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Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to 10	
temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the 11	
recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are 12	
estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the Peaks over 13	
threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are 14	
analyzed: temperatures observed in nine meteorological stations in southern Pakistan from 1980 to 2013, and the 15	
ERA Interim (ECMWF re-analysis) data for the nearest corresponding locations. The analysis provides the 2, 5, 16	
10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is found to be a suitable 17	
threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in northern stations, and 18	
above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in the region, which is 19	
considered as a limit of survivability. The RLs estimated from the ERA Interim data are lower by 3°C to 5°C than 20	
the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA Interim data 21	
improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the 22	
risk assessment of extreme temperatures in Sindh.	23	
 24	
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1 Introduction 28	
 29	
Extreme maximum temperature events have received much attention in recent years, because of the associated 30	
dangerous impact on the increased risk of mortality (IPCC, 2012). Additionally, climate change scenarios suggest 31	
that in most regions the probability of occurrence of extremely high temperature is very likely to increase in the 32	
future (Sheridan and Allen, 2015). An example of the potential impact of raising maximum temperatures is the 33	
recent heat wave in southern Pakistan (Sindh), which occurred between June 17th and June 24th 2015 and broke 34	
all the records with a death toll of 1400 people, and over 14000 people hospitalized. The temperatures in different 35	
cities of the Sindh region were in the range of 45°C - 49°C during the event (Imtiaz and Rehman, 2015). Karachi 36	
had the highest number of fatalities (1200 people approximately). The Pakistan Meteorological department issued 37	
a technical report stating a very high heat index (measuring the heat stress on humans due to high temperature 38	
and relative humidity) during this heat wave (Chaudhry et al., 2015).  39	
 40	
In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity increases in the region 41	
(Chaudhry and Rasul, 2004). The extremely hot and humid conditions can have lethal effects, and can impact the 42	
overall human habitability of a region (Pal and Eltahir 2015). The human body generally maintains the 43	
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temperature around 37°C. However, the human skin regulates at or below 35°C to release heat (Sherwood and 44	
Huber, 2010). Under combined high temperatures and high levels of moisture content in the atmosphere, the 45	
human body cannot maintain the skin temperature below 35°C and can develop ailments like hyperthermia, heat 46	
strokes and cardiovascular problems. Hyperthermia is a condition where extremely high body temperature is 47	
reached, resulting from the inability of the body to get rid of the excess heat. Hyperthermia can occur even in the 48	
fittest human beings, if exposed for at least six hours to an environment where wet-bulb temperature is greater 49	
than 35°C. 50	
 51	
This study devotes special attention to Sindh (23.5° N – 28.5° N and 66.5°E - 71.1°E) because of its exposure to 52	
the frequent and intense temperature extremes in the past (Zahid and Rasul, 2012). It is bounded on the west by 53	
the Kirthar Mountains, to the north by the Punjab plains, on the east by the Thar desert and to the south by the 54	
Arabian Sea (Indian Ocean), while in the center there is a fertile land around the Indus river. Cotton, wheat, sugar 55	
cane, rice, wheat and gram crops are cultivated near banks of the Indus River (Chaudhry and Rasul, 2004). 56	
Cotton is the cash crop of the country. High population density, limited resources, poor infrastructure and high 57	
dependence of the local agriculture on climatic factors, mark this region as highly vulnerable to the impacts of 58	
climate change. The Intergovernmental Panel on Climate Change (IPCC) scenarios estimates for this region an 59	
increase in the temperature of the order of 4°C by the end of 2100. This may significantly reduce crop yields, and 60	
cause huge economic losses to the country (Islam et al., 2009; Rasul et al., 2012; IPCC, 2012, 2014). 61	
Furthermore, the risks of heat strokes, cardiac arrest, high fever, diarrhea, cholera and vector borne diseases 62	
might increase. 63	
 64	
Extreme value theory (EVT) provides the statistical basis for increasingly widespread quantitative investigations 65	
of extremes in climate studies  (Coles, 2001, Zhang et al., 2004; Brown et al., 2008; Faranda et al., 2011; Acero 66	
et al., 2014). The peaks over threshold (POT) approach aims at describing the distribution of the exceedances of 67	
the stochastic variable of interest above a threshold. Under very general conditions, the exceedances are 68	
asymptotically distributed according to the Generalized Pareto Distribution (GPD). GPD has remarkable 69	
properties of universality when the asymptotic behavior is considered (Lucarini et al., 2016), while one can 70	
expect that the threshold level above which the asymptotic behavior is achieved depends on the characteristics of 71	
the analyzed time series. In particular, when looking at spatial fields, the threshold level depends on the 72	
geographical location.  73	
 74	
In this study, we have chosen to analyze the temperature extremes in the Sindh region taking the point of view of 75	
threshold exceedances associated to the GPD family of distributions, because the statistical inference provided by 76	
the POT method provides a more efficient use of data and has better properties of convergence when finite 77	
datasets are considered with respect to alternative methods for the analysis of extremes, such as the block maxima 78	
method, which is used to fit the observed data to the generalized extreme value (GEV) distribution  (Lucarini et 79	
al., 2016). Additionally, we are here interested in investigating the actual tails of the distributions and not the      80	
statistics of e.g. yearly maxima, the POT approach is indeed more appropriate. While the POT method has been 81	
applied for studying temperature extremes in different regions of the world (Burgueño et al., 2002; Nogaj et al., 82	
2006; Coelho et al., 2007; Ghil et al., 2011), to our knowledge, it has never been used to analyze the statistics of 83	
temperature extremes in Sindh. Thanks to the properties of universality of the GPD distribution (Lucarini et al. 84	
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2016), the POT approach can in principle provide reliable estimates of return periods and the return levels also 85	
for time ranges longer than what is actually observed. This information and this predictive power can be 86	
beneficial for policy makers and other stakeholders. Since, it is exactly the kind of information planners need 87	
when, e.g., designing infrastructures that are deemed to last a very long time. Note that commonly used, more 88	
empirical approaches to the study of extremes, as those more used for assessing the ‘moderate extremes’ (IPCC, 89	
2012), do not have any property of universality and might have weak predictive power.  90	
 91	
It is useful to consider two indicators of extremely hot conditions: (1) temperature extremes Tmax, and (2) Wet-92	
bulb temperature extremes TWmax. Therefore, we estimate the return levels of Tmax and TWmax over different 93	
return periods during summer (May-September) in Sindh. We apply the POT method on the observational data of 94	
the nine weather stations provided by Pakistan Meteorological Department, and the ERA Interim re-analysis data 95	
of European Center for Medium range Weather Forecast (ECMWF) model for the corresponding grid points from 96	
1980 to 2013. ERA Interim re-analysis data are generally very good at replicating also trends in temperature 97	
percentile (Cornes and Jones, 2013). Nonetheless, it is in principle not obvious that ERA Interim data can 98	
simulate well meteorological extremes, as reanalysis are constructed in such a way that typical conditions are 99	
well reproduced. This is why we look at how well ERA Interim data performs in the target area against 100	
observations. If the ERA Interim dataset characterizes well the extremes, it could be an option for the regions 101	
within Sindh where no observational data is available. Furthermore, a standard bias correction is applied on the 102	
ERA Interim data to assess whether removing the bias in the bulk of the statistics improves substantially 103	
representation of the return levels of extremes. Given the shortness of the datasets, as we will show later, it is 104	
appropriate to analyze the extremes without taking into considerations possible long-term trends (Frei and Schär, 105	
2001); see also the discussion in Felici et al. (2007). The provision of POT-based information on stationary 106	
extremes is already quite relevant in terms of impacts for the public and private sector as it fills a big data gap in 107	
Sindh. A possibility for investigating time dependency in the temperature extremes comes for considering the 108	
centennial NCEP reanalysis (Compo et al., 2011) and using suitable bias correction procedures. Such an analysis 109	
is not performed at this stage as we focus on observational data. 110	
 111	
The paper is organized as follows. In Section 2 we present the datasets we study and the statistical methods we 112	
use for assessing the properties of extremes. In Section 3 we show and discuss the main results. In Section 4 we 113	
make a summary of the main findings and present our conclusions and perspectives for future investigations. 114	

