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Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to 11	
temperature extremes. In order to improve rural and urban planning, it is useful to gather information about 12	
the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax 13	
are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the Peaks over 14	
threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets 15	
are analyzed: temperatures observed in nine meteorological stations in southern Pakistan from 1980 to 2013, 16	
and the ERA Interim (ECMWF re-analysis) data for the nearest corresponding locations. The analysis 17	
provides the 2, 5, 10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is 18	
found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in 19	
northern stations, and above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in 20	
the region, which is considered as a limit of survivability. The RLs estimated from the ERA Interim data are 21	
lower by 3°C to 5°C than the RLs assessed for the nine meteorological stations. A simple bias correction 22	
applied to ERA Interim data improves the RLs remarkably, yet discrepancies are still present. The results 23	
have potential implications for the risk assessment of extreme temperatures in Sindh.	24	
 25	
Key words 26	
 27	
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1 Introduction 29	
 30	
Extreme maximum temperature events have received much attention in recent years, because of the 31	
associated dangerous impact on the increased risk of mortality (IPCC, 2012). Additionally, climate change 32	
scenarios suggest that in most regions the probability of occurrence of extremely high temperature is very 33	
likely to increase in the future (Sheridan and Allen, 2015). An example of the potential impact of raising 34	
maximum temperatures is the recent heat wave in southern Pakistan (Sindh), which occurred between June 35	
17th and June 24th 2015 and broke all the records with a death toll of 1400 people, and over 14000 people 36	
hospitalized. The temperatures in different cities of the Sindh region were in the range of 45°C - 49°C during 37	
the event (Imtiaz and Rehman, 2015). Karachi had the highest number of fatalities (1200 people 38	
approximately). The Pakistan Meteorological department issued a technical report stating a very high heat 39	
index (measuring the heat stress on humans due to high temperature and relative humidity) during this heat 40	
wave (Chaudhry et al., 2015).  41	
 42	
In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity increases in the region 43	
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(Chaudhry and Rasul, 2004). The extremely hot and humid conditions can have lethal effects, and can impact 44	
the overall human habitability of a region (Pal and Eltahir 2015). The human body generally maintains the 45	
temperature around 37°C. However, the human skin regulates at or below 35°C to release heat (Sherwood 46	
and Huber, 2010). Under combined high temperatures and high levels of moisture content in the atmosphere, 47	
the human body cannot maintain the skin temperature below 35°C and can develop ailments like 48	
hyperthermia, heat strokes and cardiovascular problems. Hyperthermia is a condition where extremely high 49	
body temperature is reached, resulting from the inability of the body to get rid of the excess heat. 50	
Hyperthermia can occur even in the fittest human beings, if exposed for at least six hours to an environment 51	
where wet-bulb temperature is greater than 35°C. 52	
 53	
This study devotes special attention to Sindh (23.5° N – 28.5° N and 66.5°E - 71.1°E) because of its exposure 54	
to the intense temperature extremes recently (Zahid and Rasul, 2012). It is bounded on the west by the 55	
Kirthar Mountains, to the north by the Punjab plains, on the east by the Thar desert and to the south by the 56	
Arabian Sea (Indian Ocean), while in the center there is a fertile land around the Indus river. Cotton, wheat, 57	
sugar cane, rice, wheat and gram crops are cultivated near banks of the Indus River (Chaudhry and Rasul, 58	
2004). Cotton is the cash crop of the country. High population density, limited resources, poor infrastructure 59	
and high dependence of the local agriculture on climatic factors, mark this region as highly vulnerable to the 60	
impacts of climate change. The Intergovernmental Panel on Climate Change (IPCC) scenarios estimates for 61	
this region an increase in the temperature of the order of 4°C by the end of 2100. This may significantly 62	
reduce crop yields, and cause huge economic losses to the country (Islam et al., 2009; Rasul et al., 2012; 63	
IPCC, 2012, 2014). Furthermore, the risks of heat strokes, cardiac arrest, high fever, diarrhea, cholera and 64	
vector borne diseases might increase. 65	
 66	
Extreme value theory (EVT) provides the statistical basis for increasingly widespread quantitative 67	
investigations of extremes in climate studies  (Coles, 2001, Zhang et al., 2004; Brown et al., 2008; Faranda et 68	
al., 2011; Acero et al., 2014). The peaks over threshold (POT) approach aims at describing the distribution of 69	
the exceedances of the stochastic variable of interest above a threshold. Under very general conditions, the 70	
exceedances are asymptotically distributed according to the Generalized Pareto Distribution (GPD). GPD has 71	
remarkable properties of universality when the asymptotic behavior is considered (Lucarini et al., 2016), 72	
while one can expect that the threshold level above which the asymptotic behavior is achieved depends on 73	
the characteristics of the analyzed time series. In particular, when looking at spatial fields, the threshold level 74	
depends on the geographical location.  75	
 76	
In this study, we have chosen to analyze the temperature extremes in the Sindh region taking the point of 77	
view of threshold exceedances associated to the GPD family of distributions, because the statistical inference 78	
provided by the POT method provides a more efficient use of data and has better properties of convergence 79	
when finite datasets are considered with respect to alternative methods for the analysis of extremes, such as 80	
the block maxima method, which is used to fit the observed data to the generalized extreme value (GEV) 81	
distribution  (Lucarini et al., 2016). Additionally, we are here interested in investigating the actual tails of the 82	
distributions and not the      statistics of e.g. yearly maxima, the POT approach is indeed more appropriate. 83	
While the POT method has been applied for studying temperature extremes in different regions of the world 84	
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(Burgueño et al., 2002; Nogaj et al., 2006; Coelho et al., 2007; Ghil et al., 2011), to our knowledge, it has 85	
never been used to analyze the statistics of temperature extremes in Sindh. Thanks to the properties of 86	
universality of the GPD distribution (Lucarini et al. 2016), the POT approach can in principle provide 87	
reliable estimates of return periods and the return levels also for time ranges longer than what is actually 88	
observed. This information and this predictive power can be beneficial for policy makers and other 89	
stakeholders. Since, it is exactly the kind of information planners need when, e.g., designing infrastructures 90	
that are deemed to last a very long time. Note that commonly used, more empirical approaches to the study 91	
of extremes, as those more used for assessing the ‘moderate extremes’ (IPCC, 2012), do not have any 92	
property of universality and might have weak predictive power.  93	
 94	
It is useful to consider two indicators of extremely hot conditions: (1) temperature extremes Tmax, and (2) 95	
Wet-bulb temperature extremes TWmax. Therefore, we estimate the return levels of Tmax and TWmax over 96	
different return periods during summer (May-September) in Sindh. We apply the POT method on the 97	
observational data of the nine weather stations provided by Pakistan Meteorological Department, and the 98	
ERA Interim re-analysis data of European Center for Medium range Weather Forecast (ECMWF) model for 99	
the corresponding grid points from 1980 to 2013. ERA Interim re-analysis data are generally very good at 100	
replicating also trends in temperature percentile (Cornes and Jones, 2013). Nonetheless, it is in principle not 101	
obvious that ERA Interim data can simulate well meteorological extremes, as reanalysis are constructed in 102	
such a way that typical conditions are well reproduced. This is why we look at how well ERA Interim data 103	
performs in the target area against observations. If the ERA Interim dataset characterizes well the extremes, 104	
it could be an option for the regions within Sindh where no observational data is available. Furthermore, a 105	
standard bias correction is applied on the ERA Interim data to assess whether removing the bias in the bulk 106	
of the statistics improves substantially representation of the return levels of extremes. Given the shortness of 107	
the datasets, as we will show later, it is appropriate to analyze the extremes without taking into 108	
considerations possible long-term trends (Frei and Schär, 2001); see also the discussion in Felici et al. 109	
(2007). The provision of POT-based information on stationary extremes is already quite relevant in terms of 110	
impacts for the public and private sector as it fills a big data gap in Sindh. A possibility for investigating time 111	
dependency in the temperature extremes comes for considering the centennial NCEP reanalysis (Compo et 112	
al., 2011) and using suitable bias correction procedures. Such an analysis is not performed at this stage as we 113	
focus on observational data. 114	
 115	
The paper is organized as follows. In Section 2 we present the datasets we study and the statistical methods 116	
we use for assessing the properties of extremes. In Section 3 we show and discuss the main results. In 117	
Section 4 we make a summary of the main findings and present our conclusions and perspectives for future 118	
investigations. 119	

