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Abstract. Earth’s global mean surface temperature has increased by about 1.0◦C over the period

1880-2015. One of the main causes is thought to be the increase in atmospheric greenhouse gases.

If greenhouse gas emissions are not substantially decreased, several studies indicate there will be

a dangerous anthropogenic interference with climate by the end of this century. However, there is

no good quantitative measure to determine when it is ‘too late’ to start reducing greenhouse gas5

emissions in order to avoid such dangerous interference. In this study, we develop a method for de-

termining a so-called ‘point of no return’ for several greenhouse gas emission scenarios. The method

is based on a combination of aspects of stochastic viability theory and linear response theory, the

latter being used to estimate the probability density function of the global mean surface temperature.

The innovative element in this approach is the applicability to high-dimensional climate models as10

is demonstrated by results obtained with the PlaSim model.

1 Introduction

In the year 2100, which is as far away (or as close) as 1932 in the past, mankind will be living on an

Earth with a different climate than today. At that time, we will know the 2100-mean Global Mean

Surface Temperature (GMST) value and its increase, say ∆T , above the pre-industrial GMST value.15

From the then available GMST records, it will also be known whether this change in GMST has

been gradual or whether it was rather ‘bumpy’. If the observational effort will continue as of today,

there will also be an adequate observational record to determine whether the probability of extreme

events (e.g., flooding, heat waves) has increased.

The outcomes of these future observations, to be made by future generations, will strongly depend20

on socio-economic and technological developments and political decisions which are made now and

over the next decades. Fortunately, there is a set of tools available to inform decision makers: Earth

System Models. These models come in different flavours, from global climate models (GCMs) pro-

viding details on the development of the ocean-atmosphere-ice-land system to integrated assessment

models (AIMs) which also aim to describe the development of the broader socio-economic system.25
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During the preparation for the fifth assessment report (AR5) of the Intergovernmental Panel of Cli-

mate Change (IPCC), GCM studies have focussed on the climate system response to GHG changes

as derived by AIMs from different socio-economic scenarios; the data from these simulations is

gathered in the so-called CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5/).

Depending on the representation of fast climate feedbacks in GCMs, determining their climate30

sensitivity, the CMIP5 models project a GMST increase ∆T of 2.5-4.5◦C over the period 2000-

2100 (Pachauri et al., 2014). This does not mean that the actual measured value of ∆T in 2100

will be in this interval. For example, the GMST may be well outside this range because of current

model errors which misrepresented the strength of a specific feedback. As a consequence, a transition

might have occurred in the real climate system, which did not occur in any of the CMIP5 model35

simulations. Another possibility is that the GHG development eventually was far outside of the

scenarios considered in CMIP5.

A crucial issue in 2100 will be whether a climate state has been reached where a dangerous

anthropogenic interference (DAI) can be identified (Mann, 2009). In this case, present-day islands

will have been swallowed by the ocean, extreme events have increased in frequency and magnitude40

(Smith and Schneider, 2009). These effects are then very inhomogeneously distributed over the Earth

and have lead to enormous socio-economic consequences. If this is the case in 2100, then there is a

point in time where we must have crossed the conditions for DAI. This time, marking the boundary

of a ‘safe’ and ‘unsafe’ climate state, obviously depends on the metrics used to quantify the state of

the complex climate system.45

In very simplified views, this boundary is interpreted as a threshold on CO2 concentration (Hansen

et al., 2008) or on GMST. The latter, in particular the ∆T c = 2◦C threshold, has become an easy

to communicate (and maybe therefore leading) idea to set mitigation targets for greenhouse gas

reduction. Emission scenarios have been calculated (Rogelj et al., 2011) such that ∆T will remain

below ∆T c. Although thresholds on GMST have been criticized for being very inadequate regarding50

impacts (Victor and Kennel, 2014), such a threshold forms the basis of policy making as is set

forward in the Paris 2015 (COP21) agreement.

Suppose that measures are being taken to keep ∆T <∆T c, does this mean that we are ‘safe’?

The answer is a simple no, as regionally still DAI may have occurred such as the disappearance

of island chains due to sea level rise (Victor and Kennel, 2014). Hence, attempts have been made55

to define what ‘safe’ means in a more general way, such the Tolerable Windows Approach (TWA)

(Petschel-Held et al., 1999) and Viability Theory (VT) (Aubin, 2009). These approaches also deal

with general control strategies to steer a system towards ‘safety’ when needed. On a more abstract

level, both TWA and VT start by defining a desirable (or ‘safe’) subspace V of a state vector x in a

general state space X . This subspace is characterized by constraints, such as thresholds on properties60

of x. For example, when x is a high-dimensional state vector of a GCM, such a threshold could be

∆T <∆T c on GMST. When the time-development (or trajectory) of x is such that it moves outside
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the subspace V , a control is sought to steer the trajectory back into V . Note that this is an abstract

formulation of the mitigation problem, when the amplitude of the emission of greenhouse gases is

taken as control. Recently, Heitzig et al. (2016) have added more detail to regions in the space X65

which differ in their ‘safety’ properties and amount of flexibility in control to steer to ‘safety’.

