LSM and MOD16 P-M could not provide a consistent representation of ET seasonality between 25 

each other in all sub-basins (Figure 9). Although a full comparison with ET models is beyond the scope of this study, our 

results confirm that models still disagree with each other in estimating Amazon ET seasonality, indicating uncertainties 

associated with either input datasets or model assumptions. Both models seem to overestimate water stress in the southern 

basins, i.e. while models predict a decline in ET after the driest period, the water balance estimate shows an early recovery 

from the dry season, followed by a steady increase until the end of wet season (Figure 9).  30 

One potential source of uncertainty in the NOAH-LSM estimates is the fractional total vegetation cover (fc), which contributes 

for defining both transpiration and interception evaporation. In NOAH, fc seasonal variation is estimated from remotely sensed 

Normalized Difference Vegetation Index (NDVI) climatology (Gutman and Ignatov, 1998; Marshall et al., 2013). Nonetheless, 
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studies have shown that, due to saturation over dense tropical forests, as well as illumination artefacts, NDVI may not correctly 

describe seasonal changes in vegetation structure over the Amazon forests (Huete et al., 2002; Maeda et al., 2016). 

The PET estimates used for the modified Budyko analysis (Figure 4) is also based on models, and therefor is likely to carry 

some level of uncertainty. Given that PET is a physical measure of atmospheric water demand, and do not depend on vegetation 

interactions, the reliability of estimates for the Amazon basin are likely to be the same as for other regions. Having said that, 5 

uncertainties in PET and ET have noticeable effects on the derived Budyko curves. For instance, underestimated PET values 

may lead to dryness index values higher than evaporative index, leading to plotted values that exceed the energy limit line. 

Previous studies, however, reported that monthly-average evaporation may exceed potential estimates by about 10 % during 

wet months (Shuttleworth, 1988). On the other hand, overestimated PET can lead to misleading conclusions of higher water 

limitation in Figure 4. This is likely to be the case in the Solimões basin, as the seasonal patterns presented in Figure 3, which 10 

are based only on observational data, indicate that in the Solimões basin average rainfall is always higher than average ET. 

Water limitation conditions in this region are still likely, given inter-annual variability in rainfall and ET, but it should not be 

a condition that is repeated consistently every year. 

5. Conclusions 

Our results demonstrate strong spatial heterogeneity in ET across five ecoregions within the Amazon basin. Seasonal cycles 15 

of ET are shown to vary in timing and magnitude, driven by intra-annual climate variability across sub-basins. Based on a 

modified Budyko analysis, we show the interactive effects of rainfall, solar radiation and soil water storage on ET fluxes. 

Nonetheless, our results indicate that neither energy nor water input alone is sufficient to explain ET seasonality across five 

sub-basins, regardless of the average degree of dryness, demonstrating a dynamic shift in the degree of energy-/water-limitation 

across space and time. Although eddy covariance studies have shown that ET in the Amazon can be limited by different 20 

climatic factors, this fact had not yet been verified at basin scales using observational data. 

We demonstrate a decoupling between ET and vegetation greenness seasonal patterns in wet Amazonian forests. In the 

Solimões basin, ET is inversely correlated with EVI, indicating higher ET when canopy foliage density is lower. This finding 

indicates that ecosystem models based on remotely sensed vegetation indices, including remote sensing based ET models, 

need to be further assessed to better represent ecosystem function seasonality in wet tropical forests. 25 

A comparison with two ET models, NOAH-LSM and MOD16 P-M, showed that models are still unable to consistently 

represent ET seasonal patterns in the Amazon forest. In the Solimões and Negro basins, both models presented a different 

seasonal pattern when compared with our water balance approach. In southern basins, where rainfall is lower, models seem to 

overestimate water limitation during the dry season, and therefore underestimate ET. 

