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Abstract

In the 21% century, climate change in combination with increasing demand, mainly from population growth, will exert
greater pressure on the ecosystems of the Sahel to supply food and feed resources. The balance between supply and demand,
defined as the annual biomass required for human consumption, serves as a key metric for quantifying basic resource
shortfalls over broad regions.

Here we apply an exploratory modelling framework to analyze the variations in the timing and geography of different NPP
(net primary production) supply-demand scenarios, with distinct assumptions determining supply and demand, for the 21%
century Sahel. We achieve this by coupling a simple NPP supply model forced with projections from four representative
concentration pathways, with a global, reduced-complexity demand model driven by socio-economic data and assumptions
derived from five shared socio-economic pathways.

For the scenario that deviates least from current socio-economic and climate trends, we find that per capita NPP begins to
outstrip supply in the 2040s, while by 2050, half the countries in the Sahel experience NPP shortfalls. We also find that
despite variations in the timing of the onset of NPP shortfalls, demand cannot consistently be met across the majority of
scenarios. Moreover, large between-country variations are shown across the scenarios where by the year 2050, some
countries consistently experience shortage or surplus, while others shift from surplus to shortage. At the local level (i.e. grid
cell) hotspots of total NPP shortfall consistently occur in the same locations across all scenarios, but vary in size and
magnitude. These hotspots are linked to population density and high demand. For all scenarios, total simulated NPP supply
doubles by 2050 but is outpaced by increasing demand due to a combination of population growth and adoption of diets rich
in animal products. Finally, variations in the timing of onset and end of supply shortfalls stem from the assumptions that
underpin the shared socio-economic pathways rather than the representative concentration pathways.

Our results suggest that the UN sustainable development goals for eradicating hunger are at high risk for failure. This
emphasizes the importance of policy interventions such as the implementation of sustainable and healthy diets, family

planning, reducing yield gaps, and encouraging transfer of resources to impoverished areas via trade relations.
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1 Introduction

The global demand for food is projected to increase by up to double by 2050 (compared to the year 2005) due to rapid
population growth and changes in dietary preferences (Hertel, 2015; Tilman et al., 2011). As a consequence, global
agricultural supply needs to increase substantially in order to satisfy this demand (Ray et al., 2013). Agricultural practices
can be intensified with technological investments (i.e. mechanization, irrigation and fertilization) to increase yields but these
are costly and often lead to environmental degradation (Foley et al., 2005). As opposed to agricultural intensification, the
amount of agricultural land can be expanded in order to meet future demand. This results in changing land use and land
cover (LULCC), for example from natural vegetation to cropland. Approximately 35% of the total ice-free land surface is
used for agriculture (Ramankutty et al., 2008). Agricultural land (grassland and cropland) expanded by 3% globally between
1985 and 2005 and is expected to further increase, especially in the tropics (Foley et al., 2011). The production of the most
common crops (e.g. cereals, oil crops, and vegetables) increased by nearly 80% over the past four decades (FAOSTAT,
2015; Foley et al., 2011), mostly due to increases in yield (Kastner et al., 2012) and to a smaller extent by LULCC (Foley et
al., 2011). Despite the large increase in agricultural production, global food security is not ensured (due to access and
distribution challenges (e.g. Brown, 2016; Pinstrup-Andersen, 2009)), as there are presently 792 million people chronically
undernourished across the planet, a third of which are in Africa (FAOSTAT, 2015).

The Sahel region of sub-Saharan Africa is one of the most technologically underdeveloped regions in the world, where yield
gaps are explained by low and variable rainfall combined with low soil fertility (Yengoh and Ardd, 2014). The population
by-and-large relies on rain-fed farming practices including subsistence agriculture, cash crops, pastoralism and agro-
pastoralism. The population has a high reliance on their own land, where 95% of food produce is for domestic consumption,
(Abdi et al., 2014; Running, 2014). The vulnerability of the population to variations in agricultural supply due to frequent
drought undermines wealth accumulation, which would otherwise provide a buffer in drought years (Barbier et al., 2009).
Additionally, poor transportation infrastructure inhibit the trade and distribution of food resources (Olsson, 1993). Between
the late-1960s to the early 1990s, the Sahel experienced a protracted dry period in which severe droughts caused fluctuating
levels of food supply leading, in some cases, to severe humanitarian crises. The devastating droughts in 1972/73 and 1983/84
induced complete crop failure leading to the largest famines in the recent history of the Sahel (Ibrahim, 1988). The latest
major drought to hit the region was in 2002. As of 2013, over 11 million people across the region were considered to be food
insecure (United Nations, 2013).

NPP estimates from the MODIS (Moderate Resolution Imaging Spectroradiometer (MODIS) suggest that the Sahel region
experienced a near-constant rate of crop productivity between 2000 and 2010, while population grew at a rate of 3.1% over
the same period (Abdi et al., 2014). Abdi et al. (2014) also showed that 19% of the NPP supply in the Sahel was able to
satisfy demand for the year 2000 but this increased to 41% in 2010 due to a 31% increase in the population. Since the NPP
demand increased at an annual rate of 2.2% over the period while the supply was near constant, the near doubling in NPP

demand implies, in relative terms, that there was less NPP supply to service the increase in population. This raises the
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question of whether demand could consistently outstrip supply in the future and underscores the importance for developing
tools for analyzing potential future supply and demand that could be of use for policy makers. Indeed, the balance between
supply and demand (annual biomass required for human consumption) serves as a key metric for quantifying basic resource
shortfalls over broad regions (Abdi et al., 2014; Running, 2014).

Developing such tools requires coupling of specific models that address different sectors, such as a model for supply and a
model for demand that can be run across multiple future climate, socio-economic and CO, concentration scenarios.
However, the supply-demand system in the Sahel is complex and the future cannot be precisely evaluated. This is because
there are many uncertainties associated with the assumptions that underpin the natural and socioeconomic drivers that lead to
particular supply-demand balances. As such, an exploratory modelling approach is required, where an emphasis is placed on
a structured analysis across a range of outcomes. This approach capitalizes on future indeterminacy for developing adaptive
policy insights (e.g. Kwakkel and Pruyt (2013)). As the goal of exploratory frameworks is not prediction, they often employ
parsimonious or simplified versions of more complex models (often referred to as meta-models in the latter case) that run
across a range of scenarios (e.g. Harrison et al. (2016)). Another benefit of using such simplified models lies in the ease to
which they can be coupled to other sectoral models (e.g. Kebede et al. (2015)).

In this study we couple a simple supply model (Biome-based Meta-model Ensemble - BME) with a demand model
(Parsimonious Land Use Model - PLUM) to compute NPP supply-demand balance for a set of 21st century Sahel scenarios
covering different climate, [CO,] and socio-economic trajectories in an exploratory modelling framework. Our overall aim is
to quantify variations in the timing and geography of NPP supply and demand in the Sahel in association with these
trajectories. Three different aggregation levels are considered, including Sahel, the national, and -local (cell level with a
spatial resolution of 0.5° x 0.5°). Thereafter we discuss those natural and socio-economic factors that lead to changes in the
balance between supply and demand throughout the 21% century, as accounted for by the coupled models. The Sahel-level
analysis focuses on the total impact of the different future climatic and socio-economic pathways and its timing on supply
and demand and asks the fundamental question of whether the Sahel as a whole, could potentially be self-sufficient. By
contrast, the country-level analysis focusses on a level relevant for policy, international relations, and aid agencies. Finally,
the local-level analysis identifies potential hotspots of supply shortage occurring at sub-national levels. We restrict our
analyses to localized supply-demand only in order to flag those areas that would require the lateral transfer of supply from
elsewhere via trade or aid. This would provide a first order boundary condition for further studies or for use by policy
makers. As a consequence, specifically accounting for the myriad of political, social and cultural factors that affect lateral

transfer, access to, and distribution of supply is beyond the scope of this study.
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2 Materials and Methods
2.1 Modelling framework

In the current study, we couple two sectoral models to assess the future supply and demand trajectories for the Sahel region.
We divided the modelling framework into three parts (Fig. 1), where the first part describes NPP supply; the second
encapsulates NPP demand, while the third combines the two.

2.1.1 NPP supply

Supply is dependent on vegetation growth, and can be quantified as net primary production (NPP), which is defined as the
difference in gross photosynthetic assimilation of carbon and carbon loss due to autotrophic respiration, per area per unit
time (Foley, 1994). NPP is an established measure of ecosystem productivity indicating how much energy is available for
all life on Earth. We estimated future plant productivity of the Sahel with the BME (Biome-based NPP meta-models). The
BME is a rapid biome-based NPP meta-model that emulates the performance of the more complex model LPJ-GUESS
(Lund-Potsdam-Jena General Ecosystem Simulator, Smith et al., 2014), but in a simplified, and more time-efficient manner.
LPJ-GUESS is a state-of-the-art dynamic global potential natural vegetation model that incorporates carbon and nitrogen
interactions (Smith et al., 2014). LPJ-GUESS (carbon cycling only)shows good skill in predicting NPP at regional and global
scales (Hickler et al., 2008; Tang et al., 2010). We developed the BME using LPJ-GUESS NPP simulations driven by
several climate and CO, concentration perturbations (see Table Al). The biome definition in BME is taken from the Major
Biome classification (MBC) (Reich and Eswaran, 2002), which stratifies the terrestrial biosphere into 13 biomes based on
soil moisture and temperature regimes. We chose this biome definition because it represents a trade-off between global
biosphere classifications that either have too many biomes or too few, compared to other stratifications (Kottek et al., 2006;
Metzger et al., 2013; Olson et al., 2001). The trade-off also allowed for a reasonably accurate reproduction of vegetation
dynamics, compared with LPJ-GUESS. For our study, we parameterized BME for the four major biomes of the Sahel: a)
desert tropical, b) desert temperate, c) tropical semi-arid and d) tropical humid (Fig. 2). A recent study by Gonzalez et al.
(2010) shows that climate change has the potential to shift biomes by the end 21% century. For simplicity, we therefore
assumed static biomes that persist during climatic changes encountered during the modelling period (year 2000-2100). A
detailed description of the BME implementation is provided in Appendix A.1.

We also evaluated LPJ-GUESS (e.g. Olin et al., 2015) and BME performance (magnitudes, trends and interannual
variability) by first implementing a global biome-by-biome-level validation, where results from the Sahel are highlighted.
We then compare BME estimates with LPJ-GUESS NPP simulations (including LPJ-GUESS managed land, in order to
gauge the effect of agriculture on NPP, keeping in mind that BME is based on a model of potential natural vegetation) that
were excluded from BME parameterization. Finally, we compare BME estimates against MODIS-derived NPP (2000-2006)

(Running, 2004), as well as country-level censuses of crop yield trends from Rey et al. (2013). We also include a comparison
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with LPJ-GUESS C (carbon cycling only), a version that has been previously validated at the global scale (e.g. Hickler et al.,
2008).The evaluation covered the entire Sahel region and was run from 1970 to 2006 (see Appendix A.2).

