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 24 

Abstract 25 

Bias correction of climate variables has become a standard practice in Climate Change 26 

Impact (CCI) studies. While various methodologies have been developed, their majority 27 

assumes that the statistical characteristics of the biases between the modeled data and 28 

the observations remain unchanged in time. However, it is well known that this 29 

assumption of stationarity cannot stand in the context of a climate. Here, a method to 30 

overcome the assumption of stationarity and its drawbacks is presented. The method is 31 

presented as a pre-post processing procedure that can potentially be applied with 32 

different bias correction methods. The methodology separates the stationary and the non-33 

stationary components of a time series, in order to adjust the biases only for the former 34 

and preserve intact the signal of the later. The results show that the adoption of this 35 

method prevents the distortion and allows for the preservation of the originally modeled 36 

long-term signal in the mean, the standard deviation, but also the higher and lower 37 

percentiles of the climate variable. Daily temperature time series obtained from five Euro 38 

CORDEX RCM models are used to illustrate the improvements of this method. 39 

 40 
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1 Introduction 50 

Climate model output consist the primary source of information used to quantify the effect 51 

of the foreseen anthropogenic climate change on natural systems. One of the most 52 

common and technically sound practices in Climate Change Impact (CCI) studies is to 53 

calibrate impact models using the most suitable observational data and then to replace 54 

observational data with the climate model data in order to assess the effect of potential 55 

changes in the climate regime. Often, raw climate model data cannot be used in CCI 56 

models due to the presence of biases in the representation of regional climate 57 

(Christensen et al., 2008; Haerter et al., 2011). In fact, hydrological CCI studies outcomes 58 

have been reported to become unrealistic without a prior adjustment of climate forcing 59 

biases (Hansen et al., 2006; Harding et al., 2014; Sharma et al., 2007). These biases may 60 

be attributed to a number of sources such as the imperfect representation of the physical 61 

processes within the model code and the coarse spatial resolution of output that do not 62 

permit the accurate representation of small-scale processes. Furthermore, climate model 63 

tuning for global projections focuses on essential elements such as the adequate 64 

representation of feedbacks between processes and hence the realistic depiction of a 65 

variable, such as temperature, against observations can be sidelined (Hawkins et al., 66 

2016). 67 

A number of statistical bias correction methods  have been developed and successfully 68 

applied in CCI studies (e.g. Grillakis et al., 2013; Haerter et al., 2011; Ines and Hansen, 69 

2006; Teutschbein and Seibert, 2012). Their main task is to adjust the statistical 70 

properties of climate simulations to resemble those of observations, in a common 71 

climatological period. This is typically accomplished with the use of a Transfer Function 72 

(TF) which minimizes the difference between the cumulative distribution function (CDF) 73 

of the climate model output and that of the observations, a process also referred to as 74 

quantile mapping. As a result of quantile mapping, the reference (calibration) period’s 75 

adjusted data are statistically closer, and sometimes near-identical to the observations. 76 

Thus the statistical outcomes of an impact model run using observational data are likely 77 

to be reproduced by the adjusted data. The good performance of statistical bias correction 78 

methods in the reference period is well documented (Grillakis et al., 2013; Ines and 79 
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Hansen, 2006; Olsson et al., 2015). Under the assumption of climate stationarity, the TF 80 

is then applied to data beyond the time-frame of the observations.  81 

A process is characterized as stationary when the probability distribution function (PDF) 82 

of its state fluctuates within an unchanging and time invariant interval, or in a looser 83 

definition, when the process retains its mean, variance and auto covariance structure 84 

constant (Challis and Kitney, 1990). Ergo is the definition of stationary “bias” which refers 85 

to the time independent component of the difference between the modeled and the 86 

observed values (Haerter et al., 2011). Stationarity has been observed in long 87 

observational hydrological time series (Koutsoyiannis, 2002; Koutsoyiannis and 88 

Montanari, 2015; Lins and Cohn, 2011; Matalas, 2012). Nevertheless, non-stationarity is 89 

“unequivocal and unconditional” to all natural systems (Lins and Cohn, 2011), hence 90 

considering long-term climate or other processes involving abrupt system changes as 91 

stationary is certainly flowed. Therefore, the stationarity-dependent extrapolation of the 92 