2. Data and Methodology 120	

2.1 Meteorological station data 121	
 122	
The daily maximum temperature and relative humidity data recorded at nine meteorological stations in Sindh 123	
from 1980 to 2013 are provided by the Pakistan Meteorological Department (see Table 1).  We select nine 124	



	 4	

stations, which contain a negligible amount of missing values after 1980, and are suitable for the POT 125	
analysis (Figure 1). An additional criterion is that only those stations are chosen where no changes occurred 126	
in measuring instruments during the last 33 years (Brunetti et al., 2006). None of the station data shows gaps 127	
with duration longer than two days, which are treated by replacing the missing value with the average of the 128	
two previous values. 129	
 130	
The temperature data are discretized unevenly with intervals up to 1 degree Celsius. Deidda and Puliga 131	
(2006) proposed a Monte Carlo approach for addressing this issue. They showed that finite resolution in 132	
precipitation data affects the convergence of parameter estimation in the extreme value analysis. They 133	
suggested generating many synthetic datasets by adding numerical noise to the original data, and then 134	
providing the best estimate of the parameters of the extreme value distributions by averaging over all the best 135	
fits obtained in each synthetic dataset. Following their suggestion, we produce high-resolution data to 136	
compensate the effect of discretization and thus to improve the convergence of the estimator. In order to 137	
convert the temperature readings to higher resolution, we add a uniform random variable in the interval [-0.5, 138	
0.5]. The main property of this noise is that round(T+r) = T, where T is the temperature with 1-degree 139	
resolution and ‘round’ is the numerical function, which maps the interval [T-0.5, T+0.5] to T. Thus, adding 140	
the noise does not perturb the information content of the observations. This procedure is applied to all 141	
temperature data, irrespective of the actual resolution, and replicated 100 times using a Monte Carlo 142	
approach. For each synthetic dataset, we perform the statistical best fit described later in the paper and then 143	
average the results. We check the influence of this noise parameterization and find no significant bias in the 144	
return level estimates. The advantage of adding a noise is to avoid the spurious statistical effects associated 145	
to the presence of discrete values assigned to the temperature readings. Using the described bootstrap method 146	
we reduce such problem without biasing the data.  147	
 148	

2.2 ERA Interim re-analysis data 149	
 150	
The gridded daily maximum temperature and relative humidity data of ERA Interim re-analysis is obtained 151	
from the ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets/). The ERA Interim is 152	
generated by the European Center for Medium range Weather Forecast (ECMWF) model with resolution 153	
0.75° × 0.75° (Dee et al., 2011). The gridded data are then extracted at the closest grid points of all stations, 154	
for the period 1980-2013 (Figure 1). The latitude and longitude of the ERA Interim stations are displayed in 155	
Table 1.  156	
 157	
The extreme temperatures analysis is restricted to the summer season (May-September) over a period of 33 158	
years.	We have tested the datasets by applying the Mann-Kendall test; the results show that trends are not 159	
significant in such a short time interval. One of the main requirements for performing the POT analysis is 160	
assuming the stationarity of the time series.  Therefore, as in Bramati et al. (2014), the Augmented Dickey 161	
Fuller (ADF) test of stationarity is performed on all time series (Dickey and Fuller, 1979). In all cases we 162	
find no sign of long-term correlations in the data. Short-term correlations (daily time scale) typically lead to 163	
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clusters of extreme values and are studied by computing the extremal index θ in all time series and treated 164	
using the associated standard declustering technique (see more details in Section 2.4).  165	
 166	

