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Abstract 17	

Plant Water Use Efficiency (WUE), which is the ratio of the uptake of carbon dioxide through 18	

photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of 19	

the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing 20	

atmospheric evaporative demand – which can arise from increases in near-surface temperature or 21	

decreases in relative humidity. We have used Δ13C measurements from tree-rings, along with eddy-22	

covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 23	

and atmospheric humidity deficit. This enables us to reconstruct fractional changes in WUE, based 24	

on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate 25	

record. We estimate that overall WUE increased from 1900 to 2010 by 48±22%, which is more than 26	

double that simulated by the latest Earth System Models. This long-term trend is largely driven by 27	

increases in CO2, but significant inter-annual variability and regional differences are evident due to 28	

variations in temperature and relative humidity. There are several highly populated regions, such as 29	

Western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last 30	

two decades. Our data-based analysis indicates increases in WUE that typically exceed those 31	

simulated by Earth System Models – implying that these models are either underestimating increases 32	

in photosynthesis or underestimating reductions in transpiration.  33	

 34	

	 	35	



	
3	

	36	

1. Introduction 37	

 38	

Plant Water Use Efficiency (WUE) is the ratio of the CO2 assimilated through photosynthesis  (Gross 39	

Primary Productivity, GPP), to the water used by plants as the flux of Transpiration (ET): 40	

 41	

𝑊𝑈𝐸 = %&&
'(

         (1) 42	

 43	

Carbon dioxide may affect plants through increases in photosynthesis (Ainsworth and Rogers 2007; 44	

Franks et al. 2013) and possible reductions in transpiration associated with the partial closure of leaf 45	

stomatal pores under elevated CO2 (Field et al. 1995; Gedney et al. 2006; Betts et al. 2007). Both of 46	

these effects are uncertain though. CO2-fertilization of photosynthesis is often found to be limited by 47	

nutrient availability (Norby et al. 2010), and large-scale transpiration may not reduce even with CO2-48	

induced stomatal closure, if plant leaf area index increases enough to counteract reduced transpiration 49	

from each leaf (Piao et al. 2007).  WUE does however appear to be increasing more robustly with 50	

CO2, according to both tree-ring (Franks et al. 2013) and eddy-covariance flux measurements 51	

(Keenan et al. 2013). 52	

 53	

Plant photosynthesis and transpiration are coupled through the behaviour of leaf stomatal pores, 54	

through which CO2 must diffuse to be fixed during photosynthesis, and through which the 55	

transpiration flux escapes to the atmosphere. The combined behaviour of the leaf stomata leads to an 56	

environmentally dependent “canopy conductance” that controls both the water and carbon fluxes. As 57	

a consequence, both GPP and ET can be written as the product of a canopy conductance and a 58	



	
4	

concentration gradient, which is sometimes described as an electrical analogue (Cowan 1972). For 59	

GPP, the concentration gradient is the difference between the atmospheric CO2 concentration at the 60	

leaf surface (Ca) and the internal CO2 concentration within plant leaves (Ci): 61	

 62	

𝐺𝑃𝑃 = 𝑔,(𝐶/ − 𝐶1)        (2) 63	

 64	

where gc is the canopy conductance for CO2.  65	

For ET, the concentration gradient is the difference between the specific humidity of the atmosphere 66	

at the leaf surface (qa) and the specific humidity inside the plant leaves, which is saturated at the leaf 67	

temperature (qsat). The canopy conductances for GPP and ET both arise from diffusion through leaf 68	

stomatal pores, and therefore only differ by a constant factor of 1.6 (the square root of the ratio of the 69	

molecular masses of CO2 and H2O).  70	

 71	

𝐸3 = 1.6𝑔,(𝑞8/9 − 𝑞/)       (3) 72	

	73	

Changes in stomatal opening in response to changes in sunlight, atmospheric temperature and 74	

humidity, soil moisture, and CO2, are complex and uncertain (Berry et al. 2010), as are the scaling of 75	

these leaf-level responses up to the canopy and beyond (Piao et al. 2007; Jarvis and McNaughton 76	

1986; Jarvis 1995).  However, since stomatal behaviour affects transpiration and photosynthesis 77	

similarly, WUE is relatively insensitive to these uncertainties: 78	

𝑊𝑈𝐸 = (:;<:=)
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     (4) 79	

 80	
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where D is the atmospheric humidity deficit (qsat-qa)  and f is the ratio of the internal to the external 81	