Given a certain desirable subspace of the climate system’s state vector (e.g., to avoid DIA) and a

suite of control options, (e.g., CO2 emission reduction) it is important to know when it is too late to

be able to steer the system to ‘safe’ conditions, say at the year 2100. In other words, when is the Point

of No Return (PNR)? The TWA and VT approaches, and the theory in Heitzig et al. (2016), suffer70

from the ‘curse of dimensionality’ and cannot be used within CMIP5 climate models. For example,

the optimization problems in VT and TWA lead to dynamic programming schemes which have

up to now only been solved for model systems with low-dimensional state vectors. The approach

in Heitzig et al. (2016) requires the computation of region boundaries in state space, which also

becomes tedious in more than two dimensions. Hence, with these approaches it will be impossible75

to determine a PNR using reasonably detailed models of the climate system.

In this paper, we present an approach similar to TWA and VT, but one which can be applied to

high-dimensional models of the climate system. Key in the approach is the estimation of the proba-

bility density function of the properties of the state vector x which determine the ‘safe’ subspace V .

The PNR problem is coupled to limitations in the control options (e.g. of emissions) and can be de-80

fined precisely using these options and stochastic viability theory. The methodology is presented in

section 2 and just to illustrate the concepts, we apply the approach in section 3 to an idealized energy

balance model with and without tipping behavior. In section 4, the application to a high-dimensional

climate model follows, using data from the Planet Simulator (PlaSim, Fraedrich et al. (2005)). A

summary and discussion in section 5 concludes the paper.85

2 Methodology

Here we briefly describe the concepts we need from stochastic viability theory and then define the

PNR problem, specifically in the climate change context.

2.1 Viable states

Viability theory studies the control of the evolution of dynamical systems to stay within certain con-90

straints on the system’s state vector (Aubin, 2009). Here we consider finite dimensional deterministic

systems, with state vector x ∈Rd and vector field f :Rd →Rd, given by

dx

dt
= f(x, t). (1)

In the general formulation of viability theory a time-dependent input is also considered in the right

hand side of Eq. (1) which can be used to control the path of the trajectory x(t) in state space.95
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For our purposes, we only need the concept of a viable state, which is related to constraints on the

state vector defining a viable region V in state space, also called the viability constraint set. In the

model (1) such a set can, for example, be defined by a threshold condition ||x||< ||x∗|| An initial

condition x0 = x(t= 0) is called viable if x(t) ∈ V , for all 0≤ t≤ t∗, where t∗ is a certain end

time. The set of all these initial conditions forms the viability kernel associated with V .100

Stochastic extensions of viability theory consider finite dynamical systems defined by stochastic

differential equations

dXt = f(Xt, t)dt+g(Xt, t)dWt, (2)

where Xt ∈Rd is a multidimensional stochastic process, Wt ∈Rn is a vector of n-independent

standard Wiener processes and the matrix g ∈Rd×n describes the dependence of the noise on the105

state vector. The normalised probability density function (PDF) p(x, t) can be formally determined

from the Fokker-Planck equation associated with Eq. (2).

A stochastic viability kernel Vβ consists of initial conditions X0 for which the system has, for

0≤ t≤ t∗, a probability larger than a value β to stay in the viable region V (Doyen and De Lara,

2010). For example, in a one-dimensional version of Eq. (2) with state vector Xt ∈R and with a110

viable region V given by x≤ x∗ a state Xt is called viable, with tolerance probability βT , if

x∗∫
−∞

p(x,t) dx≥ βT , (3)

and otherwise, Xt is called non viable.

2.2 Linear response theory

In relatively idealized low-dimensional models (such as the energy balance model in section 3), the115

probability density functions can be easily computed by solving for the Fokker-Planck equation (see

section 3.2). However, in order to find the temporal evolution of the PDF of the global mean surface

temperature GMST under any CO2eq forcing in high-dimensional climate models, such as PlaSim in

section 4, we will use linear response theory (LRT). With this theory, the effect of any small forcing

perturbation on the system state can be calculated by running the climate model for only one forcing120

scenario (Ragone et al., 2014).

In LRT, the expectation value of an observable Φ, when forcing the system with a time-dependent

function f(t), can be calculated by computing the convolution of a Green’s function G〈Φ〉 and the

forcing f(t), according to

〈Φ〉f (t) =
+∞∫

−∞

G〈Φ〉(τ)f(t− τ)dτ. (4)125

To construct this Green’s function, the property that the convolution in the time domain is the same

as point-wise multiplication in the frequency domain is used. The Fourier transform of Eq. (4) is
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Figure 1. (a) CO2eq trajectories of the RCP scenarios used by the IPCC in CMIP5. (b) The solid red curve

represents a typical RCP scenario. At the time tb the climate state becomes non-viable, while at t= tc a CO2eq

reduction Fλ applies; at time te, the climate state is viable again.

given by

〈Φ̃〉f (ω) = χ〈Φ〉(ω)f̃(ω), (5)

with χ〈Φ〉(ω), 〈Φ̃〉f (ω) and f̃(ω) being the Fourier transforms of G〈Φ〉(t), 〈Φ〉f (t) and f(t), re-130

spectively. Therefore, once the time evolution of the expectation value of an observable under a

certain forcing is known, the Green’s function of this observable can be constructed with Eq. (5) and

consequently the linear response of the observable to any forcing can be calculated.

