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Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to 10	
temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the 

recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are 

estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the Peaks over 

threshold (POT) method, which have not yet been used for similar studies in this region. Two main datasets are 

analyzed: temperatures observed in nine meteorological stations in southern Pakistan from 1980 to 2013, and the 15	
ERA Interim (ECMWF re-analysis) data for the nearest corresponding locations. The analysis provides the 2, 5, 

10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is found to be a suitable 

threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in northern stations, and 

above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in the region, which is 

considered as a limit of survivability. The RLs estimated from the ERA Interim data are lower by 3°C to 5°C than 20	
the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA Interim data 

improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the 

risk assessment of extreme temperatures in Sindh.	
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1 Introduction 
 
Extreme maximum temperature events have received much attention in recent years, because of the associated 30	
dangerous impact on the increased risk of mortality. Additionally, climate change scenarios suggest that in most 

regions the probability of occurrence of extremely high temperature is very likely to increase in the future 

(Sheridan and Allen, 2015). An example of the potential impact of raising maximum temperatures is the recent 

heat wave in southern Pakistan (Sindh), which occurred between June 17th and June 24th 2015 and broke all the 

records with a death toll of 1400 people, and over 14000 people hospitalized. The temperatures in different cities 35	
of the Sindh region were in the range of 45°C - 49°C during the event (Imtiaz and Rehman, 2015). Karachi had 

the highest number of fatalities (1200 people approximately). The Pakistan Meteorological department issued a 

technical report stating a very high heat index (measuring the heat stress on humans due to high temperature and 

relative humidity) during this heat wave (Chaudhry et al., 2015).  
 40	
In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity increases in the region 

(Chaudhry and Rasul, 2004). The extremely hot and  humid conditions can have lethal effects, and can impact the 

human habitability of a region (Pal and Eltahir 2015). The human body generally maintains the temperature 
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around 37°C. However, the human skin regulates at or below 35°C to release heat (Sherwood and Huber, 2010). 

Under high levels of the moisture content in the atmosphere, the human body cannot maintain the skin 

temperature below 35°C and can develop ailments like hyperthermia, heat strokes and cardiovascular problems. 

Hyperthermia is a condition where extremely high body temperature is reached, resulting from the inability of the 

body to get rid of the excess heat. It occurs mostly when temperature and relative humidity levels are extremely 5	
high at the same time. Hyperthermia can occur even in the fittest human beings, if exposed to an environment 

where wet-bulb temperature is greater than 35°C for at least six hours. 
 

This study devotes special attention to Sindh because of its exposure to the frequent and intense temperature 

extremes in the past (Zahid and Rasul, 2012). This region is considered as one of the most vulnerable regions in 10	
Pakistan. Sindh stretches from 23.5° N – 28.5° N and 66.5°E - 71.1°E, and is bounded on the west by the Kirthar 

Mountains, to the north by the Punjab plains, on the east by the Thar desert and to the south by the Arabian Sea 

(Indian Ocean), while in the center there is a fertile land around the Indus river. The Indus river is the source of 

water for the agricultural lands. Cotton, wheat and sugar cane are grown on the left bank of the Indus and rice, 

wheat and gram on the right bank (Chaudhry and Rasul, 2004). Cotton is the cash crop of the country. 15	
 

The climate in Sindh is arid and subtropical with less than 250 mm annual rainfall. The temperature frequently 

exceeds 45°C in summer (May-September) and the minimum average temperature recorded during winter 

(December- January) is 2°C. Table 1 shows the mean monthly climatic characteristics of the region from 1980-

2010. Figure 1 shows the spatial distribution of all nine weather stations of Pakistan meteorological department, 20	
and the ERA Interim grid points close to the corresponding locations. High population density, limited resources, 

poor infrastructure and high dependence of the local agriculture on climatic factors, mark this region as highly 

vulnerable to the impacts of climate change. 
 

The Intergovernmental Panel on Climate Change (IPCC) scenarios estimates for this region an increase in the 25	
surface temperature of the order of 4°C by the end of 2100. This may significantly reduce crop yields, and cause 

huge economic losses to the country (Islam et al., 2009; Rasul et al., 2012; IPCC, 2012, 2014). Furthermore,  the 

risks of heat strokes, cardiac arrest, high fever, diarrhea, cholera and vector borne diseases might increase. Heat 

waves became more frequent and intense during 90’s in Southern Pakistan. Zahid and Rasul (2010) reports a 

significant rise in the heat index and heat wave events longer than ten days in Sindh. The enhanced mortality rate 30	
related to the heat waves is a serious problem, and two obvious examples are the 1991 and the previously 

mentioned 2015 heat waves (Imtiaz and Rehman, 2015).  
 

The analysis of extreme climatic events is a very active area of research in geosciences (Christidis et al., 2005, 

2010; Tebaldi et al., 2006; Zwiers et al., 2011; Morak et al., 2011, 2013). In order to facilitate and standardize the 35	
analysis of extremes, the World Meteorological Organization (WMO) has suggested 27 specific climate indices, 

like the number of hot days, cold days, wet days, dry days, etc. (Tank et al., 2006; 2009, Frisch et al., 2002; Choi 

et al., 2009; Lustenberger et al., 2014). The investigation and analysis of such climate indices has now reached a 

high level of popularity. 
 40	
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Extreme value theory (EVT) provides the statistical basis for increasingly widespread quantitative investigation 

of extremes in climate studies  (Coles, 2001, Zhang et al., 2004; Brown et al., 2008; Faranda et al., 2011; Acero 

et al., 2014). The peaks over threshold (POT) approach aims at describing the distribution of the exceedances of 

the stochastic variable of interest above a threshold. Under very general conditions, the exceedances are 