CO2 concentration (Ci/Ca).  This equation therefore expresses WUE in terms of atmospheric variables, 82	

Ca and D (which itself depends on relative humidity and temperature), along with the factor f. The 83	

remaining uncertainty associated with plant physiology is therefore contained in f.  84	

 85	

In the absence of water limitations, there is good evidence that f is approximately independent of Ca, 86	

so that Ci remains proportional to Ca, unless D changes (Jacobs 1994; Katul et al. 2010; Leuning 87	

1995; Morison et al. 1983). Even during drought, f will vary with D, due in part to correlations 88	

between D and soil moisture (Brodribb 1996).  89	

 90	

Stomatal optimisation theories, which assume that stomata act so as to maximise photosynthesis for 91	

a given amount of available water (Cowan and Farquhar 1977), also suggest that f should depend 92	

predominantly on Ca and D (Katul et al. 2010; Medlyn et al. 2011).  Absolute values of WUE will 93	

depend on the nature of the vegetation and soil, such as the plant and soil hydraulics, but these 94	

optimisation theories imply that there will be a near universal sensitivity of fractional changes in 95	

WUE to fractional changes in Ca and D (see SI Appendix): 96	

 97	

EF'
EF'(G)

= :;
:;(G)

/ C
C(G)

H
       (5) 98	

 99	

where the subscript (0) denotes the initial state of each variable, and a and b are dimensionless 100	

coefficients. For given a and b values this equation describes how the fractional change in WUE at 101	

each location varies with fractional changes in Ca and D. Although they differ in their underlying 102	
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assumptions and detailed conclusions, it is interesting to note that the latest stomatal optimization 103	

theories (Katul et al. 2010; Medlyn et al. 2011) both imply a=1 and b=-0.5 (see SI Appendix).  104	

 105	

We focus in this study on fractional changes in WUE, which are more likely to be independent of 106	

these complex factors. Therefore, we use two very different datasets of WUE, derived from tree ring 107	

measurements and eddy-covariance fluxes and aim to model the fractional changes in plant WUE by 108	

using atmospheric data alone. The longer-term climate signals are derived from the tree rings, 109	

spanning at least the last 100 years. Monthly WUE values are derived from eddy-covariance 110	

observations between 1995-2006. We do not assume the applicability of stomatal optimization 111	

theories, but instead adopt equation 5 as a parsimonious empirical model for the fractional changes 112	

in WUE observed at each measurement site, given suitable fitting parameters a and b. Tests using 113	

more elaborate statistical models, with additional environmental variables or vegetation-specific 114	

parameters, were not found to produce significant improvements in the fit to the observed changes in 115	

WUE despite the introduction of extra fitting parameters. Finally, we have compared our 116	

reconstruction of the fractional change in plant WUE to Earth System Models (ESMs) simulations, 117	

focussing on regional variations in the WUE changes and how these compare to the long-term tree 118	

ring observations.  119	

 120	

  121	
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2. Materials and Methods 122	

We estimate the sensitivity of WUE to Ca and D by fitting to WUE changes inferred from both eddy-123	

covariance fluxes (relatively short records with high-temporal resolution) and carbon isotope records 124	

from tree-rings (longer-term records with annual resolution). We use observations from 28 eddy-125	

covariance and 31 tree-ring sites (see Figure 1 and SI Appendix, Tables S1 and S2).  126	

 127	

2.1 Eddy-covariance observations.  128	

The carbon and water flux observations were taken from the Free Fair-use Fluxnet database 129	

(www.fluxdata.org) (Baldocchi 2008; Papale et al. 2006; Reichstein et al. 2005). We selected a total 130	

of 28 sites based on data availability (Table S1). Monthly WUE was estimated from Equation 1 with 131	

GPP used directly from the database (Reichstein et al. 2005). In general the total latent heat flux (LE) 132	

has contributions from interception loss, soil evaporation and transpiration. We follow previous 133	

studies (Dekker et al. 2001; Groenendijk et al. 2011; Keenan et al. 2013; Law et al. 2002) in assuming 134	

that the latent heat flux is dominated by transpiration during periods with no rain in the preceding two 135	

days, when the interception loss and soil evaporation are assumed small. Monthly average values of 136	