We forced BME with climate data (spatial resolution 0.5 x 0.5 degrees) from five GCMs (General Circulation Models,
including HADLEY, GFDL, IPSL, MIROC and NorESM), and [CO,] based on four RCPs (Representative Concentration
Pathways, including 2.6, 4.5, 6.0 and 8.5) to estimate annual total NPP in kg dry-weight m? yr'* (DW, dry-weight). We used
climate data derived from runs across the 4 RCPs for each of the 5 models. We then calculated annual means of the five
GCM NPP yields, resulting in four NPP time-series (covering each RCP) each spanning from 2000 to 2100. By averaging
the GCM based NPP estimates we decreased the data amount while reducing spatial and temporal variability stemming from
individual GCMs. In the next step, we summed the annual NPP estimates over the grid cell area in m? using the latitude of
each grid cell centre. Additionally, we used annual land use projections from Hurtt et al. (2011) to calculate the total area of
pasture and cropland in each grid cell. This allowed us to estimate annual total NPPyy, (kg cell* yr"y for pasture and
cropland separately. We estimated crop- and grassland scaling factors for each country by dividing the PLUM-predicted
land-use area with the total land-use area provided by the Hurtt et al. (2011) dataset (Table C1). We then applied the scaling
factors to the Hurtt et al. (2011) land-use data and multiplied the resulting crop- and grassland areas with the NPP estimates
to obtain annual NPPcerear suppty aNd NPPyrazing suppty (kg DW cell yr'l). We addressed potential developments in the wider use
of existing agricultural technology that result in higher plant productivity with a technology improvement factor, where this
factor is used to decrease the yield gap. The technology improvement factor is the aggregate result of parameterizing three
technology related parameters (trends in technology, change in yield with GDP per capita, as well as how agricultural
management practices are transferred both within and between countries) that are consistent with the scenario storyline of
each SSP. Parameter ranges have been empirically determined based on analysis of data between the years 1995 and 2005.
Yield gaps are not necessarily closed, but are decreased (see Engstrom eta al., 2016 for more detail).We then used country-
wide yield gap fractions provided by PLUM spanning from 2000 to 2100 (Engstrom et al., 2016b; Licker et al., 2010). The
yield gap fractions are country-specific and dependent on technological development in each scenario, and are thus
consistent with the SSP storylines (Engstrom et al., 2016b). For example, a scenario with strong technological change has
large decreasing yield gaps while a scenario with slow technological change has slowly, or stagnating (or even increasing)
yield gaps. Here, we calculated yearly technology improvement factors by dividing the inverse yield gap fraction (i.e. 1-yield
gap fraction) of the respective year with the inverse yield gap of the starting year (i.e. 2000). Thereafter, we applied the
annual technology improvement factors to the NPPcerear supply (K9 cell™ yr?) of the respective year and country.

Finally, we used root-to-shoot ratio (R:S) to remove below ground biomass NPP of croplands (we exclude tubers and
groundnuts) and pasture from our NPP estimates, since this component cannot generally be appropriated by humans or by
the majority of animals. For croplands, we assumed common agricultural practice across the Sahel region and therefore
applied a region-wide R:S=0.1 (Jackson et al., 1996). This a reasonable R:S since crops produce low root biomass compared
to the above ground biomass. Moreover, we extracted the consumable parts of the above ground NPP by using a region-wide

crop harvest index of 0.235, which is the average of reported harvest indices for maize, millet, sorghum and wheat (Haberl et
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al., 2007; Wirsenius, 2000). In contrast to crops, grasslands produce more below ground NPP in relation to above ground
NPP (R:S >1) (Jackson et al., 1996). Therefore we considered the climatic limitations of individual biomes by extracting
above ground NPP (for grasslands): a) desert tropical R:S=2.8; b) desert temperate R:S=1.1; c) tropical semi-arid R:S=2.8;
and d) tropical humid R:S=1.6 (IPCC, 2006; Mokany et al., 2006).

2.1.2 NPP demand

For the calculation of NPP demand only, the parts of NPP that are available for direct consumption (excluding e.g. NPP
preserved in e.g. national parks) are here considered. Future NPP demand can be projected applying a set of consistent
assumptions for future societal and economic developments, described in socio-economic scenarios. We simulated future
NPP demand for each country of the greater Sahel with PLUM, which is based on a conceptual model of socio-economic
processes that determine global agricultural land-use change (Engstrom et al., 2016c). These processes include population
and economic development, the consumption of cereal, milk and meat dependent on economic development and
lifestyle/diet choice and the development of cereal yields dependent on technological change. PLUM is driven by country-
level population and gross domestic product (GDP) data, and a range of parameters that characterize the development of the
socio-economic processes mentioned above. PLUM was evaluated against historic (1991-2010) consumption and land-use
data at the country scale and was shown to reproduce land-use change and consumption patterns at the global aggregated
scale (Engstrom et al., 2016c). Due to the model’s relative simplicity and the limited number of scenario parameters it is
suited for scenario studies and was used to quantify uncertainty ranges for global cropland scenarios based on the Shared
Socio-economic Pathways (SSPs) (Engstrém et al., 2016b). Mean cropland change for the five scenarios resulted in 963-
2280 Mha cropland by 2100 compared to 1503 Mha cropland in 2000. The parameter-settings resulting in the uncertainty
ranges for each scenario are described in Engstrom et al. (2016b) and the reported mean values were used in the current
study. For more details see Engstrom et al. (2016b). In the version of PLUM applied in our study, we introduced an
additional parameter which characterizes the increasing intensification of the livestock production systems in scenarios with
strong increase in milk and meat consumption (Engstrém et al., 2016a). This process was previously not included in PLUM,
but it was later identified to lead to an underestimation of land requirements for scenarios with strong increases in milk and
meat consumption (Engstrém et al., 2016b).

We forced PLUM with the five socio-economic scenarios from 2000-2100 (see box outlined in red in Part 2 of Fig. 1) taken
from the SSPs, but it is important to remember that is it also coupled to the BME (see dashed arrow in Fig. 1) through annual
country-level total NPP estimates for cropland. Aggregation of BME NPP estimates was implemented as described in
Engstrom et al. (2016b), except that cropland fractions in 2000 from MIRCA dataset were replaced with Hurtt et al. (2011)
cropland fractions from 2000-2100.

Finally, we defined the demand of NPP as compounds that are necessary for human livelihood in the Sahel region, following
the NPPgemang @pproach of Abdi et al. (2014). However, our approach differs from Abdi et al. (2014) by distinguishing
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between the demand of cereal- and pasture products. PLUM outputs were combined to determine NPP,eyeq1 gemana @S 9iven
in Eq. (1) and NPPyrqzing demana (S€€ EQ. A9 in the Appendix A.3).

NPPeereqr demana = NPProoa + NPPreeq 1)

where NPPeereqr_gemana 1S the total amount of annual NPP needed for human appropriation via cropland; NPPy,,q (ton
country™) is the NPP needed for consumed cereals; and NPPyeeq (ton country™) is the amount of cereal based fodder to
support the region’s livestock population. NPPy,qing aemana 1S the NPP needed for sustaining the livestock by grazing (ton
country™). Furthermore, we converted NPP,erear demana AN NPPyrqzing demana 10 P capita demand (kg person™) using
country population projections of the corresponding year in the SSP. A detailed methodology of the PLUM output
combinations to satisfy Eq. (1) is given in Appendix A.

In the following step, we disaggregated the annual per capita NPPcereqi gemana aNd NPPyrqzing demana from country to 0.5
degree grid cell resolution in order to facilitate the spatial analysis of NPP supply and demand at the grid cell level. For that
we multiplied annual per capita demands with gridded population data (0.5 x 0.5 degree resolution) of the corresponding
years. The disaggregated annual NPPcereqi gemana aNd NPPgrozing demana (K9 cell* yr?) are therefore weighted by

population density (i.e. population centers achieve high demand).

2.1.3 NPP Supply-Demand Balance

In the next step, we combined the NPPg,,,, (i.e. RCP based) with the NPPgepnang (i.6. SSP driven) using a SSP-RCP
likelihood matrix (Engstrom et al. (2016b), see Table 1) in order to facilitate the analysis of the NPP supply and demand
balance. To create the likelihood matrix, a qualitative probability was assigned to describe the likelihood of a SSP resulting
in a RCP (Engstrom et al., 2016b). The qualitative likelihood estimates are based on experts’ judgements, ranging from
“very low” to “very high” and were translated to quantitative probabilities (Engstrém et al., 2016b). For the analysis, we
considered SPP-RCP combinations with likelihoods above > 0.05 (> very low likelihood).

Next, we computed cereal-based  (i.e.  NPPcerear palance=NPPcercal supply"NPPcereal_gemand) ~ @nd  grazing  (i.e.
NPPygrazing batance=NPPgrazing supply-NPPgrazing demana) balances. In order to combine the balances meaningfully we defined four
rules as outlined in Table 2. Rule no. 1 states that a deficit of cereal products (NPPcereal patance<0) cannot be balanced with
surplus of plant growth on grassland (NPPgraing batance =0) because grassland products are inappropriate for direct human
consumption, resulting in all grazing surplus being disregarded. Rule no. 2 regulates the treatment of cereal and grazing
surplus occurring simultaneously, where pasture NPP surplus (NPPgrazing patance =0) is ignored but the cereal-based NPP
surplus (NPPereai patance>0) is retained. This surplus is of interest because it can potentially balance NPP shortages in adjacent
grid cells as well as on the country level. Rule no. 3 permits the combination of cereal (NPPcerea palance<0) and grazing
(NPPgrazing_palance<0) deficits in order to quantify the total NPP shortage of the grid cell. The last rule allows supplementation

of grazing-based shortages (NPPyrazing baiance<0) With cereal surplus (NPPcereal_patance>0).
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2.2 Scenarios

In the current study, we combine four Representative Concentration Pathways (RCPs) with five SSPs which are the latest
future climate, [CO,] and socio-economic projections (O'Neill et al., 2014; van Vuuren et al., 2011; van Vuuren et al., 2013)
from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) framework. Each RCP
represents a different cumulative measure of future human greenhouse gases (GHG) emissions and is defined by their
radiative forcing targets for the year 2100, and which range from 2.6 to 8.5 W m (van Vuuren et al., 2011). For each RCP,
we obtained climate data from the Inter-Sectoral Impact Model Intercomparison project (ISI-MIP), containing climate
simulations of five General Circulation Models (GCMs) for each RCP (Hempel et al., 2013). (GCMs : (Collins et al., 2013;
Dufresne et al., 2013; Dunne et al., 2013; Iversen et al., 2013; Watanabe et al., 2011)). The climate data (0.5 x 0.5 degrees
resolution) was bias corrected by the ISI-MIP approach that preserves trends in absolute changes in monthly temperature,
and relative changes in monthly precipitation amounts (Hempel et al., 2013). For future socio-economic developments, the
SSPs consider different narratives of future population levels, urbanization scenarios and economic development (O’Neill et
al., 2017; van Vuuren et al., 2013) as summarized in Table 3.