2.3 Wet-bulb temperature calculations 167	
 168	
The wet-bulb temperature measures the heat stress better than other existing heat indices, because it 169	
establishes the clear thermodynamic limit on heat transfer that cannot be overcome by adaptations like 170	
clothing, activity and acclimatization (Pal and Eltahir, 2015; Sherwood and Huber, 2010). Here, we use an 171	
empirical equation developed by Stull (2011) to measure the wet-bulb temperature. 172	
 173	

!" = !  atan (!! RH + !!) + atan ! + RH − atan RH +  !! +  !!(RH) 
!
! atan(!!!") −174	

                 !!                      175	
                                                                                           (1)         176	
  177	
 178	
where TW is the wet-bulb temperature [°C], T is the temperature [°C], and RH   is the relative humidity [%]. 179	
This relationship is based on an empirical fit, as in Stull (2011), where the coefficient values are α1 = 180	
0.151977, α2 = 8.313659, α3 = -1.676331, α4 = 0.00391838, α5 = 0.023101, and  α6 = 4.686035. Equation (1) 181	
covers a wide range of relative humidity and air temperatures with an accuracy of 0.3°C. 182	
 183	

2.4 Peaks over Threshold 184	
 185	
In order to determine the return levels of extreme maximum temperatures and maximum wet-bulb 186	
temperatures, the peaks over threshold (POT) approach is applied to the data obtained from the 187	
meteorological stations in Sindh, and from the ERA Interim archive.  188	
 189	
Multi-occurrence is an important characteristic of extreme climatic events and is referred to as clustering. 190	
Clusters are consecutive occurrences of above threshold events. It is important to post process the clustered 191	
extremes in order to take into account the assumption of weak short time correlation between extreme events, 192	
which is crucial for our statistical analysis. We have treated the clusters using the concept of Extremal Index 193	
(EI) (see Newell, 1964, Loynes, 1965, O'Brien, 1974, Leadbetter, 1983, Smith, 1989, Davison and Smith, 194	
1990). The Extremal Index θ measures the degree of clustering of extremes. It ranges between 0 and 1, (θ = 0 195	
means strong clustering and dependence, θ = 1 absence of clusters and independence). Leadbetter (1983) 196	
interprets 1/θ as the mean number of exceedances in a cluster. 197	
 198	
The extremal index θ can be estimated in two different ways. Here, we apply the ‘intervals estimator’ 199	
automatic declustering by Ferro and Segers (2003). A positive aspect of this method is that it avoids the 200	
subjective choice of cluster parameters. The main ingredient is the use of an asymptotic result for the times 201	
between threshold exceedances. The exceedance times are split into two types, a set of vanishing intra-202	
exceedance times within the clusters, and an exponentially distributed set of inter-exceedance times between 203	
clusters. The method is iterative, starting with largest return times and stops when a limit for the inter-204	
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exceedance times is reached. The standard errors of the estimated parameters is obtained by a bootstrap 205	
procedure. In this study, once we select appropriate value for the threshold (see below) the extremal index 206	
value is ≤ 0.5 in all the considered time series.  Therefore, it is necessary to decluster the extremes by 207	
choosing the largest event in each cluster, before fitting it to the GPD. 208	
 209	
As mentioned before, we use as statistical model for the exceedances over threshold the Generalized Pareto 210	
Distribution (GPD), which is characterized by two parameters, the shape ξ and the scale σ. The GPD for 211	
exceedances ! − ! of a random variable ! reads as 212	
 213	

           ! ! = 1 − 1 + ! ! − !
!

!!!             ! > !, ! ≠ 0                  (2) 
 214	
 215	
where ! is the threshold. The shape parameter ξ determines the tail behavior while the scale parameter σ 216	
measures the variability. For a negative shape parameter, ξ < 0, the distribution is bounded (Weibull 217	
distribution), for vanishing shape parameter, ξ = 0, the distribution is exponential, and for a positive shape 218	
parameter, ξ > 0, the distribution has no upper bound (Pareto distribution). 219	
 220	
In particular, for a negative shape parameters ξ <0 the GPD has the upper bound 221	
 222	

                    !!"# = ! − ! !                                                                   (3) 
 223	

                                   ! ! = 0                                ! > !!"# , ! < 0                
 224	
 225	
where !!"#  is an absolute maximum (Lucarini et al., 2014). In general, the best estimate for the two 226	
parameters shape ξ and scale σ depend on the threshold u (Coles, 2001). The choice of the optimal threshold 227	
for performing statistical inference from a time series is crucial. Choosing a very large value for ! reduces 228	
the number of exceedances to a few values, inflating the variance of the estimators, so that the analysis is 229	
unlikely to yield any useful results. On the other hand, choosing a too small value for ! would violate  the 230	
asymptotic nature of the model, with a possible biased estimation and wrong model selection (Coles, 2001), 231	
see details later in Section 3.1. The shape ξ, the scale σ and the return levels are estimated using the 232	
Maximum Likelihood Estimator (MLE) using the R software (R Development core team 2015), which also 233	
provides an estimate of the standard error of the estimates. 234	
 235	
Additionally, we wish to investigate the N - years return levels x!, which are exceeded on the time scale of 236	
N years (Coles, 2001) and can be expressed as 237	
                                                                                                                   238	
                                                !! = ! + !

! (!!!!!)! − 1                                                                 (4) 239	
                                                           240	
 241	
where N represents the return period in years, ny is the number of observations per year , ζ!  is the probability 242	
of an individual observation exceeding the threshold !, the shape parameter is  ξ and the scale parameter is 243	
σ. 244	
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2.5. Bias Correction Method  245	
 246	
A simple bias correction is applied to each ERA Interim time series through a rescaling that adjust the first 247	
two moments (mean and variance) to the sample moments calculated for the corresponding observations. 248	
Therefore, the bias correction is applied to the entire time series and it is not tailored to the extreme events 249	
only. The idea is to check whether by adjusting the properties of the bulk of the statistics we improve the 250	
skill of the ERA Interim dataset considerably in describing extreme events. The bias corrected ERA Interim 251	
time series ! is expressed as    252	
 253	

! =  ! +   !!"# − !σ!
  σ! 

