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Abstract. Most emission metrics have previously been inconsistently estimated by including the climate-carbon feedback for 

the reference gas (i.e. CO2) but not the other species (e.g. CH4). In the fifth assessment report of the IPCC, a first attempt was 

made to consistently account for the climate-carbon feedback in emission metrics. This attempt was based on only one study, 

and therefore the IPCC presented tentative values and concluded that more research was needed. Here, we carry out this 

research. First, using the simple carbon-climate model OSCAR v2.2, we establish a new impulse response function for the 15 

climate-carbon feedback. Second, we use this impulse response function to provide new estimates for the two most 

commonusual metrics: Global Warming Potential (GWP) and Global Temperature change Potential (GTP). We find that, when 

the climate-carbon feedback is correctly accounted for, the emission metrics of non-CO2 species increase, but in most cases 

not as much as initially indicated by IPCC. We also find that, when the feedback is removed for both the reference and studied 

species, these relative metric values only have modest changes, compared to when the feedback is included (absolute metrics 20 

change more markedly). However, including carbon-climate feedbacks, particularly in absolute metrics or for short time 

horizons, gives a more realistic representation of the response. Including or excluding the climate-carbon feedback ultimately 

depends on the user’s goal, but consistency should be ensured in either case. 

1 Introduction 

Emission metrics are a tool to compare or combine the climate impact of the emission of different greenhouse gases and other 25 

climate forcing agents, typically putting them on a so-called CO2-equivalent scale. The physical meaning of this scale depends 

on the climate parameter chosen to calculate the metric (e.g. radiative forcing or temperature change), but also on the time-

horizon and on whether it is an instantaneous or integrative metric. Emission metrics can be given in absolute terms or in 

relative terms, the latter being a normalization of the absolute metric totaken relatively to that of a reference gas which is 

usually CO2. For instance, GWP100 – the most widely used metric – is a normalized relative metric defined as the ratio of the 30 

cumulative radiative forcing induced after 100 years by 1 kg of a given species over that induced by 1 kg of CO2. The GWP100 
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is currently used in UNFCCC emission inventories, climate agreements (e.g. the Kyoto Protocol), and climate policies (e.g. 

emissions trading systems). Emission metrics are also used to evaluate multi-gas policies, to compare emissions and sinks 

from countries and/or economic sectors, or simply as zeroth-order models of the climate system. They are used in areas such 

as life cycle assessment (e.g. Levasseur et al., 2016), ecosystem service study (e.g. Neubauer and Megonigal, 2015) and 

integrated assessment modelling (e.g. Clarke et al., 2014). More about emission metrics can be found elsewhere (e.g. Cherubini 5 

et al.; 2016; Myhre et al., 2013; Shine et al., 2015).  

Since emission metrics are based on simple representations of more complex models, there are choices in how components of 

complex models are incorporated in the metrics. One such component is the climate-carbon feedback. The “climate-carbon 

feedback” refers to the effect that a changing climate has onto the carbon-cycle, which impacts atmospheric CO2, which in 

turn changes further the climate. In concrete terms: when CO2 is emitted, the atmospheric CO2 pool increases. A fraction of 10 

this excess atmospheric CO2 is taken up by the ocean and the terrestrial biosphere (the “carbon sinks”), but as long as a part of 

the excess CO2 stays in the atmosphere, it warms the climate. In turn, this warming climate slows down the uptake of the 

atmospheric CO2 by the sinks. This slowing down constitutes a positive feedback, i.e. a warming climate is warmed further 

through the feedback (Ciais et al., 2013). Rather than a slowing down of the carbon sinks, it is also possible to view the 

feedback as a reduction of the carbon sinks uptake efficiency (Raupach et al., 2014). According to models of the coupled 15 

carbon-cycle – climate system, the climate-carbon feedback has contributed to the observed warming over the last century and 

will have a large impact in warmer future scenarios (e.g. Ciais et al., 2013; Friedlingstein et al., 2006; Raupach et al., 2014),. 

Yet,although there are large uncertainties about the magnitude of this feedback and underlying mechanisms (e.g. Ciais et al., 

2013; Friedlingstein et al., 2006; Raupach et al., 2014).  

The standard metrics provided in the fifth assessment report (AR5) of the IPCC (Myhre et al., 2013; table 8.A.1) are 20 

inconsistent in their treatment of the climate-carbon feedback. While absolute metrics for CO2 itself do account for the 

feedback, the absolute metrics for all other species do not. As a result, the normalized relative metrics, defined as the ratio of 

the absolute metric of a non-CO2 species over that of CO2, are inconsistently calculated. Aware of this limitation, the IPCC 

made a first attempt at including the climate-carbon feedback into metrics in a consistent manner. This attempt was based on 

an earlier study by Collins et al. (2013) which whose main object was not the climate-carbon feedback (but regionalized 25 

metrics). This study is therefore an attempt to assess the robustness of these alternative but tentative metrics proposed by the 

IPCC (Myhre et al., 2013; table 8.7). 

Here, we carry out an analysis of the climate-carbon feedback and how it can be included in the emission metrics framework. 

To do so, in section 2, we recall the mathematical framework used to derive emission metrics, and we extend it with a specific 

term representing the response of the carbon sinks to climate change. In section 3, we use the simple Earth system model 30 

OSCAR v2.2 to derive a functional form for this response, and to quantify its numerical parameters. In section 4, we use the 

extended framework and our new response function to establish new values of metrics that include the climate-carbon 

feedback, and we compare those with the values otherwise available. 
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2 Mathematical framework 

2.1 Impulse Response Functions 

Emission metrics are usually formulated by means of Impulse Response Functions (IRFs), as it is done in the fifth IPCC report 

(Myhre et al., 2013). These IRFs are simple models which describe the dynamical response of a subsystem of the Earth system 

(e.g. the biogeochemical cycle of a given species, or the climate system) to a pulse of perturbation of this subsystem. The 5 

response of the subsystem to a more general continuous and time-varying perturbation can be obtained by convolution of the 

IRF with the time-series of the perturbation. The various IRFs used are generally estimated on the basis of idealised simulations 

made with complex models (e.g. Geoffroy et al., 2013; Joos et al., 1996; 2013). Per construction, the IRFs are dynamical 

models which feature e.g. inertia and hysteresis, but they are linear in nature with respect to the intensity of the perturbation, 

they represent a fully reversible system, and they can only include feedbacks in an implicit manner. Despite these apparent 10 

caveats, the use of such a linear-response approach to emulate the behaviour of complex systems can be warranted by the 

theory, especially in the case of the climate system (see e.g. Ragone et al., 2016; Lucarini et al., 2017). Note that emission 

metrics can also be estimated with more complex model simulations (e.g. Tanaka et al., 2009; Sterner and Johansson, 2017), 

with the strong caveat that the approach lacks the simplicity and transparency of the IRFs. 

Now let us illustrate the typical formulation of theis simple IRF-based model in the case of the climate change induced by of 15 

a given species (x). The change in atmospheric concentration of the species (𝑄𝑄𝑥𝑥) can be calculated with a convolution between 

the time-series of anthropogenic emission of this species (𝐸𝐸𝑥𝑥) and the IRF for the species’ atmospheric concentration (𝑟𝑟𝑄𝑄𝑥𝑥): 

𝑄𝑄𝑥𝑥(𝑡𝑡) − 𝑄𝑄𝑥𝑥(0) = � 𝐸𝐸𝑥𝑥(𝑡𝑡′) 𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

 

In the most general case, the radiative forcing induced by this species (𝑅𝑅𝑅𝑅𝑥𝑥) is taken as a function (ℱ𝑥𝑥) of its change in 

atmospheric concentration (e.g. Myhre et al., 1998): 20 

𝑅𝑅𝑅𝑅𝑥𝑥(𝑡𝑡) =  ℱ𝑥𝑥�𝑄𝑄𝑥𝑥(𝑡𝑡) −  𝑄𝑄𝑥𝑥(0)� 

And finally, the change in global mean surface temperature induced by this species (𝑇𝑇𝑥𝑥) is again deduced by a convolution of 

the radiative forcing with the IRF for the climate system. This IRF is broken down into a dynamical term (𝑟𝑟𝑇𝑇) and a constant 

intensity term (λ) that corresponds to the equilibrium climate sensitivity. This gives: 

𝑇𝑇𝑥𝑥(𝑡𝑡) − 𝑇𝑇𝑥𝑥(0) = 𝜆𝜆 � 𝑅𝑅𝑅𝑅𝑥𝑥(𝑡𝑡′) 𝑟𝑟𝑇𝑇(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

 25 

Typically, the IRF for atmospheric CO2 is taken from Joos et al. (2013), those for other greenhouse gases are exponential decay 

functions with a constant e-folding time taken as the “perturbation lifetime” given by Myhre et al. (2013), the radiative forcing 

functions come from Ramaswamy et al. (2001) with updated radiative efficiencies from Myhre et al. (2013), and the climate 
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IRF is taken from Boucher and Reddy (2008). Note, however, that updates of the climate IRF based on CMIP5 models are 

available in the literature (Geoffroy et al., 2013; Olivié et al, 2013) but they have not been widely used so far. 

2.2 Formulation of emission metrics 

To produce emission metrics IRFs are used, albeit with two important additional assumptions. First, the initial anthropogenic 

perturbation is actually taken as a pulse of emission at time t = 0, which we can write formally with the Dirac-δ function and 5 

the size of the pulse (𝐸𝐸0 ) as follows: 𝐸𝐸𝑥𝑥(𝑡𝑡) = 𝐸𝐸0𝑥𝑥  𝛿𝛿(𝑡𝑡) . Strictly speaking, the Dirac-δ is a distribution, and it is the 

(approximated) identity of the convolution algebra so that the convolution of any function by the Dirac-δ gives back the initial 

function. Second, since in the metrics framework this pulse is assumed to be very small, the radiative forcing function is 

approximated to be linear so that we have: 𝑅𝑅𝑅𝑅𝑥𝑥(𝑡𝑡) = 𝜑𝜑𝑥𝑥�𝑄𝑄𝑥𝑥(𝑡𝑡) −  𝑄𝑄𝑥𝑥(0)�ℱ𝑥𝑥 ≡ 𝜑𝜑𝑥𝑥 , where 𝜑𝜑𝑥𝑥  is the constant marginal 

radiative efficiency of the considered species. Note that the assumption of a very small pulse may be inconsistent with the way 10 

the IRFs are actually derived, as it is currently the case for CO2 (see appendix A). 

