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Abstract

Permafrost or perennially frozen ground is an irtgoar part of the terrestrial cryosphere;
roughly one quarter of Earth’s land surface is ulaite by permafrost. The impact of the
currently observed warming, which is projected &osjst during the coming decades due to
anthropogenic CO2 input, certainly has effects tfur vast permafrost areas of the high
northern latitudes. The quantification of theseee§, however, is scientifically still an open
question. This is partly due to the complexity bé tsystem, where several feedbacks are
interacting between land and atmosphere, sometimasterbalancing each other. Moreover,
until recently, many global circulation models (GEMand Earth system models (ESMs)
lacked the sufficient representation of cold regitiysical soil processes in their land surface
schemes, especially of the effects of freezing thaeving of soil water for both energy and
water cycles. Therefore, it will be analysed in gresent study how these processes impact
large-scale hydrology and climate over northernikphere high latitude land areas. For this
analysis, the atmosphere-land part of MPI-ESM, EGHAISBACH, is driven by prescribed
observed SST and sea ice in an AMIP2-type setup avitl without newly implemented cold
region soil processes. Results show a large impnen¢ in the simulated discharge. On one
hand this is related to an improved snowmelt pdakimoff due to frozen soil in spring. On
the other hand a subsequent reduction of soil mma@deads to a positive land atmosphere
feedback to precipitation over the high latitudesjch reduces the model's wet biases in
precipitation and evapotranspiration during the mem This is noteworthy as soil moisture —
atmosphere feedbacks have previously not beereimesearch focus over the high latitudes.
These results point out the importance of highude physical processes at the land surface

for the regional climate.

Keywords: Soil moisture — precipitation feedback, soil wateezing, permafrost regions,
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global climate modelling, high latitudes

1 Introduction

Roughly one quarter of the northern hemisphereeséiial land surface is underlain by
permafrost (Brown et al., 1997; French, 1990), Wwhgdefined as ground that is at or below
zero degrees Celsius for more than two consecytees. Permafrost soils build a globally
relevant carbon reservoir as they store large atsoohdeep-frozen organic material with
high carbon contents. In recent years, estimatethéamount of carbon stored in soils have
attracted more and more attention, and here edlydtia consideration of the vast permafrost
regions increased numbers of these estimates cithgtfTarnocai et al., 2009; Zimov et al.,
2006; Schuur et al., 2008; McGuire et al., 2008]s Ibelieved to store between 1400 and
1800 Pg of C in the upper few meters of the sah(fir et al., 2008), which would be twice
the amount of the atmosphere’s content. The higthem latitudes are one of the critical
regions of anthropogenic climate change, where dbgerved warming is clearly above
average due to the so-called Arctic AmplificatioBolomon et al., 2007; ACIA, 2005).
Climate model simulations project this trend to tomne (Serreze and Barry, 2011). The
combination of the high C stocks in sub-arctic anctic soils with the pronounced warming
in the affected regions could thus lead to a pasiteedback through the release of formerly
trapped, 'deep-frozen’ C into the atmosphere, whear-surface permafrost thaws. For the
thawed soils and their biogeochemistry, it is deeiswhether dry or wet conditions
predominate: Aerobic decomposition is relativelgtfand leads to the release of CO2, while
anaerobic decomposition is much slower and leadiset@elease of CH4 as the main product
of the combustion of organic soil material. CH4aisnuch more potent greenhouse gas, but
has a shorter lifetime of about 10 years after Wliidecomes CO2. Therefore, not only the

soil's temperature, but also its moisture status ianportant for the assessment of the
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biogeochemical response to climatic conditions, #mud should be represented in climate or
Earth System models in a realistic and processébasanner. Thus, the adequate
representation of permafrost hydrology is a necgssad challenging task in climate

modelling.

Hagemann et al. (2013a) described relevant hydicdbgrocesses that occur in permafrost
areas and that should preferably be representednadels simulating interactions of

permafrost hydrology with vegetation, climate ahd tarbon cycle. The current state of the
representation of processes in general circulatimdels (GCMs) or Earth system models
(ESMs) can be obtained by systematic model intepasison through the various climate

model intercomparison projects (CMIPs; Meehl et 2000) that have a long history within