   (5) 254	
 255	

 256	
where  !!"# is the ERA Interim time series,  !  and  σ! its mean and standard deviation, whereas !  and 257	
σ! are the mean and standard deviation of the meteorological station temperatures. The properties of 258	
extremes are commonly assumed to be closely controlled by the first two moments of the underlying 259	
distribution - e.g. the IPCC (2012) relates changes in the properties of extremes to changes in the mean and 260	
in the standard deviation of the underlying distributions - EVT clarifies that, in fact, only a loose link exists 261	
between true extremes and the bulk of the events. Note that the proposed method of bias corrections has no 262	
impact on the estimates of the shape parameter, while it affects the scale and location parameters, thus 263	
impacting at any rate the return levels.  264	

3. Results and Discussion  265	

3.1 Threshold Selection  266	
 267	
The threshold selection is the first step in a POT analysis. One needs to test whether the asymptotic regime is 268	
reached, i.e. whether one is choosing true extremes. It must be noted that EVT does not predict where (in 269	
terms of quantiles) one should expect the asymptotic regime to start. This can be investigated by checking 270	
whether the best fits of the shape parameter ξ and the modified scale parameter σ*= σu – ξu  are stable with 271	
respect to increases in the chosen value of u (Sacrrott and MacDonald, 2012).The optimal threshold u is 272	
selected as the lowest value where the two parameters are invariant in order to reach the asymptotic limit 273	
(Coles, 2001 and Furrer et al., 2010). This choice allows for having as many data as possible for performing 274	
the statistical inference, thus having lower variance for the estimators of the parameters. Figure 2 shows the 275	
parameter stability plots of the Tmax reading for Karachi, as an example to explain the threshold selection 276	
procedure.   277	
 278	
In addition to diagnostic plots of the modified scale parameter σ* and the shape parameter ξ, the mean 279	
residual life plot is used to select the appropriate threshold for the POT analysis (Davison and Smith, 1990). 280	
The idea is to select the lowest value of the threshold when the plot is approximately linear. In the case of the 281	
Karachi data for Tmax , the plot appears to be linear and stable for u = 36oC, indicating u = 36 as the most 282	
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suitable threshold for the POT analysis (Figure 3). We observe that the 90% quantile is an appropriate 283	
threshold for all the station data, as well as the ERA interim datasets, and for both Tmax, and TWmax.  284	
 285	

3.2 GPD Fit 286	
	287	
The goodness of fit is evaluated by Quantile-Quantile (Q-Q) plots and hypothesis testing. The Q-Q plot 288	
analysis is performed for the stations observed, the ERA Interim, the bias corrected ERA Interim daily Tmax 289	
and TWmax. The Q-Q plots of the observed Tmax show that the GPD fits well in most stations. However, in a 290	
few stations like Jacobabad, Mohenjo-daro, Padidan and Chhor the empirical values show slight deviation 291	
from the modeled values. In spite of minor deviations at some stations, still most of the exceedances are well 292	
fitted by the model.  The Q-Q plots of the observed TWmax also fits well to the model in all stations.  293	
 294	
The Q-Q plots of the empirical ERA Interim Tmax  and TWmax data reveals substantial differences with 295	
respect to the corresponding GPD fits. The empirical values of the higher quantiles are deviating from the 296	
theoretical quantiles in all stations. However, if the higher quantiles are disregarded, then stations like 297	
Jacobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, Chhor, and Badin fits very well with the model. The 298	
Q-Q plots of the bias corrected ERA Interim Tmax, and TWmax show better results than the ERA Interim. We 299	
notice that the Tmax of the ERA Interim and bias corrected ERA Interim fits better than the TWmax if the 300	
highest quantiles are ignored, indicating the bias procedure is, as expected, unable to treat correctly the 301	
statistics of the largest events. 302	
 303	
In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test and Anderson-Darling 304	
(A-D) test to the data of meteorological stations, ERA Interim, bias corrected ERA Interim Tmax and TWmax. 305	
The p-values indicate a good performance of the fit procedure. Table 2 shows the results of the K-S and A-D 306	
statistics of the Tmax and TWmax in all the data sets. 307	
 308	

3.3 Parameter Estimates  309	
 310	
Here, we analyze the shape parameter ξ , the scale parameter σ, and  threshold u for all considered datasets. 311	
The standard errors of the shape ξ and the scale σ parameters are given in Table 3. The spatial distribution of 312	
the shape parameter ξ and the scale parameter σ of the GPD in Sindh are shown in Figure 4. The shape 313	
parameters ξ are negative in all datasets at all stations. This is hardly surprising, as meteorological and 314	
physical processes make sure that the temperature cannot grow locally without control. One finds a certain 315	
degree of variability across stations in the estimated value of the shape parameter. In the case of the observed 316	
Tmax one obtains for ξ estimates ranging between -0.418 and -0.223, while for TWmax the range is between -317	
0.323 and -0.177, so that values slightly closer to zero are found, thus allowing for larger excursions towards 318	
very high values with respect to the case of the extremes of the actual temperature. When looking at the bias 319	
corrected ERA Interim data, the range of values for the shape parameter of Tmax (TWmax) is between -0.305 to 320	
-0.002 (-0.18 and -0.01). While there is a good match in the spatial patterns of the estimates for the 321	
observative vs ERA Interim datasets, the presence of values much closer to zero in the second case suggests 322	
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the presence of some inadequacies in the representation of extremes in the reanalysis. This is not entirely 323	
unexpected, as reanalysis are constructed in such a way that typical conditions are well reproduced. Note that 324	
our simple bias correction procedure, while not impacting the estimates of the shape parameters, allows for 325	
improving the estimates of the return levels, as discussed below.  326	
 327	
The scale parameters σ measures the variability of the GPD distributions. The highest values of the scale 328	
parameters σ of Tmax and TWmax are observed at stations such as Jacobabad, Padidan, Karachi, Hyderabad 329	
and Chhor in all datasets. This indicates that the variability of temperature extremes is higher at these 330	
stations, and one can expect higher return values of  Tmax  and TWmax here having similar shape parameter 331	
and same threshold according to Equation 4. The scale parameters σ of the observed Tmax range from 2.08 to 332	
2.76, and the TWmax are in 1.86 to 2.76. In the ERA Interim analysis, the scale parameter σ of Tmax is 333	
between 1.00 - 1.95, and TWmax in 0.74 -1.75. We observe a difference in the scale parameters of both the 334	
observed, ERA Interim Tmax  and TWmax. We find that, unsurprisingly, the scale parameters of the bias 335	
corrected ERA Interim data are much closer to those estimated for Tmax and TWmax using the station data. In 336	
the bias corrected ERA Interim Tmax the scale parameters σ are in 1.50 - 2.75, while for TWmax are in a range 337	
1.40 – 2.40 (Figure 4). All the temperature scale parameters are in degree Celsius. 338	
 339	