2. Data and Methodology 115	

2.1 Meteorological station data 116	
 117	
The daily maximum temperature and relative humidity data recorded at nine meteorological stations in Sindh 118	
from 1980 to 2013 are provided by the Pakistan Meteorological Department (see Table 1).  We select nine 119	
stations, which contain a negligible amount of missing values after 1980, and are suitable for the POT analysis 120	
(Figure 1). An additional criterion is that only those stations are chosen where no changes occurred in measuring 121	
instruments during the last 33 years (Brunetti et al., 2006). None of the station data shows gaps with duration 122	
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longer than two days, which are treated by replacing the missing value with the average of the two previous 123	
values. 124	
 125	
The temperature data are discretized unevenly with intervals up to 1 degree Celsius. Deidda and Puliga (2006) 126	
proposed a Monte Carlo approach for addressing this issue. They showed that finite resolution in precipitation 127	
data affects the convergence of parameter estimation in the extreme value analysis. They suggested generating 128	
many synthetic datasets by adding numerical noise to the original data, and then providing the best estimate of 129	
the parameters of the extreme value distributions by averaging over all the best fits obtained in each synthetic 130	
dataset. Following their suggestion, we produce high-resolution data to compensate the effect of discretization 131	
and thus to improve the convergence of the estimator. In order to convert the temperature readings to higher 132	
resolution, we add a uniform random variable in the interval [-0.5, 0.5]. The main property of this noise is that 133	
round(T+r) = T, where T is the temperature with 1-degree resolution and ‘round’ is the numerical function, 134	
which maps the interval [T-0.5, T+0.5] to T. Thus, adding the noise does not perturb the information content of 135	
the observations. This procedure is applied to all temperature data, irrespective of the actual resolution, and 136	
replicated 100 times using a Monte Carlo approach. For each synthetic dataset, we perform the statistical best fit 137	
described later in the paper and then average the results. We check the influence of this noise parameterization 138	
and find no significant bias in the return level estimates. The advantage of adding a noise is to avoid the spurious 139	
statistical effects associated to the presence discrete values assigned to the temperature readings. Using the 140	
described bootstrap method we reduce such problem without biasing the data.  141	
 142	

2.2 ERA Interim re-analysis data 143	
 144	
The gridded daily maximum temperature and relative humidity data of ERA Interim re-analysis is obtained from 145	
the ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets/). The ERA Interim is generated by 146	
the European Center for Medium range Weather Forecast (ECMWF) model with resolution 0.75° × 0.75° (Dee et 147	
al., 2011). The gridded data are then extracted at the closest grid points of all stations, for the period 1980-2013 148	
(Figure 1). The latitude and longitude of the ERA Interim stations are displayed in Table 1.  149	
 150	
The extreme temperatures analysis is restricted to the summer season (May-September) over a period of 33 years.	151	
We have tested the datasets by applying the Mann-Kendall test; the results show that trends are not significant in 152	
such a short time interval. One of the main requirements for performing the POT analysis is assuming the 153	
stationarity of the time series.  Therefore, as in Bramati et al. (2014), the Augmented Dickey Fuller (ADF) test of 154	
stationarity is performed on all time series (Dickey and Fuller, 1979). In all cases we find no sign of long-term 155	
correlations in the data. Short-term correlations (daily time scale) typically lead to clusters of extreme values and 156	
are studied by computing the extremal index θ in all time series and treated using the associated standard 157	
declustering technique (see more details in Section 2.4).  158	