GPP, ET, Ca, D and T were calculated from half-hourly observations (not gap-filled) during dry 137	

periods (i.e. no rain in the preceding two days) when GPP was larger than zero. To exclude periods 138	

with unrealistic WUE values due to the division by very small ET values, we used only months during 139	

the growing season. Annual average growing season values were calculated from the months with an 140	

average temperature above 10oC. Only sites with at least 6 annual values were used, resulting in a 141	

dataset of 222 annual growing season values of WUE, Ca and D. Data are used between 1995 and 142	

2006. Fractional changes were calculated relative to the mean over the observational period for each 143	

of the sites, to enable comparison between sites. 144	
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2.2. Tree-ring observations.  145	

To derive a longer-term relationship between the fractional change in WUE and variations in Ca and 146	

D, we used Δ13C tree-ring observations from 31 locations (Figure 1), ranging from 1900 to current, 147	

as described in two previous studies (Franks et al. 2013, Hemming et al. 1998) (see SI Appendix, 148	

Table S2). The discrimination of 12C against 13C (Δ13C) is estimated from the tree-ring samples 149	

(Hemming et al. 1998; van der Sleen et al. 2015). The Δ13C measurements can be used to estimate 150	

the ratio of the internal to the external CO2 concentration (f=Ci/Ca) using the relationship: f = (Δ13C 151	

-4.4)/ (27-4.4), where Δ13C is in parts per thousand (‰), and Ca is taken from the Mauna Loa 152	

atmospheric CO2 record (Farquhar et al. 1989; Franks et al. 2013; Keeling et al. 1976). WUE is 153	

estimated with Equation 4 using annual average growing season values of D from the CRU dataset, 154	

taking the nearest pixel to each site (Harris et al. 2013). This large-scale dataset for D ensures 155	

consistency among the sites, but may underestimate the finer spatial variation in D. As for the eddy-156	

covariance sites, we estimated the fractional changes relative to the mean over the observational 157	

period at each of the sites. For this analysis we have 1007 observations of WUE derived from tree-158	

ring observations of Δ13C. 159	

 160	

2.3 Fractional WUE 161	

To estimate a and b with a linear regression model we rewrite Equation 5 in a logarithmic form: 162	

 163	

ln 1 + ∆EF'
EF'(G)

= 𝑎 ln 1 + ∆:;
:;(G)

+ 𝑏 ln 1 + ∆C
C(G)

    (6) 164	

 165	

Here the second-term in each bracket represents the fractional change in WUE, Ca and D, respectively. 166	

These fractional change variables are used in all our subsequent statistical analyses and modelling. 167	
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We set out to fit the fractional change in WUE at each observation site (Figure 1) from the fractional 168	

change in Ca and the fractional change in D. For comparison and fitting we therefore need to calculate 169	

WUE(0), Ca(0) and D(0) for the observational data, which we take as the mean over the entire 170	

observational record available at each site. 171	

 172	

2.4 Global fractional change of WUE 173	

The dependence of fractional changes in WUE on Ca and D allows us to use these relationships to 174	

estimate changes in WUE at large scales using global climate data. The fractional change in D can be 175	

further partitioned into a change in temperature (T) and relative humidity (RH), which makes it 176	

possible to separate the effect of changes in these variables on WUE (see SI Appendix). To do this, 177	

we used the CRU climate dataset (Harris et al. 2013) at a 0.5o × 0.5o latitude/longitude grid and the 178	

annual CO2 concentration at Mauna-Loa (Keeling et al. 1976) to derive the global and local variation 179	

in WUE. We only used months during the growing season when photosynthesis occurs, assumed to 180	

be above a monthly average temperature threshold of 10oC. For the period 1900-1930 the average 181	

temperature was calculated for each month from which a spatial mask was generated (SI Appendix, 182	

Fig. S4). This mask was then used to calculate annual time-evolving values of WUE from the growing 183	

season values of temperature and humidity for each year between 1901 and 2010.  184	

 185	

2.5 Other independent data sources  186	

For three locations, Western North America, Western Europe and East Asia, we have compared our 187	

simulated fractional change in plant WUE with remote sensing (RS) products of GPP and ET (Jung 188	

et al. 2011). This dataset covers the period 1982-2006; we use the period 1986-1990 as a reference 189	

period for both our estimate and the fractional change in WUE from the RS product. As the RS data 190	
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does not cover a response to changes in Ca, we estimated the fractional change in WUE with and 191	

without the Ca response.  192	

At the global scale, we have compared our simulated fractional change in plant WUE with simulations 193	

of Earth System Models (ESMs). Most of the latest ESMs calculate changes in both GPP and ET. 194	