asymptotically distributed according to the Generalized Pareto Distribution (GPD). GPD has remarkable 5	
properties of universality when the asymptotic behavior is considered (Lucarini et al., 2016), while one can 

expect that the threshold level above which the asymptotic behavior is achieved depends on the characteristics of 

the analyzed time series. In particular, when looking at spatial fields, the threshold level depends on the 

geographical location.  
 10	
In this study, we have chosen to use the POT method to assess the temperature extremes in the Sindh region, 

because it provides a more efficient use of data and has better properties of convergence when finite datasets are 

considered (Lucarini et al., 2016). Additionally, we are here interested in investigating the actual tails of the 

distributions, so the POT approach is more appropriate. It is applied for studying temperature extremes in 

different regions of the world (Burgueño et al., 2002; Nogaj et al., 2006; Coelho et al., 2007; Ghil et al., 2011). 15	
However, to our knowledge, the POT method was never used to analyze the risk of temperature extremes in 

Sindh. The POT approach provides estimates of return periods and the return levels also for time ranges even 

longer than what is currently observed. This information and this predictive power can be beneficial for policy 

makers and other stakeholders. Note that this is exactly the kind of information planners need when, e.g., 

designing infrastructures that are deemed to last a very long time. 20	
 

It is useful to consider two indicators of extremely hot conditions: (1) temperature extremes Tmax, and (2) Wet-

bulb temperature extremes TWmax. Up to now, there has been no investigation using EVT of the temperature 

extremes in southern Pakistan (Sindh). Thus, considering the need and relevance of the information such a study 

is necessary and timely.   Therefore, we estimate the return levels of extreme daily maximum temperatures Tmax 25	
and daily maximum wet-bulb temperatures TWmax over the different return periods during summer (May-

September) in Sindh. We apply the POT method on the observational data of the nine weather stations provided 

by Pakistan Meteorological Department, and the ERA Interim re-analysis data of European Center for Medium 

range Weather Forecast (ECMWF) model for the corresponding grid points from 1980 to 2013. ERA Interim re-

analysis data are generally very good at replicating trends in percentile-based measures of temperature extremes 30	
(Cornes and Jones, 2013). But it is in principle not obvious that ERA data can simulate well meteorological 

extremes, as reanalysis are constructed in such a way that typical conditions are well reproduced. This is why we 

look at how well ERA data performs in the target area against observations. If the ERA Interim dataset 

characterizes well the extremes, it could be an option for the regions within Sindh where no observational data is 

available. Furthermore, a standard bias correction is applied on the ERA Interim data to assess whether the return 35	
levels of extremes are better predicted after the rescaling. As described below, given the shortness of the datasets, 

it is appropriate at this stage to analyze the extremes without taking into considerations possible long-term trends.   
 

The paper is organized as follows. In Section 2, the statistical modeling of extremes using the POT method is 

briefly described along with a description of the data used. Section 3 presents the main results of the POT 40	
analysis of the meteorological station observations, ERA Interim, and bias corrected ERA Interim daily 
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maximum temperature Tmax and wet-bulb temperature TWmax data at nine locations, viz. Jacobabad, Mohenjo-

daro, Rohri, Padidan, Nawabshah, Hyderabad, Chhor, Karachi, and Badin. The performance of the ERA Interim 

and bias corrected ERA Interim in comparison to observations is also described in Section 3. All computations 

and graphics in this work are done using the R free open source statistical software, using the packages ismev and 

extRemes (see www.R-project.org and R Development core team 2015). Section 4 summarizes the major 5	
findings of the study and concludes our work. 

2. Data and Methodology 

2.1 Meteorological station data 
 

The daily maximum temperature and relative humidity data recorded at nine meteorological stations in Sindh 10	
from 1980 to 2013 are provided by the Pakistan Meteorological Department (see Table 2).  We select nine 

stations, which contain a negligible amount of missing values after 1980, and are suitable for the POT analysis. 

An additional criterion is that only those stations are chosen where no changes occurred in measuring instruments 

during the last 33 years (Brunetti et al., 2006). None of the station data shows gaps with a duration longer than 

two days, which are treated by replacing the missing value with the average of the two previous values. 15	
 

The temperature data are discretized unevenly with intervals up to 1 degree Celsius. Deidda and Puliga (2006) 

proposed a Monte Carlo approach for addressing this issue. They showed that finite resolution in precipitation 

data affects the convergence of parameter estimation in the extreme value analysis. They suggested generating 

many synthetic datasets by adding numerical noise to the original data, and then providing the best estimate of 20	
the parameters of the extreme value distributions by averaging over all the best fits obtained in each synthetic 

dataset. Following their suggestion, we produce high resolution data to compensate the effect of discretization 

and thus to improve the convergence of the estimator. In order to convert the temperature readings to higher 

resolution, we add a uniform random variable in the interval [-0.5, 0.5]. The main property of this noise is that 

round (T+r) = T, where T is the temperature with 1-degree resolution and ‘round’ is the numerical function, 25	
which maps the interval [T-0.5, T+0.5] to T. Thus, adding the noise does not perturb the information content of 

the observations. This procedure is applied to all temperature data, irrespective of the actual resolution, and 

replicated 100 times using a Monte Carlo approach. For each synthetic dataset, we perform the statistical best fit 

described later in the paper and then average the results. We check the influence of this noise parameterization 

and find no significant bias in the return level estimates. The advantage of adding a noise is to avoid the spurious 30	
statistical effects associated to the presence discrete values assigned to the temperature readings. Using the 

described bootstrap method we reduce such problem without biasing the data.  

 

2.2 ERA Interim re-analysis data 
 35	
The gridded daily maximum temperature and relative humidity data of ERA Interim re-analysis is obtained from 

the ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets/). The ERA Interim is generated by 

the European Center for Medium range Weather Forecast (ECMWF) model with resolution 0.75° × 0.75° (Dee et 
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al., 2011). The gridded data are then extracted at the closest grid points of all stations, for the period 1980-2013. 