2.3 Wet-bulb temperature calculations 159	
 160	
The wet-bulb temperature measures the heat stress better than other existing heat indices, because it establishes 161	
the clear thermodynamic limit on heat transfer that cannot be overcome by adaptations like clothing, activity and 162	
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acclimatization (Pal and Eltahir, 2015; Sherwood and Huber, 2010). Here, we use an empirical equation 163	
developed by Stull (2011) to measure the wet-bulb temperature. 164	
 165	

𝑇𝑊 = 𝑇  atan (𝛼! RH + 𝛼!) + atan 𝑇 + RH − atan RH +  𝛼! +  𝛼!(RH) 
!
! atan(𝛼!𝑅𝐻) − 𝛼!166	

                      167	
                                                                                                      (1) 168	
  169	
 170	
where TW is the wet-bulb temperature [°C], T is the temperature [°C], and RH   is the relative humidity [%]. This 171	
relationship is based on an empirical fit, as in Stull (2011), where the coefficient values are α1 = 0.151977, α2 = 172	
8.313659, α3 = -1.676331, α4 = 0.00391838, α5 = 0.023101, and  α6 = 4.686035. Equation (1) covers a wide range 173	
of relative humidity and air temperatures with an accuracy of 0.3°C. 174	
 175	

2.4 Peaks over Threshold 176	
 177	
 178	
In order to determine the return levels of extreme maximum temperatures and maximum wet-bulb temperatures, 179	
the peaks over threshold (POT) approach is applied to the data obtained from the meteorological stations in 180	
Sindh, and from the ERA Interim archive.  181	
 182	
Multi-occurrence is an important characteristic of extreme climatic events and is referred to as clustering. 183	
Clusters are consecutive occurrences of above threshold events. It is important to post process the clustered 184	
extremes in order to take into account the assumption of weak short time correlation between extreme events, 185	
which is crucial for our statistical analysis. We have treated the clusters using the concept of Extremal Index (EI) 186	
(see Newell, 1964, Loynes, 1965, O'Brien, 1974, Leadbetter, 1983, Smith, 1989, Davison and Smith, 1990). The 187	
Extremal Index θ measures the degree of clustering of extremes. It ranges between 0 and 1, (θ = 0 means strong 188	
clustering and dependence, θ = 1 absence of clusters and independence). Leadbetter (1983) interprets 1/θ as the 189	
mean number of exceedances in a cluster. 190	
 191	
The extremal index θ can be estimated in two different ways. Here, we apply the ‘intervals estimator’ automatic 192	
declustering by Ferro and Segers (2003). A positive aspect of this method is that it avoids the subjective choice of 193	
cluster parameters. The main ingredient is the use of an asymptotic result for the times between threshold 194	
exceedances. The exceedance times are split into two types, a set of vanishing intra-exceedance times within the 195	
clusters, and an exponentially distributed set of inter-exceedance times between clusters. The method is iterative, 196	
starting with largest return times and stops when a limit for the inter-exceedance times is reached. The standard 197	
errors of the estimated parameters is obtained by a bootstrap procedure. In this study, once we select appropriate 198	
value for the threshold (see below) the extremal index value is ≤ 0.5 in all the considered time series.  Therefore, 199	
it is necessary to decluster the extremes by choosing the largest event in each cluster, before fitting it to the GPD. 200	
 201	
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As mentioned before, we use as statistical model for the exceedances over threshold the Generalized Pareto 202	
Distribution (GPD), which is characterized by two parameters, the shape ξ and the scale σ. The GPD for 203	
exceedances 𝑥 − 𝑢 of a random variable 𝑥 reads as 204	
 205	

           𝐺 𝑥 = 1 − 1 + 𝜉
𝑥 − 𝑢
𝜎

!!!             𝑥 > 𝑢, 𝜉 ≠ 0  ,             (2) 
 206	
where 𝑢 is the threshold. The shape parameter ξ determines the tail behavior while the scale parameter σ 207	
measures the variability. For a negative shape parameter, ξ < 0, the distribution is bounded (Weibull distribution), 208	
for vanishing shape parameter, ξ = 0, the distribution is exponential, and for a positive shape parameter, ξ > 0, the 209	
distribution has no upper bound (Pareto distribution). 210	
 211	
In particular, for a negative shape parameters ξ <0 the GPD has the upper bound 212	
 213	

                    𝐴!"# = 𝑢 − 𝜎 𝜉                                                                   (3) 
 214	

                                   𝐺 𝑥 = 0                                𝑥 > 𝐴!"# , 𝜉 < 0                
 215	
where 𝐴!"#  is an absolute maximum (Lucarini et al., 2014). In general, the best estimate for the two parameters 216	
shape ξ and scale σ depend on the threshold u (Coles, 2001). The choice of the optimal threshold for performing 217	
statistical inference from a time series is crucial. Choosing a very large value for 𝑢 reduces the number of 218	
exceedances to a few values, inflating the variance of the estimators, so that the analysis is unlikely to yield any 219	
useful results. On the other hand, choosing a too small value for 𝑢 would violate  the asymptotic nature of the 220	
model, with a possible biased estimation and wrong model selection (Coles, 2001), see details later in Section 221	
3.1. The shape ξ, the scale σ and the return levels are estimated using the Maximum Likelihood Estimator (MLE) 222	
using the R software (R Development core team 2015), which also provides an estimate of the standard error of 223	
the estimates. 224	
 225	
Additionally, we wish to investigate the N - years return levels x!, which are exceeded on the time scale of N 226	
years (Coles, 2001) and can be expressed as 227	
                                                                                                                   228	
                                                𝑥! = 𝑢 + !