No mitigation strategies are assumed and resulting scenarios are thus reference scenarios. Furthermore, for each of the
considered SSP and RCP combinations, we used a distributed population projection dataset at 1 km? from Boke-Olén et al.
(2017). The population dataset was created by Boke-Olén et al. ( 2017) to match both the RCP specific urban fractions from
Hurtt et al. (2011) and SSP country urban and rural population counts. Hence, one population dataset exists for each SSP and
RCP combination used in this study. We resampled (summed) the population dataset to the same spatial resolution as the
climate data (0.5 x 0.5 degrees) and grid cells with population count below 3000 people per grid cell (~ one person per 1km?)
were excluded following Abdi et al. (2014).

Additionally, variation in NPP supply estimates originating from the five GCMs was retained for an estimate of supply
uncertainty to be included in the analysis. Uncertainty estimates for NPP demand associated with each SSP were derived
from the results of Engstrém et al. (2016b) and applied here. In their study, conditional probability ranges were defined for
twelve PLUM input parameters (reflecting uncertainties in SSP interpretation and quantification) in order to estimate

uncertainty in a range of PLUM outputs.

2.3 Study area

The study area covers the African continent between roughly 5° and 25° northern latitude and stretches from the Red Sea to
the Atlantic Ocean, hereafter referred to as the greater Sahel. Following Abdi et al. (2014), the area also includes the
neighbouring countries of the Sahel belt (encompassing 21 countries see Table 4). Note that this study uses the African
country definition for the year 2000 where South Sudan was a part of Sudan. The actual Sahel belt is described by an annual
rainfall range between 100mm and 600mm (hatched area in Fig. 2). The Sahel is an arid and semi-arid region that separates

the Sahara desert from the humid and tropical regions to the south. The northern parts of the region border the Sahara Desert



with low mean annual precipitation (<100mm) while the southern parts of the Sahel belt border the savannas of the tropical
semi-arid biome, permitting increased plant productivity due to higher mean annual rainfall (~600mm). The southern parts of
the study area cover the tropical semi-arid and tropical humid biomes with much higher mean annual precipitation amounts
ranging from 600 to 1000 mm enabling larger vegetation growth. The study area is one of the poorest as well as most
technologically underdeveloped regions on the African continent (Chidumayo and Gumbo, 2010).
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3 Results

In the following the results are presented at Sahel, country and local (grid cell) level. Results for the different scenario
combinations are reported, but emphasis is given to the SSP2-RCP6.0 scenario, as this scenario deviates least from current

socio-economic and climate trends at the global level. Additionally, Fig. 3a also provides a basis for interpreting Fig. 3b.

3.1 Sahel

Per capita demand exceeds supply in the early 2040s for SSP2-RCP6.0 after which a very high likelihood for shortfalls
begins in 2070 (see black dots in Fig. 3a showing non-overlapping 95% confidence limits). By 2050, per capita demand
almost doubles while per capita supply drops by almost 30% for the same scenario. Across the scenarios, differences in the
timing of the start of persistent supply shortfalls with high statistical certainty are observed (see black dots in Fig. 3b). Three
of these high likelihood shortfalls begin at 2050 or before (SSP5 scenarios — see black dots in Fig. 3b) while an additional six
display shortfalls with high certainty by the end of the 21% century (black dots in Fig. 3a, b). Out of these nine, two scenarios
never achieve a sustained run of shortfalls (SSP2-RCP6.0, SPP2-RCP8.5). In total, there is better than an even chance for
shortfalls before 2050 for 9 scenarios (exceptions are SSP1-RCP2.6, SSP1-RCP6.0, and all SSP4 scenarios.

Variations in the timing of onset and end of supply shortfalls are generally greater between the SSPs than between the RCPs
(Fig. 3b). For SSP2 and SSP3 scenarios, onsets of high likelihood supply shortfall range from the early 2050s to the mid-
2070s (even chance from late 2030s to early 2050s). The SSP5 family shows the largest deficits of high likelihood shortfalls
beginning in the 2040s-2050s (even chance from the early 2030s), and after several decades of deepening begin to diminish
in the 2080s. Shortfalls with high certainty never emerge for SSP1 (even chance from the early 2050s) while the SSP4

scenarios show sustained but diminishing surplus throughout.

3.2 Country-level

For scenario SSP2-RCP6.0, per capita NPP balances generally show a decrease for all countries. Eleven countries (out of
twenty-two) experience per capita shortages by 2050, up from two countries (Djibouti and Mauritania) in 2000. Ethiopia
shows the most extreme shortfall while Togo the greatest surplus. The largest change amongst all countries (is exemplified
by Niger which starts with a surplus in 2000 but ends up with a deficit by 2050. Conversely, Djibouti shows a small decrease
in deficit over the period (Table 4).

Large changes in per capita NPP balance are caused by contrasting development of NPP supply and demand, as analyzed in
the following two paragraphs. Despite large total NPP increases between 2000 and 2050 (SSP2-RCP6.0), per capita NPP
supply decreases for almost all countries, the largest decreases being for Niger and Sudan while an increase is noted for

Liberia.
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Since all countries double or even triple their population counts from 2000 to 2050 (Table 4), large increases in demand
occur over the 50 year period, while even per capita demand increases. By 2050, the largest increases in demand per capita
are projected for Liberia, Ethiopia and Ghana by 2050 respectively (Table 4).

Generally, the differences in NPP balances across scenarios are high, with the largest variations attributed to the SSPs as
opposed to the RCPs (Table C2), with two countries (Sierra Leone and Liberia) showing considerable variation across the

scenarios (coefficients of variation > 2.0).

3.3 Local level

For SSP2-RCP6.0, the localities experiencing negative NPP balance expand and become more connected between 2000 and
2050. By 2050, a semi continuous band of low magnitude NPP shortage emerges (generally > -0.2 Mt dry weight yr* per
grid cell), stretching from the Atlantic Ocean to the Red Sea, between 15° and 20° N (Fig. 4b). In the east, this band extends
down along the coast and wraps around the horn of Africa. A separate band of similar magnitude emerges toward the south,
from just above 10° N, and stretching toward the east-southeast into Cameroon. Additionally, four separate locations of large
magnitude shortfalls (> 1.5 Mt dry weight yr™ per grid cell) of varying extents emerge. The first hotspot (relatively small
cluster of large magnitude shortfall) is located along the Nigerian coast, stretching from the metropolitan areas of Lagos to
the densely populated area of the Niger delta (Fig. 4a, h1). The second hotspot is located in northern Nigeria, close to the city
Kano (Fig. 4a, h2) while the third is located in the Ethiopian highlands of Eastern Africa (Fig. 4a, h3). Finally, the fourth
covers the area of around Khartoum in the Sudan (Fig. 4a, h4). Elsewhere, very small pockets (e.g. 1 grid cell in size) of
large magnitude NPP shortages (<-1.0 Mt DW yr™ per grid cell) are distributed unevenly across the region.

Both supply and demand increase over most localities for the SSP2-6.0 scenario from 2000 to 2050 (Fig. 4 c-d). For supply,
largest increases (up to, and exceeding 1 Mt dry weight yr per grid cell) occur in those areas that already see large supply in
2000, including the southern parts of Ivory Coast and Ghana, and most of Nigeria and the southern part of Niger (Fig. 4c,d).
Smaller increases occur throughout central Sudan and Ethiopia. Large magnitude increases (between 1 and > 2 Mt dry
weight per year® per grid cell) in demand are seen for distinct geographic regions, the largest patches covering coastal
Nigeria, northern Nigeria-southern Niger, north-central Sudan around Khartoum, and Ethiopia (Fig. 4f). By-and-large, these
correspond to the hotspots of supply shortfall identified in Fig. 4b. Smaller areas, sometimes no larger than one grid cell, are
seen scattered across Sudan, Chad, the west coast, and south Sudan.

The general geographical patterns of NPP shortage remain persistent across all scenarios, including the four hotspots
identified for SSP2-RCP6.0. The largest magnitude shortages are indicated for SSP5-RCP8.5 (Fig. B1).
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4 Discussion
4.1 Sahel-level

World-wide cereal production in 2010 amounted to 2400 Mt and current food aid shipments to countries in the Sahel are
below 1 Mt yr' (FAOSTAT, 2016). At present about 260 million people are chronically undernourished in Africa
(FAOSTAT, 2015) and this is despite the fact that we also estimate a per capita NPP surplus of 860 (+144) kg DW yr*
(corresponding to 309 (+52) Mt DW yr?) in the Sahel for the year 2000. This implies that current challenges are associated
with other determinants such as access to and distribution of resources (Brown, 2016; Olsson, 1993; Pinstrup-Andersen,
2009). These challenges are set to increase in the future, particularly for scenarios with high social and economic inequalities
(SSP4). Furthermore, the majority of all other scenarios show that by mid-century, the NPP surplus will be much reduced
compared to the year 2000. According to the sustainable development goals, hunger and all forms of malnutrition should be
eradicated by the year 2030 (UN, 2016), but under the current trend given by the SSP2-RCP scenarios, there is a risk that 15-
25% (160 to 270 million people) of the population would not be able to be supported with NPP supply (on the basis of
assumed adoption of diets rich in animal products, consistent with the SSP2 storyline) and are therefore at high risk for
malnutrition by 2050.

Presently, the Sahel has a high reliance on their own land by producing 90% of domestic food consumption resulting in very
little import or export of crops (Abdi et al., 2014). This implies that agricultural resources from global trade will need to
increase considerably in order to reduce the future food shortages across the region. Participation in global markets and
investments in infrastructure that enable trade of food commodities to ensure food security via trade will therefore be
important (D'Odorico et al., 2014). However, it needs to be kept in mind that the simulated shortages partly occur due to
steep increases in per capita consumption. For example, while reducing social inequities is clearly desirable (as embraced by
the SSP5 RCP scenarios), from a sustainability perspective, it is questionable if this should mean that developing countries
follow the development path of economically developed countries and adopt diets with very high consumption levels of
animal products (O’Neill et al., 2017). The adoption of sustainable diets (i.e. reduced contribution of animal products to
diets) has to be envisaged as a strategy consistent with efforts to reduce food demand to healthy and sustainable levels
(Smith, 2013). This would be consistent with the SSP1 (‘taking the green road’ scenarios) where sustainable diets are

adopted statistically significant shortages never develop (e.g. Fig. 3b).

4.2 Country-level

Beyond the import of agricultural products to the Sahel, inter-country trade of such resources will also need to become more
important later in the 21% century. Trade relations between productive and high-demand countries should be encouraged
(Ahmed et al., 2012). For instance, Cameroon, Ivory Coast, Chad and Togo produce NPP surplus for SSP2-RCP6.0 by 2050
which could be traded to neighbouring countries with NPP shortages (e.g. Nigeria). Across the scenarios, some countries

showed continuous NPP shortfalls (e.g. Mauritania), while Ivory Coast and Guinea consistently produce NPP surplus (Table
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C2). The large range of different climate conditions in the Sahel region implies that those countries within the tropical humid
(and partly in tropical semi-arid) biome have larger potential NPP compared to countries in the desert temperate biome. We
note that the closure of yield gaps by 2050 (for scenario SSP2-RCP6.0) would result in a change in mean per capita NPP
balance from -107 kg DW yr-1 (see Table 3) to 9 kg DW yr™. Though the balance for many countries will still be negative,
the shortfall magnitudes would be reduced. . Decreased supply due to losses of food during harvest, transport and storage
(i.e. household level) should be reduced through improvements of agricultural management, infrastructure and educational
development (Godfray et al., 2010). For most countries however, the different socio-economic development pathways
prescribed by the SSPs lead to high inter-scenario variability (having positive or negative balances depending on the

scenario) and will determine if countries have the potential be a net exporter or importer of resources.