 30 
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Figure 1. Amazon River sub-basins assessed in this study. The background map shows the mean annual rainfall 2001-2014, measured 

by the Tropical Rainfall Measuring Mission (TRMM). The extents of five sub-basins analyzed here are indicated on the map with 

solid black lines and shading. The solid red line indicates the boundary of the entire Amazon River basin. 
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Figure 2. Boxplots with mean annual evapotranspiration, solar radiation, rainfall and EVI for the five sub-basins analyzed in the 

study for the period 2001 – 2014 inclusive. 5 
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Figure 3. Seasonal variations of rainfall, radiation and evapotranspiration inside each sub-basin. Gray lines represent the values for 

each year from 2002-2014, and solid dark lines represent the average values for each month. Months are represented from 1 

(January) to 12 (December). The dashed blue line in the first column shows the mean seasonal variation of GRACE terrestrial water 5 
storage anomalies (TWSA), and the dashed red line is the mean seasonal variation of water-balance ET, for each sub-basin. 
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Figure 4. Modified Budyko analysis for monthly water balance values. The red dashed line represents the energy limitation 5 
threshold, above which ET is limited by solar radiation. The blue dashed line represents the water limitation threshold. 
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Figure 5. Monthly values of the ratio between solar radiation [W m-2] and rainfall [mm month-1] (Radiation/Rain) (solid black and 

gray lines), and mean seasonal variation in evapotranspiration (ET) (dashed red line) at the Solimões river basin. 
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Figure 6. Scatterplot of monthly radiation and rainfall for the five sub-basins. Colour gradient indicates the monthly ET value, from 5 
high (blue) to low (red). 
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5 
Figure 7. Relationship between monthly evapotranspiration (ET) and MODIS enhanced vegetation index (EVI) at each Amazon 

sub-basin using the data from 2001 to 2014. Colour gradient indicates the monthly rainfall value, from high (blue) to low (red). 
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Figure 8. Seasonal patterns of MODIS EVI in the five Amazon sub-basins. The black lines show the monthly average values from 5 
2001 to 2014, while gray lines show individual monthly values for each year. The mean seasonal variations in ET for each sub-basin 

are represented as red dashed lines. 
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Figure 9. Seasonal ET patterns obtained using the water balance method (black line), NOAH land surface model (red) and MODIS 

MOD16 P-M model (blue). Vertical bars indicate the ±1 standard deviation of monthly observations from 2001 to 2014. 
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Tables 

 

Table 1. Summary of the river discharge, rainfall and dS/dT in the five sub-basins analyzed in this study. For each variable, the 5 
monthly average maximum and minimum, as well as the annual mean, are presented. All values are averages for the period between 

2001 and 2014. Long-term annual averages of dS/dT are generally close to zero, and therefore not presented. 

 Mean values (2001-2014) Negro Solimões Purus Madeira Tapajós 

Discharge (R) Monthly Max [mm month-1] 213 138 123 84 117 

Monthly Min [mm month-1] 96 63 15 12 24 

Mean annual [mm year-1] 1692 1241 767 584 767 

Rainfall (P) Monthly Max [mm month-1] 360 234 294 252 327 

Monthly Min [mm month-1] 213 123 45 39 21 

Mean annual [mm year-1] 3285 2227 2154 1716 2154 

dS/dT Monthly Max [mm month-1] 48 54 99 87 132 

Monthly Min [mm month-1] -45 -72 -96 -75 -123 

ET Monthly Max [mm month-1] 132 105 138 114 123 

Monthly Min [mm month-1] 108 63 90 78 99 

Mean annual [mm year-1] 1497 986 1351 1132 1314 
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Table 2. Coefficients of the linear regression between evapotranspiration (ET) and MODIS enhanced vegetation index (EVI) for 5 
each of the five sub-basins (* p<0.05). 

 Intercept Slope R2 

Negro 6.0 -4.06 0.006 

Solimões 14.9 -27.0 0.463* 

Purus -5.3 17.5 0.259* 

Madeira -0.4 7.9 0.383* 

Tapajós 2.2 3.1 0.035* 
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