the climate modelling community. Results from CMIp®vide a good overview on the

respective state of ESM model accuracy and perfoceaKoven et al. (2012) analysed the
performance of ESMs from the most recent CMIP5 @sgerover permafrost areas. They
found that the CMIP5 models have a wide range b&b®urs under the current climate, with
many failing to agree with fundamental aspectshef abserved soil thermal regime at high
latitudes. This large variety of results originafesm a substantial range in the level of
complexity and advancement of permafrost-relatestgsses implemented in the CMIP5
models (see, e.g., Hagemann et al., 2013a), whareat of these models do not include
permafrost specific processes, not even the mast paocess of freezing and melting of soil
water. Due to missing processes and related defigs of their land surface schemes,
climate models often show substantial biases irrdigdical variables over high northern

latitudes (Luo et al, 2003; Swenson et al., 201Rjoreover, the land surface

parameterizations used in GCMs usually do not aatetyiresolve the soil conditions (Walsh
et al., 2005), which often rely on either point m@@ments or on information derived from

satellite data. Therefore, large efforts are ongamextend ESMs in this respect, in order to
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improve simulated soil moisture profiles and assed ice contents, river discharge, surface
and sub-surface runoff. The ESM improvement ovempérost areas was, e.g., one of the

research objectives of the European Union ProjaGE21 (vww.page21l.orjy

The most basic process in permafrost areas isedosal melting and freezing of soil water
in the presence of continuously frozen ground bedosertain depth. The response of the soil
to freezing leads to specific variations in the walrcycle of soil hydrology. Frozen ground
and snow cover also influence rainfall-runoff p@otiing, the timing and magnitude of spring
runoff, and the amount of soil moisture that subsedy is available for evapotranspiration
in spring and summer (Koren et al., 1999). Soil shoe controls the partitioning of the
available energy into latent and sensible heat #uxl conditions the amount of surface
runoff. By controlling evapotranspiration, it isking the energy, water and carbon fluxes
(Koster et al., 2004; Dirmeyer et al., 2006; Sersme and Stockli, 2008). Seneviratne et al.
(2006) stated that a northward shift of climatiginees in Europe due to climate change will
result in a new transitional climate zone between ahd wet climates with strong land—
atmosphere coupling in central and eastern Eurbipey specifically highlight the importance
of soil-moisture—temperature feedbacks (in additmsoil-moisture—precipitation feedbacks)
for future climate changes over this region. A coshgnsive review on soil moisture

feedbacks is given by Seneviratne et al. (2010).

Largely, soil moisture feedbacks to the atmosphem@ confined to regions where the
evapotranspiration is moisture-limited. These agians where the soil moisture is in the
transitional regime between the permanent wiltioghp(soil moisture content below which

the plants can not extract water from the soilrapspiration as the suction forces of the soil
are larger than the transpiration forces of thetglaand the critical soil moistuk&;; above

which plants transpire at the potential rate (seg, Fig. 5 in Seneviratne et al., 2010). In this
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respect, the high-latitudes are usually excludex$ehregions as they are considered to be
predominantly energy-limited (Teuling et al., 2008hd where the coupling between soil

moisture and the atmosphere does not play a rasté et al., 2004, 2006).

Note that in previous studies where an ESM’s lamflase model (LSM) was equipped with

cold region soil processes, effects of resultingdehamprovements usually have not been
directly considered in a coupled atmosphere-lamdeca. Either simulated changes were only
considered in the LSM standalone mode (e.g. Ekieil.e 2014, 2015; Lawrence and Slater,
2005; Gouttevin et al., 2012; Slater et al., 1998)changes between different LSM version
were not limited to cold region processes alonex(€bal., 1999). Thus, any soil moisture

feedbacks to the atmosphere related to cold regpdmprocesses have been neglected so far.

In the present study, we show that the implemestatif cold region soil processes into the
ESM of the Max Planck Institute for Meteorology, MESM, has a pronounced impact on
the simulated terrestrial climate over the nortH@gh latitudes, and that this is mainly related
to a positive soil moisture-precipitation feedbaBlkction 2 introduces the used ESM version
and the setup of the associated simulations, Se8tidiscusses the main results over several

high latitude river catchments, followed by a sumyrend conclusions in Section 4.