!
(𝑁𝑛!𝜁!)! − 1  ,                                                                             (4) 229	

 230	
where N represents the return period in years, ny is the number of observations per year , ζ!  is the probability of 231	
an individual observation exceeding the threshold 𝑢, the shape parameter is  ξ and the scale parameter is σ. 232	
	233	

2.5. Bias Correction Method  234	
 235	
A simple bias correction is applied to each ERA Interim time series through a rescaling that adjust the first two 236	
moments (mean and variance) to the sample moments calculated for the corresponding observations. Therefore, 237	
the bias correction is applied to the entire time series and it is not tailored to the extreme events only. The idea is 238	
to check whether by adjusting the properties of the bulk of the statistics we improve the skill of the ERA Interim 239	
dataset considerably in describing extreme events. The bias corrected ERA Interim time series 𝑥 is expressed as    240	
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 241	

𝑥 =  𝑧 +   
𝑦!"# − 𝑦

σ!
  σ! 

   (5) 242	
 243	

where  𝑦!"# is the ERA Interim time series,  𝑦  and  σ! its mean and standard deviation, whereas 𝑧  and σ! are 244	
the mean and standard deviation of the meteorological station temperatures. The properties of extremes are 245	
commonly assumed to be closely controlled by the first two moments of the underlying distribution - e.g. the 246	
IPCC (2012) relates changes in the properties of extremes to changes in the mean and in the standard deviation of 247	
the underlying distributions - EVT clarifies that, in fact, only a loose link exists between true extremes and the 248	
bulk of the events. Note that the proposed method of bias corrections has no impact on the estimates of the shape 249	
parameter, while it affects the scale and location parameters, thus impacting at any rate the return levels.  250	

3. Results and Discussion  251	

3.1 Threshold Selection  252	
 253	
The threshold selection is the first step in a POT analysis. One needs to test whether the asymptotic regime is 254	
reached, i.e. whether one is choosing true extremes. It must be noted that EVT does not predict where (in terms of 255	
quantiles) one should expect the asymptotic regime to start. This can be investigated by checking whether the 256	
best fits of the shape parameter ξ and the modified scale parameter σ*= σu – ξu  are stable with respect to 257	
increases in the chosen value of u (Sacrrott and MacDonald, 2012).The optimal threshold u is selected as the 258	
lowest value where the two parameters are invariant in order to reach the asymptotic limit (Coles, 2001 and 259	
Furrer et al., 2010). This choice allows for having as many data as possible for performing the statistical 260	
inference, thus having lower variance for the estimators of the parameters. Figure 2 shows the parameter stability 261	
plots of the Tmax reading for Karachi, as an example to explain the threshold selection procedure.   262	
 263	
In addition to diagnostic plots of the modified scale parameter σ* and the shape parameter ξ, the mean residual 264	
life plot is used to select the appropriate threshold for the POT analysis (Davison and Smith, 1990). The idea is to 265	
select the lowest value of the threshold when the plot is approximately linear. In the case of the Karachi data for 266	
Tmax , the plot appears to be linear and stable for u = 36oC, indicating u = 36 as the most suitable threshold for the 267	
POT analysis (Figure 3). We observe that the 90% quantile is an appropriate threshold for all the station data, as 268	
well as the ERA interim datasets, and for both Tmax, and TWmax.  269	

3.2 GPD Fit 270	
 271	
The goodness of fit is evaluated by Quantile-Quantile (Q-Q) plots and hypothesis testing. The Q-Q plot analysis 272	
is performed for the stations observed, the ERA Interim, the bias corrected ERA Interim daily Tmax and TWmax. 273	
The Q-Q plots of the observed Tmax show that the GPD fits well in most stations. However, in a few stations like 274	
Jacobabad, Mohenjo-daro, Padidan and Chhor the empirical values show slight deviation from the modeled 275	
values. In spite of minor deviations at some stations, still most of the exceedances are well fitted by the model.  276	
The Q-Q plots of the observed TWmax also fits well to the model in all stations.  277	
 278	
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The Q-Q plots of the empirical ERA Interim Tmax  and TWmax data reveals substantial differences with respect to 279	
the corresponding GPD fits. The empirical values of the higher quantiles are deviating from the theoretical 280	
quantiles in all stations. However, if the higher quantiles are disregarded, then stations like Jacobabad, Mohenjo-281	
daro, Rohri, Padidan, Nawabshah, Chhor, and Badin fits very well with the model. The Q-Q plots of the bias 282	
corrected ERA Interim Tmax, and TWmax show better results than the ERA Interim. We notice that the Tmax of the 283	
ERA Interim and bias corrected ERA Interim fits better than the TWmax if the highest quantiles are ignored, 284	
indicating the bias procedure is, as expected, unable to treat correctly the statistics of the largest events. 285	
 286	
In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) 287	
test to the data of meteorological stations, ERA Interim, bias corrected ERA Interim Tmax and TWmax. The p-288	
values indicate a good performance of the fit procedure. Table 2 shows the results of the K-S and A-D statistics 289	
of the Tmax and TWmax in all the data sets. 290	

