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S1. Statistical method

The principal method used in this paper is the Maronna-Yohai (1978) bivariate test using a modified formulation of Biicher

and Dessens (1991) with reference to Potter (1981).

This formulation is from Biicher and Dessens (1991) based on normalised data with no trend. It takes advantage of the

normalisation step to allow simpler structure. According to the authors, it was obtained from Potter, although the method

published in Potter (1981) is essentially that of Maronna and Yohai (1978).

In the following, primes reference un-normalised data and functions, normalised data in step 2 is denoted by removal of primes.

This usage has been slightly modified from Biicher and Dessens (1991). Additionally, the second part of (Eqn. S4) corrects

an inconsistency in that paper.

Let x;, i = 1...n be a stationary reference time series and y;, { = 1...n be a test time-series which is assumed to correlate to

x' except for a single shift at some time io.

Step 1. Standardize series.
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The time associated with Tj, represents the time at which a change occurs and its successor is the first time of the new regime.
A mean shift can be computed. For the null trend case, critical values of T; are provided by Maronna and Yohai (1978) for
two-tailed, alpha levels of (0.1, 0.05, and 0.01) for the null hypothesis of no change, given time series lengths of 15, 20, 75
and Potter (1981) provides these for 100. An interpolating function is used to generalize these results for time series of varying

length.

S1.1 Multi-step bivariate test: application

The purpose of constructing a rule-based process for analysing multiple step changes in a time series, is to remove the need to
make individual decisions that utilise the experimenter’s judgement, as was the case in earlier papers. It also allows multiple
sampling and the addition of randomness, which increases the robustness of the results. The model and its testing is further
described in (Ricketts and Jones, 2016).

The bivariate test, rule-based process and diagnostics are coded in Python 2.7.6, developed with the Spyder environment (©
2009-2012 Pierre Raybaut), running in 32-bit Windows 7 and 64-bit Windows 8.1 environments. Moba-Xterm PE v7.2, a
windows based Unix emulator, was used to support some collation of results, and data acquisition. Output data was compiled

into *.csv files for further testing.

S1.2 Description

The method is a technique for segmenting time series with zero to many step changes in the mean. The test returns a list of
break-points that divide a time series into segments bounded by statistically significant step changes, except for the start and
the end. The routine consists of a screening pass, which produces a first approximation break-list. This break-list is iteratively
refined by a convergent pass. Both passes are described below. Each application of the test is subject to a resampling test,
which determines the resilience of a step-point determination to noise. One hundred iterations sample a test series against a
randomly selected reference time series.

The method is probabilistic. Each iteration returns a list comprising a set of shift points, their timing and magnitude and null
probability against a serially independent reference, along with a variety of diagnostic variables. A time series with distinct
step changes will return the same list for a set of iterations, whereas others may yield several variations. This is especially the
case for areal averages that integrate local changes from two or more regions, data with quality issues, or where autocorrelation
due to trending behaviour or other processes is present.

Resampling test. The bivariate test is repeated 100 times using different random sequences and the i values and associated
Tio, and shifts are collated by mode.

1. On the screening pass only the modal value is examined.

2. On the convergent pass additional selection rules apply. The mode and second mode are examined. There may be a

single mode (e.g., 100% selection), or the two modes may be close together or well separated.
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The io (time i preceding the shift) returned by the resampling test is the modal value (i.e., most frequent) of each test. Similarly
Tio, and shift magnitude are the mean of those values associated with ip. A segment contains a breakpoint in position i if Tig
exceeds the critical T; value for segment length with a given probability.

Screening pass. This is a binary segmentation technique, similar to that used in similar applications(Scott and Knott,
1974;Killick et al., 2012). The entire time series is analysed for a single breakpoint using the resampling test (100 iterations).
If Tio is significant (p<0.01), then the segment up to and including iy is analysed for an earlier break, and the segment after io
is analysed for a later break. This process is repeated for the sub-segments so formed until no significant breaks are found. The
result is a series of breakpoints which are then refined on the convergent pass. Because breakpoints found on this pass are
returned on the basis of a recursive process, end point effects caused by sampling time series of different lengths may influence
the results.