TF is often regarded as a leap of faith and may lead to a false certainty about the 93 

robustness of the adjusted projection.  94 

As the most obvious effect, the assumption of stationarity in bias correction adds another 95 

level of uncertainty in the output (Maraun, 2012). At a more practical level, it may also 96 

lead to other unwanted effects, such as changes in the original model derived long-term 97 

trend or other higher moments of the climate variable statistics that eventually distort the 98 

long-term signal of the climate variable. As an example, Olsson et al. (2015) showed that 99 

their distribution based scaling (DBS) bias correction methodology might alter the long-100 

term temperature trends. They attribute the phenomenon in the severity of the biases in 101 

the mean or the standard deviation between the uncorrected temperatures and the 102 

observations. Similar conclusions were drawn by Hagemann et al. (2011) who showed 103 

that a fixed bias correction can alter the climate change signal for specific locations and 104 

seasons and concluded that climate parameters require variable adjustment as the 105 

distribution between their upper and lower limit changes in time. In their work, Hempel et 106 

al. (2013) attempt to provide a solution to the trend changing issue, by preserving the 107 

absolute changes in monthly temperature, and relative changes in monthly values of 108 

precipitation. The obvious conceptual drawback of this approach is that non-stationarity 109 

does not always coincide with a deterministic trend component (Lins, 2012). 110 
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While climate may be considered stationary for the studied time scales (i.e. a few 111 

decades), it is uncertain whether this stationarity holds between intervals selected for bias 112 

correction. Narrow time windows may obscure information about a recurring periodicity 113 

thus attributing non-stationarity to the data. Instead, in a time window sufficiently larger 114 

than underlying periodicities, the same signal may reveal to be part of a stationary 115 

process. A representative example about the role of timescales in non-stationarity is 116 

illustrated by Koutsoyiannis and Montanari (2015). In the context of climate change, the 117 

concept of climate non-stationarity is discussed beyond the profound daily and seasonal 118 

periodicities. Milly et al., (2008) denote as stationary a climate process response with 119 

time-invariant probability distribution in one year periodic. This is a reasonable 120 

assumption in the context of CCI studies, as seasonal is the most well defined periodicity 121 

of a climate system at least in the time scale of a few decades. Reversely, when the year-122 

to-year distribution of a climate process response changes, the variable can be described 123 

as non-stationary, thus leading to the unwanted effects of quantile mapping based bias 124 

correction methods described in Olsson et al. (2015). As the TF of the bias correction is 125 

estimated between the reference period observations and climate model data, it indicates 126 

the different magnitude of correction for the different parts of the probability distribution 127 

function (PDF). Considering that the climate data PDF is actually time-dependent (i.e. non 128 

stationary), the stationary TF gradually changes its response on the climate data, 129 

providing unequal bias correction in different periods as Hagemann et al. (2011) also 130 

notice. 131 

Figure 1 presents an indicative example where temperature data1 have a mean bias of 132 

2.02 oC in the reference period (Figure 1a). The average bias is expressed by the average 133 

horizontal distance between the TF and the bisector of the central plot. The histogram on 134 

the left illustrates the reference period modeled data for 1981-2010. The histogram at the 135 

bottom is derived from observational data. The histogram on the right is derived from a 136 

moving 30-year period between 1981 and 2098. In the rightmost histogram, the difference 137 

between the reference period and the moving 30-year period is estimated. The red mark 138 

                                            

1 The Figure 1 data were obtained from ICHEC-EC-EARTH r12i1p1 SMHI-RCA4_v1 Euro-CORDEX 
simulation under the RCP85, for the location Chania International Airport (lon=24.08 lat=35.54). 
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shows the theoretical change in the average correction applied by the TF, due to the 139 

changes in the projected temperature histogram. Hence, the average correction applied 140 

for the 2068-2097 period reaches 3.48 oC, significantly higher than the reference period’s 141 

bias (Figure 1b). The time-dependency of the correction magnitude introduces a long term 142 

signal distortion in the corrected data. In the quantile mapping based correction 143 

methodologies where the TF distance from the bisector is variable, this side effect is 144 

unavoidable. Nevertheless, in cases where the TF retains a relatively constant distance 145 

to the bisector (i.e. parallel to the bisector), the trend of the corrected data remains similar 146 

to the raw model data regardless of the temporal change in the model data histogram.  147 