This allows a comparable change in WUE to be calculated for 28 CMIP5 models (Taylor et al. 2012) 195	

based-on their historical simulations. Finally, regional differences in responses are compared to the 196	

31 tree ring observation sites.   197	
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3 Results and Discussion 198	

Figure 2 summarises the derivation of the a and b parameters, which are the sensitivity of WUE to Ca 199	

and D, for the tree-ring and eddy-covariance observations. In general, eddy-covariance data alone is 200	

unable to fully constrain the CO2 sensitivity of the WUE (Keenan et al. 2013), because the data records 201	

are too short to sample significant changes in CO2, resulting in a value of a of 0.79±0.79 for all eddy-202	

covariance site (SI Appendix, Fig. S1 and Table S3). However, the longer tree-ring records overall 203	

yield a good constraint on a of 1.61±0.54. The annual data-points for the two datasets can be 204	

combined into a single dataset. Fitting against this more complete dataset gives generic sensitivity 205	

coefficients of a=1.51±0.57 and b=-0.72±0.16. These values are mainly constrained by the tree-ring 206	

observations for which the fits to equation 6 are more tightly defined (Fig. 2a and SI Appendix, Fig 207	

S1 top row).  208	

A value of a larger then 1, suggests that WUE has been increasing even faster than the atmospheric 209	

CO2 concentration (Fig. 2c). This is qualitatively consistent with conclusions from a previous study, 210	

which was based purely on eddy covariance data (Keenan et al. 2013), but is more robustly 211	

demonstrated here due to the much longer tree-ring records.  212	

 213	

It is interesting to note that our overall values of a=1.51±0.57 and b=-0.72±0.16 are larger by about 214	

50% than the values derived from stomatal optimization theories: a=1.0, b=-0.5 (Cowan and Farquhar 215	

1977; Katul et al. 2010; Palmroth et al. 2013), indicating a stronger response to changes in both CO2 216	

and climate. Such theoretical sensitivities are common to variants of stomatal optimization theory, 217	

including those that assume either electron transport-limited or Rubisco-limited photosynthesis, and 218	

even when additional nitrogen limitations are accounted for (Prentice et al. 2013). The differences 219	

between the optimization theory and our empirically derived WUE sensitivities may arise from 220	
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differences between leaf-surface and atmospheric values of CO2 and humidity, but they may also be 221	

indicative of missing constraints and feedbacks in the optimization theories (Lin et al. 2015; Prentice 222	

et al. 2014; de Boer et al. 2011, 2016). 223	

 224	

Testing more elaborate statistical models.  225	

Equation 6 is motivated by empirical evidence and theory suggesting that WUE should vary 226	

predominantly with Ca and D.  However, it is conceivable that the fractional change in WUE could 227	

also depend on other environmental conditions or the detailed vegetation type. In order to test for this, 228	

we carried out two additional sets of fits against the observational data. In the first test we extended 229	

our statistical model (equation 6) to include other environmental variables that had been measured at 230	

the Fluxnet sites, most notably solar radiation, air temperature, and soil water content. Including these 231	

additional predictor variables does not significantly improve the fit to the observed changes in WUE 232	

(as measured by r2), and typically results in less robust predictions (as measured by the adjusted r2), 233	

because of the introduction of extra fitting parameters (SI Appendix, Table S4). In the second test, 234	

we carried out separate statistical fits for each of the sites listed in the Fluxnet dataset. Clustering of 235	

these values by vegetation type would indicate that a and b parameters are dependent on vegetation 236	

type, but we find no evidence of such clustering (Figure 3). 237	

 238	

Comparison to independent WUE estimates.  239	

Our best-fit generic a and b parameters are able to reasonably reproduce the fractional changes in 240	

WUE due to fractional changes in both Ca and D across the 59 tree-ring and eddy-covariance sites (SI 241	

Appendix, Fig. S2). However, it is important to evaluate the estimated response of WUE to Ca and D 242	

against independent data. We compared the change in WUE estimated with the best-fit parameters to 243	
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observations at three tropical tree-ring sites from a recent study (van der Sleen et al. 2015). At these 244	

sites a range of species of both trees and under-storey were sampled. Our estimate for these three 245	

locations passes close to the mean of the observed WUE fractional changes (Fig. 4a-c). Because the 246	