2 Modd, data and methods

2.1 Modd description

In this study, the atmosphere and land compondntseoEarth System Model (ESM) of the
Max Planck Institute for Meteorology (MPI-M), MPISM 1.1, are utilized that consist of the
atmospheric GCM ECHAMG6.3 (Stevens et al., 2013) ismdand surface scheme JSBACH

3.0 (Raddatz et al., 2007, Brovkin et al., 2009)ttBmodels have undergone several further
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developments since the version (ECHAMG6.1/JSBACH) 218ed for the Coupled Model
Intercomparison Project 5 (CMIP5; Taylor et al. 12 Several bug fixes in the ECHAM
physical parameterizations led to energy consamati the total parameterized physics and a
re-calibration of the cloud processes resultednimedium range climate sensitivity of about 3
K. JSBACH 3.0 comprises several bug fixes, a neiwcsobon model (Goll et al., 2015) and
a five layer soil hydrology scheme (Hagemann arack®, 2015) replaced the previous
bucket scheme. In addition, a permafrost-readyimersf JSBACH is considered (JSBACH-
PF) in which physical processes relevant at higitulie land regions have been implemented
by Ekici et al. (2014). Most importantly, these ggsses comprise the freezing and melting of
soil moisture. Consequently, the latent heat ofiofusdampens the amplitude of soil
temperature, infiltration is decreased when theeuppst soil layer is frozen, soil moisture is
bound in solid phase when frozen, and, hence, ¢dewansported vertically or horizontally.
Dynamic soil thermal properties now depend on soiture as well as on soil water and ice
contents. Dynamic soil hydraulic properties thagteted on soil texture and soil water content
are decreased when soil moisture is frozen. Moreawsow scheme has been implemented
in which snow can now develop in up to five layetsle the current scheme only represents
up to two layers. The latter also thermally lete #now grow inside the soil (i.e. soil
temperatures are mixed with snow temperatures)lewthe new scheme accumulates the
snow on top of the soil using snow thermal propsrtiFurther, a homogeneous organic top

layer is added with a constant depth and spetiéoal and hydraulic properties.

2.2 Experimental setup

Two ECHAMG6.3/JSBACH simulations were conducted &8Thorizontal resolution (about
200 km) with 47 vertical layers in the atmosphdreey were forced by observed sea surface

temperature (SST) and sea ice from the AMIP2 (Aphesic Model Intercomparison Project
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2) dataset for 1970-2009 (Taylor et al., 2000).(0t2988 are regarded as spin-up phase so

that only the period 1989-2009 is considered ferghalyses. The two simulations are:

e ECH6-REF: Simulation with the standard version &ACH 3.0 with a fixed
vegetation distribution and using a separate ugpger reservoir for bare soall
evaporation as described in Hagemann and Stackisb)20lote that the latter is
switched off by default in JSBACH 3.0 to achieveaiter performance of simulated
primary productivity, which is not of interest inet present study.

« ECHG6-PF: As ECH6-REF, but using JSBACH-PF.

Note that both simulations used initial values @f moisture, soil temperature and snowpack
that were obtained from an offline-simulation (laswly) using JSBACH (as in ECH6-REF)

forced with WFDEI data (Weedon et al., 2014).

2.3 Calculation of internal model climate variability

The internal climate variability of ECHAM6/JSBACHiIth respect to 20-year mean values
has been estimated from results of three 20-yeanefber ensembles, in which the
ensembles used different land-atmosphere coupdigs (deVrese et al., 2016). Within each
ensemble, the model setup is identical but the Isitioms were started using slightlyfféiring
initial conditions. Following the approach of Hagem et al. (2009), we first calculated the
standard deviation of 20-year means for each enserabd then the spread for each model
grid box is defined as the maximum of the three mib$e standard deviations. This spread is
then used as an estimate of the model's internataté variability. Thus, if simulated
differences between ECH6-PF and ECH6-REF are ldhgerthis spread, they are considered

as robust and directly related to the introductiboold region soil processes into JSBACH.
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2.4 Observational data

We use climatological observed river dischargesnfrthe station network of the Global
Runoff Data Centre (Dimenil Gates et al., 2000)aN&urface air (2m) temperature and
precipitation are taken from the global WATCH datasf hydrological forcing data (WFD;
Weedon et al., 2014). The WFDEI combine the daiyistics of the Interim re-analysis of
the European Centre for Medium-Range Weather Fsete¢BRA-Interim; Dee et al., 2011)
with the monthly mean observed characteristicseaiperature from the Climate Research
Unit dataset TS2.1 (CRU; Mitchell and Jones, 208B) precipitation from the Global
Precipitation Climatology Centre full dataset versé (GPCC; Fuchs et al., 2007). For the
latter, a gauge-undercatch correction following #dand Lettenmaier (2003) was used,
which takes into account the systematic underetitmaf precipitation measurements that

have an error of up to 10-50% (see, e.g. Rudolffamgel, 2005).