From there, we can formulate the Absolute Global Warming Potential (AGWP) and the Absolute Global Temperature-change 

Potential (AGTP), which are absolute (i.e. non-normalized) metrics. Per definition, the AGWP of a species x is the cumulative 

radiative forcing induced by a pulse of emission of the species, normalized by the size of the pulse, and taken up to a chosen 

time horizon (H): 15 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥(𝐻𝐻) =
1
𝐸𝐸0𝑥𝑥

� 𝑅𝑅𝑅𝑅𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

=
1
𝐸𝐸0𝑥𝑥

� 𝜑𝜑𝑥𝑥 � 𝐸𝐸0𝑥𝑥 𝛿𝛿(𝑡𝑡′) 𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

= 𝜑𝜑𝑥𝑥 �  𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

 

Per definition, the AGTP of a species x is the instantaneous temperature change induced by a pulse of emission of the species, 20 

normalized by the size of the pulse, and taken at a chosen time horizon: 

𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝐻𝐻) =
1
𝐸𝐸0𝑥𝑥

 [𝑇𝑇𝑥𝑥(𝐻𝐻) − 𝑇𝑇𝑥𝑥(0)] 

=
1
𝐸𝐸0𝑥𝑥

 𝜆𝜆 � 𝜑𝜑𝑥𝑥 𝑟𝑟𝑇𝑇(𝐻𝐻 − 𝑡𝑡) � 𝐸𝐸0𝑥𝑥  𝛿𝛿(𝑡𝑡′) 𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

= 𝜑𝜑𝑥𝑥  𝜆𝜆 � 𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡) 𝑟𝑟𝑇𝑇(𝐻𝐻 − 𝑡𝑡) 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0
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The Global Warming Potential (GWP) and the Global Temperature-change Potential (GTP) are metrics normalized calculated 

relatively to the reference gas CO2. Therefore, any of these two metrics is defined as the ratio of its absolute counterpart for 

the species x over that for CO2: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥(𝐻𝐻) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥(𝐻𝐻)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑂𝑂2(𝐻𝐻) 

and: 5 

𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝐻𝐻) =
𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝐻𝐻)
𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐶𝐶𝑂𝑂2(𝐻𝐻) 

We can now detail the inconsistency mentioned in introduction, regarding the way the default GWPs and GTPs are estimated 

by the IPCC (Myhre et al., 2013; table 8.A.1). To estimate the absolute metrics for CO2, the IRF derived by Joos et al. (2013) 

is used, and one feature of this IRF is that it implicitly includes any feedback between the climate system and the carbon-cycle 

that is also included in the complex carbon-climate models it is calibrated upon. However, the absolute metrics for non-CO2 10 

species do not include the effect of the warming climate onto the carbon-cycle that is induced by the non-CO2 species. In other 

words, the climate-carbon feedback is included in the denominator of the GWP and GTP, but not in their numerator. The 

resulting metric values should therefore be regarded as inconsistent. 

2.3 Addition of the climate-carbon feedback 

To include the climate-carbon feedback in the metric framework, we choose to model the decrease in the carbon sinks 15 

efficiency induced by climate change as an additional flux of carbon to the atmosphere, but without changing the atmospheric 

lifetime of carbon dioxide. Another approach, mathematically equivalent, would be to change the atmospheric lifetime of the 

gas. However, the latter approach cannot be used with the IRF framework since, per construction, the atmospheric lifetimes of 

all the species are fixed.  

We define the change in the global carbon sinks ΔF. It is positive if the flux goes into the atmosphere, i.e. if the sinks efficiency 20 

is actually reduced. By analogy with previous IRF-based equations, we propose the following formulation: 

∆𝑅𝑅𝑥𝑥(𝑡𝑡) = 𝛾𝛾 � [𝑇𝑇𝑥𝑥(𝑡𝑡′) − 𝑇𝑇(0)] 𝑟𝑟𝐹𝐹(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

 

In this equation, the forcing term is the global mean temperature change induced by the species x. The IRF for the carbon sinks 

is broken down into two terms: a dynamical term that is 𝑟𝑟𝐹𝐹, expressed in yr-1; and an intensity term that is 𝛾𝛾, expressed in GtC 

yr-1 K-1. There are two implicit assumptions with this formulation which are discussed hereafter. First, we assume that the 25 

carbon sinks response is the same, at global scale and for a given temperature change, whatever the forcing species. Second, 

we assume that the global mean temperature is a proxy of all the changes in the climate variables that drive a change in the 

carbon sinks, such as local temperature itself but also precipitation. 
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To simplify the discussion and avoid quintuple integrals, we introduce the simplified notation ⋆ for the convolution: 𝑎𝑎 ⋆ 𝑏𝑏 ≡

∫ 𝑎𝑎(𝑡𝑡′) 𝑏𝑏(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′𝑡𝑡
0 , and note the commutative property of the convolution: 𝑎𝑎 ⋆ 𝑏𝑏 = 𝑏𝑏 ⋆ 𝑎𝑎.  

Since the change in carbon sinks is expressed as a new source of CO2, one can calculate the additional radiative forcing (ΔRF) 

induced by a species x through the climate-carbon feedback: 

Δ𝑅𝑅𝑅𝑅𝑥𝑥 = (𝜑𝜑𝐶𝐶𝑂𝑂2) ∆𝑅𝑅𝑥𝑥 ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 5 

= (𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾) [𝑇𝑇𝑥𝑥 − 𝑇𝑇(0)]  ⋆  𝑟𝑟𝐹𝐹  ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 

= (𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾 𝜆𝜆) 𝑅𝑅𝑅𝑅𝑥𝑥 ⋆  𝑟𝑟𝑇𝑇  ⋆  𝑟𝑟𝐹𝐹  ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 

= (𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾 𝜆𝜆 𝜑𝜑𝑥𝑥) [𝑄𝑄𝑥𝑥 − 𝑄𝑄𝑥𝑥(0)] ⋆  𝑟𝑟𝑇𝑇  ⋆  𝑟𝑟𝐹𝐹  ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 

= (𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾 𝜆𝜆 𝜑𝜑𝑥𝑥) 𝐸𝐸𝑥𝑥 ⋆  𝑟𝑟𝑄𝑄𝑥𝑥 ⋆  𝑟𝑟𝑇𝑇  ⋆  𝑟𝑟𝐹𝐹  ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 

and similarly with the additional temperature change (ΔT): 10 

Δ𝑇𝑇𝑥𝑥 = (𝜆𝜆) Δ𝑅𝑅𝑅𝑅𝑥𝑥 ⋆  𝑟𝑟𝑇𝑇  

= (𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾 𝜆𝜆2 𝜑𝜑𝑥𝑥) 𝐸𝐸𝑥𝑥 ⋆  𝑟𝑟𝑄𝑄𝑥𝑥 ⋆  𝑟𝑟𝑇𝑇  ⋆  𝑟𝑟𝐹𝐹  ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 ⋆  𝑟𝑟𝑇𝑇  

We do not need to worry about the endless feedback loop CO2–climate–CO2 and add more terms to these equations, because 

the carbon dioxide IRF (𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2) already accounts for the effect of climate change on the CO2 concentration. 

It is possible to formulate the additional absolute GTP (ΔAGTP) – which is later added to the AGTP without feedback – for 15 

the species x: 

Δ𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥 =
1
𝐸𝐸0𝑥𝑥

 Δ𝑇𝑇𝑥𝑥 

= �
1
𝐸𝐸0𝑥𝑥

 𝜑𝜑𝐶𝐶𝑂𝑂2 𝛾𝛾 𝜆𝜆2 𝜑𝜑𝑥𝑥  𝐸𝐸0𝑥𝑥� 𝛿𝛿 ⋆  𝑟𝑟𝑄𝑄𝑥𝑥 ⋆  𝑟𝑟𝑇𝑇  ⋆  𝑟𝑟𝐹𝐹 ⋆  𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 ⋆  𝑟𝑟𝑇𝑇  

= (𝛾𝛾) 𝑟𝑟𝐹𝐹 ⋆  (𝜑𝜑𝑥𝑥  𝜆𝜆) 𝑟𝑟𝑄𝑄𝑥𝑥  ⋆  𝑟𝑟𝑇𝑇�����������
𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥

⋆  (𝜑𝜑𝐶𝐶𝑂𝑂2 𝜆𝜆) 𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2  ⋆  𝑟𝑟𝑇𝑇�������������
𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐶𝐶𝐶𝐶2

 20 

that is: 

Δ𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝐻𝐻)  = 𝛾𝛾 �  𝑟𝑟𝐹𝐹(𝐻𝐻 − 𝑡𝑡) � 𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝑡𝑡′) 𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐶𝐶𝑂𝑂2(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

To formulate ΔAGWP, it is easier to do the same demonstration if one introduces the Heaviside step function (i.e. the function 

equal to 1 for t ≥ 0, and 0 otherwise; noted Θ) and notes that convoluting any function with the Heaviside function is equivalent 

to integrating it.; Tthe definition of AGWP then is: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥(𝐻𝐻) =
1
𝐸𝐸0𝑥𝑥

� 𝑅𝑅𝑅𝑅𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

≡  
1
𝐸𝐸0𝑥𝑥

 𝑅𝑅𝑅𝑅𝑥𝑥 ⋆ Θ 25 

Hence, similarly to the case of ΔAGTP, we have: 

Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 =
1
𝐸𝐸0𝑥𝑥

 Δ𝑅𝑅𝑅𝑅𝑥𝑥 ⋆ Θ 
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= (𝛾𝛾) 𝑟𝑟𝐹𝐹 ⋆  (𝜑𝜑𝑥𝑥 𝜆𝜆) 𝑟𝑟𝑄𝑄𝑥𝑥  ⋆  𝑟𝑟𝑇𝑇�����������
𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥

 ⋆  𝜑𝜑𝐶𝐶𝑂𝑂2 𝑟𝑟𝑄𝑄𝐶𝐶𝑂𝑂2 ⋆ Θ���������
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶2

 

that is: 

Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥(𝐻𝐻)  = 𝛾𝛾 � 𝑟𝑟𝐹𝐹(𝐻𝐻 − 𝑡𝑡) � 𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥(𝑡𝑡′) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑂𝑂2(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑡𝑡′
𝑡𝑡

𝑡𝑡′=0

 𝑑𝑑𝑡𝑡
𝐻𝐻

𝑡𝑡=0

 

The above discussion holds in the case of species-dependent climate sensitivity parameters, i.e. if we have λx instead of λ to 

account for climate efficacies (e.g. Hansen et al., 2005). These two formulas, for ΔAGWP and ΔAGTP, are similar to those 5 

given by Collins et al. (2013) in their section 5.5, where they implicitly assume that: 𝛾𝛾 𝑟𝑟𝐹𝐹(𝑡𝑡) = Γ 𝛿𝛿(𝑡𝑡), where Γ is a constant. 