The role of the convergent pass is to combine segments to determine whether the screening pass has oversampled for steps
and also to ensure that the selected break points are robust within the selected segmentation.

Convergent pass. The list of n breakpoints from the screening pass breaks the original time series into S=n+1 segments. The
algorithm then works its way from earliest to latest segments combining consecutive segments into one, and then searching
within that segment using binary segmentation to produce a candidate list from which two most frequent iy values are retained
(in practice there are rarely more than two and usually just one). There are two special cases, segments 1 and S which are
analysed individually at either end of this process to cover the impact of end point adjustments. This procedure will sometimes
reduce the number of step changes from the screening pass.

The convergent pass is reiterated until it produces the same list for a second time and this is returned as the final result.

This pass incorporates some decision rules.

1. A prohibition period of seven years is applied at the start and the end of the time series, and after a break point
before another point will be accepted. This is because the bivariate test is sensitive to end effects.

2. If the modal year is within the prohibition period from the previous break point, then the two are compared. A
resample test is conducted by extending the segment backwards to the start date of the previous segment. If it is a
valid break, this then replaces the previous break, otherwise the previous break is retained, and a small “safety
margin” is added for one iteration to the low bound of the first segment next time round to prevent the point being
re-selected.

3. If the mode is equal to or >90%, or the first mode is >50% and the second mode is > 20% then the modal year is
accepted, else it is dropped.

4. If after this, a segment contains a single breakpoint, it is retained.

5. If'the candidate list is empty, that is, a segment no longer contains a breakpoint then the two segments are merged

and treated as a single segment on the next iteration.
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6. If the candidate list contains more than one point then the earliest two are retained and the rest discarded. The two
points are then trialled using a resampling test to determine if the interval up to the later of the two still contains a

break, and if this is still present, it is retained. If not, then the second candidate is similarly tested.

S1.3 Considerations about the multi-step bivariate test
S1.3.1 The role of time

This analysis treats time unidirectional. The bivariate test itself selects the last time before a change so is asymmetric. The
convergent pass operates from earliest to latest, revising provisional breakpoints and then using them to delineate later
breakpoints. On each pass, as soon as a breakpoint is provisionally established, it is used, and no other information is preserved.
Therefore, every breakpoint is complete unto itself, and the segment within which it is embedded has its own statistics. This
means that the final set of segments, broken up by the final set of breakpoints, consists of a series of segments, each of which
has its own variance, mean and shape parameters, and embedded trend. The analysis treats each segment as independent, but
whether physical dependence (including memory) or otherwise, can be assumed, remains to be assessed. Information theory
approaches to assessing statistical best fit may also break down because the system may not deliver the same information

between break-points. This is certainly the case for other complex systems covering economics and ecology.

S1.3.2 End point effects

The determination of a breakpoint in a time series is sensitive to all of the data including the first and last elements, but is less
reliable near the start and end of that series (Vives and Jones, 2005). This affects two aspects of the analysis:

1. Previously determined shift points become end points when a subsequent segment is tested, making nearby
observations more sensitive to end effects. This is the principal reason for the 7-year restriction on break-points.
However, temperature data can also produce peaks/troughs due to interannual variability giving a multi-modal
distribution of potential break points clustered around an underlying shift. Altering segment lengths can potentially
alter the distribution of these modes, therefore leading to the application of decision rules 1, 2 and 6 above, to
determine the most robust outcome.

2. The choice of starting year.

1. The quality of long-term climate data characteristically degrades backwards in time. This may produce
artificial break-points, move existing ones, or simplify ‘natural’ variability. Autocorrelation may also be
introduced by some infilling methods. Early shift points should not be regarded as being as reliable as
more recent dates.

ii. If the data record starts just before a true shift point or is influenced by a truncated sequence of low or high

years then the next (and to a lesser extent, consequent) dates may be affected.

On balance it is much better to start an analysis from the earliest date available, unless data quality is clearly compromised.