2.3 The Point of No Return problem

In the climate change context, scenarios of GHG increase and the associated radiative forcing135

have been formulated as Representative Concentration Pathways (RCPs). In Pachauri et al. (2014),

there are four RCP scenarios (Fig. 1a) ranging from an increase in radiative forcing of 2.6Wm−2

(RCP2.6) at 2100 (with respect to 2000) to a forcing increase of 8.5Wm−2 (RCP8.5).

To define the PNR for each of these RCPs, a collection of mitigation scenarios on greenhouse gas

emission has to be considered. These mitigation scenarios will lead to changes in GHG concentra-140

tions, described by functions Fλ(t), where λ is a parameter. For instance, the collection Fλ could

result from mitigation measures that lead to an exponential decay to different stabilisation levels

(measured in CO2 equivalent, or CO2eq) within a certain time interval. An example of such a col-

lection Fλ is shown by the dashed and dotted red lines in Fig. 1b. The most extreme member of Fλ

is defined as the mitigation scenario (represented by a certain value of parameter λ) which has the145

steepest initial decrease at a certain time t (dashed curve in Fig. 1b).

Along the curve of a certain RCP scenario, there will be a point in time where action will be taken

to reduce emissions of GHG; this is indicated by a time of action tb. Consider for example (Fig. 1b)

that tb is chosen as the first year where the state vector Xt is not viable anymore. A reduction in
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Figure 2. Bifurcation diagram of the deterministic energy balance model for α1 = 0.45 ((a), monostable model)

and α1 = 0.2 ((b), bistable model). The solid curve represents a stable equilibrium while a dashed curve rep-

resents an unstable equilibrium.

emissions is, however, not immediately followed by a decrease in CO2eq due to the long residence150

time of atmospheric CO2. In addition, there is a delay to take action in emission reduction due to

technological, social, economic and institutional challenges. Hence, emission reduction will only

start ∆t1 years after tb. The CO2eq will, even after emissions have been reduced, also still increase

over a time ∆t2. The time at which the CO2eq starts to reduce according to Fλ is indicated by

tc = tb +∆t, where ∆t=∆t1 +∆t2. Eventually, Xt may become viable again and this point in155

time is indicated by te (Fig. 1b).

For a given RCP scenario, tolerance probability βT , viable region V and collection Fλ, we define

the PNR (πt) as the first year tc where, even when at that moment the most extreme CO2eq reduction

scenario Fλ applies,

(a) either Xt will be non viable for more than τT years, where τT is a set tolerance time, or160

(b) Xt will be non viable in the year 2100.

The first PNR, which we will indicate below by πtol
t , is based on limiting the amount of years that

Xt is non viable, since (during these years) society is exposed to risks from, for example, extreme

weather events. The second PNR, which we will indicate below by π2100
t imposes no restrictions on

how long Xt is non viable, but it is only based on that Xt is non viable at the end on this century.165

Hence, under the given set of mitigation options, it is guaranteed that the state will have left the

viable region by the year 2100. We will use both PNR concepts in the results below.

3 Energy balance model

In this section, we illustrate the concepts and the computation of the PNR for an idealized energy

balance model of Budyko-Seller type (Budyko, 1969; Sellers, 1969). We will also assume that the170
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CO2eq can be directly controlled, and hence no carbon cycle model is needed to determine CO2eq

from an emission reduction scenario.

3.1 Formulation

We use the stochastic extension of the model formulation as in Hogg (2008). The equation for the

atmospheric temperature Tt (in K) is given by175

dTt =
1

cT

{
Q0(1−α(Tt))+G+A ln

C(t)

Cref
−σεTt

4
}
dt+σsdWt. (6)

The values and meaning of the parameters in Eq. (6) are given in Table 1. The first term in the right

hand side of Eq. (6) represents the short-wave radiation received by the surface and α(T ) is the

albedo function, given by

α(T ) = α0H(T0 −T )+α1H(T −T1)+
(
α0 +(α1 −α0)

T −T0

T1 −T0

)
H(T −T0)H(T1 −T ). (7)180

This equation contains the effect of land ice on the albedo and H(x) = 1/2(1+ tanh(x/εH)) is a

continuous approximation of the Heaviside function. When the temperature T < T0, the albedo will

be α0 and when T > T1 it will be α1 and the albedo is linear in T for T ∈ [T0,T1]. The second

term in the right hand side of Eq. (6) represents the effect of greenhouse gases on the temperature. It

consists of a constant part (G), and a part (A ln C(t)
C0

) depending on the mean CO2eq concentration185

in the atmosphere (indicated by C(t)). The third term in the right hand side of Eq. (6) expresses the

effect of long-wave radiation on the temperature and the last term represents noise with a constant

standard deviation σs. The standard value of σs chosen as 3% of the value of G/cT , hence about

0.3K/year. The variance in CO2 concentration originates mostly from seasonal variations, and the

3% is on the high side. Nevertheless, we still use this value, because if we take values smaller than190

3% the PDF of the GMST will almost be a delta function and concepts can not be illustrated clearly.