The latitude and longitude of the ERA Interim stations are displayed in Table 2.  

 

The extreme temperatures analysis is restricted to the summer season (May-September) over a period of 33 years.	
We have tested that trends are not significant in such a short time interval. One of the main requirements for 5	
performing the POT analysis is assuming the stationarity of the time series.  Therefore, as in Bramati et al. 

(2014), the Augmented Dickey Fuller (ADF) test of stationarity is performed on all time series (Dickey and 

Fuller, 1979). In all cases we find no sign of long-term correlations in the data. Short-term correlations (daily 

time scale) typically lead to clusters of extreme values and are studied by computing the extremal index θ in all 

time series and treated using the associated standard declustering technique (see more details in Section 2.4).  10	

2.3 Wet-bulb temperature calculations 
 

The wet-bulb temperature measures the heat stress better than other existing heat indices, because it establishes 

the clear thermodynamic limit on heat transfer that cannot be overcome by adaptations like clothing, activity and 

acclimatization (Pal and Eltahir 2015, Sherwood and Huber, 2010). Here, we use an empirical equation 15	
developed by Stull (2011) to measure the wet-bulb temperature. 

 

𝑇𝑊 = 𝑇  atan (𝛼! RH + 𝛼!) + atan 𝑇 + RH − atan RH +  𝛼! +  𝛼!(RH) 
!
! atan(𝛼!𝑅𝐻) − 𝛼!

                      
                                                                                                      (1) 20	
  
 

where TW is the wet-bulb temperature [°C], T is the temperature [°C], and RH   is the relative humidity [%]. This 

relationship is based on an empirical fit, as in Stull (2011), where the coefficient values are α1 = 0.151977, α2 = 

8.313659, α3 = -1.676331, α4 = 0.00391838, α5 = 0.023101, and  α6 = 4.686035. Equation (1) covers a wide range 25	
of relative humidity and air temperatures with an accuracy of 0.3°C. 

2.4 Peaks over Threshold 
 
 

In order to determine the return levels of extreme maximum temperatures and maximum wet-bulb temperatures, 30	
the peaks over threshold approach is applied to the data obtained from the meteorological stations in Sindh, and 

from the ERA Interim archive.  

 

Multi-occurrence is an important characteristic of extreme climatic events and is referred to as clustering. 

Clusters are consecutive occurrences of above threshold events. It is important to post process the clustered 35	
extremes in order to take into account the assumption of weak short time correlation between extreme events, 

which is crucial for our statistical analysis. We have treated the clusters using the concept of Extremal Index (EI) 

(see Newell, 1964, Loynes, 1965, O'Brien, 1974, Leadbetter, 1983, Smith, 1989, Davison and Smith, 1990). The 

Extremal Index θ measures the degree of clustering of extremes. It ranges between 0 and 1, (θ = 0 means strong 

clustering and dependence,   θ = 1 absence of clusters and independence). Leadbetter (1983) interprets 1/θ as the 40	
mean number of exceedances in a cluster. 
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The extremal index θ can be estimated in two separate ways. Here, we apply the ‘intervals estimator’ automatic 

declustering by Ferro and Segers (2003). A positive aspect of this method is that it avoids the subjective choice of 

cluster parameters. The main ingredient is the use of an asymptotic result for the times between threshold 

exceedances. The exceedance times are split into two types, a set of vanishing intra-exceedance times within the 5	
clusters, and an exponentially distributed set of inter-exceedance times between clusters. The method is iterative, 

starting with largest return times and stops when a limit for the inter-exceedance times is reached. The standard 

errors of the estimated parameters is obtained by a bootstrap procedure. In this study, once we select appropriate 

value for the threshold (see below) the extremal index value is ≤ 0.5 in all the considered time series.  Therefore, 

it is necessary to decluster the extremes by choosing the largest event in each cluster, before fitting it to the GPD. 10	
 

As mentioned before, we use as statistical model for the exceedances over threshold the Generalized Pareto 

Distribution (GPD), which is characterized by two parameters, the shape ξ and the scale σ. The GPD for 

exceedances 𝑥 − 𝑢 of a random variable 𝑥 reads as 

 15	

           𝐺 𝑥 = 1 − 1 + 𝜉
𝑥 − 𝑢
𝜎

!!!             𝑥 > 𝑢, 𝜉 ≠ 0  ,             (2) 
 
where 𝑢 is the threshold. The shape parameter ξ determines the tail behavior while the scale parameter σ 

measures the variability. For a negative shape parameter, ξ < 0, the distribution is bounded (Weibull distribution), 

for vanishing shape parameter, ξ = 0, the distribution is exponential, and for a positive shape parameter, ξ > 0, the 

distribution has no upper bound (Pareto distribution). 20	
 

In particular, for a negative shape parameters ξ <0 the GPD has the upper bound 

 
                    𝐴!"# = 𝑢 − 𝜎 𝜉                                                                   (3) 

 
                                   𝐺 𝑥 = 0                                𝑥 > 𝐴!"# , 𝜉 < 0                

 25	
where 𝐴!"#  is an absolute maximum (Lucarini et al., 2014). In general, the best estimate for the two parameters 

shape ξ and scale σ depend on the threshold u (Coles, 2001). The choice of the optimal threshold for performing 

statistical inference from a time series is crucial. Choosing a very large value for 𝑢 reduces the number of 

exceedances to a few values, inflating the variance of the estimators, so that the analysis is unlikely to yield any 

useful results. On the other hand, choosing a too small value for 𝑢  would violate  the asymptotic nature of the 30	
model, with a possible biased estimation and wrong model selection (Coles, 2001), see details later in Section 

3.1. The shape ξ, the scale σ and the return levels are estimated using the Maximum Likelihood Estimator (MLE) 

using the R software (R Development core team 2015), which also provides an estimate of the standard error of 

the estimates. 