Collins et al. (2013) therefore assumes that the carbon sinks response to a pulse of global temperature change was a pulse of 

size Γ of CO2 outgassing by the ocean and the terrestrial biosphere, but did not justify this assumption. The next section 

investigates whether this assumption holds, and what functional form can be chosen for the dynamical function rF. 

3 Estimating the climate-carbon feedback response 10 

3.1 Experimental setup 

We use the compact Earth system model OSCAR v2.2 to establish the IRF of the climate-carbon feedback (Gasser et al., 2016). 

It embeds several modules dedicated to simulating the response of many subsystems of the Earth system; and more specifically 

to our case, it embeds modules for the oceanic carbon-cycle, the terrestrial carbon-cycle and the climate system. Each of these 

modules is designed to emulate the sensitivity of more complex – usually spatially explicit – models. In the version used here, 15 

the complex models used to calibrate OSCAR were used for the IPCC AR5 via the Coupled Model Intercomparison Project 

phase 5 (CMIP5). OSCAR includes the following climate-carbon feedbacks: the effect of temperature and precipitation change 

on net primary productivity of land ecosystems, their heterotrophic respiration, and the rate of occurrence of wildfires; and the 

effect of temperature change on the carbonate chemistry and the stratification of the surface ocean. OSCAR is used in a 

probabilistic setup, which means that ensembles of simulations are made so as to be able to derive an uncertainty distribution 20 

for our results. These Monte Carlo ensembles contain 1200 elements; each element being the outputs of a simulation done 

with a set of parameters drawn with equiprobability from the pool of available parameterizations of OSCAR (Gasser et al., 

2016).  The configuration used here is similar to the one called “offline” by Gasser et al. (2016), and more information as to 

the basic performance of the model is also provided therein. 

Before estimating the IRF for the climate-carbon feedback, we benchmark OSCAR’s IRFs of the carbon-cycle and climate 25 

system separately against commonly used IRFs. For the carbon-cycle, we follow the protocol by Joos et al. (2013), reproduced 

in appendix A, and we repeat it a second time while turning off all the climate-carbon feedbacks of the model. The two carbon 

dioxide IRFs obtained are shown in figure 1a. The IRF obtained when the feedbacks are turned on is very close to the one 

derived by Joos et al. (2013) and used by the IPCC. When the feedbacks are turned off, the IRF decays faster than when they 
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are on, which means that the carbon sinks are more efficient – as expected. Regarding the climate response, since OSCAR’s 

climate module is a two-box model with constant coefficients, it is equivalent to an IRF, shown in figure 1b. The model’s 

response is close to the average of sixteen CMIP5 models as calculated by Geoffroy et al. (2013), but it differs from the one 

used in the IPCC AR5 (Boucher and Reddy, 2008). Together the ability of the OSCAR model to reproduce the carbon-cycle 

and climate IRFs derived from up-to-date and complex models suggests that it is also capable of establishing a reasonable IRF 5 

for the climate-carbon feedback. 

To estimate this climate-carbon feedback IRF, we adopt a protocol largely inspired by that of Joos et al. (2013) for the carbon 

dioxide IRF. A first simulation is made to calculate the background conditions, in which atmospheric CO2 and non-CO2 

radiative forcings are prescribed up to 2010 exactly as it is done with the first simulation of the protocol for the carbon dioxide 

IRF (see appendix A). These prescribed forcings are then maintained for another 1000 years of simulation. The climate 10 

variables simulated in this first experiment are saved to be used in the second simulation. In OSCAR, these variables are the 

air surface temperature (global and regional over land), the sea surface temperature (global), and precipitation (global and 

regional over land). A second simulation is made in which the same atmospheric CO2 and non-CO2 radiative forcings are 

prescribed, along with the climate variables saved previously. In this second experiment, in the year 2015 and afterwards, a 

constant climate perturbation is added on top of the prescribed climate from the first experiment. This perturbation has a global 15 

average surface temperature change of +0.2°C, but the local temperature and precipitation perturbations do vary spatially, 

following the response patterns used in OSCAR and calibrated on complex models (Gasser et al., 2016). In our model, these 

regional response patterns are easy to obtain, since they are proportional to the global average temperature change, but for 

more complex models the protocol might have to be adapted (see discussion). Finally, the climate-carbon feedback response 

(not yet the IRF of section 2.3) is calculated as the difference between the global CO2 flux from the oceanic and terrestrial 20 

carbon reservoirs to the atmosphere simulated in the second and first experiments, normalized by the size of the global 

temperature step, and setting the time origin (t = 0) as the starting year of the step (i.e. 2015). 

3.2 Results 

Figure 2 shows the carbon sinks’ response to the temperature step change simulated by OSCAR v2.2. Panel (b) shows the 

model change in surface flux due to decreased carbon sinks, panel (a) shows the cumulative response from summing the flux 25 

and panel (c) shows the differentiated response from taking the year-to-year difference in flux. If the yearly response is the 

“speed” of outgassing of the carbon sinks, the differentiated response is its “acceleration”. It is important to note that the 

analytical time-step of OSCAR is one year, and that it is not a process-based model. It is thus impossible to specifically 

distinguish the very short-term response of the carbon sinks to the step of climate change. Despite this limitation, over the 

period of time we can study, the response simulated by OSCAR is very different from that assumed by Collins et al. (2013).  30 

In OSCAR, the response of the carbon sinks to a step of climate change is an instantaneous burst of outgassing followed by 

more outgassing that is however decreasing in intensity with time, despite the constant intensity of the forcing (figure 2b). We 

also find the land carbon flux response is about double that from the ocean (not shown). This response is physically very 
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different from Collins et al. (2013) and thus the IPCC, where it is assumed that the carbon sinks response to a pulse of climate 

change is a pulse of outgassing, or equivalently that their response to a step of climate change is a step of outgassing. This 

would imply that under a stabilized but changed climate (e.g. at +2°C on global average) the carbon sinks would endlessly 

release CO2 to the atmosphere. This is unrealistic, since the total emitted CO2 is limited by the size of the natural reservoirs. 

Our simulations show the carbon sinks behaving in a more reasonable and expected way. Under a step of climate change, the 5 

sinks do release CO2 – which is consistent with the positive sign of the climate-carbon feedback – but the release of CO2 slows 

down with time (figure 2b), until the sinks reach a new equilibrium under a new climate. This behaviour implies that the total 

amount of released CO2 is capped (figure 2a) and is given by the difference in the natural carbon pools between the two 

equilibria under the two different climatic backgrounds. The response to a pulse of climate change is indeed a burst of 

outgassing; however, after the pulse, the atmospheric CO2 is now raised above the equilibrium level so the sinks increase, 10 

eventually recapturing the lost carbon (figure 2c). The latter part of the response was missing from Collins et al. (2013). 

3.3 Estimating the IRF 

In this section, we estimate a functional form for the climate-carbon feedback IRF that will then be used to estimate new 

emission metrics. We look only at the time period covered by our simulations with OSCAR, therefore ignoring the 

discontinuity around t = 0. Let us call f the function of the time variable that will fit the simulated cumulative response (figure 15 

2a). The yearly response (figure 2b) is thus fitted by f′ – its first derivative – and the differentiated response (figure 2c) by f″ – 

its second derivative. The functional form of f is chosen to be a sum of three saturating exponential functions, consequently: 

𝑓𝑓(𝑡𝑡) =   𝛾𝛾 �𝛼𝛼1𝜏𝜏1 �1 − exp �−
𝑡𝑡
𝜏𝜏1
�� + 𝛼𝛼2𝜏𝜏2 �1 − exp �−

𝑡𝑡
𝜏𝜏2
�� + 𝛼𝛼3𝜏𝜏3 �1 − exp �−

𝑡𝑡
𝜏𝜏3
��� 

𝑓𝑓′(𝑡𝑡) =  𝛾𝛾 �𝛼𝛼1 exp �−
𝑡𝑡
𝜏𝜏1
� + 𝛼𝛼2 exp �−

𝑡𝑡
𝜏𝜏2
� + 𝛼𝛼3 exp �−

𝑡𝑡
𝜏𝜏3
�� 

𝑓𝑓′′(𝑡𝑡) =  −𝛾𝛾 �
𝛼𝛼1
𝜏𝜏1

 exp �−
𝑡𝑡
𝜏𝜏1
� +

𝛼𝛼2
𝜏𝜏2

 exp �−
𝑡𝑡
𝜏𝜏2
� +

𝛼𝛼3
𝜏𝜏3

 exp �−
𝑡𝑡
𝜏𝜏3
�� 20 

Each of the three exponentials is parameterized by a time constant τi and a weight αi, and the overall function is also 

parameterized by its intensity γ. The γ parameter is introduced here by choice, and it is the same as in section 2.3. Since we 

introduce a seventh parameter while only six were needed (we could have defined three γi as γi = γ αi), we also add the constraint 

that α1 + α2 + α3 = 1. The choice of an exponential-based functional form is motivated by the fact that all other IRFs typically 

used for emission metrics are also formulated with exponentials, because it allows closed-form analytical solutions of all the 25 

convolutions. Another interest of exponential-based IRFs is the possibility to use Laplace transforms to study the carbon-

climate system (Enting, 2007). 

To deduce numerical values for the parameters, we fit the f function and its first and second derivatives over the three response 

curves simulated by OSCAR and shown in figure 2. To do so, we use only the actual outputs of OSCAR, i.e. the fit is made 
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only over the simulated curves and not over the extended ones. To determine the six freely-varying parameters, we proceed in 

four steps that are detailed in appendix B. Table 1 shows the parameters obtained by repeating the procedure for the average, 

upper and lower responses of the ensemble. The intensity parameter of the response (γ) is ~3.0 GtC yr-1 K-1. The three time 

constants of the carbon sinks response are consistent with the atmospheric CO2 response of OSCAR, but there is more weight 

placed on the faster modes so that the carbon response to a temperature pulse is faster than the carbon response to a CO2 pulse. 5 

However, it is extremely difficult to relate any of the physical processes to these parameters (Li et al., 2009). We also tried 

other functional forms for this fit, specifically forms with fewer exponentials, but it was not possible to capture both the 

dynamics of the first few years and that of the last hundreds of years. 