For an estimate of observed evapotranspiration,(&&)are using data from the LandFlux-
EVAL dataset. This new product was generated to pilemmulti-year global merged
benchmark synthesis products based on the anabfsesisting land evapotranspiration
datasets (monthly time scale, time periods 198%1&% 1989-2005). The calculation and
analyses of the products are described in Muetlat.€2013). In our study we are using the
diagnostic products available for the period 19895that are based on various observations,
i.e. from remote sensing, diagnostic estimates dspineric water-balance estimates) and
ground observations (flux measurements). Here, amsidered the mean, minimum and

maximum of the respective diagnostic ensemble.

Surface solar irradiance (SSI; 2000-2010) is takem the Clouds and Earth Radiation
Energy System (CERES; Kato et al., 2013) that plewisurface solar radiation fluxes at

global scale derived from measurements onboardeoEDS Terra and Aqua satellites (Loeb
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et al.,, 2012). We used surface albedo data from MOMICD43C3, ver5; 2000-2011;
Cescatti et al., 2012), CERES (2000-2010) and tlobAbedo project (1998-2011; Muller et
al., 2012) of the European Space Agency (ESA). Wadard to the accumulated snowpack,
we compared model data to snow water equivalera ftatn the ESA GlobSnow project
(Takala et al., 2011), NASA's Modern-Era RetrospectAnalysis for Research and
Applications (MERRA; 1979-2013; Rienecker et al012) and the snow data climatology

(SDC) of Foster and Davy (1988).

2.5 Permafrost extent

Observational datasets of permafrost extent usugile three or four classes of spatial
permafrost occurrence, where the respective pexgerdf permafrost covered area is > 90 %
(‘continuous'), between 90 and 50 % (‘'discontinlpys 50 % (‘sporadic), and, in some
references, < 10 % (‘isolated"). This is the cashé data of Brown et al. (1997) shown here
in Fig. 1a. In most climate models, such a divaratfon of permafrost classes is not possible.
In those models as well as in JSBACH, soil tempeest are computed for one point at the
centre of a grid cell, thereby representing the lelamea of that cell. Consequently, no ‘non-
continuous' permafrost can be computed by JSBACIdsTthe comparison of simulated with

observed permafrost extents focuses on the conténdass in the observations.

In order to diagnose permafrost extent from JSBAGHput, its fifth layer soil temperature
has been extracted and checked whether it hasltwenthan 0 °C for more than two years
in a row. This criterion was applied to a 30 yearet series of monthly means (1979-2009),
and during every proceeding month, the sum of ‘et months' have been set into
relationship to the total number of months in timeet series analysed so far. This enables us
to have temporal variation, and avoid 'loosinghpefrost areas where it simply did not occur

during the last two years of the analysed timeeseri

-10 -
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3 Results

Initially, the simulated permafrost extents are paned with the data of Brown et al. (1997)
in Fig. 1. The implementation of permafrost relevsmil processes into JSBACH leads to an
improved permafrost representation in terms of icolous permafrost extent, as the too large
extent in western Siberia as well as in Alaska ezses in ECH-PF. Reasons for this
improvement are presumably the changed snow schecdh¢he separation of snow and soil
temperatures on the one hand, and the new forronlafi the soil thermal properties on the
other hand. Combined with the organic top layegytbhange the conditions for heat transfer
into and within the ground, which leads to mordistia deep soil temperatures in the above

mentioned regions.

Then, both simulations are evaluated over the pamtthigh latitudes analogously to the
evaluation of surface water and energy fluxes & @MIP5 version of MPI-ESM by
Hagemann et al. (2013b). The main differences @tipitation and 2m temperature between
both simulations occur in the boreal summer. In BEMF, precipitation is generally reduced
compared to ECH-REF over the northern high latisufeg. 2). On the one hand, this leads
to a general reduction of the wet bias compare@®/EDEI data over the more continental
areas north of about 60°N, especially over CanadaRaussia. On the other hand, it enhances
the dry bias over the adjacent mid-latitudes. Nb&t this summer dry bias of MPI-ESM 1.1
over mid-latitudes is more pronounced and wideagpithan in the CMIP5 version of MPI-
ESM (cf. Fig. 4, middle row, in Hagemann et al.126), which is likely associated with bug-
fixes or the re-calibration of cloud processes @HAMG6.3 (cf. Sect. 2.1). The same is also
the case for northern hemisphere summer warm biase€H6-REF (Fig. 3). These warm
biases are enhanced in ECH6-PF. This enhancemepdrily related to the fact that the

reduced precipitation is accompanied by a redudeddccover, and, hence an increased