3.3 Parameter Estimates  291	
 292	
Here, we analyze the shape parameter ξ , the scale parameter σ, and  threshold u for all considered datasets. The 293	
standard errors of the shape ξ and the scale σ parameters are given in Table 3. The spatial distribution of the 294	
shape parameter ξ and the scale parameter σ of the GPD in Sindh are shown in Figure 4. The shape parameters ξ 295	
are negative in all datasets at all stations. This is hardly surprising, as meteorological and physical processes 296	
make sure that the temperature cannot grow locally without control. One finds a certain degree of 297	
variability across stations in the estimated value of the shape parameter. In the case of the observed 298	
Tmax one obtains for ξ estimates ranging between -0.418 and -0.223, while for TWmax the range is between -0.323 299	
and -0.177, so that values slightly closer to zero are found, thus allowing for larger excursions towards very high 300	
values with respect to the case of the extremes of the actual temperature. When looking at the bias corrected ERA 301	
Interim data, the range of values for the shape parameter of Tmax (TWmax) is between -0.305 to -0.002 (-0.18 and -302	
0.01). While there is a good match in the spatial patterns of the estimates for the observative vs ERA Interim 303	
datasets, the presence of values much closer to zero in the second case suggests the presence of some 304	
inadequacies in the representation of extremes in the reanalysis. This is not entirely unexpected, as reanalysis are 305	
constructed in such a way that typical conditions are well reproduced. Note that our simple bias correction 306	
procedure, while not impacting the estimates of the shape parameters, allows for improving the estimates of the 307	
return levels, as discussed below.  308	
 309	
The scale parameters σ measures the variability of the GPD distributions. The highest values of the scale 310	
parameters σ of Tmax and TWmax are observed at stations such as Jacobabad, Padidan, Karachi, Hyderabad and 311	
Chhor in all datasets. This indicates that the variability of temperature extremes is higher at these stations, and 312	
one can expect higher return values of  Tmax  and TWmax here having similar shape parameter and same threshold 313	
according to Equation 4. The scale parameters σ of the observed Tmax range from 2.08 to 2.76, and the TWmax are 314	
in 1.86 to 2.76. In the ERA Interim analysis, the scale parameter σ of Tmax is between 1.00 - 1.95, and TWmax in 315	
0.74 -1.75. We observe a difference in the scale parameters of both the observed, ERA Interim Tmax  and TWmax. 316	
We find that, unsurprisingly, the scale parameters of the bias corrected ERA Interim data are much closer to those 317	
estimated for Tmax and TWmax using the station data. In the bias corrected ERA Interim Tmax the scale parameters 318	
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σ are in 1.50 - 2.75, while for TWmax are in a range 1.40 – 2.40 (Figure 4). All the temperature scale parameters 319	
are in degree Celsius. 320	
 321	

3.4 Absolute Maxima 322	
 323	
Once the shape parameters ξ , the scale parameters σ, and the thresholds u are determined, it is possible to 324	
compute the theoretical absolute maxima using Eq. (3) (Section 2.4). Theoretical absolute maxima can be 325	
compared with the observed ones for each station to better understand whether our fits are in agreement with the 326	
observed data. The daily maximum temperature Tmax and the maximum wet-bulb temperature TWmax (station 327	
data, the ERA Interim, and the bias corrected ERA Interim) have negative shape parameters ξ at all stations. This 328	
means that according to Eq. (2) in section 2.4, the probability distribution function (pdf) is bounded by the 329	
maximum values. These maximum values are the theoretical upper limits predicted by the GPD fit. The analysis 330	
shows that the observed absolute maxima Tmax and TWmax at all stations of the three data sets are below the 331	
theoretical absolute maximum, as expected (Figure 5). This gives us confidence on the quality of our fit. The 332	
following piece of information can also be derived: assume that one observes in the future an extreme event 333	
larger than the maximum inferred in the present dataset; this may suggest some non-stationarity in the most 334	
recent portion of the dataset. 335	
 336	

3.5 Return Levels 337	
 338	
The return levels (RLs) are computed considering various return periods (2, 5, 10, 20, 50, 100-year). As remarked 339	
above, using a statistical approach based on the universality of EVT, we are able to extrapolate the results for 340	
time horizons longer than the one for which observations are taken. Clearly, uncertainties grow when longer time 341	
horizons are considered. The return level plots of the stations observed, the ERA Interim, the bias corrected ERA 342	
Interim daily maximum temperature Tmax and daily maximum wet–bulb temperature TWmax are displayed in 343	
Figures 6 and 7. The values of the RLs follow the north-south gradient of the climatic mean temperatures. The 344	
northern part of the Sindh (Jacobabad, Mohenjo-daro, Rohri, Padidan, and Nawabshah) are hotter than the 345	
southern part (Hyderabad, Chhor, Karachi, and Badin).  346	
 347	
The 2, 5, 10, 20, 50, 100-year RLs estimated in Sindh for station observed Tmax at time reach over 50°C in 348	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and over 45°C in Rohri, Hyderabad, Chhor, Karachi, Badin. 349	
The corresponding ERA Interim Tmax return levels are at least 3°C to 5°C lower in all stations, while having 350	
correct representation of the geographical variability of the field. As example, the RLs of 42°C at Badin has a 3-351	
year return period in the observations Tmax, but a 30-year return period in ERA Interim (Figure 6).  352	
 353	
The RLs of TWmax are above 35°C in all meteorological stations. As for the ERA Interim, the RLs of TWmax are 354	
greater than 30°C for all the stations except Karachi, which has RLs less than 30°C. Here, we see again that the 355	
RLs of the ERA Interim TWmax are lower than the RLs of station TWmax. Going again to the Badin stations, the 4-356	
year return period observed for TWmax is 38°C, while the ERA Interim dataset show the same RL in a 15-year 357	
return period (Figure 7). 358	
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 359	
The bias corrected ERA Interim Tmax and TWmax, show some improvements in the RLs at all stations. When 360	
looking at the Nawabshah, Hyderabad, Karachi, and Badin stations, the RLs agree with those obtained from the 361	
station data in the range 5-100 years, while disagreements exist in the range 2-5 years. In the rest of the stations, 362	
the bias corrected data RLs are closer to those of the station data, yet not statistically compatible with them. 363	
When looking at the wet-bulb temperature TWmax analysis, the RLs of the bias corrected ERA Interim show some 364	
overlap with those derived from station observations in Mohenjo-daro, Hyderabad, Chhor, and while no overlap 365	
is found in the other stations. One understands that the proposed simple bias correction methods improves the 366	
quality of the representation of extremes by ERA Interim, but many discrepancies remain (Figures 6 and 7).  367	
 368	
We also plot the station and bias corrected ERA Interim Tmax, and TWmax return levels spatially for the 5, 10, 25 369	
and 50-year return periods  (Figures 8 and 9), as a detailed spatial overview of the temperature extremes in Sindh 370	
might be of interest to the policy makers. The spatial return levels of the station and bias corrected ERA Interim 371	
Tmax shows differences in temperature; the hottest stations have the highest return levels. We notice that for 372	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah the return levels are between 50°C-53.6°C and for Rohri, 373	
Hyderabad, Chhor, Karachi, and Badin are between 45°C - 50°C in 5 to 50 years return period (Figure 8). These 374	
extreme temperatures can impact the yields because crops are very sensitive to temperature variations, and even a 375	
rise of one degree Celsius can cause detrimental changes in the phenological stages of the crops (Hatfield and 376	
Preuger, 2015). Every crop has a certain limit to tolerate the temperature. When temperature exceeds this limit, 377	
the crop yield is drastically reduced. Abbas et al., (2017) notices 33% decrease in major crops of Sindh due to 378	
warmer and drier weather. Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and 379	
mangroves forest surrounding these cities.  Furthermore, temperature extremes can have serious threat to cotton, 380	
wheat, and rice yields in Rohri and Mohenjo-daro areas due to increased crop water	requirements.  381	
 382	
In summer, the temperature and humidity increase to an extent that there are high chances of a rapid pests spread 383	
in the crops. Temperature extremes not just directly impact the quantity and quality of grains, but can also be a 384	
reason of urban flooding affecting the agriculture lands (Luo etal ., 2015). Sindh produces cotton, wheat, rice, 385	
mango, banana, and dates, so a correct estimate of temperature extremes is very important.  386	
 387	
The spatial return levels of station and bias corrected ERA Interim TWmax   for the 5, 10, 25 and 50-year return 388	
periods show highest return level greater than 35°C at all stations (Figure 9).  This is very serious for the human 389	
health due to the working day hours of population in agriculture farms, building construction, and port activities. 390	
Karachi and Badin being closet to the coast are at the highest risk of temperature extremes. Thus, an immediate 391	
plan for adaptations is needed in Sindh to deal with such a hazard. The high values of TWmax also indicate high 392	
levels of  humidity in the region during summer, which is also proved by Kalim and Shouting, (2012), and 393	
Freychet et al. (2015). 394	