 35	
Additionally, we wish to investigate the N - years return levels x!, which are exceeded on the time scale of N 

years (Coles, 2001) and can be expressed as 

                                                                                                                   
                                                𝑥! = 𝑢 + !

!
(𝑁𝑛!𝜁!)! − 1  ,                                                                             (4) 
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where N represents the return period in years, ny is the number of observations per year , ζ!  is the probability of 

an individual observation exceeding the threshold 𝑢, the shape parameter is  ξ and the scale parameter is σ. 

	

2.5. Bias Correction Method  5	
 
A simple bias correction is applied to each ERA Interim time series through a rescaling that adjust the first two 

moments (mean and variance) to the sample moments calculated on the corresponding observations. Therefore, 

the bias correction is applied to the entire time series and it is not tailored to the extreme events only. The idea is 

to check whether by adjusting the properties of the bulk of the statistics we improve considerably the skill of the 10	
ERA Interim dataset in describing extreme events.  The bias corrected ERA Interim time series 𝑥 is expressed as    

 

𝑥 =  𝑧 +   
𝑦!"# − 𝑦

σ!
  σ! 

   (5) 
 

where  𝑦!"# is the ERA Interim time series,  𝑦  and  σ! its mean and standard deviation, whereas 𝑧  and σ! are 15	
the mean and standard deviation of the meteorological station temperatures.  

3. Results and Discussion  

3.1 Threshold Selection  
 

The threshold selection is the first step in a POT analysis. One needs to test whether the asymptotic regime is 20	
reached, i.e. whether we are choosing true extremes. This can be investigated by checking whether the best fits of 

the shape parameter ξ and the modified scale parameter σ*= σu – ξu  are stable with respect to increases in the 

chosen value of u (Sacrrott and MacDonald, 2012).The optimal threshold u is selected as the lowest value where 

the two parameters are invariant in order to reach the asymptotic limit (Coles, 2001 and Furrer et al., 2010). This 

choice allows for having as many data as possible for performing the statistical inference, thus having lower 25	
variance for the estimators of the parameters. Figure 2 shows the parameter stability plots of the Tmax reading for 

Karachi, as an example to explain the threshold selection procedure.   

 

In addition to diagnostic plots of the modified scale parameter σ* and the shape parameter ξ, the mean residual 

life plot is used to select the appropriate threshold for the POT analysis (Davison and Smith, 1990). The idea is to 30	
select the lowest value of the threshold when the plot is approximately linear. In the case of the Karachi,data for 

Tmax , the plot appears to be linear and stable for u = 36oC, indicating u = 36 as the most suitable threshold for the 

POT analysis (Figure 3). We observe that the 90% quantile is an appropriate threshold for all the station data, as 

well as the ERA interim datasets, and for both Tmax, and TWmax.  

3.2 GPD Fit 35	
 

The goodness of fit is evaluated by Quantile-Quantile (Q-Q) plots and hypothesis testing. The Q-Q plot analysis 

is performed for the stations observed, the ERA Interim, the bias corrected ERA Interim daily Tmax and TWmax. 
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The Q-Q plots of the observed Tmax show that the GPD fits well in most stations. However, in a few stations like 

Jacobabad, Mohenjo-daro, Padidan and Chhor the empirical values show slight deviation from the modeled 

values. In spite of minor deviations at some stations, still most of the exceedances are well fitted by the model.  

The Q-Q plots of the observed TWmax also fits well to the model in all stations.  

 5	
The Q-Q plots of the ERA Interim Tmax  and TWmax reveals substantial differences with respect to the GPD. The 

empirical values of the higher quantiles are deviating from the theoretical quantiles in all stations. However, if the 

higher quantiles are disregarded, then stations like Jacobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, 

Chhor, and Badin fits very well with the model. The Q-Q plots of the bias corrected ERA Interim Tmax, and TWmax 

show better results than the ERA Interim. We notice that the Tmax of the ERA Interim and bias corrected ERA 10	
Interim fits better than the TWmax if the higher quantiles are ignored, indicating the bias procedure is, as expected, 

unable to treat correctly the statistics of the largest events. 

 

In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) 

test to the data of meteorological stations, ERA Interim, bias corrected ERA Interim Tmax and TWmax. The p-15	
values indicate a good performance of the fit procedure. Table 3 shows the results of the K-S and A-D statistics 

of the Tmax and TWmax in all the data sets. 

3.3 Parameter Estimates  
 

Here, we analyze the shape parameter ξ , the scale parameter σ, and  threshold u for all considered datasets. The 20	
standard errors of the shape ξ and the scale σ parameters are given in Table 4. The spatial distribution of the 

shape parameter ξ and the scale parameter σ of the GPD in Sindh are shown in Figure 4. The shape parameters ξ 

are negative in all datasets at all stations. This is hardly surprising, as meteorological and physical processes 

make sure that the temperature cannot grow locally without control. Figure 4 displays the bias corrected ERA 

Interim results only. The observed Tmax shape parameters ξ are between -0.418 to -0.223, and for TWmax within -25	
0.323 to -0.177. The bias corrected ERA Interim Tmax shape parameters ξ range from -0.305 to -0.002, and TWmax 

are between -0.18 to -0.01. The agreement in the values of the shape parameters in the observations and 

simulations means that the ERA dataset captures an important aspect of extremal behavior. This is in principle a 

non-trivial result, as reanalysis are constructed in such a way that typical conditions are well reproduced. 