4
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S1.3.3 Assumptions

The bivariate test itself assumes two variates that are both stationary, except that the test variate may have a single point change
in the mean. A time series that has multiple shift points will register only one value of Tj and other points cannot be relied
upon. Sometimes the original value of Tig will be removed once the time series is segmented, because it is an ‘average’ of
several others.
The assumption of serial independence is very important. A number of studies have concluded that observed annual
temperature and rainfall records fulfil that stricture. Such climate data may also contain components of autocorrelation and
variable trends. Some of the variability of trend may simply be redness (drift due to persistence of previous values), some may
represent transient processes. However, autocorrelated data such as regional or global mean sea level, sea surface temperature
or climate data divided into a monthly or quarterly time series may lead to statistical significance being over-estimated,
although the timing of a shift will remain accurate. In the paper, we use the t-test to address this, but when autocorrelation is
due to a sustained trend in a time series that contains both steps and trends, the t-test also will give misleading results.
Here we treat annual temperature data as a signal composed of a small but arbitrary number of linear segments delineated by
step changes, and embedded in Gaussian noise. The impact of trend is on the assigned significance of the shift returned from
the bivariate test, rather than its timing. Additionally, a change of trend when there is no step may cause the bivariate test to
allocate a step some years after the change of trend. These can all be determined in post-processing.
A time series that contains nothing but a general trend and variation, will have two properties when analysed by our method:
1. The sum of steps will converge on zero.
2. The probabilistic test will be dominated by random sampling of the reference variate and the number of different

break-point lists will increase — that is, it will return unstable sets.

S1.3.4 Diagnostics

Every iteration of the 100 break-list runs that comprise an analysis produces a csv file of results, plus a trace of the decision
process. The trace file contains the initial data as well as a summary of the break dates with some QA diagnostics. All 100
trace files are collated and the diagnostics are given for each analysis. This includes Tio, Shift, Modal Year, Modal Frequency,

The Second Modal Year and its frequency.

S1.3.5 Terminology

The language of non-linear change is nowhere near as established as is the language for trend analysis. Here we use the
following terms in the ways described:
e Break, break-point, break-year: a break denotes an abrupt change in statistical characteristics of any kind (e.g.,

change in trend, variance).
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o  Shift: in the paper a shift is the distance between the end of one internal trend and the beginning of the next across a
step change.

e  Step: an abrupt step-like change as measured by the test.

S1.4 Calibration of the method.

The method has been calibrated against synthetic data composed with variable lag one/seven autocorrelation, variable number
of shift points, varying trends and changes of trend. Its performance has also been tested for its ability to locate a randomly
timed shift point in a random series to which is added varying shifts, varying trends up to those well in excess of any climate

model run, and simulating a random shift month within the simulated shift year.

S2. Data sources
S2.1 Global mean surface temperature

Time series tested are mean annual global air temperature anomalies from five groups (GISS, HadCRU, NCDC, C&W and
BEST), hemispheric temperatures from three groups (HadCRU, NCDC and GISS) and zonal temperatures from two groups
(NCDC and GISS). Tropospheric satellite temperatures from two groups (RSS and UAH) are also tested (Table S1).

Table S1: Source groups for 20" century observations, surface and satellite.

Name Version | Download | Base Global | Hemi- | Zonal | Land- | References
date Period spheric Ocean

BEST 15 Jan 1951 Y N N N (Rohde et al., 2013a;Rohde et
2015 1980 al., 2013b)

COWTAN & | 2.0 15 Jan 1961— Y N N N (Cowtan and Way, 2014)

WAY 2015 1990

GISSTEMP3 | V3 15 Apr 1951- Y Y N N (Hansen et al.,

2015 1980 1988;GISSTemp Team, 2015)

HadCRUT4 4.3.0.0 |25 May 1961— Y Y Y Y (Jones et al., 1999;Jones et al.,

HadSST3 3.1.1.0 | 2015 1990 2001;Brohan et al.,

CRUT4 4v 2006;Rayner et al.,
2006;Kennedy et al.,
2011;Jones et al., 2012;Morice
et al., 2012;0sborn and Jones,
2014)

NCDC v3.5.4. 18 Mar “20th C Y Y Y Y (Smith et al., 2008;Vose et al.,

201504 | 2015 Average” 2012)
Satellite based atmospheric temperature estimates, Lower Troposphere to Lower Stratosphere
RSS V03.3 7 May 1979- Y Y Y Y (Mears et al., 2003;Mears and
2015 1998 Wentz, 2009b, a)
UAH 6.0.beta | 5 May 1981- Y Y Y Y (Christy et al., 2000)
2015 2010
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S2.1.1 NDCD zonal data version v3.5.4.201504.