4.3 Local-level

At the local-level, robust NPP shortages across scenarios were found to be strongly linked to densely populated areas. For
the example of SSP2-RCP6.0, by 2050, the number of grid cells with high population density (i.e. > 1 million population per
25 km x 25 km increased substantially compared to 2000 (see Fig. B4)). For instance, > 1 million people per grid cell trigger
NPP shortages in Ethiopia while > 2 million people per grid cell induce NPP shortfalls in Nigeria for SSP2-RCP6.0 by 2050.
The NPP shortage hotspots in Nigeria and Ethiopia agree geographically with reported considerable NPP demand
expansions in the 2000s (Abdi et al., 2014) indicating a combination of population growth and increased consumption as
explanatory factors. Furthermore, the projected deepening and persistent shortages in urban areas underscore the hypothesis
that the urban poor are especially at risk for food insecurity since they neither have the means to purchase food on the
markets, nor the means to be self-sufficient due to limited land in densely populated areas (Lynch et al., 2001). Thus,
connecting productive hinterlands with metropolitan areas will need to be achieved (Owuor, 2007).

That the locations of the hotspots and the overall patterning of NPP shortfalls remain consistent across all scenarios narrows
the number of future policy choices in the region for alleviating environmental insecurity despite the very different

assumptions and uncertainties embedded in the scenarios and models (Kwakkel and Pruyt, 2013).

4.4 Additional Perspectives

Livestock mobilization is one way local populations generally employ to manage risk (e.g. Herrmann et al. (2014). This
strategy may help regulate supply shortfalls locally, and over the short term. Even if the Sahel were to continue to green up
(increase in NPP supply) this would not necessarily imply an increase in the amount of usable NPP or an enhancement in
health and well-being. Recent studies in the Sahel show that much of the recent greening, at least in some regions, is due to
undesirable shifts in species composition (e.g. Herrmann et al. (2014)), reductions in biodiversity and an increases in woody
biomass (e.g. Brandt et al. (2015)).Campbell et al. (2014) underscore the importance of family planning and education in the

Sahel in order to curb population growth. Generating demand for various forms of birth control and gender empowerment
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would be two key interventions that would work towards slowing population growth, improving health and facilitating

income generation. These interventions would act to curtail supply shortfalls in the future.

4.5 Mechanisms of changes in future NPP supply and demand
4.5.1 NPP supply

In order to isolate the CO, (rainfall) effect on NPP increase for RCP6.0, we compared a simulation where rainfall (CO,) was
held constant with a simulation where both were held constant for the period 2000-2050 for all GCMs. We found that supply
increases mostly due to CO, fertilization (see Fig. B2), with very little attributed to rainfall. However, yield gap closure from
SSP2 contributes most to the increase in simulated NPP supply (Fig. B2).

The CO, fertilization effect increases with the magnitude of climate change and explains the smaller shortages in SSP-
RCP8.5 scenarios compared to SSP-RCP4.5 scenarios (Fig. 3b). The decreases in yield gap (applied to the NPP supply and
demand balance through the technological improvement factor) are simulated with PLUM and are strongly dependent on
scenario-driven assumptions for technological change. High rates of technological change explain the decreasing shortages
at the end of the 21% century for SSP1-RCPs and SSP5-RCPs scenarios. For example, in the SSP1-RCP scenarios, the yield
gap decreased from 0.55 in 2000 to 0.43 by 2050 in Nigeria and from 0.69 in 2000 to 0.56 by 2050 in Ethiopia. By contrast,
slow technological change in SSP3-RCP scenarios leads to very small decreases in yield gaps, e.g. for Nigeria to 0.54 by
2050 while no improvement at all was simulated for Ethiopia. Uncertainties in yield improvements driven by technological
development are very large and critically dependent on investments as well as on infrastructural and political development in
developing countries (Engstrém et al., 2016b; Licker et al., 2010; Mueller et al., 2012). Reducing yield gaps to 0.5 in Sub-
Saharan countries can be achieved by intensified nutrient management, while decreases down to 0.25 require increased
irrigation and fertilization (Mueller et al., 2012). However, Elliott et al. (2014) underscore that freshwater limitations in the
dryer regions of the globe could limit agricultural production, and even lead to the reversion of irrigated farmland to rainfed
farmland, thereby negatively affecting food production. Conventional agricultural intensification, however, can result in
environmental degradation, vulnerability to pests, and depletion of aquifers (Ceccato et al., 2007; Foley et al., 2005).
Agricultural management should consider strategies of sustainable intensification while simultaneously considering
adaptation of agriculture to changing climates (Dile et al., 2013; Pretty, 2008, 2011).

An additional driver of NPP supply is the simulated increase in agricultural land area provided by PLUM (i.e. grass- and
cropland — Fig. B5). However, the simplified representation of grassland in PLUM potentially underestimates the expansion
of agricultural land into naturally vegetated areas, and thus the magnitude of total NPP supply. As with agricultural
intensification, the expansion of agricultural land into natural forests and grasslands has the potential to produce negative
impacts on the environment and on climate (Canadell and Schulze, 2014; Foley et al., 2005; Pugh et al., 2015).4.5.2 NPP

demand
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Despite increases in future NPP supply, according to our results, the Sahel is likely to experience NPP shortages for most
NPP scenarios due to strong increases in demand. Generally, the increasing NPP demand in the Sahel region can be
explained by doubling to tripling population in the period 2000-2050 across the scenarios (Fig. B3a). However, changes in
economy, lifestyle and consumption patterns as simulated with PLUM were shown to be the important drivers for large total
NPP demand. For example, in the SSP5-RCP scenarios, per capita NPP demand almost triples (2000-2050, Fig. B3b), driven
by the adoption of meat- and milk-rich diets and processed food as previously pointed out by (Kearney, 2010; Tschirley et
al., 2015). Increased per capita NPP demand coupled with the doubling in population (2000-2050) leads to almost seven-fold
increases in total NPP demand during the period 2000-2100 for SSP5-RCP scenarios. By contrast, for SSP4-RCP scenarios
population triples (2000-2050), but widening income gaps and no improvements in diets in the poor population lead to
declining per capita NPP demand (Fig. B3b) with a low increase (compared to other scenarios) in total NPP demand
(doubling between 2000 and 2050, Fig. B3b). The relatively weak increase of total NPP demand in the SSP4-RCP scenarios
is the underlying reason for a sustained NPP surplus in the scenarios. The NPP surplus per se is not an indicator for achieved
food security, as suggested by the decreasing per capita demand (described above). By contrast, food insecurity will be likely
more wide-spread than today according to the SSP4-RCP scenarios, aggravated by strong inequalities within the population
that are likely to worsen food distribution and food access for the poor (Pinstrup-Andersen, 2009).

The uneven projected changes in per capita NPP demand across countries (Table C1) are partly due to contrasts in the
evolution of drivers (e.g. income) for different countries, but also due to differing initial conditions for the different
countries. In countries with initially higher per capita demand (e.g. Sudan) the potential to increase per capita demand is
limited, while for countries with lower initial per capita demands (e.g. Ethiopia) the potential to increase demands is
comparatively higher. Finally, the NPP demand estimates are limited by the assumption of cereals, meat and milk being
proxies for food supply, which for countries with high shares of pulses and tubers in their average diet in particular,

underestimates the NPP demand.

4.6 Uncertainties

We show that the deep uncertainties represented by the scenarios i.e. not knowing how drivers (e.g., population,
technological change) will develop in the future (van Vuuren et al., 2008) are major sources of uncertainty leading to
variations in our results (Fig. 3b). The variability in NPP supply and demand, originating from the five GCMs and
uncertainties in SSP interpretation and quantification (see Engstrom et al. (2016b) and Table 1 and Table B1 ), respectively,
allows us to assess, with high statistical confidence, when the onset of supply shortfalls begin and are sustained.

Additional uncertainty exists with respect to the total magnitude and trends of simulated NPP supply, given the lack of
ground truth for the region, and that differences in NPP trends between other models is very large (e.g. Friend et al., 2014;
Kdorner et al., 2006; Pugh et al., 2016; Rosenzweig et al., 2014). Indeed, recent observational evidence suggests that the
effect of CO, fertilization on plant growth may be constrained by counteracting feedbacks associated with increasing

atmospheric moisture demand and nutrient availability (e.g. Smith et al., 2016; Wieder et al. 2015). For example, NPP is
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reduced under warmer and dryer conditions due to moisture stress, particularly in temperate and arid ecosystems. Future
trends NPP trends in the Sahel could therefore be strongly determined by changes in the frequencies of wet years versus dry
years, with the dry years counteracting the CO, fertilization effect. Furthermore, nutrient supply rates may not be able to
keep up with extra demand associated with CO, fertilization, and leading to a depletion of soil nutrients, as current evidence
suggests. This could also curtail the CO, fertilization effect, particularly in the more southerly parts of our study area, where
nutrients tend to become a limiting factor. We performed a simple experiment negating the CO, fertilization effect in order
to gauge its impact on supply-demand balance on all scenarios. For the SSP2-RCP6.0, per capita demand has an equal
chance of exceeding per capita supply in 2036 for the SSP2-6.0 scenario as opposed to 2043 if CO, fertilization in included
(Fig. B7), with a very high likelihood of continuous supply shortfall beginning in 2056, as opposed to 2073 with CO,
fertilization. The effect on all other scenarios is an earlier shift to the onset of supply shortfalls, by about 10 years, compared
to Fig. 3b (see Fig. B7). Supply shortfalls with high likelihood of occurrence (black dots showing non-overlapping 95%
confidence intervals) are similarly shifted, and occur with greater consistency and frequency. All of this suggests that the
NPP increases found in our current analysis are likely optimistic, due the potential overestimation of the CO, fertilization
effect, as well as the fact that BME is based on potential natural vegetation.

Finally, we note that country-specific scaling factors used to convert PLUM output to per pixel changes using the Hurtt et al.
(2011) data set for the year 2000 did not depart substantially from 1 (scaling factors for the larger countries were all within
10%, and the area weighted mean of the scaling factors was 0.95), but a few smaller countries in West Africa diverge by
more than 25% (<0.80 or > 1.25) (see Table C1). We expect these to have only marginal influence on the results at the
regional level, but could have a larger impact on localities along the West African coast (Fig. 4 and Fig. B1).

Other sources of uncertainty, such as model uncertainty stemming from the supply and demand models (Alexander et al.,

2016) are not presently taken into account.