The response obtained with OSCAR exhibits a discontinuity around t = 0 (figure 2) as the model cannot simulate the response 

of the carbon sinks over short time-scales (<1 yr). We assume nonetheless that the flux perturbation can be extrapolated back 10 

to t = 0+, neglecting any processes faster than a year that we cannot represent. Thus the discontinuity at t = 0 is modelled with 

a Dirac-δ function whose intensity is equal to the value of the flux at t = 0+. The resulting extension of the simulated response 

is schematically shown in figure 2. and 

Based on the above, we can finally propose a mathematical expression of the climate-carbon feedback IRF defined in section 

2.3: 15 

𝛾𝛾 𝑟𝑟𝐹𝐹(𝑡𝑡) =  𝑓𝑓′(0+)𝛿𝛿(𝑡𝑡) + 𝑓𝑓′′(𝑡𝑡) 

= 𝛾𝛾𝛿𝛿(𝑡𝑡) − 𝛾𝛾 �
𝛼𝛼1
𝜏𝜏1

 exp �−
𝑡𝑡
𝜏𝜏1
� +

𝛼𝛼2
𝜏𝜏2

 exp �−
𝑡𝑡
𝜏𝜏2
� +

𝛼𝛼3
𝜏𝜏3

 exp �−
𝑡𝑡
𝜏𝜏3
�� 

The constraint α1 + α2 + α3 = 1 implies that ∫ 𝑟𝑟𝐹𝐹(𝑡𝑡)+∞
0− = 0. This means that, in our framework, a pulse of climate change has 

no effect on the natural carbon pools on the very long-term. In other words, in the response shown in figure 2c, the (infinite) 

recovery period fully compensates for the initial pulse of CO2 emission. This idealised feature of reversibility is to be expected 20 

from the simple and linear modelling framework that the impulse response functions are, since no multiple equilibria is 

permitted. This is however likely unrealistic, given all the existing non-linear processes, such as vegetation migration (e.g. 

Jones et al., 2009) or permafrost thawing (e.g. Koven et al., 2011), that can produce some degree of irreversibility in the system 

but are ignored here. 

3.4 Influence of step size and background conditions 25 

To assess the robustness of our IRF, as well as its domain of validity, we repeat the simulations with different steps of 

temperature. We derive IRFs for climate change steps corresponding to a global mean temperature increase of: +0.01, +0.1, 

+0.2, +0.5, +1, +2, +3, +4, +5 and +10 °C. We note however that for the latter values, and especially for +10°C, we are pushing 

the model into a domain where its performance is questionable. The parameters we obtain for each experiment are shown in 

figure 3. The climate-carbon feedback intensity (γ) decreases when the step size increases. Since the intensity is normalized 30 

by the step size, this does not mean the feedback is weaker when climate change is stronger. This rather means the carbon 
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sinks response is non-linear in intensity: a doubled step of climate change induces less than a doubled outgassing of the natural 

reservoirs. This saturation effect can be explained by the limited size of the reservoirs: the fewer carbon remains, the harder it 

is to get it out (i.e. the more energy is required). The climate-carbon feedback effective time-scale (τeff; calculated as 𝜏𝜏eff =

∑ 𝛼𝛼𝑖𝑖𝜏𝜏𝑖𝑖𝑖𝑖 ) also decreases when the step size increases, indicating that under a stronger climate change perturbation the carbon 

sinks outgassing occurs faster. These two non-linear behaviours appear small for the very small perturbations (i.e. below +1°C). 5 

We also repeat the simulations with different background conditions, though only for climate change steps corresponding to a 

global mean temperature increase of +0.2 and +1 °C. Four different background conditions are obtained with a slight alteration 

of our protocol: the background-setting part of the simulation – i.e. before the step of climate change – is extended to follow 

each Representative Concentration Pathway (RCP) atmospheric CO2 and radiative forcing data (Meinshausen et al., 2011) 

from 2005 to 2100, and the step occurs in 2105 instead of 2015. Figure 3 shows that the higher the atmospheric CO2 and global 10 

warming of the background, the more intense and faster the climate-carbon feedback, with a doubling of the intensity parameter 

(γ) and a decrease by one-third of the time-scale parameter (τeff) under RCP8.5. These results can be explained by the increased 

amount of carbon stored in the natural reservoirs at the time of the climate change step, as in the model the carbon sinks keep 

removing CO2 from the atmosphere during the RCP simulation while atmospheric CO2 is higher than today. These results are 

also consistent with those regarding the atmospheric CO2 IRF (Joos et al., 2013): under a higher CO2 and temperature 15 

background, it is harder for the carbon sinks to remove CO2 from the atmosphere (slower carbon dioxide IRF) and it is easier 

for them to release the carbon they are already storing (stronger and faster feedback IRF). Both studies – that of Joos et al. 

(2013) and ours – therefore show that the carbon-cycle is a non-linear system that can be only approximatively emulated by 

impulse response functions. 

4 New estimates of emission metrics 20 

Using the estimated IRF for the climate-carbon feedback, we now provide new estimates of the two most common emission 

metrics, GWP and GTP, for five species spanning a broad range of atmospheric lifetimes and climate impacts: methane (CH4), 

nitrous oxide (N2O), sulphur hexafluoride (SF6), black carbon (BC) and sulphur dioxide (SO2). We follow the methodology 

used by the IPCC in the AR5 (Myhre et al., 2013): we use the perturbation lifetimes for non-CO2 species and the radiative 

efficiencies they provide (their table 8.A.1), the carbon dioxide IRF from Joos et al. (2013), and the climate IRF from Boucher 25 

and Reddy (2008). For BC and SO2, because the IPCC does not provide a unique set of parameters for these short-lived species, 

we choose the globally averaged ones from Fuglestvedt et al. (2010). We also have to settle on one of our climate-carbon 

feedback IRFs: we choose the one corresponding to present-day background conditions and a global climate change step of 

+0.2°C. This choice is motivated by the fact that +0.2°C is approximatively the globally averaged peak warming induced by a 

pulse of CO2 emission of 100 GtC which is itself the value chosen by Joos et al. (2013) – and therefore by used in the IPCC 30 

AR5. We then use the equations given in section 2.3, solving the convolutions numerically with a time-step of one tenth of a 



12 
 

year. Figure 45 is provided as an illustration of this process whereby we calculate the ΔAGTP of methane, starting from the 

initial pulse of CH4 and going through the five successive convolutions described earlier. 

The metrics values are shown in figures 56 (AGWPs and AGTPs) and 67 (GWPs and GTPs). In these figures, we show 

separately the default IPCC metrics (Myhre et al., 2013; table 8.A.1) and the additional effect of the climate-carbon feedback 

(i.e. the Δ-term that will then be added to the metrics) obtained with both the Collins et al. (2013) formulation and ours. The 5 

Δ-terms always act to increase the magnitude of both the absolute and relative climate metrics. Although the Δ-terms from 

Collins et al. (2013) are of similar orders of magnitude, their function forms are very different. Since Collins et al. (2013) did 

not include the re-uptake of carbon following the initial pulse, their Δ-terms keep increasing with the time horizon, while ours 

peak and decline. Eventually, the Collins et al. Δ-term is even larger than the default metric on long timescales, which is never 

the case with our formulation. Note that there is no Δ-term for CO2 as the climate-carbon feedback is already included in the 10 

default metrics, hence including it in the metrics for non-CO2 species restores consistency. 

In table 2 (first three rows) we show the climate metrics, including and excluding Δ-term, for three chosen time horizons: 20, 

50 and 100 years. There, one can see again that the metrics are systematically higher (in absolute value) than in the default 

IPCC case, when the climate-carbon feedback induced by non-CO2 species is accounted for, whatever the chosen formulation. 

Quantitatively, however, for long time horizons, the IPCC (Myhre et al., 2013; table 8.7), based on Collins et al. (2013), 15 

overestimates the effect of the climate-carbon feedback, whereas this effect is underestimated for short time horizons. This can 

also be seen in figures 56 and 67 where the dotted lines are below the dashed ones during the first decades, and over afterwards.  

In table 2 (fourth row), we also provide new estimates of the metrics including the climate-carbon feedback as calculated with 

OSCAR, but also and with the climate IRF updated from that of Boucher and Reddy (2008) to that of Geoffroy et al. (2013). 

The latter is calibrated on several climate models of the latest generation, while the former appears to be an outlier of the 20 

CMIP5 ensemble – see our figure 1b and results for “HadGEM2-ES” provided by Geoffroy et al. (2013). In concrete terms, 

the IRF of Boucher and Reddy (2008), used by the IPCC, is slower but has a higher climate sensitivity than the one calibrated 

on the CMIP5 multi-model mean. The effect of this update can be seen by comparing the third and fourth rows of our table 2. 

Updating the climate IRF has more effect on the GTPs than on the GWPs, which is logically due to the fact that GTP is defined 

as a function of the temperature (see section 2.2) while GWP is a function of the radiative forcing and is therefore affected by 25 

the temperature only through the climate-carbon feedback. Changing the climate IRF impacts the GTPs for all species, but for 

short-lived species (BC and SO2, and to a lesser extent CH4) a revised climate IRF has an effect as large as correcting the 

climate-carbon feedback term. This is a reminder of the sensitivity of the GTPs to the representation of the climate time-scales 

(in 𝑟𝑟𝑇𝑇), and that these are at least as important as including or neglecting the climate-carbon feedback. 

In table 2 (fifth row), we provide another set of relative metrics, similar to the previous one in that it includes the feedback 30 

response calibrated on OSCAR and the updated climate IRF, but it also includes an update of the radiative efficiencies of CO2, 

CH4 and N2O (Etminan et al., 2016). The new radiative efficiency of CO2 differs by +2%, that of CH4 by +14%, and that of 

N2O by -3%. These changes logically impact the GWPs and the GTPs, since both metrics are function of the φx parameters. 