Annual and monthly files in ASCII format covering land, ocean, and combined land and ocean were downloaded on 29 May

2015 from ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products/ using wget in recursive mode. Each file contains data

for one zonal average and for one of land, ocean and combined land and ocean.

The zonal averages were over: 90°S—90°N (Global), 90°S—0°S (°Southern hemisphere), 0°N-90°N (Northern hemisphere),
90°S-20°S, 60°S-30°S, 60°S—60°N, 30°S—0°N, 0°N-30°N, 20°S-20°N, 20°N-90°N, and 60°N-90°N.

Data in the files labelled as 90°S—60°S for all three subsets was clearly corrupted on receipt and was not used.

The data format is documented on-line in the file

ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products/readme.timeseries,

Annual averages are as provided, rather than simple averages of monthly values.

S2.1.2 GISSTEMP_3

Data was downloaded on 15 April 2015 in ASCII from http://data.giss.nasa.gov/gistemp/tabledata_v3/ZonAnn.Ts+dSST.txt

and format converted to CSV for use.

All values are multiplied by 0.01 to produce degrees C, as per the metadata in the file.

S2.1.3 Cowtan and Way

Data representing annually averaged was downloaded in ASCII format on 15 Jan 2015, from http://www-

users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual v2_0_0.txt
Both annual and monthly data were downloaded but this initial analysis was of the annual data only.

Data is described at http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html.

S2.1.4 Berkeley

Data representing annual averaged mean global temperature was downloaded in ASCII format on 15 Jan 2015 from

http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_summary.txt

Two versions are present in the file. The data used in this study is from column 1, ‘Annual Anomaly’ computed by extrapolation

of temperature in the presence of sea ice by using land-air temperature surface anomalies.

S2.1.5 NCDC Land, Ocean, and combined Land and Ocean data

Seasonal analysis was based on data downloaded on 18 Mar 2015, as individual csv files, one per month, using the wget utility

from  http://www.ncdc.noaa.gov/cag/time-series/global/$extent/$set/1/1/*.csv. where $extent is replaced by one of

[“global”,”nhem”, “shem”] and $set is one of [“land”,”ocean”,”land ocean”]. The year 2015 is not complete and

corresponding values were ignored.
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Seasonal averages were computed as simple averages of the monthly values.

Annual averaged data was downloaded interactively from http://www.ncdc.noaa.gov/cag/ on 26 May 2015 (the same site)

using 12 Month time scales to December for global and hemispheric extents giving a total of nine files.

S2.1.6 Hadley/CRU Land, Ocean, Land and Ocean data

Data reported here was downloaded on 25 May 2015 as ASCII text files from http://www.metoffice.gov.uk/hadobs/ File

formats are described algorithmically at http://www.metoffice.gov.uk/hadobs/hadcrutd4/data/current/series_format.html
Monthly and seasonal analyses were performed using the appropriate monthly values, corresponding annual averages were
drawn from the last column.

S2.2 Satellite derived lower tropospheric temperature data, RSS and UAH

S2.2.1 RSS

The front page for this organisation is at http://www.remss.com/. Information on upper air temperatures is at

http://www.remss.com/measurements/upper-air-temperature.

One complex data set is provided, Temperature of Lower Troposphere (TLT), “constructed by calculating a weighted
difference between measurements made at different Earth incidence angles to extrapolate MSU channel 2 and AMSU channel
5 measurements lower in the atmosphere”

Data for Land, Ocean, and Land and Ocean were downloaded in a simpler ASCII format, all bands on one line per month per

year, on 7 May 2015 from ftp:/ftp.remss.com/msu/data/uah_compatible format

Data files are from Jan 1979 to present.
Anomalies are computed by subtracting the mean monthly value determined by averaging 1979 through 1998 data for each
channel from the average brightness temperature for each month. The set of 12 month means for 1979 to 1998 are included

in the netCDF files available on the ftp server (ftp.remss.com/msu)

S2.2.2 UAH

These data are version 6.0.beta.