5 Conclusions

In the Sahel, population growth and climate change raise the question of whether the demand for NPP will outstrip supply
during the 21 century. In order to address this question, we developed a reduced-complexity framework capable of
generating a range of NPP supply-demand trajectories for different Sahel futures at the regional, country, and local levels of
aggregation. These results are based on differing climate, [CO,], and socio-economic scenarios supplied by different SSP
and RCP combinations.

We conclude that the potential for NPP self-sufficiency in the Sahel will not likely be attainable later in the 21% century. The
most likely consequence will be that hunger and malnutrition will become more widespread than it is currently, undermining
the UN sustainable development goals. This highlights the importance of establishing strategies that address the reduction of
NPP demand, increasing its supply as well as facilitating its access, particularly for the urban poor. The consistency of

geographical shortfall patterns across all scenarios also suggests that, despite deep uncertainties associated with assumptions
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about how the future unfolds and uncertainties associated with NPP supply magnitudes and trends, a relatively narrow range
of policy interventions can be crafted.

Finally, we advance previous research by showing how NPP supply-demand balance (a key metric for quantifying resource
shortfalls over large regions, but applied retrospectively in previous studies) can also be used to explore the impact of

changing socio-economic and climate assumptions in the Sahel to support policy.
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Appendices

Appendix A Methods
A.1 Biome based Meta-model Ensemble

In this section, we describe the development of the biome based meta-model ensemble (BME) for the Sahel region. BME
consists of rapid NPP meta-models tailored for the desert temperate, desert tropical, tropical semi-arid and tropical humid
biome. The BME is based on the dynamic vegetation model LPJ-GUESS (Smith et al., 2014) and NPP simulations following
the methodology of Sallaba et al. (2015).

A.1.1 LPJ-GUESS

LPJ-GUESS (Smith et al., 2014) is a mechanistic model of plant physiological and biogeochemical processes that
incorporate ecosystem carbon and nitrogen cycles as well as water fluxes. The model uses a detailed individual- and patch-
based representation of vegetation structure where individual plants differ in growth form, phenology, life history strategy
and photosynthetic pathway, demography and resource competition. LPJ-GUESS is forced by various climate (i.e. solar
radiation, temperature and precipitation), atmospheric [CO,], soil characteristics and nitrogen deposition. Vegetation is
represented as plant functional types (PFTs) with different age cohorts interacting on patch level. Ten generalized trees and
two generalized grass functional types (i.e. C3 and C4 grass) following Smith et al. (2014) were used for global potential
natural vegetation (PNV). Several patches (here 25) are applied in parallel within a grid cell with distinguished establishment
of vegetation, fire impacts, random disturbance and mortality rate of different age cohorts (Sitch et al., 2003; Smith et al.,
2001; Smith et al., 2014). We applied the LPJ-GUESS in cohort mode which represents individual PFTs in different age
classes competing for resources (light, water and space) in a patch. We defined disturbance events with an expected return
interval of 100 years following Ahlstrom et al. (2015). We spun up each LPJ-GUESS simulations with a 500 years long
phase of de-trended climate data and a particular [CO,] (unique for each simulation as outlined in Input data) in order to run

the model from bare soil to a vegetation equilibrium state.

A.1.2 Input Data

We collected our BME development dataset with a random stratified selection of climate data using the Major Biome
classification (BMC) (Reich and Eswaran, 2002) on a 0.5°x0.5° spatial resolution. The BMC characterizes four biomes in
the greater Sahel region based on soil moisture and soil temperature regimes (see Fig. 1). We chose randomly 2-5% of the
total cells in each biome.

We overlaid the sampled cells with CRU TS. 3.0 climate data (Harris et al., 2014; Mitchell and Jones, 2005), which have the
same spatial resolution. CRU data span from 1901 to 2006 providing monthly data of temperature, precipitation and

cloudiness. Soil texture characteristics were taken from the FAO global soil dataset (FAO, 1991) as described in Sitch et al.

18



10

15

20

25

(2003). Historical monthly nitrogen deposition rates were achieved from the Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP) database of Lamarque et al. (2010) and processed as described by Smith et al. (2014).
We developed climate and [CO,] scenarios based on a factorial approach where increasing monthly temperature, [CO,] and
changing monthly precipitation amounts are varied multiple variables -at-a-time (i.e. MAT) (Smith and Smith, 2007). We set
maximum changes for each variable (see Table Al) in order to design reasonable climate and [CO,] scenario limits as
described by Sallaba et al. (2015). We used CRU TS 3.0 climate data as the baseline time-series and superimposed the
climate and [CO,] scenarios upon the baseline data while we held the nitrogen deposition rates according to the ACCMIP
records. In total, we developed 100 scenarios (including baseline) for each CRU grid cell, which were then applied to
simulate NPP in LPJ-GUESS. We assumed that grid cells maintain the biome membership even though the climate
conditions change during the LPJ-GUESS simulations since we consider transitions of vegetation biomes to be long-termed,
100 years.

Table A1 Minimum and maximum stepwise changes of the climate variables and [CO,]. The magnitudes of increases are
related to how much a variable could be adjusted. Temperature was increased in four steps and the other variables in five

steps resulting in 100 different climate change scenarios.

Change attributes Temperature change [°C] Precipitation Atmospheric CO, [ppm]
[% of baseline]

Minimum Value 0 50 350

Maximum Value 6 150 670

Magnitude of increase 2 25 80

No. of steps 4 5 5

A.1.3 Biome meta-models

We followed the assumption that plant growth is controlled by climate conditions (Sallaba et al., 2015) and defined biome
specific assumptions of ecosystem-climate interactions. As Sallaba et al. (2015) we assume that vegetation growth is
controlled synergistically by temperature and precipitation. Under optimal climate conditions maximum plant growth can be
reached but decreases when temperature and/or precipitation are not at the optimum. In order to keep the meta-modelling
framework as simple but efficient as possible, we limited the meta-model to three input climate surrogates that control plant
growth: (1) annual precipitation (P¢n), (2) maximum temperature (Tpay) and (3) minimum temperature (Ty,;,) temperature.
We followed the methodology of Sallaba et al. (2015) by defining functions of the climate surrogates that yield maximum
NPP at baseline [CO,], combining these in a synergistic function and then adding the CO, fertilization effect.

For the meta-model development at baseline [CO,], we scaled the LPJ-GUESS NPP estimates between 0-1 (i.e. NPP;, =0
and NPP,,,, =1) using the highest NPP yield of each biome and combined them with the climate surrogates. The highest NPP
yields of the biomes Maxy;,,. at baseline [CO,] are given in Table A3. We then extracted the climate surrogate - NPP value
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combinations that yield highest NPP, assuming that maximum NPP yields can only be reached under optimal climate

conditions (Sallaba et al., 2015).

For NPP as a function of temperature we assumed a hump-shaped curve relationship, which is based on the temperature-

photosynthesis relationship (Sallaba et al., 2015). For T, we developed a function that is built upon the beta-distribution as

given in Eq. (Al).
(Lim::;TlTrirmin)671(17(Lim77;::)irfﬂ$min))

f (Tnax) = NCORCH) a (A1)
( T(@+8) )

B-1

where f (Tqx) Calculates the NPP yield (relative) of the given temperature surrogate; T is the value (°C) of Tyax; Limoyin
and Lim,,,q, are the minimum and maximum temperature limits of the biome normalizing T between 0 and 1; T is the
gamma function ; @ and B describe the shape of the function and a stretches the function along the ordinate (the amplitude).
For Tin We developed a function that is identical to Ty as given in Eq. (A2).

() (o)

f(Toin) = TO)T(98) a (A2)
(Tarp)

wheref (Tpnin) estimates relative NPP and T is the value (°C) of Ty, The function parameters of Eq. (Al) and (A2) are
provided in Table A2.

For NPP as a function of precipitation we applied two function types because the dataset shows saturation as well as linear
NPP growth with increasing precipitation amounts in the Sahelian biomes. Both function types let NPP increase with
increasing precipitation amounts until NPP,. is reached. Further increasing precipitation levels only yield NPP,,,, because
precipitation surplus is assigned as run-off and percolation, following the treatment of high precipitation levels in LPJ-
GUESS (Gerten et al., 2004; Smith et al., 2014).

Table A2 Parameter values for maximum temperature f(T,,q,) in EQ. (Al) and minimum temperature f(T i) in Eq. (A2).

Biomes Temperature function in f(Ty;,)  Limy,;, Limg., a B a
Desert tropical [ (Tin) 9.00 33.00 212 122 046
Desert temperate f(Tin) -14.00  28.00 206 133 052
Tropical semi-arid [ (Tnin) 4.00 33.00 227 157 052
Tropical humid F(Tona) 13.00 36 147 149 068

In the tropical humid and tropical semi-arid biomes, we applied a saturation function where NPP grows rapidly with

increasing precipitation until NPP,,, is reached, as given in Eq. (A3),

9(Peam) = min (1, ke = =) (A3)

cum
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where g(P.,..,) estimates the cumulative precipitation NPP (relative); P, is the annual cumulative precipitation; k is the
maximum relative NPP (here NPP,,,,=1) that limits the growth of the function; o is a constant; [ determines the slope of the
function and min() limits the linear function to NPPpa=1. If P, is 0 mm than g(P,,,,) is set to 0.

In the desert tropical and desert temperate biomes we defined NPP as a simple linear function of precipitation (see Eq. (A4)),
which is limited to NPP,,,,=1 in order to consider the treatment of precipitation surplus in LPJ-GUESS (Gerten et al., 2004;
Smith et al., 2014).

9(Peym) = min(L, mPeyy) (Ad)

where g(P,,pp) calculates the cumulative precipitation NPP (relative); P is the annual cumulative precipitation; m is the
slope of the linear function; and min() limits the linear function to NPP,,,=1. All parameter values of Eq. (A3) and (A4) are
presented in Table A3. For the parameter values determination of the temperature and precipitation functions we randomly
halved the biome training subsets (at [CO,] = 350 ppm) in analysis and validation parts, and then applied nonlinear least-
squares model fit in MATLAB® (2015b). We chose the parameter values that yield the lowest root mean square error
(RMSE) in the validation part following (Del Grosso et al., 2008).

Table A3 Parameter values for cumulative precipitation functions in Eq. (A2) for the tropical biomes and Eq. (A3) for the

desert biomes.

Biomes k 0 l m

Desert tropical* - - - 0.0009
Desert temperate* - - - 0.0014
Tropical semi-arid 1.84 4.29 0.18 -
Tropical humid 1.24 19.69 0.51 -

* The asterisk indicates linear precipitation functions

We then combined the climate variable functions and investigated model complexity. We combined f (Tpin), f (Trax) @nd
g(P....m) in seven groupings ranging from one function to multiplying all three climate functions to calculate NPP in each
biome. We assessed model complexity with the Bayesian information criterion (BIC) (Burnham and Anderson, 2002;
Schwarz, 1978) and model agreement with RMSE and the Wilmott index (DR) (Smith and Smith, 2007; Smith et al., 1997;
Willmott et al., 2012). We chose the combinations with lowest BIC and best model agreement. In all biomes the best results
were obtained by a combination of precipitation with either one temperature function (because Ty and Ty, are potentially
auto-correlated). The combination of g(P.,,,,) with f(T;,..)gave the best results in the tropical humid biome while g(P.,.,,)
combined with f(T,,;,) yielded the best results in the remaining biomes (see applied temperature function in Table A2).