-11 -
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incoming solar radiation at the land surface (Bijg.Compared to CERES data, the low bias
in SSI over the high latitudes is largely removeliley the overestimation over the mid-
latitudes is slightly increased. The reason forwlaemer air temperatures can partly be found
in a decreased evapotranspiration (ET) when peostafelevant physical soil processes are
switched on. A detailed analysis of their effectaswcarried out to elucidate the specific
influence of these processes and is shown for angel example catchments (Fig. 5). 1) The
Arctic catchment is represented by the six largesdrs flowing into the Arctic Ocean:
Kolyma, Lena, Mackenzie, Northern Dvina, Ob and i¢en The associated catchments
comprise a large fraction of permafrost coveredsef. Fig. 1). 2) The Baltic Sea catchment
includes only a low amount of permafrost coverezhambut soil moisture freezing still plays a

role over large parts of the catchment during tiveer.

Arctic River catchments

ECH6-PF simulates the discharge of the six lardestic rivers more reliably than ECH6-
REF, especially with regard to timing and size lté snow melt induced discharge peak in
spring (Fig. 6a). This is largely related to thetfthat in ECH6-PF, a major part of the snow
melt turns into surface runoff as it cannot inéite into the ground when this is still frozen in
the beginning of spring. This is opposite to ECHBFRwhere larger parts of the snow melt
are infiltrating into the soil due to the missingdzing processes such that the observed

discharge peak is largely underestimated.

Also with regard to precipitation, ECH6-PF showdaege improvement in the simulated
summer precipitation as the large wet bias of EGH~ is strongly reduced and, hence,
much closer to WFDEI data (Fig. 6¢). This reductioisummer precipitation is accompanied
by a reduction in summer evapotranspiration (F&).tfat is now much closer to the mean of

diagnostic estimates from the LandFlux datasetleahis likely overestimated in ECH6-REF

-12 -
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as the simulated evapotranspiration is close toughyeer limit of the LandFlux diagnostic
estimates. This ET reduction in ECH6-PF is direotifated to a completely changed seasonal
cycle of liquid relative soil moisture (actual soibisture divided by the maximum soil water
holding capacity) in the root zone (Fig. 7c¢). INHBSREF, the soil is very wet throughout the
whole year with somewhat lower values in summet #ra related to the summer ET. In
ECH6-PF, the soil is rather dry in winter as larparts of the soil moisture are frozen (Fig.
8), and, hence, not accessible for ET. With irdtittn of snowmelt in the spring when the soil
water of the upper layer has melted, the soil meésts increasing and reaches its maximum
in summer. The total amount of liquid soil moistune ECH6-PF is much lower than in
ECH6-REF. On the one hand large parts of the seifrazen in winter and adjacent months
(Fig. 8), and on the other hand this is relatetheomuch lower infiltration in spring, so that
less moisture is available throughout the wholer.y&a the autumn and winter, the total
amount of soil water is somewhat increasing (FD.as due to freezing, it is locally bound
and can neither flow off laterally nor evaporatécompared to the model’s internal climate
variability (Fig. 9) we note that the differencestlween ECH6-PF and ECH6-REF are robust

for ET and precipitation from April-October and Alphugust, respectively.

The decreased ET during warm months, however, &abgut less evaporative cooling of the
land surface, and near surface air temperatureases with the use of the PF scheme. This
results in a further increase of the warm biasrméair temperature in comparison to WFDEI
data (Fig. 10a). Parts of the summer warm biasaissed by an overestimated incoming
surface solar irradiance (SSI). In ECH6-REF, tmeutated SSI is close to CERES data (Fig.
10c), but in ECH6-PF the reduced ET leads to aaediwpward moisture flux into the

atmosphere that in turn seems to reduce cloud camdr hence SSI is increased.