UAH: Data were downloaded on 5 May 2015 from http://vortex.nsstc.uah.edu/data/msu/v6.0beta/.

http://vortex.nsstc.uah.edu/data/msu/v6.0beta/tlt/uahnede_1t_6.0betal

A readme file is at http://vortex.nsstc.uah.edu/data/msu/docs/readme.msu.

2.2.2.1 Data formats

Data looks like this, from December 1978 onwards.

Year Mo Globe Land Ocean NH Land Ocean SH Land Ocean Trpcs .. AUST
1978 12 0.86 0.21 1.11 0.26 .. 2.57
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2.2.2.2  Anomaly base period
As per metadata and confirmed by NCDC, 1981-2010.

S2.3 Model Data
S2.3.1

Data used are simulated annual mean surface temperature from the Climate Model Intercomparison Project (CMIP)3 and

CMIPS5 archives.

S2.3.2 CMIP3/AR4

Data were downloaded under script control 17 July 2014. Data were also reloaded and cross checked from the KNMI data
explorer web site on 25 Feb 2015 as per the CMIPS5 data below. In all, 102 model runs were downloaded, with 14 being
ensembles, and the rest being independent runs.

Within the metadata for each file are model name and identifiers, which are either run<N> or E<L> where L is the list of run
numbers in an ensemble average. The models, their forcing, and run and ensemble numbers are listed in Supplementary Table
1.

Models were forced by observed natural and anthropogenic factors to 2000 or 2001, and by SRES scenarios Alb or A2 through
to 2099 or 2100. The BCC model is an exception, being forced by the SRESA2 scenario from 1871.

Table S2: List of modelling groups and global climate models used for simulations of 20th and 21st century climate, available from
the CMIP3 database managed by PCMDI http://www-pcmdi.llnl.gov/ipec/info_for analysts.php. The forcing factors for 20 century
climate are: G — Well-mixed greenhouse gases, O — Ozone, SD — Sulfate direct, SI — Sulfate indirect, BC — Black carbon, OC —
Organic carbon, MD — Mineral dust, SS — Sea salt, LU — Land use, SO — Solar irradiance and V — Volcanic aerosol. Updated from
(CSIRO and BoM, 2007).

ce . Forcings wused in . Runs &  Start
Originating Group(s), Country Model model simulations Scenarios (Eynsembles  date
Bjerknes Centre for Climate BCCR G.SD SRESAIb | 1 1850
Research, Norway

Beijing Climate Center, China BCC G, SD* SRESA2 1 1871
. . SRESAlb | 1-5,E1-3 1850
Canadian Climate Centre, Canada CCCMA T47 G, SD SRESA2 ) 1850
Canadian Climate Centre, Canada CCCMA T63 G, SD SRESA1b |1 1850
SRESAlIb |1 1860

Meteo-France, France CNRM G, O, SD, BC SRESA?2 1 1860
. SRESAIb |1 1871

CSIRO, Australia CSIRO-MK3.0 G,0,SD SRESA? 1 1871
. SRESAIb |1 1871

CSIRO, Australia CSIRO-MK3.5 G, O,SD SRESA2 ) 1871
Geophysical Fluid Dynamics Lab, GFDL 2.0 G, O, SD, BC, OC, SRESA1b |1 1861
USA ’ LU, SO,V SRESA2 1 1861

9



Geophysical Fluid Dynamics Lab,
USA

NASA/Goddard Institute for Space
Studies, USA

NASA/Goddard Institute for Space
Studies, USA

NASA/Goddard Institute for Space
Studies, USA

Instituto Nazionale di Geofisica e
Vulcanologia, Italy

LASG/Institute of Atmospheric
Physics, China

Institute of Numerical Mathematics,
Russia

Institut Pierre Simon Laplace,
France

Centre for Climate Research, Japan
Centre for Climate Research, Japan

Meteorological Institute University
of Bonn, Meteorological Research
Institute KMA, Germany/Korea