In the next step, we combined the selected functions, converted the synergistic function from relative to absolute NPP (kg C
m? yr') and rescaled the function to independent LPJ-GUESS NPP simulations in order to correct for differences in NPP
magnitudes as given in Eq. (A4).

NPPbase = NPPscale ((f(Tlim) g(Pcum)) Maxbiome): f(Tlim) € U(Tmax):f(Tmin)] (A4)
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where NPP,, is the estimate (kg C m? yr') at baseline [CO.]; f (T;) is the temperature function used for the specific
biome (either f (Tpnax) OF f (Trmin) - See Table A2); Max,;ome is maximum NPP yield of the biome at baseline [CO,] for
converting NPP from relative to absolute units; and NPP.is the scaling factor to minimize the magnitude difference
between LPJ-GUESS and BME estimates. The scaling factor is a ratio based on the mean of LPJ-GUESS NPP and the mean
5 of biome meta-model NPP estimates from 1985-2006. In the tropical humid biome f(T,;,) is set to 1 and in the remaining

biomes f(T;,q,) is set to 1 based on the model complexity analysis. The parameter values are given in Table A4.

Table A4 Parameter values of the synergistic function in Eq. (A4).

Biomes Maxpiome NPP g
Desert tropical 1.25 1.46
Desert temperate 0.86 1.05
Tropical semi-arid 1.46 1.04
Tropical humid 1.56 0.97

10 We implemented the CO, fertilization effect on plant growth in the final meta-model function (see Eq. (A5)) by applying the
same methodology as described in Sallaba et al. (2015) (assuming saturating NPP enhancement with increasing [CO;]) but
determined new parameters for each biome using linear fitting in MATLAB® (R2015b). We chose the parameters that
yielded lowest RMSE are shown in Table A5.

co i
NPPscenaria = <NPPbaseline (C (1 - M) + 1)> (A5)

Coz_scenm'io
15  Where NPPqconario 1S NPP (kg C m? yr) under elevated [CO,] (ppm); NPPyaserine is Mmodelled NPP at baseline [CO,]; ¢ is
the slope; CO, pgserime 1S the baseline [CO,] of 350 ppm and €O, gcenario 1S an [CO,] > 350 ppm.
Table A5 Parameter values of the CO, function in Sallaba et al. (2015) Eq. (5) therein.

Biomes c
Desert tropical -0.19
Desert temperate -0.63
Tropical semi-arid -0.70
Tropical humid -1.03

For each biome, we determined CO, fertilization function parameter values with a nonlinear least-squares model fit in
20 MATLAB® (R2015b) choosing values yielding the lowest root mean square error (RMSE).
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A.2 Model Evaluation
A.2.1 Biome Level Model Validation

We validate biome-level LPJ-GUESS and BME performance for estimating NPP of natural vegetation with NPP field-
measurements from Michaletz et al. (2016) and Luyssaert et al. (2009) (see Sallaba et al., 2015) for the Major Biome
Classification of Reich and Eswaran (2002) including the biomes found in the Sahel (desert temperate, tropical semi-arid and
tropical humid — no observations were available for desert tropical). Note that since only two observations were available for
our study area (see Fig. Al) this evaluation demonstrates the ability of both LPJ-GUESS and BME to replicate NPP for
Sahel biomes found elsewhere in the world.

Before we combined the Michaletz et al. (2016) and Luyssaert et al. (2009) datasets, we removed sites with no records of
combined above- and below-ground NPP measurements. After we merged the data, we checked the final assembly of NPP
measurements for duplicates and removed them. The final dataset consists of 1561 samples (i.e. 1247 samples from
Michaletz et al. (2016) and 314 samples from Luyssaert et al. (2009)) representing total NPP measurements across the
terrestrial biosphere (sample sizes are 18, 6, and 12 for Sahel biomes of desert temperate, tropical semi-arid and tropical
humid, respectively) from 1959-2006. Both LPJ-GUESS and BME were driven with CRU TS 3.21 climate data (Harris et al.
2014, Trenberth et al. 2014) that has global coverage across the time period.

We calculated mean values of the NPP field-measurements and the modelled NPP estimates located in the respective
biomes, following Smith et al. (2014b). We aggregated to the biome-level to account for the difference in scale between in
situ NPP measurements and modelled grid cell NPP estimates (being grid cell averages).

Finally, we determined the overall model performance, biome-by-biome, with the coefficient of determination (R? value) and
the root mean square error (RMSE). Additionally, we investigated model agreement with performance ratios (hereafter
referred to as ‘Q’) by dividing mean biome NPP estimates (for both models) with mean biome NPP observations. Model
overestimation in comparison to in situ NPP measurements is indicated by Q > 1 and underestimation by Q < 1. Good model
performance is classified with a Q range between 0.9-1.1 assuming an error of + 10% following Sallaba et al. (2015).
However, we further defined an acceptable model performance error range of £20% (i.e. Q = 0.8-1.25) given the limitations
of using LPJ-GUESS standard modelling protocol, PNV and CRU climate observations, and especially the simplicity of
BME.
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Fig. A1 Map of the Major Biome Classification based on Reich and Eswaran (2002). The red and green points are the
locations of the NPP field-data from Michaletz et al. (2016) and Luyssaert et al. (2009).

LPJ-GUESS performs reasonably well in simulating NPP at the overall biome level (R?= 0.71 and RMSE = 0.16) but the
model performance varies notably across the biomes (see Fig. A2 and Table A6). In general, LPJ-GUESS vyields acceptable
model agreement in seven (with good performance in four biomes) out of thirteen biomes. At the same time, the model
underestimates NPP in three biomes while it overestimates NPP in two biomes (Fig. A2).
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Table A6 Comparison between mean biome NPP field-measurements, LPJ-GUESS, BME NPP estimates; and their Q as

model performance measure. Sahel biomes are underlined.

Biome Field- LPJ-GUESS LPJ-GUESS BME BME Q
(sample size) data mean NPP [kgC Q mean NPP

mean NPP [kg C m2yrl] [kgC

m?yr?] m?yrl]

TUNDRA Permafrost (78) 0.30 0.44 1.46 0.24 0.79
TUNDRA Interfrost (62) 0.32 0.56 1.75 0.44 1.36
BOREAL Semi-arid (19) 0.54 0.45 0.83 0.49 0.91
BOREAL Humid (405) 0.42 0.62 1.48 0.56 1.32
TEMPERATE Semi-arid_(179) 0.71 0.57 0.80 0.45 0.63
TEMPERATE Humid (729) 0.59 0.54 0.91 0.56 0.95
MEDITERRANEAN Warm (36) 0.95 0.78 0.83 0.52 0.55
MEDITERRANEAN Cold (9) 0.90 0.85 0.94 0.41 0.45
DESERT Temperate (18) 0.31 0.17 0.56 0.09 0.28
DESERT Cold (13) 0.42 0.20 0.48 0.24 0.57
TROPICAL Semi-arid (6) 1.23 0.92 0.75 0.84 0.68
TROPICAL Humid (12) 0.97 0.93 0.96 0.81 0.84
Ice (3) 0.50 0.45 0.90 - -
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Fig. A3 Comparison of BME NPP estimates and NPP field-measurements on biome level using biome mean values as well
as biome standard deviation of the means. The different colours represent MBC biomes based on (Reich and Eswaran 2002).

The number of NPP observations in each biome is given in the legend. Note that Greter Sahel biomes Desert temperate

Tropical Semi-arid, and Tropical Humid.

For Greater Sahel biomes: LPJ-GUESS exhibits good skill in simulating NPP in the Tropical humid (Q = 0.96, see Table A6)
where it also captures satisfactorily the variability of the NPP measurements. LPJ-GUESS underestimates NPP for the

tropical semi-arid biome (Q = 0.75) showing reduced NPP variation compared to the observations. Performance is reduced
for Desert temperate (Q =0.56).

BME performance is acceptable at the overall biome level (R? = 0.57 and RMSE = 0.26) but varies substantially for
individual biomes (see Fig. A3). Overall, BME model agreement is reasonable in four biomes (with good performance in
two biomes). At the same time, BME overestimates NPP in two biomes while it underestimates plant growth in six biomes.

The variability in in- situ NPP measurements cannot be captured by BME in the majority of biomes except in the tropical

15 humid and tundra permafrost biomes (see vertical and horizontal lines connected to the diamonds in Fig. A3).
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For Greater Sahel biomes: BME yields acceptable agreement in estimating NPP in the tropical semi-arid and tropical humid

biomes (Q = 0.84, 0.81 respectively) but accuracy drops more water limited biomes of desert temperate (Q = 0.28).

Overall, BME mimics the behavior of LPJ-GUESS shown by a good model agreement of R? = 0.71 and moderate
RMSE = 0.12 kg C m? yr™ between the average biome NPP estimates of BME and LPJ-GUESS. Notable is that BME
yields, on average, less NPP in the majority of biomes compared to the observations. A.2.2 BME Performance in the
Sahel

For the assessment of BME performance in the Sahel, we chose approximately 4000 CRU TS 3.0 grid cells that cover evenly
distributed the Sahel region. We forced LPJ-GUESS with the CRU climate data and measured [CO,] spanning from 1970-
2006 and measured [CO,] using the same modeling protocol as described in section A.1). The climate data were post-
processed as in section A.1 and then applied to BME in order to estimate NPP. We employed several measures to gauge
BME performance against LPJ-GUESS simulations. We calculated the BME’s agreement (i.e. precision) with LPJ-GUESS
simulations with the coefficient of determination (R? value) measuring the strength of linear association between the models;
the root mean squared error (RMSE) gives the total difference between the models in NPP units (NPP kg C m™ year™) and
the Wilmott index (DR) determines how well the plot of LPJ-GUESS simulations and BME NPP fit to a perfect agreement
line ranging from -1 to 1 (1 = optimal value) (Smith and Smith, 2007; Smith et al., 1997; Willmott et al., 2012).
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Fig A4 Comparison between BME and LPJ-GUESS NPP estimates covering the Sahel region.

The comparison between BME and LPJ-GUESS NPP estimates (see Fig. A1) shows a good agreement R?=0.9 and DR=0.87
while the RMSE=0.1 NPP kg DW m year™ shows notable total differences between the models.

We then calculate annual means of BME and LPJ-GUESS NPP (i.e. aggregating the entire Sahel region) for the time period
in order to investigate whether BME follows the inter-annual variation of LPJ-GUESS NPP. As shown in Fig A5., BME
NPP follows the inter-annual variation of LPJ-GUESS NPP. Both models yield depleted NPP in 1972/73 and 1983/84
showing the impact of devastating droughts that occurred in these years resulting in complete crop failure (Ibrahim, 1988).
Furthermore, both models yield a dip in NPP in 2002 when the latest major drought befell the region (see Fig. A5) (Balogun
et al., 2013). In Fig. A5, we also include runs from LPJ-GUESS C (carbon cycling only), LPJ-GUESS ml (managed land)
and MODIS derived NPP for comparison purposes.