The change is substantial for CH4: in most cases more so than the update of the climate IRF. Notably, the update of the radiative 
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efficiency of CO2 – being the reference gas in relative metrics – implies a change in the metrics’ values of all species, even 

those whose own radiative efficiency are not changed. These results show that the first-order processes (here, the radiative 

forcing) may have more impact on the metrics than second-order processes such as the climate-carbon feedback. 

 

We recommend using the metrics shown in this fourth row of table 2, since they are the most consistent, robust and up-to-date 5 

metrics available. Analytical expressions of the IRFs, to be used to calculate metrics for other time horizons and/or other 

species, are given in appendix C. 

In table 2 (last two rows), to fully understand the effect of including or not the climate-carbon feedback in emission metrics, 

we provide two other sets of metrics: the two are based only on IRFs derived from OSCAR (i.e. the responses shown in figures 

1 and 2), with one including the feedback for both CO2 and non-CO2 while the other does not for either. In both cases (i.e. 10 

when the climate-carbon feedback is consistently included or excluded) the metrics are very close. For greenhouse gases (here: 

CH4, N2O and SF6) the difference remains below 10%, with only very small changes for the GWPs. Only in the case of the 

GTP of short-lived species (BC and SO2) and for short time horizons is the difference larger than that, reaching about 30%. 

Finally, we show in table 3 that the relative uncertainties associated with these OSCAR-based metrics – calculated using our 

Monte Carlo ensembles and uncertainty ranges from Myhre et al. (2013; table 8.SM.12) – remain close, no matter whether the 15 

climate-carbon feedback is included or not, as long as it is consistent. This can be explained by the fact that the climate-carbon 

feedback only makes a small contribution to the climate metrics. Therefore, despite being highly uncertain, it does not 

contribute much to the overall uncertainty. 

5 Discussion and conclusion 

We have developed a theoretical framework to consistently include the climate-carbon feedback in emission metrics, we have 20 

used the simple model OSCAR v2.2 to establish an IRF for the feedback, and finally, we have used the framework and the 

new IRF to propose new estimates of the GWP and GTP. The overarching goal of our study was to correct and complement 

the work initiated by Collins et al. (2013) and reflected by the IPCC, and to provide a framework that could be used in future 

IPCC assessment reports. To this end, we see two technical points that must be discussed: one regarding the underlying 

assumptions made when we extend the IRF framework to include the climate-carbon feedback; and one regarding the 25 

possibility of applying our protocol to more complex models. And to conclude, we open up the discussion to more general 

considerations about the IRF framework and the interest (or lack thereof) of accounting for the climate-carbon feedback in 

emission metrics, and about the role of non-CO2 species in the global climate system. 

5.1 Technical aspects 

In our extended metrics framework, to account for the climate-carbon feedback, we link the global mean temperature change 30 

to the global total change in carbon removal by the natural sinks. This global approach averages over differing regional 
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responses. Consequently, the causal links between i) global climate change and local climate changes, and ii) local climate 

changes and local responses of the ocean or land sinks are accounted for only implicitly with our modelling approach. 

Regarding the first causal link, since we apply the same IRF (𝛾𝛾 𝑟𝑟𝐹𝐹) whatever the forcing species x, we implicitly assume that 

the local pattern of climate change is always the same whatever. This is certainly not the case in reality for temperature (e.g. 

Hansen et al., 2005) or precipitation (e.g. Shine et al., 2015); note thatand the latter affects the land sink. This could be 5 

addressed by repeating our experiment with different patterns of temperature and precipitation corresponding to various forcers 

so as to deduce species-dependent IRFs in the form, for instance, of a set of γx parameters. Regionally varying climate responses 

have been explored by e.g. Shindell and Faluvegi (2009) and Collins et al. (2013) and could in principle be used to generate 

species dependent rF, although they are very uncertain. Regarding the second causal link, i.e. from local climate change to 

local carbon sinks response, the local response to climate change can be of a sign different from the global one, and further 10 

altered if nutrients such as nitrogen are accounted for (Ciais et al., 2013). Therefore, if IRFs were established at the regional 

scale, they would not likely resemble the one shown in figure 2. 

We have established an analytical expression for the climate-carbon feedback IRF with a simple carbon-climate model and 

following a specific protocol. Although OSCAR performs well in simulating historical changes in the global Earth system 

(Gasser et al., 2016) and in calculating carbon dioxide and climate IRFs (see figure 1), our simulations should be reproduced 15 

with other – more complex – carbon-climate models, to check whether our results hold qualitatively and quantitatively. Ideally, 

a multi-model modelling exercise such as the one that led to the carbon dioxide IRF (Joos et al., 2013) should also include the 

simulations required to establish the climate-carbon feedback IRF. For a complex carbon-cycle model, the step climate change 

could be defined as the difference between the end of a CMIP 4×CO2 experiment and the control experiment (simulated by 

the same model). Note that step changes rather than gradual changes such as +1%/yr CO2 increase (e.g. Arora et al., 2013) are 20 

needed in order to derive the IRFs. 

5.2 Conceptual aspects 

In a more general perspective, our results raise the question of whether the climate-carbon feedback should be included in 

emission metrics. Accounting for the feedback implies more simulations in a multi-model exercise similar to that of Joos et al. 

(2013) for calibration purposes, whereas not accounting for it requires a new set of CO2 IRFs with the feedback turned off. For 25 

most greenhouse gases (e.g. CH4, N2O, SF6), we found that inclusion of the climate-carbon feedback does not greatly change 

(less than 10%) the values of the normalized GWPs and GTPs provided the feedback is included consistently for CO2 and non-

CO2 species. For very short-lived species (e.g. SO2, BC) the feedback does have a significant effect over short time-horizons 

(greater than 30%). The absolute metrics do change substantially when including climate-carbon feedback. Including the 

climate-carbon feedback therefore gives consistency and accuracy across a wide range of species and time horizons. We have 30 

found that including or excluding the climate-carbon feedback in a consistent manner does not greatly change the values of 

the relative GWPs (only about 2%). In the case of relative GTPs, the change is slightly larger for greenhouse gases (less than 

10%) and becomes even larger for very short-lived species and over short time-horizons (greater than 30%). In the case of 
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absolute metrics – both AGWPs and AGTPs – these changes are substantial since we are adding a positive feedback to the 

model. Therefore, the choice of including or excluding the feedback ultimately depends on the user’s needs. On the one hand, 

for the sake of simplicity and transparency, the feedback could be excluded from the evaluation of GWPs, since it avoids the 

trouble of the five convolutions shown in figure 4. On the other hand, if absolute (e.g. time-varying) metrics are used as a first-

order model of climate change, one may prefer including the climate-carbon feedback to have a better representation of the 5 

system. We provide in appendices C and D all the analytical expressions needed to calculate the metrics with or without the 

feedback.  

It is also important to note that the above changes in the metrics’ value are of the same order of magnitude (and sometimes 

less) as the change induced by the update of the climate IRF and the radiative efficiencies of greenhouse gases, as shown in 

section 4. Hence multiple types of physical properties need to be correctly accounted for. They are also less in magnitude than 10 

those induced by the choice of the protocol used to calculate the metrics, such as the background conditions (e.g. Reisinger et 

al., 2011), or by the choice of a given time horizon (see e.g. table 2). Although these factors reflect choices about temporal 

applicability of the metrics rather than refined understanding of physical behaviour. 

If the choice is made that this feedback be included in emission metrics, it then raises another question as to what other 

feedbacks, if any, should also be included. Let us take the climate-wetlands feedback as an example. When climate changes, 15 

so does the amount of CH4 emitted by natural wetlands (e.g. Ciais et al., 2013). This could be included in a manner similar to 

what we did with the climate-carbon feedback: the atmospheric CH4 IRF should be re-calculated with interactive wetlands, 

and a new IRF for the climate-wetlands feedback induced by non-CH4 forcers should be established. This is feasible; but now 

one must consider that wetlands emissions are also directly affected by atmospheric CO2 through CO2-fertilisation and altered 

stomatal closure that alters the local hydrological cycle (Ciais et al., 2013). Therefore, accounting for the carbon-climate-20 

wetlands nexus requires a much more complex experimental setup. And this is just one example: feedbacks involving 

biogeochemical cycles in the Earth system are numerous (Ciais et al., 2013). It can be rightfully argued that some of these 

feedbacks can be neglected, and that others can be safely linearized (such as the CH4-OH feedback that is included in emission 

metrics in the AR5). Nevertheless, it appears that we are reaching the limits of the IRF framework which is linear by essence. 

The alternative, to include all the possible feedbacks in emission metrics, is actually to develop model-based estimates similarly 25 

to what is done for atmospheric chemistry, for instance to look at species-species interactions (e.g. Shindell et al., 2009), 

regional specificities (e.g. Collins et al., 2013) or the seasonality of processes and drivers (e.g. Aamaas et al., 2016). However, 

this would beis at the expense of the simplicity and transparency that are characteristic of the impulse response functions. For 

the climate-carbon feedback, Sterner and Johansson (2017) recently proposed a first model-based estimate. Their results show 

the same difference in physical behaviour when compared to Collins et al. (2013) as ours, therefore strengthening our 30 

conclusions as to the need to update the IPCC metrics’ estimates. 

It could also be argued that, rather than concentrating on improving the level of detail in representing the typical climate 

impacts associated with GWP and GTP (i.e. radiative forcing and global temperature change, respectively), it would be more 



16 
 

useful if metrics were instead expanded to more comprehensively capture the full range of environmental impacts associated 

with emissions, such as extreme events, crop yields or air pollution (e.g. Shindell, 2015). 

But uUltimately, the new IRF we established also sheds some light on the climate-carbon feedback and on the role of non-CO2 

species in the global climate system. Using a simple model, a robust framework and idealised experiments, we complement 

earlier studies on the climate-carbon feedback (e.g. Friedlingstein et al., 2006; Arora et al., 2013) with new qualitative insights 5 

as to the dynamics of the feedback. This complex dynamics – summed up in our figure 45 – has the peculiar effect of giving a 

long-term impact to short-lived species. Therefore, our work shows that non-CO2 species have an additional impact on the 

global climate system through this feedback loop, as others showed before (e.g. Gillet and Matthews, 2010; Mahowald, 2011; 

MacDougall and Knutti, 2016). It must be understood, however, that this “enhancement” of the non-CO2 species’ impact – as 

called by MacDougall and Knutti (2016) – does not actually imply that non-CO2 species are comparatively more important, in 10 

the context of climate change mitigation, than initially though. In fact, while it is true that the climate impact of non-CO2 

species is increased via the climate-carbon feedback (i.e.– their absolute metrics are increased) – so is the climate impact of 

CO2 alone; so that the relative importance of non-CO2 species versus CO2 when the feedback is included for both remains 

surprisingly close to the case in which the feedback is not included (i.e.– their normalized relative metrics remain similar). 