The surface albedo is rather similar in both experits (Fig. 11a) but shows some distinct

-13-
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biases if compared to various observational datagairing the winter JSBACH seems to
overestimate the mainly snow-related albedo, inttigathat it may have difficulties to
adequately represent snow-masking effect of bdrabkts (Note that a version of MODIS
albedo data was used where low quality data overvéiry high northern latitudes were
filtered out in the boreal winter due to too lowadable radiation (A. Low, pers. comm.,
2016). Due to these missing data over mainly snovered areas, MODIS albedo averaged
over the six largest Arctic rivers is biased lowtle winter). During the summer, there is a
larger uncertainty in the observations. While tirautated albedo is close to MODIS and
CERES data, it is lower than GlobAlbedo data. As@low albedo would lead to a warm
bias, this might indicate a better reliability betGlobAlbedo data for this region in summer.
Note that a sensitivity test where surface albeds increased by 0.05 north of 60°N led to a
reduction of the warm bias by about 1-2 K (not shpwAs already indicated by the surface
albedo, the simulated snow cover does not sigmifigaliffer between the experiments, either
(Fig. 11c). It is lower than various observatioasiimates, which should impose a low albedo
bias in winter. As this bias is in the oppositeediion, it can be concluded that the low snow

pack is compensating part of the snow masking prolshentioned above.

Baltic Sea catchment

A similar effect of the frozen ground is found ovke Baltic Sea catchment, although this is
less strong than for the Arctic rivers. The frozgound leads to an enhanced snow melt
runoff in spring (Fig. 6b) and a less strong rejdement of the ground by water during the
winter as it is the case for ECH6-REF (Fig. 7d)n&squently the average level of liquid soll
moisture is lower in ECH6-PF compared to ECH6-RERis leads to more infiltration of
water and less drainage, and hence, less rundfiersummer, which in turns leads to an

improved simulation of discharge (Fig. 6b). The @&upon the atmosphere is much less

-14 -



Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-5, 2016 Earth System
Manuscript under review for journal Earth Syst. Dynam. Dynamics
Published: 29 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

320
321
322
323
324
325
326
327

328

329

330
331
332
333
334
335
336
337
338
339
340
341
342

343

Discussions

pronounced than for the Arctic rivers. On one h#rete is less frozen ground in the Baltic
Sea catchment (Fig. 8), on the other hand the geesail moisture content is larger than for
the Arctic rivers (Fig. 7d). In ECH6-REF, the swibisture is generally abow; (c.f. Sect.

1) over the Baltic Sea catchment so that ET iselgrgnergy limited and mostly occurring at
its potential rate. Even though the ECH6-PF soiistuoe is lower, it is generally still close to
Wit SO that ET is only slightly reduced, especiallythie second half of the year (Fig. 7b).
Precipitation is also somewhat reduced (Fig. 6d)this seems to be mostly related to the
internal climate variability except for Septembadactober when a somewhat stronger and

robust reduction in ET leads to a robust precijgitatiecrease (Fig. 9).

4 Discussion and conclusions

The results described in the previous section shimat the introduction of cold region
processes into MPI-ESM led to a positive soil moistprecipitation feedback over large
parts of northern mid- and high latitudes during Horeal summer. The chain of processes
leading to this feedback is sketched in Fig. 12e Tiozen soil during the cold season (late
autumn to early spring) leads to less infiltratmfrrainfall and snowmelt during this season,
and, hence, to more surface runoff especially dutie snowmelt period. On one hand this
leads to a large improvement in simulated dischamggnly due to the improved snowmelt
peak. This improved discharge due to the repreSentaf frozen ground has been also
reported for other models (Beer et al., 2006, 2®@Xici et al., 2014; Gouttevin et al., 2012).
On the other hand, this leads to a decrease ofrsm#ture. During the boreal summer, this
actually causes more infiltration and less runaffd, hence, less discharge. The latter strongly
improves the simulated discharge in the Baltic &#ahment from summer to early winter.
The decreased soil moisture leads to a reducedh Edgions where the soil moisture is in the

transitional regime. Here, there is less recyclxfignoisture into the atmosphere, and the
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lower atmospheric moisture causes a reduction efipitation that in turn leads to a further
reduction of soil moisture. This positive soil maig-precipitation feedback improves the
simulated hydrological cycle, especially over thect& rivers where the wet biases in
summer precipitation and ET are reduced. Less &, l#ence, less evaporative cooling cause
an increase in summer 2m air temperatures. Thispnnbination with more incoming surface
solar radiation due to fewer clouds, increaseseatends the existing summer warm bias of

MPI-ESM north of about 50°N.