In order to test how effectively the NPP of natural ecosystems can be can be used as a proxy for the NPP of agricultural ones
we ran LPJ-GUESS managed land (Olin et al., 2015) for the period 1970 to 2006 and compared this to LPJ-GUESS (used to
develop BME) for the entire Sahel region. The results (see Fig. A5) of this experiment show that mean NPP derived from
LPJ-GUESS ml over the region underestimates mean NPP derived from BME by 0.7% (0.006 dry-weight m? yr) and LPJ-
GUESS by 2.4% (0.020 kg dry-weight m? yr™), though all models show similar levels of interannual variability and trend
(see Fig. A5). The implication of this experiment is that there is a demonstrable reduction in NPP when land management is
taken into consideration, but the effect is relatively minor. Lindeskog et al. (2013) show that LPJ-GUESS managed land (C-
version) overestimated actual yield derived from FAO country-level crop statistics and Smith et al. (2014b) also report that
natural systems are more productive than agricultural systems in sub-Saharan Africa. We conclude with that possibility that
our results are in the upper range for NPP found in the Sahel.

We also compare total yearly means of NPP from BME and LPJ-GUESS to NPP derived from the MOD17A3 processing
stream (using MOD17A3 data obtained from the NASA Earth Observation System repository at the University of Montana
at www.ntsg.umt.edu) for the period 2000 to 2006 for the greater Sahel region (Running, 2004). We averaged resampled
MODIS NPP from 1km to the spatial resolution of the BME estimates (0.5 x 0.5 degrees) and excluded urban areas. We
removed below-ground NPP and plant parts unable to be consumed by applying the same R:S and harvest index as described
in Section 2.1.1. Lastly, we calculated mean values of MODIS NPP estimates from 2000 to 2010 for each grid cell covering
the study area. Our results show that between 2000 and 2006 MODIS-derived NPP underestimate BME-derived NPP by
42% (difference of 0.38 kg dry-weight m™ yr), on average (Figure A5). Ardé (2015) also reports that that average annual
MODIS NPP underestimates LPJ-GUESS (C version only, Fig. A5) for Africa for 2000-2010 and attributes this to the fact
that autotrophic respiration is considerably higher for MODIS NPP compared to LPJ-GUESS, due to large temperature
sensitivity in the MODIS algorithm, differences in the biome-specific parameterizations for MODIS as well as specification
of plant functional types in LPJ-GUESS.
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Country-level census yield trends (1989-2008) for 4 major crops from appendix Data S1 of Ray et al. (2013) for rice (Benin,
Burkina Faso, Chad, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Nigeria, Senegal, Sierra Leone, Togo),
maize (Benin, Burkina Faso, Cameroon, Chad, Ethiopia, Ghana, Guinea, lvory Coast, Mali, Nigeria, Senegal, Togo), wheat
(Cameroon, Chad, Eritrea, Ethiopia, Mali, Mauritania, Niger, Nigeria, Sudan) and soybean (Benin, Burkina Faso, and
Nigeria) range from -5.98 to 2.80 (mean of -0.002), -0.94 to 4.08 (mean of 1.400), -2.58 to 3.1 (mean of 1.280) and 1.15 to
3.98 (mean of 2.280) respectively. Trends for BME, LPJ-GUESS, and MODIS NPP fall within most of the ranges for crop
yield trends, showing yearly increases of 0.55% (BME), 0.58% (LPJ-GUESS), and 0.51% (MODIS) for the 7 year period of
overlap. For the entire length of each series (1970-2006 for BME and LPJ-GUESS and 2000-2010 for MODIS), slopes
indicate yearly increases of 0.40%, 0.40%, and 0.62% respectively. We note the number of uncertainties involved in this
comparison (e.g. spatial/temporal sampling, and the fact that BME and MODIS represent natural vegetation and a mix of

natural vegetation and crops, respectively).

A.2.3 Concluding Remarks for Model Validation and Evaluation

In sum, a validation involving ground measurements for the same biomes found in the Sahel (but observations mostly from
other locations) show that LPJ-GUESS and BME underestimate NPP, while a comparison with MODIS shows that LPJ-
GUESS (and BME) overestimate total mean annual NPP in the greater Sahel region (2000-2006). Yet is widely
acknowledged, natural systems are likely more productive than agricultural systems. But we also show that trends for BME,
LPJ-GUESS, and MODIS mostly fall within trend ranges for country-level yield statistics (though sample size is low). We
acknowledge that the uncertainties are significant. Differences in estimates between methods are due to a combination of
spatial aggregation/sampling issues (e.g. low sample sizes for biomes typically found in the Sahel, that CRU data do not
necessarily represent site-level climate, and the uncertain assessment below-ground and short-lived above-ground plant
matter at the site level) as well differing assumptions between the MODIS processing stream and LPJ-GUESS (particularly
respiration). We therefore conclude that BME and LPJ-GUESS replicate ground observations of NPP at similar orders of
magnitude at the biome level, but may be overestimated due to the fact that natural systems are usually more productive than
agricultural ones. This underscores the fact that BME and LPJ-GUESS should be restricted to biome-level applications (or
coarser) while applications on the grid cell level should be limited to explorations of patterns and trends, which is the reason

why we emphasize an aggregated level of analysis.
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Fig A5 Regional annual NPP Annual means of NPP for BME, LPJ-GUESS, LPJ-GUESS C (carbon only), LPJ-GUESS ml
(managed land) (1970 to 2006) and MODIS (2000-2010) for the greater Sahel region.

A.3 Estimation of NPP supply and demand

In this modelling framework, we followed the NPP gerang definition Abdi et al. (2014) as given in Eq. (A6).

NPPyemana = NPProoq + NPProeq + NPPyosigues + NPPryer + NPPyyrneq (A6)

Where NPPyemanq is the actual amount of annual NPP needed for human survival; NPPf,,, is the NPP needed for
consumed cereals, meat and milk production; NP Py, is the total amount of fodder to support the livestock population and
NPPesiaues are agricultural by-products (after harvesting); NPPy,,, describes fuelwood and charcoal from the region’s dry
woodlands and NPPy,,,n.q represents the human-driven NPP loss from biomass burning of forest resources for land clearing
due to land use change (Abdi et al., 2014).

We adapted Eq. (A6) to the current study’s framework by dividing the demand into cereal (Eq. A7) and grazing (Eq. A8)
based NPP, and PLUM outputs.
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NPP erear demana = NPProoa + NPPreeq (A7)

where NPPf,oq = cerealorq — cereals qq(ton country™); cereal,ysq (ton country™) is the total cereal consumption of
human and livestock population provided by PLUM; cereals,.q (ton country™) is the total cereal demand to sustain the
livestock population (a direct PLUM ouput ); NPPfq (ton country™) is equal with cereals,qq; We then converted then
NPP_ereqr demana 10 PEI Capita (kg person™) using country population of the corresponding year in the SSP.

The amount of NPP needed to sustain the livestock by grazing that cannot be covered with cereals.., We applied Eq. (A7).
NPPyrazing demana = (1 — feed,qario) * Cerealfeed/feed‘ratia (A8)

Where NPPgraing demang (tON country‘l) is the NPP obtained from grasslands for sustaining the livestock; feed,., ranges
between 0-1 (given by PLUM) and provides the proportion of how much cereals.., can meet the livestock demand of
energy needed to sustain the livestock. Furthermore, we assumed that the Sahelian livestock is kept close to human
populated areas and we therefore we converted NPPgqing demand tO Pr capita (kg person’®) using country population of the
corresponding year in the SSP.

Furthermore, we eliminated NPPy,,, in Eq. (A6) because we assumed that fuelwood doesn’t directly contribute to the
availability of food resources. Fuelwood is a vital variable since it is a necessity for processing cereals and meat but it cannot
provide information about food resource availability. Moreover, we eliminated NPPy,,».q In Eq. (A6) since it cannot be
counted as an actual food resource in the particular year where the land-clearances occurs but it is an important indirect
factor, determining how much food can be produced in the following years.
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Appendix B Figures
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Fig. B1 Spatial distribution of NPP shortage in 2050 for the six most likely SSP-RCP combinations.
The future socio-economic and climatic scenarios are ordered in the panels as following: a) SSP1-RCP4.5, b) SSP1-RCP6.0,
5 ¢) SSP2-RCP6.0, d) SSP3-RCP6.0, e) SSP4-RCP6.0 and f) SSP5-RCP8.5.
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Fig. B5 Development of mean technology improvement factor for all countries for the socio-economic pathways.
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Fig. B7 Per capita NPP supply, demand and balance for the greater Sahel (2000-2100) without CO, fertilization. B7a) shows
NPP supply (red) and demand (blue). The solid curves illustrate the mean of the SSP2-RCP6.0 combination. The dashed
blue curves show supply uncertainty (95% confidence interval around the mean) based on the five GCMs NPP results. The
dashed red curves show demand uncertainty (95% confidence interval around the mean) based on the uncertainty related to
the interpretation and quantification of SSP2. B7b) shows the different magnitudes of the NPP balance and the varying
onsets of shortage across all SSP-RCP combinations. Black dots illustrate years with a shortage outside of the 95%
confidence intervals. Combinations are grouped according to the socio-economic scenarios (y-axis). The RCPs are ordered
from low to high radiative forcing in each SSP group. The temporal trajectory is shown along the x-axis and the colouring
indicates the sign of the annual NPP balance. Blues show a surplus of the NPP supply while yellow to red represent small to
very large the gaps between supply and demand). SSP-RCP combinations in bold indicate the most likely SSP-RCP pairs
based on Table 1.
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Appendix C Tables

Table C1 Per capita NPP supply and demand of countries in the greater Sahel region for 2000 and 2050. Portions of food
and feed (including grazing) in per capita NPP demand for SSP2-RCP6.0. All NPP is given in dry-weight (DW).
Hurtt:PLUM scaling factors and land areas (from FAO) are also included.

Country Per capita NPP  Per capita NPP Food portions in  Feed portions Hurtt:P  Land Area

supply [kg demand [kg per capita NPP in per capita LUM from

DW yr] DW yr] demand [kg NPP scaling FAOSTAT

DW yr] demand[kg factors
DW yr?]

