Supporting Information

Section 1: Comparison to stomatal optimization theories

Katul et al (1) give the following expression for *f* (their Equation 15):

$$f = 1 - \sqrt{\frac{1.6\,\lambda D}{c_a}} \tag{S1}$$

where in general the Katul et al. theory assumes that λ depends on C_a . Substituting equation S1 into our Equation (2) for *WUE* gives the following expression:

$$WUE = \sqrt{\frac{\lambda C_a}{1.6 D}}$$
(S2)

In the linear approximation to the Katul et al. theory, Palmroth et al. (2) state that λ is directly proportional to C_a , such that:

$$WUE = k \frac{c_a}{\sqrt{D}}$$
(S3)
where k is a constant.

Medlyn et al. (3) give the following expression for the WUE (their Equation 14):

$$WUE = \frac{C_a}{g_1\sqrt{D}+D} \tag{S4}$$

where g_1 is a constant. In general g_1 values are much larger than \sqrt{D} , so that:

$$WUE \approx \frac{C_a}{g_1 \sqrt{D}}$$
 (S5)

To derive effective *a* and *b* coefficients for each of these forms of *WUE* are calculated as:

$$a = \frac{\partial WUE}{\partial c_a} \frac{c_a}{WUE}$$
(S6)
$$b = \frac{\partial WUE}{\partial D} \frac{D}{WUE}$$
(S7)

from which we find that [a, b] = [1, -0.5] for both the models of Palmroth et al. (2) and Medlyn et al. (3).

Section 2: Partitioning the fractional change in humidity deficit a change in temperature and relative humidity

$$D = q_{sat}(1 - RH) \tag{S8}$$

$$\Delta D = \frac{\partial q_{sat}}{\partial T} (1 - RH) \Delta T - q_{sat} \Delta RH$$
(S9)

$$\frac{\Delta D}{D} = \frac{1}{q_{sat}} \frac{\partial q_{sat}}{\partial T} \Delta T - \frac{\Delta RH}{(1 - RH)} \approx 0.07 \Delta T - \frac{\Delta RH}{(1 - RH)}$$
(S10)

Strictly ΔT in this equation is the surface (skin) temperature, but this is well approximated by the change in near surface air temperature, which is available from the global CRU dataset.

Fig. S1. Locations of the eddy-covariance flux sites and tree-ring sites used in Fig. 1 and 2 (see Table S2 and S3 for a list of the sites).

Fig. S2. Water Use Efficiency (*WUE*) from tree-ring and eddy-covariance observations as Fig. 1, but for different groups of sites. See also Table S3 for the values of *a* and *b* for each group.

Fig. S3. Comparison of simulated and observed fractional change in *WUE* for the tree-ring and eddy-covariance sites.

Fig. S4. Comparison of the estimated fractional change in *WUE* with a remote sensing product for 3 different regions: (A) the Amazon, (B) South Africa and (C) South East Asia.

Fig. S5. Changes in *WUE* arising from climate variables for the regions shown in Fig. S4. Spatial patterns of the fractional changes in WUE arising from changes in (A) climate, i.e. both temperature and relative humidity (*RH*), (B) temperature alone, and (C) *RH* alone, between 1901-1930 and 2001-2010.

Fig S6. Monthly mask of the area included in the growing season. For each month the average temperature (1900-1930) from the CRU TS3.20 dataset was used to determine which areas were included in the growing season based on a 10°C threshold.

Fig S7. Comparison of best-fit a and b parameters (see equation 3) by plant functional type (PFT). Here the sites are organized by dominant PFT, using classifications used for the FluxNet sites: evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), wetland (WET) and woody savannah (WSA).

Table S1. Summary of the Fluxnet sites selected from the *Free Fair-use* dataset (www.fluxdata.org). The sites are selected based on data availability as described in the main text. n is the number of growing seasons with data available above the threshold of 10°C, a and b are the fitted parameter values from Equation (3) and r^2 is the coefficient of determination for this fit. Vegetation types are deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), wetland (WET) and woody savannah (WSA).