4. Summary and Conclusion 395	
 396	
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The main objective of this study is the assessment of the return levels of the extreme daily maximum 397	
temperatures Tmax and wet-bulb temperatures TWmax in southern Pakistan (Sindh). In addition, the performance of 398	
the ERA Interim TWmax is compared to the weather station TWmax to assess its ability to estimate temperature 399	
extremes in Sindh. Moreover, a simple bias correction is applied to the ERA Interim data to see whether 400	
correcting the first two moments of its statistics helps in improving its performance in representing temperature 401	
extremes.  402	
 403	
The POT method is applied to the daily maximum temperature (Tmax) and wet-bulb temperature (TWmax) data of 404	
nine stations and to the corresponding nearest ERA Interim temperature data. After testing the asymptotic 405	
statistical properties, the 90% quantile is found to be appropriate threshold choice for all datasets. The Q-Q plots 406	
are used to assess the GPD fit, which results to be acceptable for both Tmax and TWmax station data for all three 407	
datasets. However, the bias corrected ERA Interim data shows improved GPD fits than the ERA Interim data. 408	
The shape parameters ξ is in general negative at all stations. The scale parameters σ show high values in 409	
Jacobabad, Padidan, Karachi, Hyderabad and Chhor indicating higher variability of temperature extremes in these 410	
regions. The return levels (RLs) of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 100-year return periods 411	
in all datasets. The RLs of Tmax estimated using the meteorological station temperatures are greater than 50°C in 412	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi and 413	
Badin. While the RLs of TWmax in station data are larger than 35°C in the entire Sindh, when using ERA Interim 414	
temperatures, they are estimated as greater than 45°C in Northern Sindh and greater than 40°C in southern Sindh.  415	
 416	
Our results predict extremely high values of  Tmax  and  TWmax   in the region. The Tmax extremes contribute to an 417	
increase rate of evaporation, which in turn may intensify the hydrological cycle causing precipitation events and 418	
flooding (Cheema et al., 2012, Luo etal., 2015).  Additionally, crops variety needs to be changed under such a hot 419	
climate to avoid the risks of temperature extremes. The extremes of daily maximum wet-bulb temperature TWmax 420	
are estimated as above the human survivability threshold 35°C throughout the region, so the risk of hyperthermia 421	
is very high here. The most vulnerable people are those who are involve in the everyday outdoor activities like 422	
farming, fishing, building construction, athletes, elderly and infants can have heat strokes, dehydration etc. The 423	
human habitability in such a warm region is already at risk and one can expect that these issues will be worse in 424	
future climate conditions. 425	
 426	
We found that the RLs of station and ERA interim showed differences are between 3°C and 5°C for both shorter 427	
and longer return periods due to the minor variations in the shape and scale parameters. Although the ERA 428	
Interim dataset does not capture well the magnitude of the extremes, still it provides a good representation of 429	
their spatial fields.  The biases between the station and the ERA Interim data are rather relevant when one wishes 430	
to address the impact of hot climatic extremes to human life and to active crop production in the region. It would 431	
be of primary importance to understand the physical reasons behind such inconsistencies, which makes it hard to 432	
use reasonably ERA without bias correction. Clearly, they might result either from a misrepresentation of local 433	
processes dominated by near surface processes (namely, heat and water fluxes), or from an inadequacy of the re-434	
analysis in reproducing synoptic and sub-synoptic conditions responsible for extremely hot and humid conditions. 435	
This matter is surely worth investigating but is well beyond the scope of this paper.  436	
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 437	
We applied a simple bias correction i.e. adjusting the mean and standard deviation to ERA Interim Tmax and 438	
TWmax data to check the improvements in return levels.  We noticed that the bias corrected ERA Interim Tmax and 439	
TWmax gives the return levels closer to the meteorological stations observed ones than the original ERA Interim 440	
return levels at all stations. Although the bias corrected ERA Interim shows a good correspondence with the 441	
meteorological station data, yet statistically differences remain in most cases.  Therefore, one must use more 442	
advanced bias correction method for analyzing extremes precisely. We propose to repeat this analysis in GCMs 443	
(CMIP5, CMIP6) and RCMs (CORDEX) to study the properties of extremes. All models use re-analysis as input, 444	
and generate information of extremes,	which involves biases that if not corrected, can lead to significant errors in 445	
prediction of present and future extremes. Therefore, in order to reduce the uncertainties in impact assessment, it 446	
is necessary to improve the re-analysis before using it in GCMs and RCMs. 447	
 448	
The results have practical implications for assessing the risk of extreme temperature events in Sindh.  All the 449	
results are placed in a web-tool SindheX [www.sindhex.org] that will be freely available online soon after the 450	
publication of this paper. The maps and graphs are prepared to guide the local administrations to prioritize the 451	
regions in terms of adaptations like preparation of baseline contingency plans for dealing with strong heat waves 452	
based on the current climatology. Such measures are not yet present in the territory and lead to many casualties 453	
each year. Our results will not only contributes to the regional planning, but can also be useful for the ongoing 454	
EU projects (SUCCESS, CSCCC), World Bank project (Sindh Resilience Project) and mega construction 455	
projects like China-Pakistan Economic Corridor (CPEC).  456	
 457	
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Table 1. Code, Name, Geographic coordinates and Altitude of the stations. 718	