 30	
The scale parameters σ of the observed Tmax range from 2.08 to 2.76, and the TWmax are in 1.86 to 2.76. In the 

ERA Interim analysis, the scale parameter σ of Tmax is between 1.00 - 1.95, and TWmax in 0.74 -1.75. We observe 

a difference in the scale parameters of both the observed, ERA Interim Tmax  and TWmax. We find that, 

unsurprisingly, the scale parameters of the bias corrected ERA Interim data are much closer to those estimated for 

Tmax and TWmax using the station data. In the bias corrected ERA Interim Tmax the scale parameters σ are in 1.50 - 35	
2.75, while for TWmax are in a range 1.40 – 2.40 (Figure 4). All the temperature scale parameters are in degree 

Celsius. 

 

3.4 Absolute Maxima 
 40	
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Once the shape parameters ξ , the scale parameters σ, and the thresholds u are determined, it is possible to 

compute the theoretical absolute maxima using Eq. (3) (Section 2.4). Theoretical absolute maxima can be 

compared with the observed ones for each station to better understand whether our fits are in agreement with the 

observed data. The daily maximum temperature Tmax and the maximum wet-bulb temperature TWmax (station 

data, the ERA Interim, and the bias corrected ERA Interim) have negative shape parameters ξ at all stations. This 5	
means that according to Eq. (2) in section 2.4, the probability distribution function (pdf) is bounded by the 

maximum values. These maximum values are the theoretical upper limits predicted by the GPD fit. The analysis 

shows that the observed absolute maxima Tmax and TWmax at all stations of the three data sets are below the 

theoretical absolute maximum, as expected (Figure 5). This gives us confidence on the quality of our fit. The 

following piece of information can also be derived: assume that one observes in the future an extreme event 10	
larger than the maximum inferred in the present dataset; this may suggest some non-stationarity in the most 

recent portion of the dataset. 

3.5 Return Levels 
 

The return levels (RLs) are computed considering various return periods (2, 5, 10, 20, 50, 100-year). The return 15	
level plots of the stations observed, the ERA Interim, the bias corrected ERA Interim daily maximum temperature 

Tmax and daily maximum wet–bulb temperature TWmax are displayed in Figures 6 and 7. The values of the RLs 

follow the north-south gradient of the climatic mean temperatures. The northern part of the Sindh (Jacobabad, 

Mohenjo-daro, Rohri, Padidan, and Nawabshah) are hotter than the southern part (Hyderabad, Chhor, Karachi, 

and Badin).  20	
 

The 2, 5, 10, 20, 50, 100-year RLs estimated in Sindh for station observed Tmax at time reach over 50°C in 

Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and over 45°C in Rohri, Hyderabad, Chhor, Karachi, Badin. 

The corresponding ERA Interim Tmax return levels are at least 3°C to 5°C lower in all stations, while having 

correct representation of the geographical variability of the field. As example, the RLs of 42°C at Badin has a 3-25	
year return period in the observations Tmax, but a 30-year return period in ERA Interim (Figure 6).  

 

The RLs of TWmax are above 35°C in all meteorological stations. As for the ERA Interim, the RLs of TWmax are 

greater than 30°C for all the stations except Karachi, which has RLs less than 30°C. Here, we see again that the 

RLs of the ERA Interim TWmax are lower than the RLs of station TWmax. Going again to the Badin stations, the 4-30	
year return period observed for TWmax is 38°C, while the ERA Interim dataset show the same RL in a 15-year 

return period (Figure 7). 

 

The bias corrected ERA Interim Tmax and TWmax, show some improvements in the RLs at all stations. When 

looking at the Nawabshah, Hyderabad, Karachi, and Badin stations, the RLs agree with those obtained from the 35	
station data in the range 5-100 years, while disagreements exist in the range 2-5 years. In the rest of the stations, 

the bias corrected data RLs are closer to those of the station data, yet not statistically compatible with them. 

When looking at the wet-bulb temperature TWmax analysis, the RLs of the bias corrected ERA Interim show some 

overlap with the those derived from station observations in Mohenjo-daro, Hyderabad, Chhor, and while no 

overlap is found in the other stations. One understands that the proposed simple bias correction methods 40	
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improves the quality of the representation of extremes by ERA Interim, but many discrepancies remain (Figures 6 

and 7).  

We also plot the station and bias corrected ERA Interim Tmax, and TWmax return levels spatially for the 5, 10, 25 

and 50-year return periods  (Figures 8 and 9), as a detailed spatial overview of the temperature extremes in Sindh 

might be of interest to the policy makers. 5	

4. Summary and Conclusion 
 

The main objective of this study is the assessment of the return levels of the extreme daily maximum 

temperatures Tmax and wet-bulb temperatures TWmax in southern Pakistan (Sindh). In addition, the performance of 

the ERA Interim TWmax is compared to the weather station TWmax to assess its ability to estimate temperature 10	
extremes in Sindh. Moreover, a simple bias correction is applied to the ERA Interim data to see whether 

correcting the first two moments of its statistics helps in improving its performance in representing temperature 

extremes.  

 

The peaks over threshold method is applied to the daily Tmax and TWmax data of nine stations and to the 15	
corresponding nearest ERA Interim temperature data. Standard declustering technique is applied to all time series 

to achieve the independence assumption of extremes. After testing the asymptotic statistical properties, the 90% 

quantile is found to be appropriate threshold choice for all the weather stations, the ERA Interim and the bias 

corrected ERA Interim maximum temperature and wet-bulb temperature. A Generalized Pareto Distribution 

(GPD) is fit to both Tmax and TWmax for all three datasets. The results conclude that the shape parameter ξ is 20	
negative at all stations. The scale parameter σ estimated on weather station temperatures is much closer to the 

bias corrected ERA Interim estimates than the original ERA Interim data ones. The theoretical absolute maxima 

of the time series are higher than the observed absolute maxima in all stations. The Q-Q plots are used to assess 

the GPD fit, which results to be acceptable for both Tmax and TWmax station data as compared to the ERA Interim 

data. However, the bias corrected ERA Interim data shows improved GPD fits than ERA Interim data. 25	
 

The return levels (RLs) of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 100-year return periods in all 

datasets. The RLs of Tmax estimated using the meteorological station temperatures are greater than 50°C in 

Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi and 

Badin. While the RLs of TWmax in station data are larger than 35°C in the entire Sindh, when using ERA Interim 30	
temperatures, they are estimated as greater than 45°C in Northern Sindh and greater than 40°C in southern Sindh. 