3.2 Results: stochastic viability kernels

When using the global mean CO2eq concentration C in Eq. (6) as a time-independent control param-

eter, a bifurcation diagram can be easily (numerically) calculated for the deterministic case (σs = 0).

In Fig. 2, such diagrams are plotted of C versus the equilibrium temperature T for two values of195

α1. To obtain realistic values for the temperature, the equilibrium temperature equilibria are shifted

upwards by 30 K. This is done by substituting T with T − 30 and adapting the right hand side of

Eq. (6) such that the new temperature is a steady state. This is obviously a bit artificial here, but we

justify it by our aim to only wanting to illustrate the methodology; results from more realistic models

will follow in section 4 below. The diagram corresponding to α1 = 0.2 (Fig. 2a) has two saddle-node200

bifurcations which are absent for α1 = 0.45 (Fig. 2b). From now on, the energy balance model with

α1 = 0.45 and α1 = 0.2 will be called the monostable and bistable case, respectively.
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Table 1. Value and meaning of the parameters in the energy balance model given by Eq. (6).

cT 5.0× 108 Jm−2K−1 Thermal inertia ε 1.0 Emissivity

Q0 342 Wm−2 Solar constant/4 α0 0.7 Albedo parameter

G 1.5× 102 Wm−2 Constant α1 0.2 or 0.45 Albedo parameter

A 2.05× 101 Wm−2 Constant T0 263 K Albedo parameter

Cref 280 ppmv Reference CO2 concentration T1 293 K Albedo parameter

σ 5.67 x 10−8 Wm−2K−4 Stefan Boltzmann constant εH 0.273 K Albedo parameter

For σs 6= 0, we explicitly determine the normalised PDF p(x,t). Rewriting Eq. (6) as

dTt = f(Tt, t)dt+σsdWt, (8)

with f(T,t) = c−1
T (Q0(1−α(T ))+G+A ln C(t)

Cref
−σεT 4), the Fokker-Planck equation of Eq. (8)205

is given by

∂p

∂t
+

∂(fp)

∂x
− σ2

s

2

∂2p

∂x2
= 0. (9)

This differential equation is solved numerically for p(x,t) under any prescribed function C(t) with

boundary conditions p(xu, t) = p(xl, t) = 0, where xl = 270 K and xu = 335 K, and an initial con-

dition p(x,0) (specified below) satisfying
∫ xu

xl
p(x,0)dx= 1.210

We first show stochastic viability kernels for each initial condition T0 and C0, where C0 is an

initial CO2eq concentration and T0 is the expectation value of the initial PDF of Tt. As starting time,

we take the year 2030 and suppose that the climate system will be forced by a certain RCP scenario

from 2030 till 2200. For every C0, the original RCP scenario from Fig. 1a is adjusted such that its

time development remains the same, but it has C0 as CO2eq concentration in 2030. The PDF of215

the GMST p(x,t= 0) (t= 0 refers to the year 2030) has a prescribed variance (defined by σ2
s ) and

expectation value T0.

In Fig. 3, the stochastic viability kernels are plotted for the energy balance model forced by the

RCP4.5 scenario and a viable region V defined by T ≤ 293 K. The results for the monostable and

bistable cases are plotted in Fig. 3a and Fig. 3b, respectively. The colors indicate for each com-220

bination of T0 and C0 in which stochastic viability kernel the initial state (C0,T0) is located. For

example, consider the bistable case and an initial condition of T0 = 288 K and C0 = 400 ppmv, then

this initial condition is in the kernel Vβ with β ≥ 0.9. This means that, with a probability larger

than 0.9, a trajectory of the model starting at (C0,T0) will remain viable up to the year 2200, where

C follows the RCP4.5 scenario. The white areas contain initial conditions that are in a stochastic225

viability kernel Vβ with β < 0.5.

The sensitivity of the stochastic viability kernels with respect to RCP scenario, threshold defining

the viable region V and amplitude of the noise σs was also investigated (results not shown). The

behaviour is as one can expect in that the area of the kernels becomes smaller (larger) when noise
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Figure 3. The stochastic viability kernels for the monostable and bistable cases forced by the RCP4.5 scenario.

The viable region is defined as T ≤ 293K and is indicated by the red dashed line. This plots show, for each

combination of T0 and C0, in which stochastic viability kernel these initial values are located. The numbers in

the colourbar stand for the β in Vβ . For convenience, the bifurcation diagram of the deterministic model is also

shown.

is larger (smaller), when the threshold temperature is smaller (larger) and when the radiative forcing230

associated with the RCP scenario is more (less) severe. For example for the RCP6.0 scenario, each

combination of T0 and C0 (same range as in Fig. 3) is in a Vβ with β < 0.5 for both mono- and

bistable cases.