Such a positive soil moisture-precipitation feedbhas not been pointed out for the northern
high latitudes so far, which previously have gelterbeen considered as energy-limited
regimes where land-atmosphere coupling due to reoilsture does not play a role (e.qg.
Teuling et al., 2009). But this principal feedbadc&p has been found for drier regions where
the soil moisture is generally in the transitioregime and land-atmosphere coupling plays a
role. Koster et al. (2004) considered the strergftlcoupling between soil moisture and
precipitation in an ensemble of atmospheric GCM® Tesulting map is very similar to the
map regarding the strength of coupling between moisture and temperature in the same
GCMs (Koster et al., 2006). This suggests thathes¢ models, the same process controls
both couplings, namely the ET sensitivity to soibisture that leads to a positive feedback
(Seneviratne et al., 2010). But in those studiess{&r et al., 2004; Teuling et al., 2009),
usually annual mean diagnostics were considered.s@dy has shown that seasonally, i.e.
during the boreal summer, soil moisture conditiongay prevail that allow for land-
atmosphere coupling and a positive soil moistuesipitation feedback over the northern

high and mid-latitudes.

Even though our results are obtained with a maugltudy, their physical consistency

suggests that cold region soil processes, espeaigltiing and freezing of soil moisture, may
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lead to a positive soil moisture precipitation feack during the summer in reality, too. A
prerequisite for the occurrence of a soil moisfuexipitation feedback is that soil moisture is
in the transitional regime. Thus, the strengthhaf teedback depends on the wetness of the
soil and, hence, is likely model dependent. Moaéth wetter/drier soils over the considered

regions may simulate a weaker/stronger feedback.

Several modelling studies pointed out that theeerat only positive feedback loops between
soil moisture and precipitation but also negatimeothat, under specific conditions, such as
convective instability and/or cloud formation, mde stronger over dry soils (e.g.
Hohenegger et al., 2009; Froidevaux et al., 20dé)ever, to date, the latter results appear
mostly confined to single-column, cloud-resolviagd some high-resolution regional climate
simulations (Seneviratne et al., 2010) and may dimend on the choice of the convective
parameterisations (e.g. Giorgi et al., 1996). @dilet al. (2015) noted that precipitation
events tend to be located over drier patches,Hayt generally need to be surrounded by wet
conditions; positive temporal soil moisture-pretapion relationships are thus driven by
large-scale soil moisture. Thus, negative feedbaelkesn to have more an impact on high
resolution and thus on the local scale (Ho-Hagensral., 2015), where the effects of land
surface heterogeneity for the inferred feedbacks aked to be taken into account (Chen and
Avissar, 1994; Pielke et al., 1998; Taylor et 2013). Consequently most GCMs may not be
able to represent negative feedbacks between sdstune and precipitation via ET. As in the
present study, we considered the effect of largdessoil moisture changes due to soll
freezing processes, the identification of potentiadative feedbacks on the local scale is not

an issue.

In MPI-ESM, an unwelcome effect of implementingdcokgion soil processes is the increase

of the existing warm bias over the high latitudesity summer. In order to estimate the
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contribution of biases in SSI and surface albedthi® warm bias, we calculated an upper
limit for the temperature change that may be imgdsga radiation difference in the related
energy flux into the ground [SSI x (1 — albedo)pr Rhis estimation we assume that the
surface temperature is adjusting in a way that thdiation difference is compensated by
thermal radiation following the Stefan BoltzmannvlaHere, any change in the turbulent
surface heat fluxes is neglected so that the iaguémperature change is an upper limit for

the temperature bias that might be explained adetion bias.

Considering the mean summer biases over the grsaArctic rivers (Table 1) indicates that
a part of the warm bias may be attributed to therestimation in SSI. For ECH6-PF (ECH6-
REF), the SSI bias may cause a warm bias of upQd<20.9 K). The surface albedo may
contribute another 0.7 K (0.8 K) to the warm biasompared to GlobAlbedo data but this is
a rather vague estimation due to the large unctytan surface albedo observations (see Fig.
11). Nevertheless biases in both of these variatdagot explain the full bias of 5 K (2.1 K)
in 2m temperature. Further contributions to thignvaias might be related to too much
advection of warm air or a too weak vertical mixiogheat within the boundary layer. A
deeper investigation of this is beyond the scopi®fpresent study and should be dealt with

in future model improvements.