 719	

 720	
 721	
 722	
 723	
 724	
 725	
 726	
 727	

   
 

Code 

 
 

Name 

 
PMD weather stations 

  
ERA-Interim stations 

              
Latitude               Longitude 

 
Altitude  

(m) 

 
 
 
 

              
Latitude                

 
Longitude 

 
JCB 

 
Jacobabad 

 
28o 18'N 

 
68o 28'E 

 
55 

 
28 o4'N 

 
68 o15'E 

MJD Mohenjo-daro 27o 22'N 68o 06'E 52.1 27o5'N 67 o75'E 

RHI Rohri 27o 40'N 68o 54'E 66 27o75'N 69 o25'E 

PDN Padidan 26o 51'N 68o 08'E 46 26o8'N 68 o5'E 

NWB Nawabshah 26o 15'N 68o 22'E 37 26o25'N 68 o0'E  

HYD Hyderabad 25o 23'N 68o 25'E 40 25o5'N 68 o15'E 

CHR Chhor 29o 31'N 69o 47' E 5 25o3'N 69 o6'E 

KHI Karachi 24o 54'N 67°08' E 21 25o2'N 67 o5'E 
 

BDN Badin 24o 38'N 68o 54'E 10 24 o75'N 68 o65'E 
 

Figure	1:	Study	Domain	(23.5	–	28.5°	N	,	66.5-	71.1°E)	
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 728	
Table 2.  Results of the Kolmogorov-Smirnov Goodness of fit test and Anderson-Darling test between   729	
              empirical and GPD fits. 730	
 731	
 732	
 733	

 734	
 735	

736	

Observed Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.947 

 
0.340 

 
0.996 

 
0.139 

 
0.941 

 
0.385 

 
0.928 

 
0.306 

 
0.666 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.553 

 
0.978 

 
0.654 

 
0.857 

 
0.157 

 
0.649 

 
0.233 

 
0.869 

 
0.145 

ERA Interim Tmax 

Test 
     Statistics  

Null  
Hypothesis 

 P-value    
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.169 

 
0.125 

 
0.553 

 
0.456 

 
0.322 

 
0.187 

 
0.419 

 
0.456 

 
0.332 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.355 

 
0.263 

 
0.165 

 
0.587 

 
0.615 

 
0.398 

 
0.266 

 
0.687 

 
0.425 

Bias corrected ERA Interim Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.452 

 
0.4729 

 
0.197 

 
0.489 

 
0.269 

 
0.137 

 
0.158 

 
0.243 

 
0.312 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.352 

 
0.315 

 
0.235 

 
0.270 

 
0.335 

 
0.289 

 
0.216 

 
0.390 

 
0227 

Observed TWmax 
Test 

     Statistics  
Null  

Hypothesis 
                P-value    

JAC MJD RHI PDN NWS HYD CHR KHI BDN 
Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.981 

 
0.111 

 
0.341 

 
0.226 

 
0.457 

 
0.545 

 
0.441 

 
0.385 

 
0.211 

	

Anderson 
Darling  

Equality of probability 
distribution 

 
0.623 

 
0.745 

 
0.587 

 
0.884 

 
0.199 

 
0.123 

 
0.789 

 
0.669 

 
0.473 

ERA Interim TWmax 
  Test 

     Statistics 
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

    
0.425 

 
0.258 

 
0.134 

 
0.856 

 
0.497 

 
0.222 0.712 0.564 0.955 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.236 

 
0.474 

 
0.516 

 
0.219 

 
0.356 

 
0.117 

 
0.537 

 
0.464 

 
0.613 

Bias corrected ERA Interim TWmax 
  Test 

     Statistics 
          Null  
     Hypothesis 

                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.268 

 
0.688 

 
0.127 

 
0.372 

 
0.268 

 
0.229 

 
0.591 

 
0.582 

 
0.478 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.373 

 
0.484 

 
0.278 

 
0.432 

 
0.306 

 
0.283 

 
0.365 

 
0.445 

 
0.483 
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 737	
 738	
Table 3. Estimated parameters shape ξ, scale σ and standard error Δξ, Δσ of all the data sets.	739	
	740	