3.3 Results: Point of No Return

Again for illustration purposes, we assume that reduction of the emissions will have an immediate235

effect of the CO2eq, such that effectively the CO2eq is controlled. We choose the collection Fλ to

consist of mitigation scenarios that exponentially decay to the preindustrial CO2eq concentration,

which is 280 ppmv. For this exponential decay, we consider different e-folding times τd. The most

extreme scenario has an exponential decay within 50 years, which corresponds to an e-folding time

of τd = 9 years. Hence, the collection Fλ is given by (for τd ≥ 9)240

Fλ(t) = (Ctc − 280)exp
(
− t− tc

τd

)
+280. (10)

In this equation, tc is the time at which the scenario is applied and Ctc the associated CO2eq con-

centration at that moment.

Next, we determine PNR values πtol
t for the energy balance model when it is forced by the four

different RCP scenarios using a tolerance probability of βT = 0.9 and a tolerance time of τT = 20245
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Figure 4. The PNR πtol
t for a system forced with different RCP scenarios, tolerance probability βT = 0.9 and

tolerance time τT = te − tb = 20 years. The triangles indicate the point of no return for the bistable case and

the squares for the monostable case. The dotted line is the most extreme scenario of Fλ with an exponential

decay to 280 ppmv and an e-folding time of 9 years. Note that for both cases there is no PNR when the model

is forced with the RCP2.6 scenario.

years. The πtol
t values for a system forced with the RCP4.5, RCP6.0 and RCP8.5 scenarios are

shown in Fig. 4 for both the monostable and bistable cases. As expected, the more extreme the

RCP scenario, the earlier the PNR. This can be easily explained by the fact that when the CO2eq

concentration is rising faster, the temperature will get non viable earlier. Consequently, the PNR

will be earlier, since the GMST is only allowed to be non viable for at most τT years. When the250

model is forced with RCP2.6, there is no PNR for both models. The reason for this is that the CO2eq

concentration will remain low throughout the whole period and consequently the temperature will

stay viable. The value of πtol
t of the bistable case is for each scenario earlier than the value of the

monostable case. This can be clarified by the fact that the PDF of the temperature in the bistable

case will leave the viable region at a lower CO2eq concentration because of the existence of nearby255

equilibria.

The sensitivity of πtol
t versus the tolerance time τT and the tolerance probability βT was also

investigated and the results are as expected (and therefore not shown). A longer tolerance time will

shift πtol
t to later times. For example, for the RCP4.5 scenario πtol

t = 2071, 2088 and 2116 for

τT = 0,20 and 50 years for the bistable case (for fixed βT = 0.9). With a fixed τT = 20 years, the260

value of πtol
t shifts to smaller values when the tolerance probability is increased. For example, for

βT = 0.80 and 0.99, the values of πtol
t are 2127 and 2058, respectively, for the bistable case (for

βT = 0.9, πtol
t = 2088, see Fig. 4).
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4 PlaSim

The results in the previous section have illustrated that a PNR can be calculated when265

an estimate of the probability density function is available and a collection of mitiga-

tion scenarios is defined. We will now apply these concepts to the more detailed, high-

dimensional, climate model PlaSim, a General Circulation Model developed by the University of

Hamburg, see https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/mod-

elle/plasim.html. The atmospheric dynamical processes are modelled using the primitive equations270

formulated for vorticity, divergence, temperature and the logarithm of surface pressure. Moisture is

included by transport of water vapour (specific humidity). The governing equations are solved using

the spectral transform method on a T21 grid (resulting in a horizontal resolution of about 5 to 6 de-

grees in the midlatitudes). In the vertical, 5 non-equally spaced sigma (pressure divided by surface

pressure) levels are used. Considering that the model has about a hundred prognostic variables, this275

yields an order of magnitude for the dimensionality of the model of about 105. The model is forced

by diurnal and annual cycles. PlaSim is freely available including a graphical user interface facilitat-

ing its usage and has been applied to a variety of problems in climate response theory (Ragone et al.,

2016).

A main problem here is to determine a relation between the CO2eq (and associated radiative280

forcing) and the GMST, i.e. a response function. Previous approaches have used a fit of a specific

response function (e.g., a power law function) to available observations (Rypdal, 2016). This is more

complicated for an approach using stochastic viability theory (applying it did not give useful results)

and hence we proceed by using linear response theory as described in section 2.3.