Site	Vegetation	Latitude	Longitude	$a \pm \sigma$	$b \pm \sigma$	n	r ²
AU-How	WSA	-12.49	131.15	-4.70±2.20	-2.86±1.25	6	0.63
BE-Bra	MF	51.31	4.52	-2.57±2.65	-0.76±0.23	6	0.77
BE-Vie	MF	50.31	6	0.01±0.51	-0.18±0.11	10	0.29
CZ-BK1	ENF	49.5	18.54	-10.27±6.80	-0.45±0.27	7	0.49
DE-Tha	ENF	50.96	13.57	0.68±1.79	-0.19±0.13	9	0.26
DK-Sor	DBF	55.49	11.65	0.81±0.69	0.34±0.40	10	0.20
ES-ES1	ENF	39.35	-0.32	1.24±0.74	-0.81±0.21	8	0.74
FI-Hyy	ENF	61.85	24.29	-0.25±1.47	-0.59±0.27	10	0.38
FI-Kaa	WET	69.14	27.3	4.38±5.52	-0.58±0.27	7	0.53
FR-Hes	DBF	48.67	7.06	1.69±2.56	-0.02±0.30	10	0.06
FR-LBr	ENF	44.72	-0.77	7.28±3.04	-0.10±0.25	8	0.51
FR-Pue	EBF	43.74	3.6	2.60±2.67	0.48±0.26	7	0.41
IL-Yat	ENF	31.35	35.05	-7.20±10.60	-1.00±1.29	6	0.16
IT-Col	DBF	41.85	13.59	-1.13±3.41	0.20±0.28	10	0.06
IT-Cpz	EBF	41.71	12.38	0.16±2.31	-0.48±0.13	8	0.79
IT-Ren	ENF	46.59	11.43	-10.39±4.30	0.12±0.26	8	0.65
IT-Ro1	DBF	42.41	11.93	4.00±5.59	-0.40±0.26	7	0.35
IT-SRo	ENF	43.73	10.28	7.90±1.53	-0.33±0.10	8	0.88
NL-Loo	ENF	52.17	5.74	-0.65±2.13	0.18±0.31	10	0.04
RU-Fyo	ENF	56.46	32.92	-0.45±1.89	-0.03±0.14	9	0.01
SE-Nor	ENF	60.09	17.48	-11.36±4.90	-0.84±0.30	6	0.75
UK-Gri	ENF	56.61	-3.8	-2.35±8.69	-1.10±0.94	6	0.42
US-Blo	ENF	38.9	-120.63	2.01±3.88	-1.21±0.82	10	0.29
US-Ha1	DBF	42.54	-72.17	2.81±3.07	0.46±0.26	7	0.46
US-Ho1	ENF	45.2	-68.74	3.88±1.87	0.10±0.17	9	0.38
US-Ton	WSA	38.43	-120.97	-3.42±3.58	-0.36±0.32	6	0.27
US-Var	GRA	38.41	-120.95	0.32±3.84	-0.28±0.67	6	0.05
US-WCr	DBF	45.81	-90.08	3.44±2.56	-0.44±0.21	8	0.49