In this study, we present a methodology to account for the non-stationarity of the climate 148 

parameters. The methodology takes the form of a pre- and post-processing module that 149 

can be applied along with different statistical bias correction methodologies. To account 150 

for the non-stationarities, the method separates the stationary from the non-stationary 151 

components of a time series before it is bias adjusted. Bias correction is then applied to 152 

the stationary-only components of the time series. Finally, the non-stationary components 153 

are again merged to the adjusted component to form a single corrected time series. In 154 

order to use and test the module, we employ a generalized version of the Multi-segment 155 

Statistical Bias Correction (MSBC) methodology (Grillakis et al., 2013) that can be used 156 

in a wider set of climate parameters. 157 

 158 

2 Methods 159 

2.1 Terminology 160 

As non-stationary components are identified the statistical deviations of each year’s data 161 

comparing to the average reference period data distribution. Specifically, the differences 162 

between the CDF of each year’s model climate data comparing to the CDF of the entire 163 

reference period of the model data are identified as the non-stationary component. 164 

Hence, the first step of the procedure is to normalize each year’s data individually, against 165 

the average modeled reference period climatology. Let 𝑆𝑅 be the reference period model 166 

data and 𝑆𝑖 the climate data for year 𝑖, then the normalized data 𝑆𝑖
𝑛  for year 𝑖 are 167 
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estimated by transferring each year data onto the average reference period CDF through 168 

a transfer function 𝑇𝐹𝑆𝑖
 estimated annually. This can be formulated as Eq.1. 169 

𝑆𝑖
𝑛 = 𝑇𝐹𝑆𝑅

−1 (𝑇𝐹𝑆𝑖
(𝑆𝑖)) Eq. (1) 

The difference between the original model data 𝑆𝑖 and the normalized data 𝑆𝑖
𝑛 is the non-170 

stationary component 𝑆𝑖
𝑁𝑆 of the time series (Eq. 2). 171 

𝑆𝑅
𝑁𝑆 = 𝑆𝑅 − 𝑆𝑅

𝑛 Eq. (2) 

The original model data  𝑆𝑖 can be reconstructed by adding the non-stationary 172 

components 𝑆𝑖
𝑁𝑆 to the normalized data 

i

nS  as in Eq. 3. 173 

𝑆𝑖 = 𝑆𝑖
𝑁𝑆 + 𝑆𝑖  Eq. (3) 

The non-stationary components (
NS

iS ) contain the random part of the climate signal, as 174 

well as the potential long-term changes in the statistics. After the separation, the 175 

stationarized climate model data are statistically bias corrected following a suitable 176 

methodology. The stationarized components of the modeled data are bias adjusted 177 

disregarding the stationarity assumption, as the data to be corrected are stationary. The 178 

non-stationary components (
NS

iS ) are preserved in order later to be added again to the 179 

bias corrected time series. We refer to the described method as non-stationarity module 180 

(NSM) to hereafter lighten the nomenclature of the paper. 181 

 182 

2.2 Bias correction 183 

The NSM is applied along with a modification of the MSBC algorithm proposed by Grillakis 184 

et al. (2013). This methodology follows the principles of quantile mapping correction 185 

techniques and was originally designed and tested for GCM precipitation adjustment. The 186 

novelty of the method is the partitioning of the data CDF space into discrete segments 187 

and the individual quantile mapping correction in each segment, thus achieving better fit 188 

of the parametric equations on the data and better correction especially on the CDF 189 

edges. The optimal number of the segments is estimated by Schwarz Bayesian 190 

Information Criterion (SBIC) to balance between complexity and performance. 191 
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Here the methodology is modified to use linear functions instead of the gamma functions 192 

used in the original methodology. Moreover, the upper and lower edge segments are 193 

explicitly corrected using only the mean difference between the reference period of the 194 

model data and the observations. This choice costs to the methodology, the remainder of 195 

some bias in the corrected data. However, it provides robustness, avoiding unrealistic 196 

temperature values at the edges of the model CDF. The bias correction methodology 197 

modification has been already used in the Bias Correction Intercomparison Project (BCIP) 198 