3.4 Absolute Maxima 340	
 341	
Once the shape parameters ξ , the scale parameters σ, and the thresholds u are determined, it is possible to 342	
compute the theoretical absolute maxima using Eq. (3) (Section 2.4). Theoretical absolute maxima can be 343	
compared with the observed ones for each station to better understand whether our fits are in agreement with 344	
the observed data. The daily maximum temperature Tmax and the maximum wet-bulb temperature TWmax 345	
(station data, the ERA Interim, and the bias corrected ERA Interim) have negative shape parameters ξ at all 346	
stations. This means that according to Eq. (2) in section 2.4, the probability distribution function (pdf) is 347	
bounded by the maximum values. These maximum values are the theoretical upper limits predicted by the 348	
GPD fit. The analysis shows that the observed absolute maxima Tmax and TWmax at all stations of the three 349	
data sets are below the theoretical absolute maximum, as expected (Figure 5). This gives us confidence on 350	
the quality of our fit. The following piece of information can also be derived: assume that one observes in the 351	
future an extreme event larger than the maximum inferred in the present dataset; this may suggest some non-352	
stationarity in the most recent portion of the dataset. 353	
 354	

3.5 Return Levels 355	
 356	
The return levels (RLs) are computed considering various return periods (2, 5, 10, 20, 50, 100-year). As 357	
remarked above, using a statistical approach based on the universality of EVT, we are able to extrapolate the 358	
results for time horizons longer than the one for which observations are taken. Clearly, uncertainties grow 359	
when longer time horizons are considered. The return level plots of the stations observed, the ERA Interim, 360	
the bias corrected ERA Interim daily maximum temperature Tmax and daily maximum wet–bulb temperature 361	
TWmax are displayed in Figures 6 and 7. The values of the RLs follow the north-south gradient of the climatic 362	
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mean temperatures. The northern part of the Sindh (Jacobabad, Mohenjo-daro, Rohri, Padidan, and 363	
Nawabshah) are hotter than the southern part (Hyderabad, Chhor, Karachi, and Badin).  364	
 365	
The 2, 5, 10, 20, 50, 100-year RLs estimated in Sindh for station observed Tmax at time reach over 50°C in 366	
Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and over 45°C in Rohri, Hyderabad, Chhor, Karachi, 367	
Badin. The corresponding ERA Interim Tmax return levels are at least 3°C to 5°C lower in all stations, while 368	
having correct representation of the geographical variability of the field. As example, the RLs of 42°C at 369	
Badin has a 3-year return period in the observations Tmax, but a 30-year return period in ERA Interim (Figure 370	
6).  371	
 372	
The RLs of TWmax are above 35°C in all meteorological stations. As for the ERA Interim, the RLs of TWmax 373	
are greater than 30°C for all the stations except Karachi, which has RLs less than 30°C. Here, we see again 374	
that the RLs of the ERA Interim TWmax are lower than the RLs of station TWmax. Going again to the Badin 375	
stations, the 4-year return period observed for TWmax is 38°C, while the ERA Interim dataset show the same 376	
RL in a 15-year return period (Figure 7). 377	
 378	
The bias corrected ERA Interim Tmax and TWmax, show some improvements in the RLs at all stations. When 379	
looking at the Nawabshah, Hyderabad, Karachi, and Badin stations, the RLs agree with those obtained from 380	
the station data in the range 5-100 years, while disagreements exist in the range 2-5 years. In the rest of the 381	
stations, the bias corrected data RLs are closer to those of the station data, yet not statistically compatible 382	
with them. When looking at the wet-bulb temperature TWmax analysis, the RLs of the bias corrected ERA 383	
Interim show some overlap with those derived from station observations in Mohenjo-daro, Hyderabad, 384	
Chhor, and while no overlap is found in the other stations. One understands that the proposed simple bias 385	
correction methods improves the quality of the representation of extremes by ERA Interim, but many 386	
discrepancies remain (Figures 6 and 7).  387	
 388	
We also plot the station and bias corrected ERA Interim Tmax, and TWmax return levels spatially for the 5, 10, 389	
25 and 50-year return periods  (Figures 8 and 9), as a detailed spatial overview of the temperature extremes 390	
in Sindh might be of interest to the policy makers. The spatial return levels of the station and bias corrected 391	
ERA Interim Tmax shows differences in temperature; the hottest stations have the highest return levels. We 392	
notice that for Jacobabad, Mohenjo-daro, Padidan, Nawabshah the return levels are between 50°C-53.6°C 393	
and for Rohri, Hyderabad, Chhor, Karachi, and Badin are between 45°C - 50°C in 5 to 50 years return period 394	
(Figure 8). These extreme temperatures can impact the yields because crops are very sensitive to temperature 395	
variations, and even a rise of one degree Celsius can cause detrimental changes in the phenological stages of 396	
the crops (Hatfield and Preuger, 2015). Every crop has a certain limit to tolerate the temperature. When 397	
temperature exceeds this limit, the crop yield is drastically reduced. Abbas et al., (2017) notices 33% 398	
decrease in major crops of Sindh due to warmer and drier weather. Karachi and Badin are expected to 399	
decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities.  Furthermore, 400	
temperature extremes can have serious threat to cotton, wheat, and rice yields in Rohri and Mohenjo-daro 401	
areas due to increased crop water	requirements.  402	
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 403	
In summer, the temperature and humidity increase to an extent that there are high chances of a rapid pests 404	
spread in the crops. Temperature extremes not just directly impact the quantity and quality of grains, but can 405	
also be a reason of urban flooding affecting the agriculture lands (Luo etal ., 2015). Sindh produces cotton, 406	
wheat, rice, mango, banana, and dates, so a correct estimate of temperature extremes is very important.  407	
 408	
The spatial return levels of station and bias corrected ERA Interim TWmax   for the 5, 10, 25 and 50-year 409	
return periods show highest return level greater than 35°C at all stations (Figure 9).  This is very serious for 410	
the human health due to the working day hours of population in agriculture farms, building construction, and 411	
port activities. Karachi and Badin being closet to the coast are at the highest risk of temperature extremes. 412	
Thus, an immediate plan for adaptations is needed in Sindh to deal with such a hazard. The high values of 413	
TWmax also indicate high levels of  humidity in the region during summer, which is also proved by Kalim 414	
and Shouting, (2012), and Freychet et al. (2015). 415	