Site	Species	Lat	Lon	n	$a \pm \sigma$	$b \pm \sigma$	r ²	Reference
Woburn Abbey -			0.44			0.71.0.07	0.07	Hemming et al.
beech	Fagus silvatica	52.23	-0.46	93	2.34±0.18	-0.71 ± 0.06	0.86	(1998)
woburn Abbey -	Pinus sylvestris	52.23	-0.46	9/	1 56+0 18	-0.73+0.06	0.79	(1998)
Woburn Abbey -	T mus syrvesurs	52.25	-0.40	74	1.50±0.18	-0.75±0.00	0.77	Hemming et al
oak	Ouercus robur	52.23	-0.46	94	1.76 ± 0.17	-0.70 ± 0.06	0.81	(1998)
	C							Andreu-Hayles et
Caz	Pinus nigra	37.80	2.95	6	1.16±0.08	-1.08 ± 0.09	0.98	al. (2011)
Urb	Pinus uncinata	42.23	1.70	6	0.78±0.38	-1.03±0.23	0.84	Andreu-Hayles et al. (2011)
Turuhansk	Pinus sylvestris	65.80	87 90	11	0 66+0 43	-1 40+0 25	0.79	Arneth et al. (2002)
T ur un un un sk	T mus syrvesurs	05.00	01.90		0.00=0.15	1.10=0.20	0.75	Arneth et al.
Krasnoyarsk	Pinus sylvestris	56.00	92.90	11	1.71±0.33	-0.99±0.16	0.87	(2002)
Berninger	Pinus sylvestris	68.46	25.93	74	0.84±0.12	-0.90±0.03	0.97	Berninger et al. (2000)
Bert select	Abies alba	46.52	6.02	8	2 06+0 51	-0.94+0.15	0.98	Bert et al. (1997)
Bort guarage	Abies alba	46.52	6.02	0	2.05±0.42	1.02+0.13	0.90	Bert et al. (1997)
Bent_evenage	Ables alba	40.32	0.02	0	2.03±0.42	-1.02±0.13	0.98	Duquesnay et al
Duquesnay copp	Fagus silvatica	49.00	6.00	8	0.92 ± 0.44	-0.96 ± 0.15	0.95	(1998)
eopp	Tugus sirtuiteu		0.00	Ũ	0.52-0.11	0190-0110	0.70	Duquesnay et al.
Duquesnay_high	Fagus silvatica	49.00	6.00	9	1.16±0.23	-0.90 ± 0.09	0.97	(1998)
Feng A	Pinus edulis	37.43	-112.47	15	0.40±0.15	-0.86±0.11	0.84	Feng (1999)
Feng B	Pinus edulis	37 50	-108 33	16	1 33±0 17	-0.91±0.17	0.83	Feng (1999)
Feng C	Pinus longaeva	37.53	-118 22	16	0.93+0.14	-1.04+0.11	0.91	Feng (1999)
Teng_C	Fitzrova	51.55	-110.22	10	0.75±0.14	-1.04±0.11	0.71	Feng (1999)
Feng D	cupresoides	-40.05	-74.13	14	0.97±0.15	-0.92±0.05	0.98	1 eng (1999)
	Juniperous							Feng (1999)
Feng_E	phoemicea	30.67	34.00	13	0.91±0.18	-0.89 ± 0.10	0.88	
Feng_F	Pinus ponderosa	35.92	-121.37	14	0.16±0.33	-0.68±0.17	0.74	Feng (1999)
Feng G	Quercus lobata	34.15	118.73	15	0.54±0.31	-0.97±0.10	0.89	Feng (1999)
Feng H	Picea sitchensis	57.92	-152.60	60	0.34 ± 0.52	-0 94±0 06	0.98	Feng (1999)
1 0118_11		01.72	102.00	00	0.01-0.02	019 1-0100	0.90	Linares et al.
Linares	Abies pinsapo	36.69	-5.02	11	1.35±0.09	-1.05 ± 0.09	0.98	(2009)
Nock1	Melia	15.67	99.17	5	1.91±0.17	-0.45±0.24	0.99	Nock et al. (2011)
Nock2	Toona	15.67	99.17	10	2.22±0.18	-0.78±0.21	0.96	Nock et al. (2011)
Nock3	Chukrasia	15.67	99.17	10	2 02+0 19	-1.16+0.15	0.97	Nock et al. (2011)
NOCKS	Araucaria	15.07	<i>)).</i> 17	10	2.02±0.17	-1.10±0.15	0.77	Silva et al (2010)
Silva grass	angustifolia	-28.59	-48.82	21	1.12±0.09	-0.99±0.12	0.93	51174 67 411 (2010)
								Sidorova et al.
Taimyr	Larix gmelinii	70.63	103.20	102	1.46±0.13	-1.00 ± 0.05	0.86	(2010)
								Sidorova et al.
Yakutia	Larix gmelinii	70.00	148.00	78	2.48±0.31	-1.01 ± 0.09	0.74	(2010) Sidamana at al
Siberia	Larix omelinii	64 53	100.23	102	1 82+0 05	-1.00+0.03	0.97	(2009)
Siberia		04.55	100.25	102	1.02±0.05	1.00±0.05	0.77	Penuelas et al.
Penuelas_central	Fagus sylvatica	41.77	2.43	29	2.29±0.19	-1.01±0.10	0.91	(2008)
								Penuelas et al.
Penuelas_high	Fagus sylvatica	41.77	2.43	29	1.77±0.18	-1.07 ± 0.10	0.89	(2008)
D 1 1	P	41.77	2.42	25	0.0410.15	0.07:0.00	0.00	Penuelas et al.
Penuelas_low	Fagus sylvatica	41.77	2.43	25	0.94±0.15	-0.9/±0.08	0.90	(2008)

Table S2. Summary of the tree-ring sites used in this study. *n* is the number of years with data available, *a* and *b* are the fitted parameter values from Equation (3) and r^2 is the coefficient of determination for this fit.