(Nikulin et al., 2015), while produced adjusted data have been used in a number of CCI 199 

studies (Daliakopoulos et al., 2016; Grillakis et al., 2016; Koutroulis et al., 2016; 200 

Papadimitriou et al., 2016). As the MSBC methodology belongs to the parametric quantile 201 

mapping techniques, it shares their advantages and drawbacks. A comprehensive 202 

shakedown of advantages and disadvantages of quantile mapping in comparison to other 203 

methods can be found in Maraun et al. (2010) and Themeßl et al. (2011).  204 

 205 

3 Case study 206 

To examine the effect of NSM on the bias correction, the Hadley Center Central England 207 

Temperature (HadCET - Parker et al., 1992) observational dataset was considered to 208 

adjust the simulated output from the earth system model MIROC-ESM-CHEM2 historical 209 

emissions run between 1850 and 2005 for Central England. The Klemes (1986) split 210 

sample test methodology was adopted here for verification. The methodology considers 211 

two periods of calibration and validation, between the observed and modeled data. The 212 

first period is used for the calibration, while the second period is used as a pseudo-future 213 

period in which the adjusted data are assessed against the observations. To resemble a 214 

typical CCI study, the available 50 years of data between 1850 and 1899 served as 215 

calibration period, while the rest of the data between 1900 and 2005 was used as pseudo-216 

future period for the validation. The bias correction results of the two procedures, with 217 

(BC-NSM) and without (BC) the non-stationarity module, were then compared against the 218 

observations. Figure 2a demonstrates the division of the raw data performed by the NSM 219 

into non-stationary components and normalized raw data in annual aggregates. The 220 

summation of the two time series can reconstruct the initial raw data time series. The 221 

normalized time series do not exhibit any trend or significant fluctuation in the annual 222 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-52, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 27 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

9 
 

aggregates, since the normalization is performed at annual basis, while the long-term 223 

trend and the variability is contained in the residual time series.  224 

In Figure 2b, annual aggregates obtained via the above two procedures are compared to 225 

the raw data and the observations. Results show that both procedures adjust the raw data 226 

to better fit the observations in the calibration period 1850-1899. In the validation period, 227 

both procedures produce similar results, but the BC-NSM long-term linear trend is slightly 228 

lower than that of the BC results. While the latter slope is closer to the observations’ linear 229 

trend, the former is closer to the raw data trend (Table 1). The persistence of the long-230 

term trend is a desirable characteristic of the NSM procedure as the GCM long-term 231 

moments were not distorted by the correction. However, the wider deviation of the BC-232 

NSM trend relatively to the BC depicts the skill of the GCM to simulate the observations’ 233 

respective trend. Figure 2c shows that the BC-NSM output resemble the raw data 234 

histograms in shape, but are shifted in their mean towards the observations. This consists 235 

an idealized behavior for the adjusted data, as the distribution of the annual temperature 236 

averages are retained after the correction. Similar results generated on daily data (Figure 237 

2d) show that both procedures adjust the calibration and validation histograms in the 238 

same degree towards the observations. This can also be verified by the mean, the 239 

standard deviation and the 5th and 95th percentile of the daily data (Table 1). An early 240 

concluding remark about the NSM is that it improved the long-term statistics of the 241 

adjusted data towards the climate model signal, without sacrificing the daily scale quality 242 

of the correction. 243 

The split sample test is also adopted to assess the efficiency of the procedures in a 244 

European scale application. Split sample is the most common type of test used for the 245 

validation of model efficiency. A drawback of the split sample test in bias correction 246 

validation operations is that the remaining bias of the validation period is a function of the 247 

bias correction methodology deficiency and the model deficiency itself to describe the 248 

validation period’s climate, in aspects that are not intended to be bias corrected. That 249 

said, a skillful bias correction method should deal well in that context, as model 250 