We use the same data as in Ragone et al. (2014), provided by F. Lunkeit and V. Lucarini (Univ.285

Hamburg, Germany). The difference with those in Ragone et al. (2014) is that the seasonal forcing

is present, which results in a long-term increase of the GMST of 5 ◦C (instead of 8 ◦C in Ragone

et al. (2014)) under a scenario where the CO2 concentration doubles. The reason of this difference is

not fully clear but probably results from seasonal rectification effects of nonlinear feedbacks. Data of

GMST from two ensembles was used, each of 200 simulations, made with two different CO2 forcing290

profiles (all other GHGs are kept constant). For both forcing profiles, the starting CO2 concentration

is set to a value of 360 ppmv, which is representative for the CO2 concentration in 2000. During

the first set of experiments, the CO2 concentration is instantaneously doubled to 720 ppmv and kept

constant afterwards. During the second set of experiments, the CO2 concentration increases each

year by 1 % until a concentration of 720 ppmv is reached. This will take approximately 70 years and295

afterwards the concentration is fixed. The total length of the simulations is 200 years. Furthermore,

the forcing f(t) in Eq. (4) is taken as the logarithm of the CO2 concentration, since the radiative

forcing scales approximately logarithmically with the CO2 concentration.

To determine the PDF of GMST under any CO2eq forcing, we make the assumption that at each

point in time the PDF of the GMST is normally distributed. As we have 200 data points for the GMST300
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Figure 5. (a) The expectation value and (b) variance of GMST generated by PlaSim (orange) and determined

through LRT (blue) for the 1% CO2 concentration increase.

at each time interval, a χ2 test was used to analyse the PDFs. For each time, the value of χ2 > 0.05

and therefore the assumption that the PDF of the GMST is normally distributed appears justified.

The Green’s functions for the expectation value and variance of GMST have been calculated with

the instantaneously doubling CO2 profile and the associated ensemble. From the ensemble, at each

point in time the expectation value and variance are calculated to obtain the temporal evolution of305

these two variables. Subsequently, we have found the Green’s functions using (5). To check whether

these Green’s functions perform well, we compared the temporal evolution of the expectation value

and variance of the GMST under the 1 % forcing (calculated with (4)) with those directly generated

with PlaSim (Fig. 5). The expectation value determined with LRT is close to the one directly gen-

erated by PlaSim. However, the variance of the ensemble generated by PlaSim is a lot noisier than310

the one calculated with LRT. Although the Green’s function of the variance provides only a rough

approximation, it has the right order of magnitude and we will use it to calculate the variance of the

GMST for other forcing scenarios.

4.1 Results: Point of No Return under CO2eq control

We first consider the case without a carbon cycle model, again assuming that the CO2eq concentra-315

tion can be controlled directly. The scenarios Fλ chosen for use in PlaSim are exponentially decaying

to different stabilisation levels (varying between 400 and 550 ppmv, see Edenhofer et al. (2010)).

This stabilization level is taken as the parameter λ. We assume that stabilisation happens within 100

years, which corresponds to an e-folding time τd of about 25 years; the mitigation scenarios Fλ are

then given by320

Fλ(t) =
(
Ctc −λ

)
exp

(
− t− tc

τd

)
+λ, (11)
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Figure 6. (a) The PNR π2100
t for the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios for a tolerance probabil-

ity of βT = 0.9 and ∆t= 0. The solid lines represent the RCP scenarios and the dashed line the most extreme

scenario from Fλ. Note that these dashed lines coincide. (b) The point of no return for RCP4.5 for different

tolerance probabilities.

where tc is again the time at which the mitigation scenario is applied and Ctc the associated CO2eq

concentration. The most extreme mitigation scenario in Fλ in terms of CO2eq decrease is the one

that stabilises at a CO2eq concentration of 400 ppmv.

We next determine the PNR π2100
t by requiring that the GMST must be viable in 2100 using325

a tolerance probability of βT = 0.90. Furthermore, the viable region is set at T ≤ 16.15◦C, which

corresponds to temperatures less than 2◦C above the preindustrial GMST. The values of π2100
t for all

the RCP scenarios are plotted in Fig. 6a. Solid curves show the RCP scenarios while dashed curves

present the most extreme scenario Fλ. For RCP8.5, π2100
t is 10 years earlier than for RCP6.0, since

the CO2eq concentration increases much faster for the RCP8.5 scenario. The mitigation scenario330

after the point of no return, represented by the dashed line, is the same for all RCP scenarios. This

is related to our definition of π2100
t , where it is required that the GMST is viable in 2100. The

mitigation scenario that is plotted is the ultimate scenario that guarantees this. It indicates that for

each CO2 scenario the associated π2100
t is given by the intersection of that CO2eq scenario and

the mitigation scenario. This is because it is considered that an exponential decay to 400 ppmv335

within 100 years is always possible, no matter the CO2eq concentration at tc. However, when this

concentration becomes too high, this mitigation scenario is not very realistic anymore.