Table S3. Comparison of a and b values from Equations 3 and 4 between tree-ring and eddycovariance sites from Tables S2 and S3. The values of the combined datasets are compared to the values of the tree-ring or eddy-covariance sites only. The range is derived from the black areas in Fig. S2.

Description	a	b
Tree-rings + Eddy-covariance	1.51 ± 0.57	-0.72 ± 0.16
Tree-rings	1.61 ± 0.54	-0.89 ± 0.17
Eddy-covariance	0.79 ± 0.79	-0.30 ± 0.10
Eddy-covariance (Keenan)	1.46 ± 0.78	-0.19 ± 0.10
Eddy-covariance (Forests)	0.90 ± 0.90	-0.29 ± 0.10
Eddy-covariance (Grasslands)	0.00 ± 0.00	-0.29 ± 0.29

Table S4. Comparison of the quality of the fits to observed *WUE* changes at *Fluxnet* sites, using varying numbers of environmental predictor variables. Our default model (equation 6) which uses just atmospheric CO₂ concentration (C_a) and atmospheric humidity deficit (D), is given by the first row of the table. The additional environmental predictors used are those readily available from a significant number (n) of *Fluxnet* sites: solar radiation at the surface (R_g), air temperature (T_a), and soil water content (*SWC*). The adjusted r^2 value accounts for the increase in the basic r^2 measure that is to be expected when additional parameters are introduced into a statistical model. Models with larger adjusted- r^2 values are therefore considered more robust, as they avoid over-fitting of the data.

Predictor Variables	n	a	b	r^2	Adjusted r ²
C_a, D	227	1.028	-0.290	0.103	0.096
C_a, D, R_g	227	1.056	-0.309	0.105	0.093
C_a, D, R_g, T_a	227	1.124	-0.331	0.108	0.092
$C_{a}, D, R_{g}, T_{a}, SWC$	124	0.532	-0.416	0.118	0.081

Table S5. Fractional change in WUE simulated in the historical simulations of CMIP5 Earth System Models (ESMs). These are for research centres and models where both transpiration ("tran") and Gross Primary Productivity ("gpp") monthly variables are available, with ensemble size given in the 3rd column. The year 2005 normalised change (4th column) is relative to the mean over the modelled period from 1860 to 1890.

Research Centre	Climate Model	Ensemble	Fractional change in WUE by 2005
BCC	bcc-csm1-1	3	0 19
BCC	bcc-csm1-1-m 1		0.13
BNU	BNU-ESM	1	0.20
CCCma	CanESM2	5	0.10
CMCC	CMCC-CESM	1	0.02
INM	inmcm4	1	0.07
IPSL	IPSL-CM5A-LR	6	0.15
IPSL	IPSL-CM5A-MR	3	0.14
IPSL	IPSL-CM5B-LR	1	0.16
MIROC	MIROC-ESM	3	0.03
MIROC	MIROC-ESM-CHEM	1	0.03
MPI-M	MPI-ESM-LR	3	0.24
MPI-M	MPI-ESM-MR	3	0.21
MPI-M	MPI-ESM-P	2	0.21
MRI	MRI-ESM1	1	0.28
NASA-GISS	GISS-E2-H	8	0.13
NASA-GISS	GISS-E2-H-CC	1	0.16
NASA-GISS	GISS-E2-R	20	0.13
NASA-GISS	GISS-E2-R-CC	1	0.11
NCAR	CCSM4	8	0.12
NCC	NorESM1-M	3	0.10
NCC	NorESM1-ME	1	0.10
NOAA-GFDL	GFDL-ESM2G	1	0.20
NOAA-GFDL	GFDL-ESM2M	1	0.19
NSF-DOE-NCAR	CESM1-BGC	1	0.12
NSF-DOE-NCAR	CESM1-CAM5	3	0.17
NSF-DOE-NCAR	CESM1-FASTCHEM	3	0.12
NSF-DOE-NCAR	CESM1-WACCM	1	0.13
Ensemble Mean			0.14

References in Supplementary Information

- 1 Katul G, Manzoni S, Palmroth S, Oren R (2010) A stomatal optimization theory to describe the effects of atmospheric CO₂ on leaf photosynthesis and transpiration. *Annals of Botany* 105:431–442.
- 2 Palmroth S et al. (2013) On the complementary relationship between marginal nitrogen and water-use efficiencies among *Pinus taeda* leaves grown under ambient and CO₂-enriched environments. *Annals of Botany* 111:467–477.
- 3 Medlyn BE et al. (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biol* 17:2134–2144.