RS data does not include a response to changes in Ca, we estimated a fractional change in WUE with 247	

and without this response (Fig. 4d-f) for three regions, which show distinct changes in WUE: Western 248	

North America, Western Europe and East Asia. The RS fluxes show little inter-annual variability, 249	

and much less variability than we estimate. For the three regions in Fig. 4d-f our estimates with and 250	

without CO2 effects sit on either side of the RS estimates. In the Amazon, South Africa and South 251	

East Asia (see SI Appendix, Fig. S3) our estimates excluding CO2 effects are similar to the RS 252	

estimates, whilst the inclusion of CO2 effects leads to significant increases in WUE (SI Appendix, 253	

Fig. S3) that appear to be inconsistent with the RS estimates (which do not account for CO2 changes), 254	

but are more consistent with the tree-ring (Franks et al. 2013) and eddy-covariance data (Keenan et 255	

al. 2013).  256	

 257	

Global fractional change of WUE.  258	

Globally, we estimate that WUE has increased by 48±22% since 1900 (Fig. 5a), with the CO2 increase 259	

contributing +47±21% and relative humidity contributing +3.6±1.3%, counteracted  by a much 260	

smaller reduction in WUE due to warming of -2.3±0.8%. Estimated fractional changes in WUE 261	

between 1901-1930 and 2001-2010 differ regionally between 0.1 and 0.6 (Fig. 5b). Uncertainties in 262	

global WUE changes were derived from the range of the parameters a and b within 5% of the RMSE 263	

of our best fit (Fig. 2c).  264	

 265	

Comparison to simulations with complex Earth System Models (ESMs).  266	
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The CMIP5 models simulate an increase in WUE of between 2% and 28% to 2005, with an ensemble 267	

mean of 14% (SI Appendix, Table S5). For comparison, our overall fit against the tree-ring and eddy-268	

covariance data indicates an approximately 40% increase in WUE over the same period. Figure 6 269	

compares the annual time-series of the fractional changes in WUE from the CMIP5 models (black 270	

line and green uncertainty plumes), our statistical fit (orange lines), and the mean changes observed 271	

for the tree-ring (black marks and grey uncertainty bars) and eddy-covariance sites (dark blue marks 272	

and light blue uncertainty bars). This comparison suggests that the latest ESMs significantly 273	

underestimate the historical increase in WUE. 274	

 275	

Regional changes in WUE.  276	

Our global average change in WUE hides substantial regional differences (Fig. 5b). This is a result of 277	

the spatially and temporally varying impact of climate change on WUE (Fig. 7a and animation in the 278	

Supporting Information), driven by the heterogeneity of the warming (Fig. 7b) and the large variation 279	

in changes in near-surface RH (Fig. 7c). In many regions the overall impact is a significant increase 280	

in WUE, such as Western North America (Fig. 7d). However, the recent rate of increase has declined 281	

substantially in several heavily populated regions. For example, WUE shows a slower increase in 282	

Western Europe since the 1980s, as a result of increases in T, which has counteracted the WUE 283	

increase due to increasing CO2 (Fig. 7e). This is also observed in WUE trends derived from isotopic 284	

tree-ring observations in Spain (Linares et al. 2012). Our analysis indicates that East Asia has suffered 285	

an even more significant suppressions of WUE since about 1990, due predominantly to reductions in 286	

RH (Wang et al. 2012) (Fig. 7f). This pattern of changing RH is comparable with the trends in 287	

precipitation and drought since 1950 (Dai 2011).  288	
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For the 31 tree ring observation sites, we have plotted the ensemble mean regional ESM model results 289	

against the individual observed tree ring data (Fig. S5). For 10 out of 31 observation sites, the 290	

simulated fractional WUE increases between 5-10%. For 3 out of the 31 sites, the fractional WUE 291	

increases by more than 50%, and for 14 out of the 31 observation sites the WUE change inferred from 292	

the tree ring data is significantly higher than that simulated by the ESMs.  293	

  294	
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4. Conclusions 295	

This study shows that fractional changes in plant WUE, at large-scales and over the period of the 296	

climatological record, can be inferred from atmospheric data alone. By combining two very different 297	

datasets of WUE derived from tree-ring Δ13C measurements and eddy-covariance fluxes we have 298	

derived a consistent response of the fractional change in WUE to the fractional changes in Ca and D. 299	

This generic response can be used to estimate WUE changes over the entire period of the atmospheric 300	

record.  Our analysis shows that global WUE increased by approximately a half over the 20th century 301	

predominantly due to rising CO2, which is significantly more than is simulated by the latest Earth 302	