	741	
	742	
	743	
	 	744	
 745	

Station observed Tmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.3875 -0.2550 -0.4182 -0.3261 -0.3323 -0.3292 -0.3108 -0.2225   -0.3292 

Standard Error Δξ 0.0317 0.0226 0.0226 0.0218 0.0208 0.0312 0.0371 0.0341   0.0312 

Scale σ 2.7540 2.0819 2.3510 2.2144 2.1391 2.2286 2.5629 2.5685    2.2286 

Standard Error Δσ 0.1421 0.1040 0.1075 0.1076 0.1031 0.1166 0.1462 0.1444 0.1166 

ERA Interim Tmax 
 Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.4643 1.3230 1.3440 1.5045 1.5630 2.0656 1.8497 1.3303 2.0410 

Standard Error Δσ 0.0798 0.0739 0.0741 0.0788 0.0788 0.1082 0.0949 0.0908 0.1153 

Bias Corrected ERA Interim Tmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.9834 1.7918 1.8205 2.0382 2.1164 2.7980 2.3081 1.8016 2.7636 

Standard Error Δσ 0.1081 0.1001 0.1004 0.1068 0.1068 0.1467 0.1233 0.1229 0.1562 

Station observed TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1769 -0.1860 -0.2150 -0.2157 -0.2164 -0.3231 -0.2423 -0.2190 -0.1867 

Standard Error Δξ 0.0383 0.0354 0.0347 0.0442 0.0266 0.0269 0.0347 0.0368 0.0322 

Scale σ 2.7590 2.0454 1.9600 2.0780 1.8572 2.3724 2.5126 2.3375 1.9032 

Standard Error Δσ 0.1596 0.1146 0.1084 0.1289 0.0938 0.1191 0.1380 0.1328 0.1055 

ERA Interim TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI    BDN 

Shape ξ -0.0896 -0.0946 -0.0687 -0.1257 -0.1583 -0.1771 -0.0902 -0.0194 -0.1733 

Standard Error Δξ 0.0379 0.0293 0.0327 0.0342 0.0313 0.0377 0.0357 0.0359 0.0378 

Scale σ 1.2879 1.2437 1.2311 1.4408 1.6104 1.6499 1.3423 0.6801 1.7886 

Standard Error Δσ 0.0748 0.0660 0.0676 0.0804 0.0875 0.0959 0.0760 0.0398 0.1028 

Bias Corrected ERA Interim TWmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.08961 -0.0946 -0.06870 -0.12570 -0.15831 -0.17711 -0.09017 -0.01942 -0.17332 

Standard Error Δξ 0.03786 0.02931 0.03275 0.03424 0.03134 0.03767 0.03571 0.03593 0.03782 

Scale σ 1.35674 1.64650 1.75852 1.49477 1.52013 2.05281 2.14609 1.39943 2.15299 

Standard Error Δσ 0.07878 0.08736 0.09651 0.08347 0.08254 0.11924 0.12145 0.08193 0.12370 
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 746	
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 750	
 751	
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 791	
 792	
 793	
 794	
 795	
 796	

Figure	2.	Modified	scale	(σ*)	and	shape	parameter	(ξ)	of	the	observed	Tmax		(°C)Karachi.	The						
																	red	vertical	lines	represent	the	selected		threshold	according	to	the	station	quantiles.	

Figure	3.	Mean	residual	life	plot	of	the	station	observed	Tmax	(°C) Karachi.	
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 797	
	798	

	799	
	800	
	801	
	802	
	803	
	804	
	805	

	806	
	807	
	808	
	809	
	810	
	811	
	812	
	813	

Figure	4.	Spatial	distribution	of	the	shape	parameters	ξ		and	scale	parameters	σ	of	the	station	observed,		
																			ERA	Interim,	and	bias	corrected	ERA	Interim	Tmax		(upper	panel)	and	TWmax	(lower	panel)	in		
																			degree	Celsius.	
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	814	
	815	
 816	
 817	
 818	
 819	
 820	
 821	
 822	
 823	
 824	
 825	
 826	

 827	
 828	
 829	
 830	
 831	
 832	
 833	
 834	
 835	

Figure	5.	Absolute	maxima	Amax	in	degree	Celsius	(a)	station	observed	Tmax		(b)	ERA	Interim	and	bias	corrected			
																	ERA	Interim	Tmax		(c)	station	observed	TWmax		(d)	ERA	Interim	and	bias	corrected	ERA	Interim	TWmax	.	
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 836	
 837	
 838	
 839	
 840	
 841	
 842	
	843	

	844	
	845	
	846	

	847	
	848	
	849	

Figure	6.	Return	level	plots	of	the	station	observed	Tmax	(black)	,	ERA	Interim	Tmax	(red),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	blue	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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	850	
	851	
	852	
	853	
	854	
	855	
	856	
	857	
	858	

	859	
	860	

	861	
	862	
	863	

Figure	7.	Return	level	plots	of	the	station	observed	TWmax	(blue),	ERA	Interim	Tmax	(pink),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	black	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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	864	
	865	
	866	
	867	
	868	
	869	
	870	

	871	
	872	
	873	

	874	
	875	
	876	
	877	

Figure	8.	 	 Spatial	distribution	of	 the	 station	observed	Tmax	 (red)	 and	bias	 corrected	ERA	 Interim	
Tmax	(blue)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	and	
50	years	in	southern	Pakistan.	
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	878	
	879	
	880	
	881	
	882	
	883	
 884	

 885	
 886	

 887	

Figure	9.	 Spatial	distribution	of	 the	 station	observed	TWmax	 (brown)	and	bias	corrected	ERA	Interim	
TWmax	(orange)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	and	
50	years	in	southern	Pakistan.	

	