5.3 Concluding remarks 15 

As pointed out in the IPCC AR5, the metric calculations should consistently include the same processes for both CO2 

(denominator) and non-CO2 emissions (numerator). We have explored including the climate-carbon feedback in both, and 

revised the preliminary calculations presented in the AR5. Given the complexities of the climate-carbon feedback, it would be 

beneficial to have more studies, with models of varying complexity, to verify our conclusions. Given that inclusion of the 

climate-carbon feedback has the greatest impact on metrics with short-lived climate forcers, it would be especially interesting 20 

to examine the impact of their inhomogeneous distributions on the spatial pattern of the climate-carbon response.  

To avoid potential biases in metric values, we suggest to include the climate-carbon feedback in metric estimates. Ultimately, 

whether emission metrics should include the climate-carbon feedback is a decision for the user, and we only recommend 

consistency in the way feedbacks are included or excluded. The trade-off between simplicity and transparency on the one hand, 

and accuracy of representation on the other hand, has to be weighed by the final user. But metric users must should also keep 25 

in mind that IRFs and emission metrics are extremely simple models of a complex system, and that sometimes it may be 

beneficial to use more complex models that better capture multiple and interacting feedback processes. 

Appendix A: Protocol to simulate the carbon dioxide IRF 

The protocol is exactly that of Joos et al. (2013), reproduced here for clarity.  

A first simulation is made in a concentration-driven fashion, with prescribed atmospheric CO2 and prescribed non-CO2 30 

radiative forcings that follow the estimates by Meinshausen et al. (2011) for the historical period up to 2005, and then those 
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for the RCP4.5 between 2005 and 2010. These prescribed forcings are then maintained constant to their value of the year 2010 

during another 1000 years of simulation. In the case of OSCAR, as recommended by Joos et al. (2013), land-use and land-

cover change is also prescribed following the historical and then RCP4.5 data of Hurtt et al. (2011), and then stopped after 

2010. The outputs from this first simulation are used to deduce the anthropogenic emissions of CO2 that are compatible with 

the prescribed atmospheric CO2, through simple mass balance of the carbon element (see e.g. Gasser et al., 2015).  5 

A second simulation is made in an emission-driven fashion with the same prescribed non-CO2 radiative forcings and with the 

compatible CO2 emissions deduced from the first simulation, with the only purpose of checking that the atmospheric CO2 

concentration simulated is the same as the one prescribed in the first simulation.  

A third and final simulation is made, similar to the second one except that in 2015, on top of the compatible emissions, a pulse 

of 100 giga-tonnes of carbon is added to the atmosphere. The carbon dioxide IRF seen in figure 1a is simply deduced as the 10 

difference between the atmospheric CO2 simulated in the third and second experiments, normalized by the size of the pulse, 

and setting the time origin (t = 0) as the year of the pulse (i.e. 2015). 

Specific to our study, we also make simulations following this protocol but with the climate-carbon feedbacks “turned off”. 

This is achieved by prescribing the climate simulated by the second experiment to the third one. 

Appendix B: Protocol to fit the climate-carbon feedback IRF 15 

First, we fit a first-guess value for τ1, using the differentiated response (figure 2c) only over the first 5 (annual) time-steps, and 

assuming that f″ can be approximated by a one-exponential function over this short period of time. Second, we fit a first-guess 

value for γ and α1, using the yearly response (figure 2b) also over the first 5 time-steps, and assuming that f′ can also be 

approximated by a one-exponential function whose time constant τ1 is the one estimated during the first step. Third, we fit a 

first-guess value for the remaining parameters, i.e. τ2, τ3 and α2, using the cumulative response (figure 2a) over the whole 20 

simulation, and using the parameters determined in the first and second steps for f. Fourth, we fit the final values of the six 

parameters, using the yearly response (figure 2b) but this time over the whole simulation, and using the six parameters 

previously estimated as first guesses of the parameters of f′. All fits follow a least squares method, with the additional 

constraints that: 0 < αi < 1 and α3 = 1 – α1 – α2. Only the actual outputs of OSCAR are used to fit, i.e. the ‘extended’ part shown 

in figure 2 is not used. 25 

Appendix C: Analytical expressions of the IRFs used in this study 

C.1 Carbon dioxide response 

Joos et al. (2013): 

𝑟𝑟𝑄𝑄
𝐶𝐶𝑂𝑂2(𝑡𝑡) = 0.2173 + 0.2763 exp �−

𝑡𝑡
4.304

� + 0.2824 exp �−
𝑡𝑡

36.54
� + 0.2240 exp �−

𝑡𝑡
394.4

� 
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OSCAR v2.2, with climate-carbon feedback (average of ensemble): 

𝑟𝑟𝑄𝑄
𝐶𝐶𝑂𝑂2(𝑡𝑡) = 0.2366 + 0.2673 exp �−

𝑡𝑡
4.272

� + 0.2712 exp �−
𝑡𝑡

33.10
� + 0.2249 exp �−

𝑡𝑡
302.4

� 

OSCAR v2.2, without climate-carbon feedback (average of ensemble): 

𝑟𝑟𝑄𝑄
𝐶𝐶𝑂𝑂2(𝑡𝑡) = 0.2033 + 0.3016 exp �−

𝑡𝑡
4.736

� + 0.2836 exp �−
𝑡𝑡

34.09
� + 0.2115 exp �−

𝑡𝑡
288.4

� 

C.2 Climate response 5 

Boucher and Reddy (2008): 

𝜆𝜆 𝑟𝑟𝑇𝑇(𝑡𝑡) = 1.06 �
0.595

8.4
 exp �−

𝑡𝑡
8.4

� +
0.405
409.5

 exp �−
𝑡𝑡

409.5
�� 

Geoffroy et al. (2013): 

𝜆𝜆 𝑟𝑟𝑇𝑇(𝑡𝑡) = 0.885 �
0.587

4.1
 exp �−

𝑡𝑡
4.1

� +
0.413
249

 exp �−
𝑡𝑡

249
�� 

OSCAR v2.2 (average of ensemble): 10 

𝜆𝜆 𝑟𝑟𝑇𝑇(𝑡𝑡) = 0.852 �
0.572
3.50

 exp �−
𝑡𝑡

3.50
� +

0.428
166

 exp �−
𝑡𝑡

166
�� 

C.3 Climate-carbon feedback response 

Collins et al. (2013): 

𝛾𝛾 𝑟𝑟𝐹𝐹(𝑡𝑡) = 1.0 𝛿𝛿(𝑡𝑡) 

OSCAR v2.2 (average of ensemble): 15 

𝛾𝛾 𝑟𝑟𝐹𝐹(𝑡𝑡) =  3.015 𝛿𝛿(𝑡𝑡) − 3.015�
0.6368
2.376

 exp �−
𝑡𝑡

2.376
� +

0.3322
30.14

 exp �−
𝑡𝑡

30.14
� +

0.0310
490.1

 exp �−
𝑡𝑡

490.1
�� 

Appendix D: Other parameters used in this study 

D.1 Radiative efficiencies 

The following values include the effect of any overlap between the absorption bands of CO2, CH4 and N2O (Myhre et al., 1998; 

Etminan et al., 2016). They also include some indirect effects: increase in stratospheric water vapor and tropospheric ozone 20 

for CH4, and enhancement of the methane atmospheric sinks for N2O (Myhre et al., 2013; sections 8.SM.11.3.2 and 

8.SM.11.3.3). Note that these indirect effects are not affected by the update of the direct radiative efficiency by Etminan et al. 

(2016). The background concentration is kept to that of 2011, as in IPCC AR5 (Myhre et al., 2013; section 8.SM.11.1). 

Myhre et al. (2013):  
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𝜑𝜑𝐶𝐶𝑂𝑂2 = 1.76 × 10−15 W m−2 kgCO2−1 

𝜑𝜑𝐶𝐶𝐻𝐻4 = 2.11 × 10−13 W m−2 kgCH4−1 

𝜑𝜑𝑁𝑁2𝑂𝑂 = 3.57 × 10−13 W m−2 kgN2O−1 

𝜑𝜑𝑆𝑆𝐹𝐹6 = 2.20 × 10−11 W m−2 kgSF6−1 

Etminan et al. (2016):  5 

𝜑𝜑𝐶𝐶𝑂𝑂2 = 1.79 × 10−15 W m−2 kgCO2−1 

𝜑𝜑𝐶𝐶𝐻𝐻4 = 2.39 × 10−13 W m−2 kgCH4−1 

𝜑𝜑𝑁𝑁2𝑂𝑂 = 3.46 × 10−13 W m−2 kgN2O−1 

Fuglestvedt et al. (2010): 

𝜑𝜑𝑆𝑆𝑂𝑂2 = −3.2 × 10−10 W m−2 kgSO2−1 10 

𝜑𝜑𝐵𝐵𝐶𝐶 = 1.96 × 10−9 W m−2 kg−1 

D.2 Perturbation lifetimes 

These are used to define the non-CO2 atmospheric concentration IRFs: 𝑟𝑟𝑄𝑄𝑥𝑥(𝑡𝑡) = exp (−𝑡𝑡/𝜏𝜏𝑥𝑥). 

Myhre et al. (2013):  

𝜏𝜏𝐶𝐶𝐻𝐻4 = 12.4 yr 15 

𝜏𝜏𝑁𝑁2𝑂𝑂 = 121 yr 

𝜏𝜏𝑆𝑆𝐹𝐹6 = 3200 yr 

Fuglestvedt et al. (2010): 

𝜏𝜏𝑆𝑆𝑂𝑂2 = 0.011 yr 

𝜏𝜏𝐵𝐵𝐶𝐶 = 0.020 yr 20 

Acknowledgements 

This work was partially funded by a visiting researcher grant from the Research Council of Norway (#249972). T.G. was also 

supported by the European Research Council Synergy project IMBALANCE-P (grant ERC-2013-SyG-610028). G.P.P., 

W.J.C., D.T.S. and J.S.F. were supported by the Research Council of Norway (project #235548). 