4. Summary and Conclusion 416	
 417	
The main objective of this study is the assessment of the return levels of the extreme daily maximum 418	
temperatures Tmax and wet-bulb temperatures TWmax in southern Pakistan (Sindh). In addition, the 419	
performance of the ERA Interim TWmax is compared to the weather station TWmax to assess its ability to 420	
estimate temperature extremes in Sindh. Moreover, a simple bias correction is applied to the ERA Interim 421	
data to see whether correcting the first two moments of its statistics helps in improving its performance in 422	
representing temperature extremes.  423	
 424	
The POT method is applied to the daily maximum temperature (Tmax) and wet-bulb temperature (TWmax) data 425	
of nine stations and to the corresponding nearest ERA Interim temperature data. After testing the asymptotic 426	
statistical properties, the 90% quantile is found to be appropriate threshold choice for all datasets. The Q-Q 427	
plots are used to assess the GPD fit, which results to be acceptable for both Tmax and TWmax station data for 428	
all three datasets. However, the bias corrected ERA Interim data shows improved GPD fits than the ERA 429	
Interim data. The shape parameters ξ is in general negative at all stations. The scale parameters σ show high 430	
values in Jacobabad, Padidan, Karachi, Hyderabad and Chhor indicating higher variability of temperature 431	
extremes in these regions. The return levels (RLs) of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 432	
100-year return periods in all datasets. The RLs of Tmax estimated using the meteorological station 433	
temperatures are greater than 50°C in Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C 434	
in Rohri, Hyderabad, Chhor, Karachi and Badin. While the RLs of TWmax in station data are larger than 35°C 435	
in the entire Sindh, when using ERA Interim temperatures, they are estimated as greater than 45°C in 436	
Northern Sindh and greater than 40°C in southern Sindh.  437	
 438	
Our results predict extremely high values of  Tmax  and  TWmax   in the region. The Tmax extremes contribute to 439	
an increase rate of evaporation, which in turn may intensify the hydrological cycle causing precipitation 440	
events and flooding (Cheema et al., 2012, Luo etal., 2015).  Additionally, crops variety needs to be changed 441	
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under such a hot climate to avoid the risks of temperature extremes. The extremes of daily maximum wet-442	
bulb temperature TWmax are estimated as above the human survivability threshold 35°C throughout the 443	
region, so the risk of hyperthermia is very high here. The most vulnerable people are those who are involved 444	
in the everyday outdoor activities like farming, fishing, building construction, athletes, elderly and infants 445	
can have heat strokes, dehydration etc. The human habitability in such a warm region is already at risk and 446	
one can expect that these issues will be worse in future climate conditions. 447	
 448	
We found that the RLs of station and ERA interim showed differences between 3°C and 5°C for both shorter 449	
and longer return periods due to the minor variations in the shape and scale parameters. Although the ERA 450	
Interim dataset does not capture well the magnitude of the extremes, still it provides a good representation of 451	
their spatial fields.  The biases between the station and the ERA Interim data are rather relevant when one 452	
wishes to address the impact of hot climatic extremes to human life and to active crop production in the 453	
region. It would be of primary importance to understand the physical reasons behind such inconsistencies, 454	
which makes it hard to use reasonably ERA without bias correction. Clearly, they might result either from a 455	
misrepresentation of local processes dominated by near surface processes (namely, heat and water fluxes), or 456	
from an inadequacy of the re-analysis in reproducing synoptic and sub-synoptic conditions responsible for 457	
extremely hot and humid conditions. This matter is surely worth investigating but is well beyond the scope 458	
of this paper.  459	
 460	
We applied a simple bias correction i.e. adjusting the mean and standard deviation to ERA Interim Tmax and 461	
TWmax data to check the improvements in return levels.  We noticed that the bias corrected ERA Interim Tmax 462	
and TWmax gives the return levels closer to the meteorological stations observed ones than the original ERA 463	
Interim return levels at all stations. Although the bias corrected ERA Interim shows a good correspondence 464	
with the meteorological station data, yet statistically significant differences remain in most cases.  Therefore, 465	
one must use more advanced bias correction method for analyzing extremes precisely. We propose to repeat 466	
this analysis in GCMs (CMIP5, CMIP6) and RCMs (CORDEX) to study the properties of extremes. All 467	
models use re-analysis as input, and generate information of extremes,	 which involves biases that if not 468	
corrected, can lead to significant errors in prediction of present and future extremes. Therefore, in order to 469	
reduce the uncertainties in impact assessment, it is necessary to improve the re-analysis before using it in 470	
GCMs and RCMs. 471	
 472	
The results have practical implications for assessing the risk of extreme temperature events in Sindh.  All the 473	
results are placed in a web-tool SindheX [www.sindhex.org] that will be freely available online soon after 474	
the publication of this paper. The maps and graphs are prepared to guide the local administrations to 475	
prioritize the regions in terms of adaptations like preparation of baseline contingency plans for dealing with 476	
strong heat waves based on the current climatology. Such measures are not yet present in the territory and 477	
lead to many casualties each year. Our results will not only contributes to the regional planning, but can also 478	
be useful for the ongoing EU projects (SUCCESS, CSCCC), World Bank project (Sindh Resilience Project) 479	
and mega construction projects like China-Pakistan Economic Corridor (CPEC).  480	
 481	
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Name 