Max Planck Institute for
Meteorology DKRZ, Germany

Meteorological Research Institute,
Japan

National Center for Atmospheric
Research, USA

National Center for Atmospheric
Research, USA

Hadley Centre, UK

Hadley Centre, UK

GFDL 2.1

GISS-AOM

GISS-E-H

GISS-E-R

INGV

IAP

INMCM

IPSL

MIROC-H

MIROC-M

MIUB

MPI-ECHAMS

MRI

NCAR-CCSM

NCAR-PCM1

HADCM3

HADGEMI1

G, O, SD, BC, OC,
LU, SO, V

G, SD, SS

G, O, SD, SI, BC,
OC, MD, SS, LU, SO,
v

G, O, SD, SI, BC,
OC, MD, SS, LU, SO,
v

G, SD
G, SD
G, SD, SO

G, SD, SI

G, 0, SD, BC, OC,
MD, SS, LU, SO, V
G, 0, SD, BC, OC,
MD, SS, LU, SO, V

G, SD, SI

G, O, SD, SI

G, SD,SO

G, O, SD, BC, OC,
SO, U

G, O, SD, SO, V

G, O, SD, SI

G, O, SD, SI, BC,
OC, LU, SO, V

SRESA1b
SRESA2

SRESA1b

SRESA1b

SRESAIb
SRESA2

SRESA1b
SRESA2

SRESA1b

SRESA1b
SRESA2
SRESA1b
SRESA2
SRESA1b
SRESA2

SRESA1b

SRESA1b

SRESA2

SRESA1b

SRESA2

SRESA1b
SRESA2
SRESA1b
SRESA2
SRESAI1b
SRESA2
SRESAI1b
SRESA2
SRESA1b
SRESA2

1-2, E1-2

1-3,E1-3

1-4,E1-4

1861
1861

1850

1880

1880
1880

1870
1870

1850

1871
1871
1860
1860
1850
1850

1900

1860

1860

1860

1860

1851
1851
1870
1870
1890
1890
1860
1860
1860
1860
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S2.3.3 CMIPS/ARS

Data were downloaded from the KNMI data explorer web site http://climexp.knmi.nl/ RCP4.5, RCP6.0 and RCP8.5 (7 Jan

2015), RCP2.6 (19 Feb 2015). Files were renamed under script control using metadata within the files to simplify.

Each line contains a year and one entry per month. Annual averages are calculated as simple averages of model months.

Notes:

1. The second line of metadata specifies the variable (tas: Temperature at Surface), the climate model the driving

emissions prescription/RCP and an ensemble member identifier composed of three parts (r911p1), as described in

the CMIPS5 reference syntax (http://cmip-pemdi.linl.gov/cmipS/docs/cmip5_data_reference syntax vO-

25_clean.pdf).

The ensemble member template is (r<N>i<M>p<L>). Identifiers relevant here are the run number (r(N)) and physics

perturbation (p(L)).

2. Model calendars in general do not reflect real world ones. So some models assume 30 days per month for a 360 day

year, some assume 365 day years with no leap years and a 28 day February. For simplicity, here annual averages are

simple averages of 12 monthly values.

Four multi-model ensembles were analysed: RCP2.6 (61 members), RCP4.5 (107 members), RCP6.0 (47 members) and
RCP8.5 (80 members). Details are listed in Table SI3.

Table S3: List of modelling groups and global climate models used for simulations of 20th and 21st century climate, available from
the CMIPS database http://cmip-pcmdi.llnl.gov/cmip5/availability.html, with run numbers (r(N)) and physics perturbations (p(L)),

and equilibrium climate sensitivity (ECS). ECS is taken from Sherwood et al. (2014) unless otherwise noted. If not allocated
otherwise, runs have the physical perturbation p1.