References 25 

Aamaas, B., Berntsen, T. K., Fuglestvedt, J. S., Shine, K. P., and Bellouin, N.: Regional emission metrics for short-lived 

climate forcers from multiple models, Atmos. Chem. Phys., 16, 7451-7468, 2016. 



20 
 

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, 

P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks in 

CMIP5 Earth System Models, Journal of Climate, 26, 5289-5314, 2013. 

Boucher, O. and Reddy, M. S.: Climate trade-off between black carbon and carbon dioxide emissions, Energy Policy, 36, 193-

200, 2008. 5 

Boucher, O., Friedlingstein, P., Collins, B., and Shine, K. P.: The indirect global warming potential and global temperature 

change potential due to methane oxidation, Environmental Research Letters, 4, 044007, 2009. 

Cherubini, F., Fuglestvedt, J., Gasser, T., Reisinger, A., Cavalett, O., Huijbregts, M. A. J., Johansson, D. J. A., Jørgensen, S. 

V., Raugei, M., Schivley, G., Strømman, A. H., Tanaka, K., and Levasseur, A.: Bridging the gap between impact assessment 

methods and climate science, Environmental Science & Policy, 64, 129-140, 2016. 10 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, 

C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles. In: Climate Change 

2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., 

Bex, V., and Midgley, P. M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 15 

2013. 

Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., 

Löschel, A., McCollum, D., Paltsev, S., Rose, S., Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C., and van Vuuren, D. P.: 

Assessing Transformation Pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group 

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer, O., Pichs-Madruga, R., 20 

Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, 

J., Schlömer, S., von Stechow, C., Zwickel, T. and Minx, J. C. (Eds.), Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA, 2014. 

Collins, W. J., Fry, M. M., Yu, H., Fuglestvedt, J. S., Shindell, D. T., and West, J. J.: Global and regional temperature-change 

potentials for near-term climate forcers, Atmos. Chem. Phys., 13, 2471-2485, 2013. 25 

Enting, I. G.: Laplace transform analysis of the carbon cycle, Environ. Model. Softw., 22, 1488-1497, 2007. 

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide, methane, and nitrous 

oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12614-12623, 2016. 

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W. , Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., 

John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, 30 

C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate–Carbon 

Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, Journal of Climate, 19, 3337-3353, 2006. 

Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., Skeie, R. B., Velders, G. J. M., and Waitz, I. A.: 

Transport impacts on atmosphere and climate: Metrics, Atmospheric Environment, 44, 4648-4677, 2010. 



21 
 

Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D., and Ciais, P.: Negative emissions physically needed to keep global warming 

below 2[thinsp][deg]°C, Nat Commun, 6, 2015. 

Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp, L., and Hauglustaine, D.: The compact Earth system 

model OSCAR v2.2: description and first results, Geosci. Model Dev. Discuss., 201610, 1271-31974, 20176. 

Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., and Tytéca, S.: Transient Climate Response in a 5 

Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM 

Experiments, Journal of Climate, 26, 1841-1857, 2013. 

Gillett, N. P. and Matthews, H. D.: Accounting for carbon cycle feedbacks in a comparison of the global warming effects of 

greenhouse gases, Environmental Research Letters, 5, 034011, 2010. 

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, 10 

N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, 

C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., 

Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., 

Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, Journal of Geophysical Research: Atmospheres, 110, D18104, 

2005. 15 

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, 

A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., 

Thomson, A., Thornton, P., Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 

600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, 109, 

117-161, 2011. 20 

Jones, C., Lowe, J., Liddicoat, S., and Betts, R.: Committed terrestrial ecosystem changes due to climate change, Nature 

Geosci, 2, 484-487, 2009. 

Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Le Quéré, C., and Sarmiento, J. L.: An efficient and accurate 

representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus B, 48, 1996. 

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, 25 

N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K., 

Meinshausen, M., Plattner, G. K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., 

Timmermann, A., and Weaver, A. J.: Carbon dioxide and climate impulse response functions for the computation of 

greenhouse gas metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793-2825, 2013. 

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: 30 

Permafrost carbon-climate feedbacks accelerate global warming, Proceedings of the National Academy of Sciences, 108, 

14769-14774, 2011. 

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, 

R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, 



22 
 

L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, 

A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, 

I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, 

T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, 

R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., 5 

van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. 

Sci. Data, 7, 349-396, 2015. 

Levasseur, A., Cavalett, O., Fuglestvedt, J. S., Gasser, T., Johansson, D. J. A., Jørgensen, S. V., Raugei, M., Reisinger, A., 

Schivley, G., Strømman, A., Tanaka, K., and Cherubini, F.: Enhancing life cycle impact assessment from climate science: 

Review of recent findings and recommendations for application to LCA, Ecological Indicators, 71, 163-174, 2016. 10 

Li, S., Jarvis, A. J., and Leedal, D. T.: Are response function representations of the global carbon cycle ever interpretable?, 

Tellus B, 61, 361-371, 2009. 

Lucarini, V., Ragone, F., and Lunkeit, F.: Predicting Climate Change Using Response Theory: Global Averages and Spatial 

Patterns, J Stat Phys 166, 1036-1064, 2017. 

MacDougall, A. H. and Knutti, R.: Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks, 15 

Geophysical Research Letters, 43, 5833-5840, 2016. 

Mahowald, N.: Aerosol Indirect Effect on Biogeochemical Cycles and Climate, Science, 334, 794-796, 2011. 

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., 

Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse gas concentrations 

and their extensions from 1765 to 2300, Climatic Change, 109, 213-241, 2011. 20 

Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing due to well mixed greenhouse 

gases, Geophysical Research Letters, 25, 2715-2718, 1998. 

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, 

B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing. In: 

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 25 

Intergovernmental Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., 

Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA, 2013. 

Neubauer, S. C. and Megonigal, J. P.: Moving Beyond Global Warming Potentials to Quantify the Climatic Role of 

Ecosystems, Ecosystems 18, 1000-1013, 2015. 30 

Olivié, D. J. L. and Peters, G. P.: Variation in emission metrics due to variation in CO2 and temperature impulse response 

functions, Earth Syst. Dynam., 4, 267-286, 2013. 

Ragone, F., Lucarini, V., and Lunkeit, F.: A new framework for climate sensitivity and prediction: a modelling perspective, 

Climate Dynamics 46, 1459-1471, 2016. 



23 
 

Raupach, M. R., Gloor, M., Sarmiento, J. L., Canadell, J. G., Frölicher, T. L., Gasser, T., Houghton, R. A., Le Quéré, C., and 

Trudinger, C. M.: The declining uptake rate of atmospheric CO2 by land and ocean sinks, Biogeosciences, 11, 3453-3475, 

2014. 

Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., and Solomon, 

S.: Radiative Forcing of Climate Change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to 5 

the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, J. T., Ding, Y., Griggs, D. J., 

Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (Eds.), Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, 2001. 

Raupach, M. R., Gloor, M., Sarmiento, J. L., Canadell, J. G., Frölicher, T. L., Gasser, T., Houghton, R. A., Le Quéré, C., and 

Trudinger, C. M.: The declining uptake rate of atmospheric CO2 by land and ocean sinks, Biogeosciences, 11, 3453-3475, 10 

2014. 

Reisinger, A., Meinshausen, M., Manning, M.: Future changes in global warming potentials under representative concentration 

pathways, Environ. Res. Lett., 6, 024020, 2011. 

Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved Attribution of Climate 

Forcing to Emissions, Science, 326, 716-718, 2009. 15 

Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century, Nature Geosci., 2, 

294-300, 2009. 

Shindell, D. T.: The social cost of atmospheric release, Climatic Change, 130, 313-326, 2015. 

Shine, K. P., Allan, R. P., Collins, W. J., and Fuglestvedt, J. S.: Metrics for linking emissions of gases and aerosols to global 

precipitation changes, Earth Syst. Dynam., 6, 525-540, 2015. 20 

Sterner, E. O., and Johansson, D. J. A.: The effect of climate-carbon cycle feedbacks on emission metrics, Environmental 

Research Letters, 102983.R2, 2017. 

Tanaka, K., O’Neil, B. C., Rokityanskiy, D., Obersteiner, M., and Tol, R.: Evaluating Global Warming Potentials with 

historical temperature, Climatic Change, 96, 443-466, 2009. 

  25 



24 
 

 γ 
(GtC yr-1 K-1) 

τeff 
(yr) 

α1 
(–)  

α2 
(–) 

α3 
(–) 

τ1 
(yr) 

τ2 
(yr) 

τ3 
(yr) 

mean 3.015 28.69 0.6368 0.3322 0.0310 2.376 30.14 490.1 

upper 4.264 32.06 0.5916 0.3679 0.0405 3.333 37.12 404.3 

lower 1.964 27.28 0.8139 0.1761 0.0100 § 1.181 38.02 1962. § 
 

Table 1: Values of the parameters of the IRF for the climate-carbon feedback (i.e. 𝜸𝜸 𝒓𝒓𝑭𝑭). The parameters calibrated on OSCAR for the 
mean response are given, as well as those for the upper response (i.e. mean +1 standard deviation) and the lower response (i.e. mean –1 
standard deviation). The latter two responses correspond to the two envelope curves in figure 2. The effective time-scale τeff is calculated as 
𝝉𝝉𝐞𝐞𝐞𝐞𝐞𝐞 = ∑ 𝜶𝜶𝒊𝒊𝝉𝝉𝒊𝒊𝒊𝒊 . § The low weight and high value of the slow time-scale indicate that the lower response could be fitted by a two-exponential 5 
functional form. 
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(part 1) 
CH4† N2O SF6 

GWP GTP GWP GTP GWP 

Time horizon (in years) 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 

AR5 (default) § 84 48 28 67 14 4 263 275 264 276 281 234 17500 20500 23600 

AR5 + Collins § 85 52 34 70 20 11 267 290 297 283 311 297 17800 21600 26200 

AR5 + OSCAR 86 52 31 70 18 5 269 289 283 285 304 258 17900 21500 25200 

AR5 + OSCAR + climate IRF update 86 51 31 60 14 7 270 288 281 294 300 253 18000 21500 25000 

AR5 + OSCAR + IRF & REs updates 96 57 34 67 16 7 256 274 267 279 285 240 17600 21100 24500 

All OSCAR 96 57 34 66 18 9 255 273 267 279 283 241 17600 21000 24500 

All OSCAR (no CC-fdbk) 96 57 34 65 16 8 257 275 269 282 286 244 17700 21200 24800 
 