 
PMD weather stations 

  
ERA-Interim stations 

              
Latitude               Longitude 

 
Altitude  

(m) 

 
 
 
 

              
Latitude                

 
Longitude 

 
JCB 

 
Jacobabad 

 
28o 18'N 

 
68o 28'E 

 
55 

 
28 o4'N 

 
68 o15'E 

MJD Mohenjo-daro 27o 22'N 68o 06'E 52.1 27o5'N 67 o75'E 

RHI Rohri 27o 40'N 68o 54'E 66 27o75'N 69 o25'E 

PDN Padidan 26o 51'N 68o 08'E 46 26o8'N 68 o5'E 

NWB Nawabshah 26o 15'N 68o 22'E 37 26o25'N 68 o0'E  

HYD Hyderabad 25o 23'N 68o 25'E 40 25o5'N 68 o15'E 

CHR Chhor 29o 31'N 69o 47' E 5 25o3'N 69 o6'E 

 KHI Karachi 24o 54'N 67°08' E 21 25o2'N 67 o5'E 
 

BDN Badin 24o 38'N 68o 54'E 10 24 o75'N 68 o65'E 
 

Figure	1:	Study	Domain	(23.5	–	28.5°	N	,	66.5-	71.1°E)	
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 747	
 748	
 749	
 750	
                   Table 2.  Results of the Kolmogorov-Smirnov Goodness of fit test and Anderson-Darling test    751	
                                  between empirical and GPD fits. 752	
 753	
                         754	
 755	
 756	
 757	

 758	
 759	
 760	
 761	
 762	
 763	
 764	
 765	
 766	
 767	
 768	
 769	
 770	
 771	
 772	
 773	
 774	
 775	
 776	
 777	
 778	
 779	
 780	
 781	
 782	
 783	
 784	
 785	
 786	
 787	

 788	
 789	
 790	
 791	
 792	

 793	
 794	
 795	
 796	
 797	
 798	

Observed Tmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.947 

 
0.340 

 
0.996 

 
0.139 

 
0.941 

 
0.385 

 
0.928 

 
0.306 

 
0.666 

 
Anderson Darling	

 
0.553 

 
0.978 

 
0.654 

 
0.857 

 
0.157 

 
0.649 

 
0.233 

 
0.869 

 
0.145 

ERA Interim Tmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.169 

 
0.125 

 
0.553 

 
0.456 

 
0.322 

 
0.187 

 
0.419 

 
0.456 

 
0.332 

 
Anderson Darling	

 
0.355 

 
0.263 

 
0.165 

 
0.587 

 
0.615 

 
0.398 

 
0.266 

 
0.687 

 
0.425 

Bias corrected ERA Interim Tmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.452 

 
0.4729 

 
0.197 

 
0.489 

 
0.269 

 
0.137 

 
0.158 

 
0.243 

 
0.312 

 
Anderson Darling	

 
0.352 

 
0.315 

 
0.235 

 
0.270 

 
0.335 

 
0.289 

 
0.216 

 
0.390 

 
0227 

Observed TWmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.981 

 
0.111 

 
0.341 

 
0.226 

 
0.457 

 
0.545 

 
0.441 

 
0.385 

 
0.211 

 
Anderson Darling	

 
0.623 

 
0.745 

 
0.587 

 
0.884 

 
0.199 

 
0.123 

 
0.789 

 
0.669 

 
0.473 

ERA Interim TWmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.712 

 
0.564 

 
0.955 

 
0.425 

 
0.258 

 
0.134 

 
0.856 

 
0.497 

 
0.222 

 
Anderson Darling	

 
0.236 

 
0.474 

 
0.516 

 
0.219 

 
0.356 

 
0.117 

 
0.537 

 
0.464 

 
0.613 

Bias corrected ERA Interim TWmax	
 

Test   Statistics 
P-value 

JAC	 MJD	 RHI	 PDN	 NWB	 HYD CHR KHI	 BDN	
 
Kolmogorov Smirnov 

 
0.268 

 
0.688 

 
0.127 

 
0.372 

 
0.268 

 
0.229 

 
0.591 

 
0.582 

 
0.478 

 
Anderson Darling	

 
0.373 

 
0.484 

 
0.278 

 
0.432 

 
0.306 

 
0.283 

 
0.365 

 
0.445 

 
0.483 
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 799	
 800	

                    Table 3. Estimated parameters shape ξ, scale σ and standard error Δξ, Δσ of all the data sets.	801	
	802	

	803	
	804	
	805	
	806	
	807	
	808	
	809	
	810	
	811	
	812	
	813	
	814	
	815	
	816	
	817	
	818	
	819	
	820	
	821	
	822	
	823	
	824	
	825	
	826	
	827	
	828	
	829	
	830	
	831	
	832	
	833	
	834	
	835	
	836	
	837	
	838	
	839	
	840	
	841	
	842	
	843	
	844	
	845	
	846	
	847	
	848	

Station observed Tmax 

Estimates JCB MJD RHI PDN     NWB    HYD    CHR        KHI BDN 

Shape ξ -0.387 -  -0.255 -0.418 -0.326 -0.332 -0.329 -0.310 -0.222   --0.329 

Standard Error Δξ 0.031    0.022 0.022 0.021 0.020 0.031 0.037 0.034    0.031 

Scale σ 2.754    2.081 2.351 2.214 2.139 2.228 2.562 2.568    2.228 

Standard Error Δσ 0.142    0.104 0.107 0.107 0.103 0.116 0.146 0.144                   0.116 

ERA Interim Tmax 
 Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.195 -0.178 -0.207 -0.218 -0.213 -0.338 -0.285 -0.037 -0.251 