System Models. However, this increase in WUE has been modulated downwards in recent decades 303	

by the impact of climate change. This is especially true for the highly populated regions of Western 304	

Europe and East Asia, where reductions in atmospheric relative humidity and increases in temperature 305	

have acted to offset increases in WUE due to increasing CO2. We conclude that the effects of 306	

increasing CO2 on plant WUE are significantly underestimated in the latest climate projections. 307	

 308	

 309	
 310	
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Figure Legends:  443	

 444	
Figure 1. Locations of the eddy-covariance flux sites and tree-ring sites used (see Table S2 and S3 445	

for a list of the sites). Tropical tree-ring sites are used as independent data sources for comparison.  446	

 447	
Figure 2. Water Use Efficiency (WUE) from tree-ring and eddy-covariance observations. The 448	

relationship between the observed fractional change in WUE and the fractional change in (A) CO2 449	

concentration and (B) humidity deficit of both datasets is fitted to Equation 3,with best-fit values for 450	

a (1.51±0.57) and b (-0.72±0.16). (C) The colors show the root mean square error (RMSE) of the 451	

simulated vs. observed fractional change in WUE as a function of a and b, with the black area 452	

representing the best parameters within 5% of the RMSE of the best fit (white star). The black star 453	

represents the values according to the optimality hypothesis. 454	
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 455	
Figure 3. Comparison of best-fit a and b parameters (see equation 5) by plant functional type (PFT). 456	

Here the sites are organized by dominant PFT, using classifications used for the FluxNet sites: 457	

evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), mixed forest 458	

(MF), wetland (WET) and woody savannah (WSA). 459	

  460	
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 461	
Figure 4. Comparison of estimated Water Use Efficiency trends to independent observations.  462	

Simulated fractional change in WUE (orange) compared to observations for three tropical tree-ring 463	

sites in Bolivia (A), Cameroon (B) and Thailand (C) (blue, van der Sleen 2015). Simulated fractional 464	

change in WUE for (D) Western North America, (E) Western Europe and (F) East Asia, with (dark 465	

red) and without  (orange) CO2 effect, compared to the WUE trend derived from a remote sensing 466	

product of carbon uptake and water loss (Jung et al.  2011). The location of the tree-ring sites is 467	

presented in Fig. S1 and the regions D-F are as in Fig. 5. 468	
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 470	

 471	
Figure 5. 20th century fractional change of Water Use Efficiency (WUE). (A) Time series of the 472	

estimated global fractional change in WUE (orange, relative to the average over 1901-1930) 473	

partitioned into the effects of changes in CO2, relative humidity and temperature. (B) Spatial pattern 474	

of the estimated fractional change in WUE between 1901-1930 and 2001-2010. These calculations 475	

use observed monthly surface air temperature and vapour pressure (Harris et al. 2013) during the 476	

growing season, and annual atmospheric CO2 concentrations at Mauna Loa (Keeling et al. 1976).  477	
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 479	

 480	
Figure 6.  Comparison of measured and modeled fractional changes in WUE from 1860 to 2010. 481	

Estimates from tree-rings and eddy-covariance data are shown by the black and blue points 482	

respectively, with the bars in each case showing +/-1 standard deviation about the mean response. 483	

The results from complex coupled Earth System Models are shown by the black continuous line and 484	

the green plume (with dark green showing one standard deviation and light green showing two 485	

standard deviations). The algorithm presented in this paper, which estimates fractional WUE changes 486	

from changes in CO2 concentration and humidity deficit alone (equation 6), is shown by the orange 487	

lines. To enable the comparison between these different estimates, we normalized over common 488	

overlapping periods (for the tree-ring data and model simulations – 1900-1930; for the tree-ring and 489	

eddy-covariance data – the period of overlap when at least 3 eddy-covariance sites are available). 490	
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 492	
Figure 7. Changes in WUE arising from climate variables. Spatial patterns of the fractional changes 493	

in WUE arising from changes in (A) climate, i.e. both temperature and relative humidity (RH) 494	

together, (B) temperature alone, and (C) RH alone, between 1901-1930 and 2001-2010. Time-series 495	

are as in Fig. 5 for (D) Western North America, (E) Western Europe and (F) East Asia, which show 496	

the large regional and temporal variations in these climate-driven changes in WUE.  497	