“democracy” (Knutti, 2010), i.e. the assumption that all model projections are equally 251 

possible, is common in CCI studies with little attention to be given to the model selection. 252 

In order to scale up the split sample test, the k-fold cross validation test (Geisser, 1993) 253 
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is employed. In k-fold cross validation test, the data is partitioned into k equal sized folds. 254 

Of the k folds, one subsample is retained each time as the validation data for testing the 255 

model, and the remaining k-1 subsamples are used as calibration data. In a final test, the 256 

procedures are applied on a long-term transcend climate projection experiment to assess 257 

their effect in the long-term attributes of the temperature in a European scale application. 258 

 259 

3.1 Data 260 

Temperature data from the European division of Coordinated Regional Downscaling 261 

Experiment (CORDEX), openly available through the Earth System Grid Federation 262 

(ESGF), are used to evaluate the presented procedures. Data from five RCM models 263 

(Table 2) with 0.44o spatial resolution and daily time step between 1951-2100 are used. 264 

The projection data are considered under the Representative Concentration Pathway 265 

(RCP) 8.5, which projects an 8.5 W m-2 average increase in the radiative forcing until 266 

2100. The European domain CORDEX simulations have been evaluated for their 267 

performance in previous studies (Kotlarski et al., 2014; Prein et al., 2015). Figure 3 shows 268 

the 1951-2005 daily temperature average and standard deviation for the five RCMs of 269 

Table 2. The RCMs’ mean bias ranges between about -2 oC and 1 oC relatively to the 270 

EOBS dataset. The positive mean bias in all RCMs is mainly seen in Eastern Europe, 271 

while the same areas exhibit negative bias in standard deviation. Some of the bias is 272 

however attributed to the ability of the observational dataset to represent the true 273 

temperature. Discussion about the applicability of EOBS to compare temperature of 274 

RCMs control climate simulations can be found in Kyselý and Plavcová (2010). For the 275 

purposes of this work, the EOBS is assumed to accurately represent the past 276 

temperatures over Europe. 277 

For the k-fold cross validation, the RCM data between 1951-2010 are split into 6 ten-year 278 

sections, comprising a 6-fold, 5 RCM ensemble experiment (Figure 4). Each section is 279 

validated once by using the rest five sections for the calibration. A total number of 30 tests 280 

are conducted using each procedure.  281 
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For the transient experiment, the RCM data between 1951 and 2100 are considered, 282 

using the 1951-2010 as calibration to correct the 1951-2100 data. 283 

 284 

4 Results and discussion 285 

Figure 5 shows the mean surface temperature of the cross validation test. The mean of 286 

the raw temperature data and the observations are respectively equal for their calibration 287 

and the validation periods due to the design of the experiment. The correction results 288 

show that both bias corrections with and without the NSM, appropriately meet the needs 289 

of the correction. The differences between the calibration and validation averages with 290 

the corresponding observations show consistently low residuals. A significant difference 291 

between the two tests is that the NSM increases the residuals due to the exclusion of the 292 

non-stationary components from the correction process. Nonetheless, the scale of the 293 

residuals is considered below significance in the context of CCI studies, as it ranges only 294 

up to 0.035 oC. The increased residuals of the NSM are the trade off to the preservation 295 

of the model long-term climate change signal, in the transient experiment. Figure 6 296 

presents the long-term change in the signal of the mean temperature, for the 10th and 90th 297 

percentiles (in annual aggregates). The trends are estimated by a simple linear least 298 

square fit and are expressed in oC per century. The use of the NSM profoundly better 299 

preserved the long-term trend relatively to the raw model data in all three cases. Without 300 

using the NSM module, the distortion in the mean annual temperature trend lies between 301 