Change, Italy

11

Centre Model RCP2.6 | RCP4.5 RCP6.0 | RCP8.5 ECS
BoM/CSIRO, Australia ACCESS1-0 rl rl 3.79
BoM/CSIRO, Australia ACCESSI1-3 rl rl 3.45
Beijing Climate Center, China BCC-CSM1-1 rl rl rl rl 2.88
Beijing Climate Center, China BCC-CSM1-1-M rl rl rl

Beijing Normal University, China BNU-ESM rl rl rl 4.11
Canadian Climate Centre, Canada CanESM2 r1-5 rl-5 rl-5 3.68
National Center for Atmospheric |
Research, USA CCSM4 rl,3-6 rl-6 rl-6 rl-6 3.20
National Center for Atmospheric

Research, USA CESM1-BGC rl rl

National Center for Atmospheric 5
Research, USA CESM1-CAM5 r1-3 r1-3 r1-3 rl-2 4.10
Euro-Mediterranean Center on Climate CMCC-CM - -




Euro-Mediterranean Center on Climate

Change, Italy CMCC-CMS

Meteo-France, France CNRM-CM5 rl
CSIRO/QCCCE, Australia CSIRO-Mk3-6-0 r1-10
EC-Earth Consortium EC-EARTH 18,12
LASG/Institute of Atmospheric

Physics, China FGOALS-g2 rl
The First Institute of Oceanography,

SOA, China FIO-ESM

Geophysical Fluid Dynamics Lab, USA | GFDL-CM3

Geophysical Fluid Dynamics Lab, USA | GFDL-ESM2G

Geophysical Fluid Dynamics Lab, USA | GFDL-ESM2M
NASA/Goddard Institute for Space

Studies, USA GISS-E2-H rlpl-rlp3
NASA/Goddard Institute for Space

Studies, USA GISS-E2-H-CC
NASA/Goddard Institute for Space

Studies, USA GISS-E2-R rlpl-rip3
NASA/Goddard Institute for Space

Studies, USA GISS-E2-R-CC

National Institute of Meteorological

Research, South Korea HadGEM2-AO rl
Met Office Hadley Centre, UK HadGEM2-CC

Met Office Hadley Centre, UK HadGEM2-ES rl-4
Instlt}lte of Numerical Mathematics, INM-CM4

Russia

Institut Pierre Simon Laplace, France IPSL-CMS5A-LR rl-4
Institut Pierre Simon Laplace, France IPSL-CM5A-MR rl
Institut Pierre Simon Laplace, France IPSL-CM5B-LR

Centre for Climate Research, Japan MIROCS rl-3
Centre for Climate Research, Japan MIROC-ESM rl
Centre for Climate Research, Japan MIROC-ESM-CHEM | rl
Max Planck Institute for Meteorology

DKRZ, Germany MPI-ESM-LR r1-3
Max Planck Institute for Meteorology

DKRZ, Germany MPI-ESM-MR rl
Meteorological Research Institute, MRI-CGCM3 ‘1
Japan

Norwegian Climate Center, Norway NorESM1-M rl
Norwegian Climate Center, Norway NorESM1-ME rl

rl

rl
r1-10
rl,2,6,8,9,12

rl

rlpl-r5p3
rl
rlpl-r5p3
rl

rl

rl
rl4
rl
rl4
rl
rl
rl-3
rl

rl

r1-3

rl

rl
rl

r1-10

rlpl-rlp3

rlp2,rip3

rl

rl

rl
rl

rl

r1,2,4,6,10
r1-10
r1,2,8,9,11,12,13

rl
r1-3
rl

rl
rl

rlpl-rlp3

rlpl-rlp3

rl
rl
rl4
rl

rl4
rl
rl
rl-3
rl
rl

r1-3
rl

rl

rl
rl

3.25
3.99
3.43

3.45

3.96
2.38
241

2.30

2.11

4.55
2.07
4.1

2.59
2.71
4.65

3.60
3.44

2.59
2.83

1.