We have shown that biophysical land surface pr@sessch as melting and freezing can have
a significant impact on the regional climate over high latitudes and permafrost areas. Flato
et al. (2013) reported that CMIP5 GCMs tend to estimate precipitation over northern high
latitudes except for Europe and western Siberiamasy of these GCMs are still missing
basic cold region processes (see Sect. 1), a missiih moisture precipitation feedback in
those GCMs might contribute to this wet bias. Baltime biophysical coupling between land

and atmosphere, the coupling to biogeochemisey viegetation and carbon cycle including
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methane and frozen carbon, is important to quarfegdbacks related to wetlands and
permafrost over those areas. The representatitimeofcomplex dynamics within ESMs is a
challenging task, but it is nevertheless necestaipvestigate on-going and future climate
changes over the high-latitude regions. Thus, tlegaate implementation of physical soil
processes into an ESM is only the first necessay ® yield an adequate representation of
climate feedbacks over the high latitudes. Thi® afgludes the incorporation of wetland
dynamics, which will be the next step in the JSBA@elelopment with regard to high

latitudes, thereby following an approach of Staakd Hagemann (2012).
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Figure captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Distribution of permafrost areas in the Arcccording to a) Brown et al. (1997), b)
ECH6-REF, and c) ECH6-PF.

Boreal summer (JJA) precipitation differend@o] relative to WFDEI data for a)
ECH6-REF, and b) ECH6-PF.

Boreal summer (JJA) 2m temperature diffeesn] to WFDEI data for a) ECH6-
REF, and b) ECH6-PF.

Boreal summer (JJA) surface solar incomawjation differences [W/m?] to CERES
data for a) ECH6-REF, and b) ECH6-PF.

Catchments of the Baltic Sea and of thelaigest Arctic rivers (from left to right:
Mackenzie, Baltic Sea, Northern Dvina, Ob, Yeniteha, Kolyma).

Mean monthly climatology (1989-2009) of diacge (upper panels) and
precipitation (lower panels) over the 6 largesttisreiver catchments (left column)
and the Baltic Sea catchment (land only, right oolt Observations comprise
climatological observed discharge and WFDEI preatjmn, respectively.

Mean monthly climatology (1989-2009) of ewtrpnspiration (upper panels) and
relative root zone soil moisture (lower panels) rotiee 6 largest Arctic river
catchments (left column) and the Baltic Sea catefinfland only, right column).
Evapotranspiration data comprise the mean, mininammd maximum diagnostic
estimates from the LandFlux Eval (LF) dataset. dhshed blue line denotes the
total root zone water content (liquid + frozen) ECH6-PF.

Mean fraction of frozen root zone soil moist(1989-2009) over the 6 largest Arctic
river catchments (solid curve) and the Baltic Seéctament (land only, dashed
curve).

Mean monthly climatological differences (298009) of between ECH6-PF and
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ECH6-REF for precipitation4P) and evapotranspiratiodET) over the 6 largest
Arctic rivers (upper panel) and the Baltic Sea leatent (lower panel). The dashed
lines indicate the corresponding spreads obtaimech fMPI-ESM simulations of
deVrese et al. (2016).

Mean monthly climatology (1989-2009) of 2emperature differences to WFDEI
data (upper panels) and surface solar irradian8& (@ver panels) over the 6 largest
Arctic river catchments (left column) and the Baliea catchment (land only, right
column). SSI observations comprise CERES dataGo022010.

Mean monthly climatology (1989-2009) of fage albedo (upper panels) and snow
pack snow water equivalent (SWE; lower panels) dber 6 largest Arctic river
catchments (left column) and the Baltic Sea catefinfland only, right column).
Albedo observations data from MODIS (2000-2011),RES (2000-2010) and
GlobAlbedo (1998-2011), SWE observations comprista drom GlobSnow (1989-
2009), MERRA (1979-2013), and SDC climatology.

Chain of processes involved in the soil shoe precipitation feedback over high
latitudes. Red arrows indicate directions suppgrtthis feedback, blue arrows

indicate compensating opposite effects.
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Changes and Spreads over the 6 largest Arctic rivers
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Chain of processes involved in the soil moistueipitation feedback over high
latitudes. Red arrows indicate directions suppgrtinis feedback, blue arrows indicate
compensating opposite effects.
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Table1l. Summer (JJA) biases over the six largest Arctieravfor 2m temperaturd 4y, to
WFDEI), radiative flux R) into the surface due to biases in SSI (to CERBEBgdo ¢, to
GlobAlbedo) and their combined effect (comb.) adl we the estimated related impact on
surface temperaturdd) and the contribution of the SSI bias to this ictpa

Experiment ATom AR SSI AR a AR comb.  ATs comb. SSiI cont.
ECH6-REF 21K 5.0 W/m2 4.1 W/m2 9.0 W/m2 1.7 K 55%
ECH6-PF 50K 15.8 W/mz? 4.3 W/m2 19.8 W/mz2 3.6 K 78%
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