The differences in the RLs using the two datasets are between 3°C and 5°C for both shorter and longer return 

periods due to the minor variations in the shape and scale parameters. Although the ERA-Interim dataset does not 

capture well the magnitude of the extremes, but it provides a good representation of their spatial fields. 

 35	
The bias corrected ERA Interim Tmax and TWmax gives return levels closer to the meteorological stations observed 

ones than the original ERA Interim return levels at all stations. Although the bias corrected ERA Interim shows a 

good correspondence with the meteorological station data, statistically differences remain in most cases.  

Therefore, one must use more advanced bias correction method for analyzing extremes precisely. 
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The extremes of daily maximum wet-bulb temperature TWmax are estimated as above the human survivability 

threshold 35°C throughout the region, so the risk of hyperthermia is very high here. The most vulnerable people 

are those who are involve in the everyday outdoor activities like farming, fishing, building construction, athletes, 

elderly and infants can have heat strokes, dehydration etc. The human habitability in such a warm region is 5	
already at risk and one can expect that these issues will be worse in future climate conditions. 

 

The crops are very sensitive to temperature variations, and even a rise of one degree Celsius can cause 

detrimental changes in the phenological stages of the crops (Hatfield and Preuger, 2015). Every crop has a certain 

limit to tolerate the temperature. When temperature exceeds this limit, the crop yield is drastically reduced. In 10	
summer, the temperature and humidity increase to an extent that there are high chances of a rapid pests spread in 

the crops. Sindh produces cotton, wheat, rice, mango, banana, and dates, so a correct estimate of temperature 

extremes is very important. 

 

This clarifies that the biases between the station and the ERA Interim data are rather relevant when one wishes to 15	
address the impact of hot climatic extremes to human life and to active crop production in the region. It would be 

of primary importance to understand the physical reasons behind such inconsistencies, which makes it hard to use 

reasonably ERA without bias correction. Clearly, they might result either from a misrepresentation of local 

processes dominated by near surface processes (namely, heat and water fluxes), or from an inadequacy of the re-

analysis in reproducing synoptic and sub-synoptic conditions responsible for extremely hot and humid conditions. 20	
This matter is surely worth investigating but is well beyond the scope of this paper.  

 

This paper contains beneficial information regarding the assessment of the temperature extremes in Sindh, which 

could help the local administrations to prioritize the regions in terms of adaptations like preparation of baseline 

contingency plans for dealing with strong heat waves based on the current climatology. Such measures are not yet 25	
present in the territory and lead to many casualties each year. While the stationary analysis presented here has 

already relevance in terms of impacts for the public and private sector as it fills a research gap, and is statistically 

motivated by the short duration of the observational dataset (33 years). Indeed, it seems relevant to investigate 

time dependency in the temperature extremes. We might consider using the centennial NCEP reanalysis (Compo 

et al., 2011) and using suitable bias correction procedures. We propose to repeat this analysis in GCMs (CMIP5, 30	
CMIP6) and RCMs (CORDEX) to study the properties of extremes. All models use re-analysis as input, and 

generate information of extremes,	which involves biases that if not corrected, can lead to significant errors in 

prediction of present and future extremes. Therefore, in order to reduce the uncertainties in impact assessment, it 

is necessary to improve the re-analysis before using it in GCMs and RCMs. 
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Table 1. Monthly mean climatic characteristics of all nine stations from1980-2010. 
 

 5	
 

Table 2. Code, Name, Geographic coordinates and Altitude of the stations. 
 

 

Stations Mean Temperature (°C)  
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Jacobabad 15.2 18.2 24 30.5 35.6 37 34.8 33 31.4 27.8 22.3 16.7 27 
Mohenjo-
daro 

13.9 16.7 23 29.1 34.1 35 33.9 32.9 30.9 26.7 21.1 15.9 25.9 

Rohri 15.6 18.2 23.6 29.8 34.5 35.6 33.9 32.3 31.2 27.6 22.1 16.9 26.4 
Padidan 14.8 17.7 23.5 29.9 34.4 35.5 33.7 32.1 31 27.5 22.4 16.4 26.5 
Nawabshah 15.4 18 24 29.8 34.5 35.6 34 32.3 31.5 28 22.4 16.9 26.7 
Hyderabad 18 21 26.2 30.9 33.3 34 32.4 31.1 31 29.6 24.8 19.6 27.6 
Chhor 16.5 19.5 25 30.1 33.5 33.7 31.6 30.1 30.1 28.2 22.6 17.9 26.3 
Karachi 18.6 21.2 25.4 28.9 31.1 31.9 30.5 29.2 29.5 28.9 24.6 20.4 26.4 
Badin 17.5 20.5 25.8 30.1 32.6 32.8 31 29.6 29.6 28.7 24 19 26.6 
              Stations Minimum Temperature (°C)  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 
Jacobabad 7.9 10.9 16.6 22.4 27.4 29.8 29.3 28.4 26.3 20.5 14.3 8.9 19.9 
Mohenjo-
daro 