The estimate from the model developers (Meehl et al., 2011)

2 Estimate from the model developers (Meehl et al., 2013)

3 Estimate from the model developers (Lacagnina et al., 2014)
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S3. Discussion of results

The bivariate test is one of the most robust tests available for testing serially independent time series data for step, or abrupt,
changes. However, climate data fulfils this condition only some of the time. The evidence presented in Ricketts (2015),
supports previous conclusions that annual time series of observed temperature can be regarded as serially independent,
especially where it shows little or limited sign of intervening trends that are statistically significant. Qualitatively, this is the
step ladder-like behaviour where large step changes occur in a time series with limited internal trends. For the 20" century
simulations to 2005 analysed here, these same conditions are considered to be met. A longer discussion on the reliability of
the test under these conditions can be found in Ricketts (2015);Ricketts and Jones (2016).
Where there is the potential for steps and trends to be present in the same time series, then the bivariate test, and all other tests
used in assessing step changes, become less robust. These conditions are present in most simulations after 2005. This is the
principal reason for developing the rule-based test with multiple iterations to assess stable configurations.
Some testing was carried out with artificial time series containing red noise (autocorrelation 0.1 with a one-year lag, 0.25 with
a seven-year lag) combined with random step changes and trends. By itself, red noise will produce step changes at a higher
rate than serially independent data, thereby overstating the probability of exceedance. However, in using the test for detection,
we are mainly interested in using the test to detect the timing and magnitude of steps as accurately as possible.
Our major assumption about a warming climate is that regime shifts (an organised and abrupt change in the structure and
function of a system), red-noise driven shifts in the variable under analysis, random shifts and trending behaviour are all
possible. In such a system, abrupt changes will become more common, therefore increase relative risk if those changes are
driving impacts. This is the main purpose for the bivariate test in this paper, where it is being used to detect large shifts in
mean temperature.
When all these phenomena are combined in artificial data, the combination of steps, red noise, random noise and trends will
detect step changes that:

1. May not be serially independent, therefore overstating the probability of being a clear step change but not its timing

or magnitude,
2. May produce a step change that averages two underlying step changes,
May variously suppress or amplify potential step changes, thus affecting the drivers of risk,

4. May detect a step change in a trending variable, where the internal steps by themselves may be insignificant.

The latter possibility, we consider as the only real false positive, but all the others warrant caution. Points one and two will
reveal step changes, but not necessarily their case, point three suggests that not all underlying changes in a system may manifest
and point four illustrates where the test will falsely identify steps and trends. The latter we identify in the paper by using shift-
step and trend-step ratios, where the former will be small in a trending timeseries. This situation is associated with high

radiative forcing.
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S4. Nonlinear attribution methods

Data sources for South-east Australia are detailed in Jones (2012) along with a detailed methodology. These data have not
been updated beyond 2010 because of a change in the method of calculating high quality temperature data (Trewin, 2012),
which creates small, but detectable biases in the data (unpublished analyses). Adjustments are linearised, which smooths out
nonlinear behaviour.

Central England temperatures come from the HadCET data and Central England rainfall downloaded in May 2015 (Parker et
al., 1992;Alexander and Jones, 2000).

Data for Texas was sourced from the USHCN-V2 dataset downloaded in October 2011 (Menne et al., 2009). Station records

were subject to basic quality control, dispensing with uncorrelated inhomogeneities and a simple average produced.

S5. Statistical testing environment

Most of the severe testing using statistical tools was carried out using MS Excel 2013 worksheets. Although Excel is widely
frowned upon for statistical testing, it provides a highly flexible testing environment where templates can be constructed for
rapid analysis of quantitative and graphic output. As methods are stabilised, they are brought into the Python modelling
environment. This two-stage environment is useful because of the experimental nature of this work. All of the tests utilised
within the Excel environment have been tested in other computing environments to ensure their reliability. The randomisation
techniques in Excel, which are highly autocorrelated, are not used in this work, except in a diagnostic capacity.

Additional tools include the Loess utility (Peltier, 2009) and the multiple trend calculation and charting program (originally
from D Kelly O’Day but no longer available online), which has been modified to conduct the moving window bivariate test

and nonlinear regression, in addition to plotting up to 15 steps in a time series.

S6. Archived data and programs

Accompanying this document are the following data sets:

e Obs output step data-Jones&Ricketts.xlsx

e Models output step data-Jones&Ricketts.xIsx
These include much of the output detailed above and data used in figures.
Also incorporated are the programs:

e  The multi-step bivariate test program suite

e Interactive Regression-GMT-models many shifts-archive.xIsm
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