The influence of the tolerance probability on π2100
t for the RCP4.5 scenario is plotted in Fig. 6b,

where we only consider a tolerance probability of 0.8, 0.9 and 0.99. When the tolerance probability is

higher, it takes longer before the GMST will be viable again and thus the PNR π2100
t will be earlier.340

However, the differences are very small, since the mitigation scenarios that guarantee viability in

2100 for the different tolerance probabilities are very close.
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4.2 Results: Point of No Return under emission control

Finally, we consider the more realistic case where emissions are controlled and a carbon model

converts emissions to CO2eq. A simple carbon model relating emissions E to concentrations C is345

given by

CCO2(t) = CCO2,0 +

t∫
0

GCO2(τ) ECO2(t− τ) dτ, (12)

where CCO2,0 is the initial concentration. The Green’s function for CO2 is taken directly from Joos

et al. (2013):

GCO2(t) = a0 +

3∑
i=1

aie
t/τi , (13)350

where the parameters are shown in Table 2. The quantity ECO2 is the CO2 emission in ppmyr−1

that has been converted from GtCyr−1 using the Carbon molecular weight as ECO2[ppmyr−1] =

γ ECO2[GtC/yr], with γ = 0.46969ppmGtC−1. The emissions for the RCP scenarios are taken

from Meinshausen et al. (2011) 1. The carbon model underestimates CO2 levels for very high emis-

sion scenarios as it does not include saturation of natural CO2 sinks.355

Following Table 8.SM.1 of Myhre et al. (2013) we obtain the changes in radiative forcing com-

pared to preindustrial (in Wm−2) due to changes in CO2 as

∆FCO2 = αCO2 ln
CCO2

C0
, (14)

where C0 is the pre-industrial (1750) CO2 concentration.

We use the same PlaSim ensemble of instantaneous CO2 doubling runs again to determine a360

Green’s function that relates radiative forcing changes to temperature changes as

∆T (t) =

t∫
0

GT (τ)∆F (t− τ)dτ (15)

where GT is the data-based function determined from LRT. The total radiative forcing is taken as

∆Ftot =A∆FCO2. where we introduce a scaling constant A to correct for the high climate sensi-

tivity of the PlaSim model compared to typical CMIP5 models. Based on trial runs attempting to re-365

construct mean CMIP5 RCP temperature trajectories with RCP CO2 emissions we choose A= 0.6.

For PlaSim, the Green’s function GT , as determined through LRT, is well approximated by a

one-time scale exponential:

GT (t)≈ b1e
−t/τb1 , (16)

with b1 = 0.25KW−1m2 yr−1 and τb1 = 4.69yr. We determine a Green’s function for the temper-370

ature variance in the same way.
1See the database at http://www.pik-potsdam.de/~mmalte/rcps/
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Table 2. Model Parameters. No units are given for dimensionless parameters

CCO2,0 (ppm) 278 αCO2 5.35 C0 (ppm) 278

a0 0.2173 A 0.6 γ (ppmGtC−1) 0.46969

a1 0.2240 a2 0.2824 a3 0.2763

τ1 (yr) 394.4 τ2 (yr) 36.54 τ3 (yr) 4.304

To compute the Point of No Return π2100
t in the carbon-climate model we start from pre-industrial

CO2 concentrations and take the corresponding initial temperature perturbation as ∆T = 0. We then

prescribe the RCP emissions scenarios for RCP2.6, RCP4.5, RCP6 and RCP8.5 (that are identical

up to the year 2005). At a year tb > 2005 we start reduction of emissions at an exponential rate, i.e.375

for t > tb the emissions follow

ECO2(t) = ECO2(tb)exp

(
− t− tb

τe

)
(17)

where τe = 25yr is the e-folding timescale of the emission reduction that we keep constant. Using

the carbon model we compute the instantaneous CO2 concentrations for each such scenario and use

the Green’s functions for GMST mean and variance to determine the PDF at year 2100 for each380

starting year tb. Assuming Gaussian distributions (as mentioned, this is well satisfied for the original

PlaSim ensemble) we can then easily determine the temperature threshold below which 90% of the

values fall. The first year for which this threshold is above 2K gives π2100
t . Note that the value of tc

(in Fig. 1b) where the CO2 starts to decrease is determined by the coupled carbon-climate model.

The warming in 2100 predicted by our simple climate model when starting exponential CO2385

emission reduction in a given year is shown in Fig. 7a. The intersections between the RCP curves

(solid color) and the dashed line (giving 2K warming) provide values of π2100
t . Values do not differ

much for the different RCP (4.5, 6.0 and 8.5) scenarios and are before 2030. RCP2.6 does not have

a Point of No Return as its emission scenario is sufficient to keep the warming safely below 2K.

The counter-intuitive lowering of the curve for RCP2.6 (also slightly for RCP4.5) is due to very390

fast emission reductions in these RCP scenarios. So starting emission reduction at later times may

lead to lower total emissions (and hence, temperatures). The CO2 concentration for the four RCP

scenarios as computed by the model (solid) and following the exponential mitigation starting from

the Point of no Return (dashed) are shown in Fig. 7b. Note how emissions ‘still in the pipeline’

lead to CO2 increases even after the reduction is initiated. Note that this approach does not factor395

in the uncertainty in the carbon model as we do not have a Green’s function propagating the carbon

uncertainty through the temperature model. Including this would very likely increase the variance in

the pdf and move the Point of No Return to an earlier year. On the other hand, the PLASIM variance

is quite small, so the 90% threshold is not vastly different from the mean.
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Figure 7. (a) Warming in 2100 when starting exponential CO2 emission reduction in a given year. (b) CO2

concentration for the four RCP scenarios as computed by the model (solid) and following exponential mitigation

starting from the Point of no Return (dashed).