-0.5 and 0.5 degrees per century, while the distortion in the 10th and 90th percentiles are 302 

apparently more profound. Additionally, the northeastern Europe’s 10th and 90th 303 

percentiles reveal a widening of the temperature distribution when NSM is not used. The 304 

widening is attributed to the considerable negative trend in the p10 and the considerable 305 

positive p90 trend in the same areas. The magnitude of the distortion is considerable and 306 

can potentially lead to CCI overestimation. In contrast, with the use of NSM the change 307 

in the trend is considerably reduced in most of the Europe’s area. 308 

The impact of NSM on the standard deviation is also significant. Figure 7 shows the 309 

evolution of the standard deviation for each model, in the cases of raw data and the bias 310 

corrected data using the BC and the BCNSM. The standard deviation is estimated for each 311 
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grid point and calendar year, and is averaged across the study domain. Results show that 312 

standard deviations of the adjusted data differ from the respective standard deviations of 313 

the raw data, in both adjustment approaches. This is an expected outcome, as raw model 314 

data standard deviations differ from the respective observed data standard deviation 315 

(Figure 7 d, e). However, the standard deviation differences between BCNSM and the raw 316 

data (Figure 7 f) is significantly more stable than that the respective differences from BC 317 

(Figure 7 g), meaning that the signal of standard deviation is better preserved and does 318 

not inflate with time in the former case. Additionally, the variation of the standard 319 

deviations time series exhibits lower fluctuations. 320 

 321 

5 Conclusions 322 

This study elaborates on two correlated issues of statistical bias correction; the 323 

assumption of stationarity and the distortion of long-term trends. These challenges are 324 

addressed by a pre/post processing module (NSM) that can be applied along with 325 

statistical bias correction techniques. The results are validated from several points of 326 

view. First, it is shown that the use of the NSM module resulted in the long-term 327 

temperature trend preservation in the mean annual aggregates of the temperature, but 328 

also in the aggregates of the higher and lower percentiles. Furthermore, the examination 329 

of the standard deviation temporal evolution show that is better retained relatively to the 330 

raw data. Τhe corrected variable retains some remaining biases in the control period, 331 

which however are low to significantly affect CCI study outcomes. 332 

The main advantage of the proposed method compared to other trend preserving 333 

methods (e.g. Hempel et al., 2013), is that the preservation of the long-term mean trend 334 

is not the objective but rather an ineluctable consequence of excluding the non-335 

stationarity components from the correction process. Nevertheless, it has to be stressed 336 

that a range of issues, such as the disruption of the physical consistency of climate 337 

variables, the mass/energy balance and the omission of correction feedback mechanisms 338 

to other climate variables (Ehret et al., 2012) have not been addressed. Beyond the 339 

benefits of statistical bias correction methods, these constrains remain unsurpassable 340 

challenges that can only be resolved within a climate model itself. Finally, one should 341 
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bare in mind that climate data quality prime driver is the climate model skillfulness itself. 342 

Statistical post processing methods like bias correction cannot add new information to the 343 

data but rather add usefulness to it, depending on the needs of each application.  344 

 345 
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List of Figures 450 

Figure 1: Τhe transfer function (heavy black line) between observed (bottom histograms) 451 

and modelled (histograms on the left) for the reference period (1981-2010) is used to 452 

adjust bias of a 30-year moving window starting from 1981-2010 to 2068-2097. The 453 

rightmost plot shows the residual histogram after bias correction. The change in the 454 

average correction (red mark) on the TF in comparison to the reference period mean 455 

correction (square) is shown.  456 

Figure 2: a) Annual averages of temperature of the raw model data, the observations and 457 

the bias correction with and without the NSM, for the calibration period 1850 – 1899 (solid 458 

lines) and the validation period 1900-2005 (dashed). Probability densities of annual (c) 459 

and of daily means (d). 460 

Figure 3: The EOBS and the RCM models’ mean and standard deviation for the reference 461 

period 1951-2005. Differences (DIFF) indicate the [RCM statistic – EOBS statistic]. 462 

Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation 463 

(V) periods of each fold. Each experiment (Exp) was replicated for all five RCM models. 464 

Figure 5: Mean surface temperature of the cross validation test. 465 

Figure 6: Long-term linear trend [oC/100 y] in the raw data (left) for the mean annual 466 

temperature (top) and the 10th and 90th (p10 and p90) percentiles the change in the trend 467 

relatively to the raw data trend is provided for the BC (middle) and the BCNSM data (right). 468 

All values are expressed as degrees per century. 469 

Figure 7: Average of standard deviations for the study domain, for the raw data (a), the 470 