Standard Error Δξ 0.032 0.034 0.034 0.028 0.026 0.031 0.033 0.050 0.037 

Scale σ 1.464 1.323 1.344 1.504 1.563 2.065 1.849 1.330 2.041 

Standard Error Δσ 0.079 0.073 0.074 0.078 0.078 0.108 0.094 0.090 0.115 

Bias Corrected ERA Interim Tmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.195 -0.178 -0.207 -0.218 -0.213 -0.338 -0.285 -0.037 -0.251 

Standard Error Δξ 0.032 0.034 0.034 0.028 0.026 0.031 0.033 0.050 0.037 

Scale σ 1.983 1.791 1.820 2.038 2.116 2.798 2.308 1.801 2.763 

Standard Error Δσ 0.108 0.100 0.100 0.106 0.106 0.146 0.123 0.122 0.156 

Station observed TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.176 -0.186 -0.215 -0.215 -0.216 -0.323 -0.242 -0.219 -0.186 

Standard Error Δξ 0.038 0.035 0.034 0.044 0.026 0.026 0.034 0.036 0.032 

Scale σ 2.759 2.045 1.960 2.078 1.857 2.372 2.512 2.337 1.903 

Standard Error Δσ 0.159 0.114 0.108 0.128 0.093 0.119 0.138 0.132 0.105 

ERA Interim TWmax 

Estimates JCB MJD RHI PDN NWB HYD CHR KHI    BDN 

Shape ξ -0.089 -0.094 -0.068 -0.125 -0.158 -0.177 -0.090 -0.019 -0.173 

Standard Error Δξ 0.037 0.029 0.032 0.034 0.031 0.037 0.035 0.035 0.037 

Scale σ 1.287 1.243 1.231 1.440 1.610 1.649 1.3423 0.680 1.788 

Standard Error Δσ 0.074 0.066 0.067 0.080 0.087 0.095 0.076 0.039 0.102 

Bias Corrected ERA Interim TWmax 
Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN 

Shape ξ -0.089 -0.094 -0.068 -0.125 -0.158 -0.177 -0.090 -0.019 -0.173 

Standard Error Δξ 0.037 0.029 0.032 0.034 0.031 0.037 0.035 0.035 0.037 

Scale σ 1.356 1.646 1.758 1.494 1.520 2.052 2.146 1.399 2.152 

Standard Error Δσ 0.078 0.087 0.096 0.083 0.082 0.119 0.121 0.081 0.123 



	 19	

	849	
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	891	
	892	
	893	
	894	
 895	
 896	
 897	

Figure	2.	Modified	scale	(σ*)	and	shape	parameter	(ξ)	of	the	observed	Tmax		(°C)	Karachi.	The						
																	red	vertical	lines	represent	the	selected		threshold	according	to	the	station	quantiles.	

Figure	3.	Mean	residual	life	plot	of	the	station	observed	Tmax	(°C) Karachi.	
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 898	
 899	
 900	
 901	
 902	
 903	
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 905	
 906	
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 909	
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 911	
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	915	
	916	
	917	
	918	
	919	
	920	
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 934	
 935	
 936	
 937	
 938	
 939	
 940	
 941	
 942	
 943	
 944	
 945	
 946	
 947	
 948	
 949	
 950	

Figure	4.	Spatial	distribution	of	the	shape	parameters	ξ		and	scale	parameters	σ	of	the	station																														
																		observed,		ERA	Interim,	and	bias	corrected	ERA	Interim	Tmax		(upper	panel)	and	TWmax					

																		(lower	panel)			degree	Celsius.	
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 951	
 952	
 953	
 954	
 955	
 956	
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 1007	
 1008	
 1009	
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Figure	5.	Absolute	maxima	Amax	in	degree	Celsius	(a)	station	observed	Tmax		(b)	ERA	Interim	and	bias				
																		corrected			ERA	Interim	Tmax		(c)	station	observed	TWmax		(d)	ERA	Interim	and	bias	corrected				
																		ERA	Interim	TWmax	.	
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Figure	6.	Return	level	plots	of	the	station	observed	Tmax	(black)	,	ERA	Interim	Tmax	(red),	and					
																		bias	corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	blue	line	is	to	show			
																		a	difference	in	the	observed	and	ERA	Interim	RLs.	
	

 1011	
 1012	
 1013	
 1014	
 1015	
 1016	
 1017	
 1018	
 1019	
 1020	
 1021	
 1022	
 1023	
 1024	
 1025	
 1026	
 1027	
 1028	
 1029	
 1030	
 1031	
 1032	
 1033	
 1034	
 1035	
 1036	
 1037	
 1038	
 1039	
 1040	
 1041	
 1042	
	1043	
	1044	
	1045	
	1046	
	1047	
	1048	
	1049	
	1050	
	1051	
	1052	
	1053	
	1054	
	1055	
	1056	
	1057	
	1058	
	1059	
	1060	
	1061	
	1062	
	1063	
	1064	
	1065	



	 23	

	1066	
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	1100	
	1101	
	1102	
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	1106	
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	1110	
	1111	
	1112	
	1113	
	1114	

Figure	7.	Return	level	plots	of	the	station	observed	TWmax	(blue),	ERA	Interim	Tmax	(pink),	and	bias		
																		corrected	ERA	Interim	Tmax	(green)	in	degree	Celsius.	The	black	line	is	to	show	a		
																		difference	in	the	observed	and	ERA	Interim	RLs.	
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	1115	
	1116	
	1117	
	1118	
	1119	
	1120	
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	1150	
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 1160	
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 1166	

Figure	8.		Spatial	distribution	of	the	station	observed	Tmax	(red)	and	bias	corrected	ERA	Interim	
Tmax	(blue)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	
and	50	years	in	southern	Pakistan.	
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Figure	9.	 Spatial	distribution	of	 the	 station	observed	TWmax	 (brown)	and	bias	corrected	ERA	Interim	
TWmax	(orange)	return	levels	in	degree	Celsius	corresponding	to	return	periods	of	5,	10,	25	and	
50	years	in	southern	Pakistan.	

	