4.7 7.9 13.3 18.9 24 27.4 27.9 27 24.7 18.2 11.8 7.3 17.3 

Rohri 8.3 10.8 15.9 21.7 26.1 27.7 27.1 26 24.4 19.9 14.2 9.6 18.7 
Padidan 6.5 8.9 14.5 20.2 24.7 27 26.9 25.8 23.7 18.3 12.4 7.6 17.8 
Nawabshah 6.3 8.7 14.2 19.4 24.6 27.3 27.2 25.9 23.8 18.4 12.4 7.8 17.9 
Hyderabad 11.4 13.9 18.8 22.8 26.1 27.9 27.6 26.5 25.4 22.5 17.4 13 21.1 
Chhor 5.9 8.9 14.8 20.3 24.8 26.9 26.5 25.3 23.9 18.7 11.8 7 17.6 
Karachi 11.5 14 18.6 23 26.6 28.3 27.6 26.3 25.6 21.9 16.8 12.7 20.7 
Badin 9.9 12.6 17.9 22.3 25.7 27.6 27.1 26 25 22.1 16.5 11.4 20.2 
              Stations Maximum Temperature (°C)  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 
Jacobabad 22.6 25.6 31.4 38.6 43.9 44.4 40.2 37.6 36.8 35.1 30.3 24.4 34.1 
Mohenjo-
daro 

23.1 26.2 32.1 38.7 43.8 44.2 40.9 38.7 37.5 35.2 30.5 24.8 34.5 

Rohri 22.6 25.6 31.2 38.1 43 43.5 40.5 38.3 37.8 35.2 30 24.3 34 
Padidan 23.1 26.4 32.2 39.4 43.9 44.1 40.6 38.4 38.3 36.3 31.1 25.3 34.8 
Nawabshah 24.5 27.9 33.8 40.2 44.2 43.9 40.7 38.8 39 37.7 32.3 26.1 35.5 
Hyderabad 24.7 28.1 33.7 38.8 41.3 40 37.2 35.6 36.3 36.7 31.9 26.2 34.1 
Chhor 26.9 29.9 35.2 40 42 40.6 36.8 34.9 36.3 37.6 33.5 28.7 35 
Karachi 26.3 28.4 32.2 34.7 35.5 35.4 33.3 32.1 33.2 35.5 32.5 28.2 32 
Badin 25.2 28.3 33.7 37.8 39.4 37.9 34.9 33.2 34.2 35.2 31.4 26.5 32.9 
              

   
 

Code 

 
 

Name 

 
PMD weather stations 

  
ERA-Interim stations 

              
Latitude               Longitude 

 
Altitude  

(m) 

 
 
 
 

              
Latitude                

 
Longitude 

 
JCB 

 
Jacobabad 

 
28o 18'N 

 
68o 28'E 

 
55 

 
28 o4'N 

 
68 o15'E 

MJD Mohenjo-daro 27o 22'N 68o 06'E 52.1 27o5'N 67 o75'E 

RHI Rohri 27o 40'N 68o 54'E 66 27o75'N 69 o25'E 

PDN Padidan 26o 51'N 68o 08'E 46 26o8'N 68 o5'E 

NWB Nawabshah 26o 15'N 68o 22'E 37 26o25'N 68 o0'E  

HYD Hyderabad 25o 23'N 68o 25'E 40 25o5'N 68 o15'E 

CHR Chhor 29o 31'N 69o 47' E 5 25o3'N 69 o6'E 

KHI Karachi 24o 54'N 67°08' E 21 25o2'N 67 o5'E 
 

BDN Badin 24o 38'N 68o 54'E 10 24 o75'N 68 o65'E 
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Table 3.  Results of the Kolmogorov-Smirnov Goodness of fit test and Anderson-Darling test between   
              empirical and GPD fits. 
 

 5	
 
 
 
 
 10	
 

 

Observed Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.947 

 
0.340 

 
0.996 

 
0.139 

 
0.941 

 
0.385 

 
0.928 

 
0.306 

 
0.666 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.553 

 
0.978 

 
0.654 

 
0.857 

 
0.157 

 
0.649 

 
0.233 

 
0.869 

 
0.145 

ERA Interim Tmax 

Test 
     Statistics  

Null  
Hypothesis 

 P-value    
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.169 

 
0.125 

 
0.553 

 
0.456 

 
0.322 

 
0.187 

 
0.419 

 
0.456 

 
0.332 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.355 

 
0.263 

 
0.165 

 
0.587 

 
0.615 

 
0.398 

 
0.266 

 
0.687 

 
0.425 

Bias corrected ERA Interim Tmax 
Test 

     Statistics  
Null  

Hypothesis 
                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.452 

 
0.4729 

 
0.197 

 
0.489 

 
0.269 

 
0.137 

 
0.158 

 
0.243 

 
0.312 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.352 

 
0.315 

 
0.235 

 
0.270 

 
0.335 

 
0.289 

 
0.216 

 
0.390 

 
0227 

Observed TWmax 
Test 

     Statistics  
Null  

Hypothesis 
                P-value    

JAC MJD RHI PDN NWS HYD CHR KHI BDN 
Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.981 

 
0.111 

 
0.341 

 
0.226 

 
0.457 

 
0.545 

 
0.441 

 
0.385 

 
0.211 

	

Anderson 
Darling  

Equality of probability 
distribution 

 
0.623 

 
0.745 

 
0.587 

 
0.884 

 
0.199 

 
0.123 

 
0.789 

 
0.669 

 
0.473 

ERA Interim TWmax 
  Test 

     Statistics 
Null  

Hypothesis 
                                               P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

    
0.425 

 
0.258 

 
0.134 

 
0.856 

 
0.497 

 
0.222 0.712 0.564 0.955 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.236 

 
0.474 

 
0.516 

 
0.219 

 
0.356 

 
0.117 

 
0.537 

 
0.464 

 
0.613 

Bias corrected ERA Interim TWmax 
  Test 

     Statistics 
          Null  
     Hypothesis 

                                             P-value 
JAC MJD RHI PDN NWS HYD CHR KHI BDN 

Kolmogorov 
Smirnov  

Equality of probability 
distribution 

 
0.268 

 
0.688 

 
0.127 

 
0.372 

 
0.268 

 
0.229 

 
0.591 

 
0.582 

 
0.478 

Anderson 
Darling  

Equality of probability 
distribution 

 
0.373 

 
0.484 

 
0.278 

 
0.432 

 
0.306 

 
0.283 

 
0.365 

 
0.445 

 
0.483 
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Table 4. Estimated parameters shape ξ, scale σ and standard error Δξ  of all the data sets.	
	