BC (b) and the BCNSM (c) for the different models and the observations, in annual basis. 471 

Differences between the raw and the bias corrected standard deviations are shown in (d) 472 

and (e). Plots (f) and (g) correspond to the same data as (d) and (e), but normalized for 473 

their 1951-2005 mean. 474 
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 484 

Figure 1: Τhe transfer function (heavy black line) between observed (bottom histograms) and 485 

modelled (histograms on the left) for the reference period (1981-2010) is used to adjust bias of a 486 

30-year moving window starting from 1981-2010 to 2068-2097. The rightmost plot shows the 487 

residual histogram after bias correction. The change in the average correction (red mark) on the 488 

TF in comparison to the reference period mean correction (square) is shown. The animated 489 

version provided in the supplemental material shows the temporal evolution of the bias as the 30-490 

year time window moves on the projection data. 491 
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 492 

Figure 2: a) Annual averages of temperature of the raw model data, the observations and the bias 493 

correction with and without the NSM, for the calibration period 1850 – 1899 (solid lines) and the 494 

validation period 1900-2005 (dashed). Probability densities of annual (c) and of daily means (d). 495 
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 497 

Figure 3: The EOBS and the RCM models’ mean and standard deviation for the reference period 498 

1951-2005. Differences (DIFF) indicate the [RCM statistic – EOBS statistic].   499 
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 501 

Figure 4: The 6-fold cross validation scheme with the calibration (C) and the validation (V) periods 502 

of each fold. Each experiment (Exp) was replicated for all five RCM models.  503 
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 505 

Figure 5: Mean surface temperature of the cross validation test.  506 
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 508 

Figure 6: Long-term linear trend [oC/100 y] in the raw data (left) for the mean annual temperature 509 

(top) and the 10th and 90th (p10 and p90) percentiles the change in the trend relatively to the raw 510 

data trend is provided for the BC (middle) and the BCNSM data (right). All values are expressed as 511 

degrees per century. 512 
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 514 

Figure 7: Average of standard deviations for the study domain, for the raw data (a), the BC (b) and 515 

the BCNSM (c) for the different models and the observations, in annual basis. Differences between 516 

the raw and the bias corrected standard deviations are shown in (d) and (e). Plots (f) and (g) 517 

correspond to the same data as (d) and (e), but normalized for their 1951-2005 mean.  518 
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Table 1: Statistical properties of the calibration and the validation periods for the two bias 521 

correction procedures. Variables denoted with * are estimated on annual aggregates. SD stands 522 

for standard deviation and pn for the nth quantile. 523 

 Parameter RAW Normalized Residuals OBS BC BCNSM 

C
a
lib

ra
ti
o

n
 Slope [oC/10yr]* -0.067 0.000 -0.067 -0.026 -0.086 -0.065 

Mean [oC] 11.2 11.2 0.0 9.1 9.2 9.2 

SD [oC] 4.5 4.6 0.9 5.3 5.3 5.3 

p5 [oC] 4.4 4.4 -1.4 0.4 0.5 0.5 

p95 [oCo] 19.4 19.1 1.5 17.6 17.7 17.6 

V
a
lid

a
ti
o

n
 Slope [oC/10yr]* 0.052 0.000 0.051 0.076 0.062 0.051 

Mean [oC] 11.3 11.2 0.1 9.6 9.3 9.3 

SD [oC] 4.7 4.6 0.9 5.2 5.5 5.4 

p5 [oC] 4.2 4.4 -1.3 1.1 0.2 0.3 

p95 [oC] 19.4 19.1 1.5 17.6 17.7 17.6 

 524 
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Table 2: RCM models used in this experiment. 526 

# {GCM}_{realization}_{RCM} 

1 CNRM-CM5_r1i1p1_SMHI-RCA4_v1 

2 EC-EARTH_r12i1p1_SMHI-RCA4_v1 

3 EC-EARTH_r3i1p1_DMI-

HIRHAM5_v1 
4 IPSL-CM5A-MR_r1i1p1_SMHI-

RCA4_v1 5 MPI-ESM-LR_r1i1p1_SMHI-

RCA4_v1  527 
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