5 Discussion400

Pachauri et al. (2014) stated with high confidence that: “Without additional mitigation efforts beyond

those in place today, and even with adaptation, warming by the end of the 21st century will lead to

high to very high risk of severe, widespread and irreversible impacts globally". If no measures are

taken to reduce GHG emissions during this century and neither will there be any new technological

developments that can reduce GHGs in the atmosphere, it is likely that the GMST will be 4 ◦C higher405

than the preindustrial GMST at the end of the 21st century (Pachauri et al., 2014). Consequently, it

is important that anthropogenic emissions are regulated and significantly reduced before widespread

and irreversible impacts occur. It would help motivate mitigation to know when it is ‘too late’.

In this study we have defined the concept of the Point of No Return (PNR) in climate change

more precisely, using stochastic viability theory and a collection of mitigation scenarios. For an410

energy balance model, as in section 3, the probability density function could be explicitly computed

and hence stochastic viability kernels could be determined. The additional advantage of this model is

that one can easily construct a bistable regime, so one can investigate the effects of tipping behavior

on the PNR. We used this model (where the assumption was made that CO2 could be controlled

directly instead of through emissions), to illustrate of concept of PNR which is based on a tolerance415

time for which the climate state is non viable. For the RCP scenarios considered, one finds that

the PNR is smaller in the bistable than in the monostable regime of this model. The occurrence of

possible transitions to warm states in this model indeed cause the PNR to be ‘too late’ earlier.

The determination of the PNR in the high-dimensional PlaSim climate model, however, shows

the key innovation in our approach, i.e. the use of linear response theory (LRT) to estimate the420

probability density function of the GMST. PlaSim was used to compute another variant of a PNR

based on only requiring that the climate state is viable in the year 2100. Hence, the PNR here is the

time such that no allowed mitigation scenario can be chosen to keep GMST below a certain threshold
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at year 2100 with a specified probability. In the PlaSim results, we used a viability region that was

defined as GMSTs lower than 2◦C above the pre-industrial value, but with our methodology, the425

PNR can be easily determined for any threshold defining the viable region. The more academic case

where we assume that GHG levels can be controlled directly provides PNR (for RCP4.5, RCP6.0 and

RCP8.5) values around 2050 (section 4.2). However, the more realistic case where the emissions are

controlled (section 4.3) and a carbon model is used, reduces the PNR for these three RCP scenarios

by about 30 years. The reason is that there is a delay between the decrease in GHG gas emissions430

and concentrations.

Although our approach provides new insights into the PNR in climate change, we recognize there

is potential to substantial further improvement. First of all, the PlaSim model has a too high cli-

mate sensitivity compared to CMIP5 models. Although in the most realistic case (section 4.3), we

somehow compensate for this effect, it would be much better to apply the LRT approach to CMIP5435

simulations. Second, in the LRT approach, we assume the GMST distributions to be Gaussian. This

is well justified in PlaSim, as can be verified from the PlaSim simulations, but it may not be the case

for a typical CMIP5 model. Third, for the more realistic case in section 4.3, we do not capture the

uncertainties in the carbon model and hence in the radiative forcing.

A large ensemble such as that available for PlaSim is not available (yet) for any CMIP5 model.440

However, we have recently applied the same methodology to two CMIP5 ensembles of models,

i.e. a 34 member ensemble of abrupt CO2 quadrupling and a 35 member ensemble of smooth 1%

CO2 increase per year. The CO2quadrupling ensemble was used to derive the Green’s function and

then the 1% CO2 increase ensemble was used as a check on the resulting response. The probability

density function of GMST increase is close to Gaussian for the 1% CO2 increase ensemble but445

clearly deviates from a Gaussian distribution for the 4x CO2 forcing ensemble, particularly at later

times. Although the ensemble is relatively small and the models within the ensemble are different

(but many are related), the results for the LRT determined GMST response (Aengenheyster, 2017)

are surprisingly good. This indicates that the methodology has a high potential to be successfully

applied to results of simulations of CMIP5 (and in the future CMIP6) models. The applicability of450

LRT to other observables than GMST can in principle be performed but the results may be less

useful (e.g. due to non-Gaussian distributions).

Because PlaSim is highly idealized compared to a typical CMIP5 model one cannot attribute much

importance to the precise PNR values obtained for the PlaSim model as in Fig. 7. However, we think

that our approach is general enough for handling many different political and socio-economical sce-455

narios combined with state-of-the-art climate models when adequate response functions of CMIP5

models have been determined (e.g. using LRT). Hence, it will be possible to make better estimates

of the PNR for the real climate system. We therefore hope that eventually these ideas on the PNR

in climate change will become part of the decision-making process during future discussions about

climate change.460
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