	5	
	
	
	 	
 

Station observed Tmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.3875 -0.2550 -0.4182 -0.3261 -0.3323 -0.3292 -0.3108 -0.2225   -0.3292 

Standard Error Δξ 0.0317 0.0226 0.0226 0.0218 0.0208 0.0312 0.0371 0.0341   0.0312 

Scale σ 2.7540 2.0819 2.3510 2.2144 2.1391 2.2286 2.5629 2.5685    2.2286 

Standard Error Δσ 0.1421 0.1040 0.1075 0.1076 0.1031 0.1166 0.1462 0.1444 0.1166 

ERA Interim Tmax 
 Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.4643 1.3230 1.3440 1.5045 1.5630 2.0656 1.8497 1.3303 2.0410 

Standard Error Δσ 0.0798 0.0739 0.0741 0.0788 0.0788 0.1082 0.0949 0.0908 0.1153 

Bias Corrected ERA Interim Tmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514 

Standard Error Δξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371 

Scale σ 1.9834 1.7918 1.8205 2.0382 2.1164 2.7980 2.3081 1.8016 2.7636 

Standard Error Δσ 0.1081 0.1001 0.1004 0.1068 0.1068 0.1467 0.1233 0.1229 0.1562 

Station observed TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.1769 -0.1860 -0.2150 -0.2157 -0.2164 -0.3231 -0.2423 -0.2190 -0.1867 

Standard Error Δξ 0.0383 0.0354 0.0347 0.0442 0.0266 0.0269 0.0347 0.0368 0.0322 

Scale σ 2.7590 2.0454 1.9600 2.0780 1.8572 2.3724 2.5126 2.3375 1.9032 

Standard Error Δσ 0.1596 0.1146 0.1084 0.1289 0.0938 0.1191 0.1380 0.1328 0.1055 

ERA Interim TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI    BDN 

Shape ξ -0.0896 -0.0946 -0.0687 -0.1257 -0.1583 -0.1771 -0.0902 -0.0194 -0.1733 

Standard Error Δξ 0.0379 0.0293 0.0327 0.0342 0.0313 0.0377 0.0357 0.0359 0.0378 

Scale σ 1.2879 1.2437 1.2311 1.4408 1.6104 1.6499 1.3423 0.6801 1.7886 

Standard Error Δσ 0.0748 0.0660 0.0676 0.0804 0.0875 0.0959 0.0760 0.0398 0.1028 

Bias Corrected ERA Interim TWmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.08961 -0.0946 -0.06870 -0.12570 -0.15831 -0.17711 -0.09017 -0.01942 -0.17332 

Standard Error Δξ 0.03786 0.02931 0.03275 0.03424 0.03134 0.03767 0.03571 0.03593 0.03782 

Scale σ 1.35674 1.64650 1.75852 1.49477 1.52013 2.05281 2.14609 1.39943 2.15299 

Standard Error Δσ 0.07878 0.08736 0.09651 0.08347 0.08254 0.11924 0.12145 0.08193 0.12370 
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Figure	1:	Study	Domain	(23.5	–	28.5°	N	,	66.5-	71.1°E)	
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Figure	2.	Modified	scale	(σ*)	and	shape	parameter	(ξ)	of	the	observed	Tmax		(°C)Karachi.	The						
																	red	vertical	lines	represent	the	selected		threshold	according	to	the	station	quantiles.	

Figure	3.	Mean	residual	life	plot	of	the	station	observed	Tmax	(°C) Karachi.	
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Figure	4.	Spatial	distribution	of	the	shape	parameters	ξ		and	scale	parameters	σ	of	the	station	observed,		
																			ERA	Interim,	and	bias	corrected	ERA	Interim	Tmax		(upper	panel)	and	TWmax	(lower	panel)	in		
																			degree	Celsius.	
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Figure	5.	Absolute	maxima	Amax	in	degree	Celsius	(a)	station	observed	Tmax		(b)	ERA	Interim	and	bias	corrected			
																	ERA	Interim	Tmax		(c)	station	observed	TWmax		(d)	ERA	Interim	and	bias	corrected	ERA	Interim	TWmax	.	
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Figure	6.	Return	level	plots	of	the	station	observed	Tmax	(black)	,	ERA	Interim	Tmax	(red),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	blue	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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Figure	7.	Return	level	plots	of	the	station	observed	TWmax	(blue),	ERA	Interim	Tmax	(pink),	and	bias	
corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	black	line	is	to	show	a	difference	in	the	
observed	and	ERA	Interim	RLs.	
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Figure	8.	 	 Spatial	distribution	of	 the	 station	observed	Tmax	 (red)	 and	bias	 corrected	ERA	 Interim	
Tmax	(blue)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	and	
50	years	in	southern	Pakistan.	
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Figure	9.	 Spatial	distribution	of	 the	 station	observed	TWmax	 (brown)	and	bias	corrected	ERA	Interim	
TWmax	(orange)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	and	
50	years	in	southern	Pakistan.	

	