2000 2050 2000 2050 2000 2050 2000 2050 2000 1000 ha
Benin 1341 607 474 874 99 92 375 782 0.89 11062
Burkina Faso 933 316 196 169 196 169 0 0 0.90 27360
Cameroon 2127 1173 387 717 90 82 297 635 1.04 47271
Chad 1878 1484 658 1157 120 116 538 1041 1.00 125920
Djibouti 0 0 134 120 134 120 0 0 0.00 2318
Eritrea 333 221 124 130 124 130 0 0 1.10 10100
Ethiopia 825 779 459 1439 135 157 323 1283 0.98 1000000
Gambia 1137 632 706 1082 168 142 539 940 1.58 1000
Ghana 1490 1291 274 1080 68 67 207 1013 1.03 22754
Guinea 1773 1697 402 1066 123 87 279 979 1.73 24572
Guinea Bissau 2319 1648 599 934 144 118 455 816 1.25 2812
Ivory Coast 1795 1549 282 811 95 75 188 736 0.98 31800
Liberia 1186 1312 212 1273 91 109 121 1164 0.91 9632
Mali 1929 1191 1111 1272 191 170 920 1102 0.97 122019
Mauritania 1129 1043 1530 1555 151 140 1379 1415 0.97 103070
Niger 3437 1426 1274 1540 210 202 1064 1338 1.01 126670
Nigeria 1059 719 321 923 139 139 182 784 1.04 91077
Senegal 925 539 556 837 155 137 401 699 0.74 19253
Sierra Leone 759 949 194 767 117 125 7 642 0.99 7162
Sudan 2517 1512 1530 1609 126 118 1404 1491 0.98 237600
Togo 2171 1491 271 653 127 124 144 529 1.10 5439
Mean® 1377 957 517 1064 - - - - - -

5 TWeighted mean of per capita NPP measure using total population.
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Table C2 Per capita NPP balances, mean, standard deviation and coefficient of variation for all SSP-RCP combinations for the year 2050. All

values are given in Kg NPP dry weight yr-1 except the coefficient of variation, which is dimensionless.

SSP1 SSP2 SSP3 SSP4 SSP5 Summary statistics

Country RCP2.6 RCP4.5 RCP6.0 RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 Mean S_td CoV
Benin -288  -264  -200 | -256 -267 -247 | 95 97 -84 | 148 118 150 | -945 -968 -939 | -288 364 1.3
Burkina Faso 261 257 258 147 147 152 738 738 82 93 95 98 244 244 251 | 166 B 05
Cameroon 604 134 627 47 456 526 91 439 500 258 621 679 | -180 285 365 363 244 0.7
Chad 327 311 442 | 239 326 367 | 283 312 336 | 369 423 430 | -13 205 314 311 108 03
Djibouti -7 -11v 11| -120  -119 -120 | -119  -119 -119 | -101  -101 101 | -128 @ -128 @ -128 | -117 9 01
Eritrea 113 142 138 | 94 91 87 | 89 67 64 75 73 69 | 121 117 11| 95 26 03
Ethiopia -498 642  -444 | -804 -660 -616 | -560 -443  -410 | -33 90 98 | -1493 -1300 -1229 | -596 455 0.8
Gambia 464 439 -424 | -465 449 472 | -328 309 -328| -75 57 69| -842 820 -851 | -427 251 0.6
Ghana 289 362 437 | 151 211 226 | 253 297 302 | 48 513 506 | -202 -122 -89 | 241 218 09
Guinea 915 675 968 | 403 631 644 | 395 603 611 | 584 808 754 | 347 633 646 | 641 170 03
Guinea

910 993 913 | 801 714 811 | 700 679 734 | 708 688 711 | 822 580 742 | 767 104 0.1
Bissau
Ivory Coast 947 873 1044 | 586 737 773 | 513 645 680 | 700 780 785 | 546 734 780 | 742 138 02
Liberia 52 -1336 211 | -1273 39 32| -686 292 290 | -204 358 387 | -2774 934  -942 | -433 -850 20
Mali -113 -123 -24 | -147 -81 27| -103 -80 4 -48 12 83 | 451 -305 -124 98 129 13
Mauritania 474 475 -505 | 502 512 -527 | -454 449  -453 | 382 406  -424 | 640 -663  -696 | -504 9 02
Niger 117 183 247 | -151  -114  -148 | -200 -271  -303 7 58 42| 315 246 -265| -98 184 1.9
Nigeria 95 -150 -77 | -267  -204  -165 | -132 -84 -52 135 162 184 | -663 -581  -535 | -168 248 15
Senegal -119  -134 202 | -240 297  -234 | -205 -249  -193 -25 -51 -26 | -421 508 429 | -222 141 06
Sierra Leone 277 -728 334 | -767 183 176 | -493 217 215 | -173 252 260 | -1376  -115 95 | -122 487 4.0
Sudan 44 -49 10| -144 97 91| -177 -139 -108 | -30 14 7| 281 211 227 | -105 87 08
Togo 916 998 1022 827 838 842 794 788 789 870 887 894 547 568 581 811 139 02
Mean’ 1 8 47| -212  -107  -76 | 119 -39 12| -131 200 213 | -570 428 -384 | -96 217 23
~Weighted mean using national population data as weight. <><
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5 Fig. 1 Conceptual logic of the modelling framework. The framework is based on three components enclose by three grey
boxes: (1) NPPgyppiy, (2) NPPyemang and (3) NPPpygance - The white boxes indicate data inputs originating from
modelling studies (as referenced in section 2.2). The main models and equations are given in the boxes outlined in red,
where solid arrows show the data flow. The dashed arrow between NPP model (section 2.1.1) and Land use model (section
2.1.2) represents an indirect model coupling for areas of cropland and pasture. The box outlined in blue indicates the final

10 coupling allowing the assessment of NPP g1, and NPP gepmgna-
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Fig. 2 Major Biome Map from year 2000 for greater Sahel region. The hatched area shows the traditionally-defined Sahel,
where annual rainfall ranges from 100mm to 600mm. The Major Biome Map is based on Reich and Eswaran (2002).
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Fig. 3 The per capita NPP supply, demand and balance for the entire Sahel region over the time period. 3a) shows NPP
supply (red) and demand (blue). The solid curves illustrate the mean of the SSP2-RCP6.0 combination. The dashed blue
curves show supply uncertainty (95% confidence interval around the mean) based on the five GCMs NPP results. The
dashed red curves show demand uncertainty (95% confidence interval around the mean) based on the uncertainty related to
the interpretation and quantification of SSP2. 3b) shows the different magnitudes of the NPP balance and the varying onsets
of shortage across all SSP-RCP combinations. Black dots illustrate years with a shortage outside of the 95% confidence
intervals. The combinations are grouped according to the socio-economic scenarios (y-axis). The RCPs are ordered from low
to high radiative forcing in each SSP group. The temporal trajectory is shown along the x-axis and the colouring indicates
the sign of the annual NPP balance. Blues show a surplus of the NPP supply while yellow to red represent small to very large
NPP shortages (i.e. the gap between supply and demand). SSP-RCP combinations in bold indicate the most likely SSP-RCP
pairs based on Table 1.

50



10

NPF shenaoe (ML dr-wiiahl)

Sucay (M: dri-weiahi|

[N grv-waight)

Fig 4 Maps of NPP shortage (a,b), NPP supply (c,d) and NPP demand (e,f) for the year 2000 (left panels) and SSP2-RCP6.0
year 2050 (right panels). The hotspots of large NPP shortage are marked with circles in 4b, where hl is in the area around
Lagos (Nigeria) and the Niger delta; h2 is in the Nigerian hinterlands (close to Kano); h3 is in the Ethiopian highlands (close
to Addis Ababa); and h4 is in the area surrounding Khartoum (Sudan). In 4a we excluded all areas with a surplus in the NPP

balance.
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Tables

Table 1 Scenario matrix translated into quantitative probabilities (see also Engstrom et al. (2016b).

RCP26 RCP45 RCP6 RCP85 Sum
SSP1  0.0909 0.4545 0.4545  0.0000 1
SSP2  0.0000 0.0909 0.6818 0.2273 1
SSP3  0.0000 0.1667 0.5000 0.3333 1
SSP4  0.0000 0.3704 0.5556 0.0741 1
SSP5  0.0000 0.0741 0.3704  0.5556 1
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Table 2 Rules of combining NPPcereal patance @0 NPPgrazing palance 10 determine the final balance of NPP demand and supply.

Combination rule

NPPcerealibalance

NPPgrazingibalance

NPPhalance

1

2
3
4

<0

20
20
<0
<0

N PPcereal_balance
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NPPcereal_balancet NPPgrazing_balance

NP Pcerealibalance"' NP Pgrazingibalance
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Table 3 Summary of the Shared Socio-economic Pathway key characteristics (population development, economic growth,

consumption & diet, policy orientation and technological change) based on (Engstrom et al., 2016; O’Neill et al., 2017).

Pathway Key characteristics

SSP1: Relatively low population development
Sustainability - Taking the green  Medium to high economic growth
road Low growth in material consumption, low-meat diets
Towards sustainable development
Rapid technology development and transfer
SSP2: Medium population development
Middle of the road Medium (but uneven) economic growth
Material-intensive consumption, medium meat consumption
Weak focus on sustainability
Medium technology development and slow transfer
SSP3: High population development
Regional rivalry - A rocky road Slow economic growth
Material-intensive consumption
Oriented toward security
Slow technology development and transfer
SSP4: Relatively high population development
Inequality - A road divided Low to medium economic growth
Elites: high consumption, rest: low consumption
Toward the benefit of the political and business elite
Rapid technology transfer in high-tech sectors, but slow in other, little transfer within countries to poorer

people
SSP5: Relatively low population development
Fossil-fuel development - High economic growth
Taking the highway Materialisms, status consumption, meat-rich diets

Toward development, free markets, human capital
Rapid technology change and transfer
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Table 4 Per capita NPP balance, NPP supply, NPP demand and population for SSP2-RCP6 for 2000 and 2050. All NPP is
given in dry-weight (DW).

Country Per capita NPP Per capita NPP Per capita NPP Total Population
balance supply demand [millions]
[kg DW yr] [kg DW yr] [kg DW yr]

2000 2050 2000 2050 2000 2050 2000 2050
Benin 867 -267 1341 607 474 874 8 25
Burkina Faso 737 147 933 316 196 169 12 46
Cameroon 1740 456 2127 1173 387 717 16 40
Chad 1220 326 1878 1484 658 1157 8 26
Djibouti -134 -119 0 0 134 120 1 2
Eritrea 218 91 333 221 124 130 4 12
Ethiopia 366 -660 825 779 459 1439 67 149
Gambia 431 -449 1137 632 706 1082 1 3
Ghana 1216 211 1490 1291 274 1080 19 48
Guinea 1371 631 1773 1697 402 1066 8 22
Guinea Bissau 1720 714 2319 1648 599 934 1 3
lvory Coast 1513 737 1795 1549 282 811 17 41
Liberia 975 39 1186 1312 212 1273 3 10
Mali 818 -81 1929 1191 1111 1272 11 43
Mauritania -401 -512 1129 1043 1530 1555 3 8
Niger 2163 -114 3437 1426 1274 1540 11 55
Nigeria 738 -204 1059 719 321 923 123 386
Senegal 369 -297 925 539 556 837 10 28
Sierra Leone 565 183 759 949 194 767 4 12
Sudan 986 -97 2517 1512 1530 1609 29 96
Togo 1900 838 2171 1491 271 653 5 11
Mean* 860 -107 1377 957 517 1064 361 1066

5 TWeighted mean using national population data as weight.
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