(part 2) 
SF6 BC‡ SO2‡ 

GTP GWP GTP GWP GTP 

Time horizon (in years) 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 

AR5 (default) § 19000 23900 28300 1560 736 426 451 71 58 -140 -66 -38 -40 -6 -5 

AR5 + Collins § 19400 26000 33700 1620 818 519 528 172 165 -145 -73 -47 -47 -15 -15 

AR5 + OSCAR 19500 25500 30800 1630 794 465 525 110 69 -146 -71 -42 -47 -10 -6 

AR5 + OSCAR + climate IRF update 20500 25900 30400 1630 787 460 210 116 90 -146 -71 -41 -19 -10 -8 

AR5 + OSCAR + IRF & REs updates 20100 25400 29800 1600 772 451 206 114 88 -143 -69 -41 -18 -10 -8 

All OSCAR 20100 25200 29400 1590 769 450 213 147 105 -143 -69 -40 -19 -13 -9 

All OSCAR (no CC-fdbk) 20400 25600 30200 1570 760 448 165 128 101 -141 -68 -40 -15 -11 -9 
 

Table 2: GWPs and GTPs at a time horizon of 20, 50 and 100 years, in the case of CH4, N2O, SF6, BC and SO2. The first row (“AR5 
default”) shows the base metrics as calculated by the IPCC AR5 (Myhre et al., 2013; table 8.A.1). The second row (“AR5 + Collins”) shows 
the metrics proposed in the IPCC AR5 as a first attempt to account for the climate-carbon feedback (their table 8.7), in which case the 5 
climate-carbon feedback IRF (𝜸𝜸 𝒓𝒓𝑭𝑭) is the one of Collins et al. (2013). The third row (“AR5 + OSCAR”) shows the metrics when using our 
climate-carbon feedback IRF. The fourth row (“AR5 updated + OSCAR + climate IRF update”) shows the same metrics as the third row, 
except that the climate IRF (𝝀𝝀 𝒓𝒓𝑻𝑻) is updated from that of Boucher and Reddy (2008) to one based on an ensemble of CMIP5 modelsthat of 
(Geoffroy et al., (2013). This fourth row, in bold font, shows our recommended values. The fifth row (“AR5 + OSCAR + IRF & REs 
updates”) is the same as the fourth one, except that we also update the radiative efficiencies (REs) of CO2, CH4 and N2O (Etminan et al., 10 
2016). The sixthfifth row (“all OSCAR”) shows the metrics obtained when all IRFs used are based on OSCAR and the radiative efficiencies 
are also updated, with inclusion of the climate-carbon feedback. The seventhsixth and last row (“all OSCAR no CC-fdbk”) shows the same 
as the sixthfifth row, but this time without including the climate-carbon feedback: neither for CO2 nor for non-CO2 species. § Because we 
use a numerical resolution method while the IPCC used an analytical one, some values in these rows may differ from the IPCC values by 1 
because of the rounding (by 100 in the case of SF6); these differing values are shown in italic font. † This does not account for the oxidation 15 
of CH4 into CO2 (see e.g. Boucher et al., 2009). ‡ Metrics for BC and SO2 are not directly provided by the IPCC, rather we use here the IPCC 
method with lifetimes and radiative efficiencies from Fuglestvedt et al. (2010). 
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CH4† N2O 

GWP GTP GWP GTP 

Time horizon (in years) 20 50 100 20 50 100 20 50 100 20 50 100 

All OSCAR 17% 20% 22% 23% 32% 32% 10% 13% 15% 14% 17% 19% 

All OSCAR (no CC-fdbk) 19% 22% 24% 24% 34% 34% 13% 16% 18% 15% 19% 21% 
 

Table 3: Uncertainty of GWP and GTP at a time horizon of 20, 50 and 100 years, in the case of CH4 and N2O. The relative uncertainties 
for ±1 standard deviation are shown. They are calculated on the basis of: i) the Monte Carlo ensembles of simulations made with OSCAR, 
shown in figures 1 and 2 and described in main text, and ii) the uncertainty ranges given by Myhre et al. (2013; table 8.SM.12) for radiative 
efficiencies and perturbations lifetimes. † This does not account for the oxidation of CH4 into CO2. 5 

 

  



27 
 

 

 

 

Figure 1: Impulse response functions estimated with OSCAR. (a) Response of the atmospheric CO2 to a pulse of emission, in the case 
where the climate-carbon feedbacks (“CC-fdbk”) are turned off (in blue), and in the normal case (in red). The responses by OSCAR are 5 
compared to that of Joos et al. (2013) used by the IPCC AR5 (dashed black). (b) Response of the global mean surface temperature to a step 
of radiative forcing. The response by OSCAR is compared to that of Boucher and Reddy (2008) used by the IPCC AR5 (dashed black) and 
to that of Geoffroy et al. (2013) that is based on CMIP5 models (dashed grey). The actual climate IRF (i.e. the response to a pulse) is obtained 
by taking the derivative of the curve shown in (b). Plain and thick lines show the mean response of OSCAR, while shaded and coloured 
areas show the ±1 standard deviation around the mean.  10 
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Figure 2: IRF for the carbon sinks response estimated with OSCAR. The response of the carbon sinks to a step of climate change is 
shown in three different ways: (a) as the cumulative amount of CO2 outgassed by the sinks; (b) as the annual amount of CO2 outgassed by 
the sinks; (c) as the derivative of the annual response to the step of climate change, which is equivalent to the annual response to a pulse of 
climate change. As in figure 1, the plain and thick (green) lines show the mean response from the Monte Carlo ensemble, while the shaded 5 
areas show the ±1 standard deviation. The dotted (green) lines illustrate our arbitrary extension of the response simulated by OSCAR when 
around t = 0 (see section 3.3). The grey lines with round markers are the results of our fit. For comparison, we also show the response 
assumed by Collins et al. (2013) as dashed black lines.  
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Figure 3: Influence of step size and background on the climate-carbon feedback IRF: (a) on the climate-carbon feedback intensity γ; 
and (b) on the climate-carbon feedback effective time-scale τeff (calculated as 𝝉𝝉𝐞𝐞𝐞𝐞𝐞𝐞 = ∑ 𝜶𝜶𝒊𝒊𝝉𝝉𝒊𝒊𝒊𝒊 ). The effect of the amplitude of the step of 
climate change (in black) and of the atmospheric CO2 and climate background following the four RCPs (in colour; green for RCP2.6, blue 5 
for RCP4.5, magenta for RCP6.0 and red for RCP8.5) are shown. The uncertainty ranges shown is the ±1 standard deviation range, 
corresponding to the “upper” and “lower” responses in table 1. 

  



30 
 

 

Figure 4: Example of the step-by-step convolutions leading to 
the ΔAGTP of CH4. The figure is read panel by panel, following 
the arrows and starting in the upper-left corner. The left-hand side 
panels show the actual physical variables, whereas the right-hand 5 
side panels show the IRFs used for the convolutions. We start 
with a pulse of CH4 emitted at t = 0, of an arbitrary size of 100 
MtCH4. This pulse (𝑬𝑬𝑪𝑪𝑪𝑪𝑪𝑪) is then convoluted (symbol ⋆) with 
the atmospheric CH4 IRF (𝒓𝒓𝑸𝑸𝑪𝑪𝑪𝑪𝑪𝑪) to give the induced change in 
atmospheric CH4 ( 𝑸𝑸𝑪𝑪𝑪𝑪𝑪𝑪 ). This atmospheric CH4 is then 10 
multiplied by the CH4 radiative efficiency (𝝋𝝋𝑪𝑪𝑪𝑪𝑪𝑪; units: W m-2 
GtCH4-1) and convoluted with the climate IRF (𝝀𝝀 𝒓𝒓𝑻𝑻) to give the 
induced change in global surface temperature (𝑻𝑻𝑪𝑪𝑪𝑪𝑪𝑪). One would 
stop here to deduce the AGTP by normalizing the obtained 
temperature change by the size of the initial pulse. In our case, 15 
the temperature change is then convoluted with the climate-
carbon feedback IRF (𝜸𝜸 𝒓𝒓𝑭𝑭 ) to give the induced flux of CO2 
released by the sinks ( 𝚫𝚫𝑭𝑭𝑪𝑪𝑪𝑪𝑪𝑪) . This flux of CO2 is then 
convoluted with the carbon dioxide IRF (𝒓𝒓𝑸𝑸𝑪𝑪𝑪𝑪𝑪𝑪)  to give the 
induced change in atmospheric CO2 (𝚫𝚫𝑸𝑸𝑪𝑪𝑪𝑪𝑪𝑪). And finally, this 20 
atmospheric CO2 is then multiplied by the CO2 radiative 
efficiency (𝝋𝝋𝑪𝑪𝑪𝑪𝑪𝑪; units: W m-2 GtCO2-1) and convoluted with the 
climate IRF (𝝀𝝀 𝒓𝒓𝑻𝑻) to give the induced change in global surface 
temperature (𝚫𝚫𝑻𝑻𝑪𝑪𝑪𝑪𝑪𝑪). The ΔAGTP is deduced by normalizing the 
obtained temperature change by the size of the initial pulse. An 25 
analogous example can be produced for ΔAGWP, in which case 
one has to replace the last convolution by a convolution with the 
Heaviside step function (Θ). 
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Figure 5: Absolute metrics, in the case of CO2, CH4, N2O, SF6, BC and SO2. AGWPs (left-hand side) and AGTPs (right-hand side) 
obtained using the IPCC AR5 method are shown in solid lines. ΔAGWPs and ΔAGTPs obtained using the climate-carbon feedback IRF by 
Collins et al. (2013) are shown in dotted lines, and those obtained using ours are in dashed lines. Colours refer to the different species taken 
here as examples. 5 
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Figure 6: Normalized Relative metrics, in the case of CH4, N2O, SF6, BC and SO2. GWPs (left-hand side) and GTPs (right-hand side) 
obtained using the IPCC AR5 method are shown in solid lines. ΔGWPs and ΔGTPs obtained using the climate-carbon feedback IRF by 
Collins et al. (2013) are shown in dotted lines, and those obtained using ours are in dashed lines. Colours refer to the different species taken 
here as examples. Note that the scale of the y-axis is linear between 1 and ±10 and logarithmic afterwards. 5 
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