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Abstract. The concept of independence has been frequently raised in climate science, but has rarely been defined and discussed

in a theoretically robust and quantifiable manner. Improved understanding of this topic is critical to better understanding of

climate change. In this paper, we introduce a unifying approach based on the statistical definition of independence, and illustrate

with simple examples how it can be applied to practical questions.

1 Introduction5

Approximately 30 climate models contributed to the CMIP database, and they all agree, at least on broad statements: the world

is warming, anthropogenic emissions of CO2 is the major cause of this, and if we continue to emit it in large quantities then

the world will continue to warm at a substantial rate for the foreseeable future (Stocker et al., 2013). The consensus across

models is also strong for more detailed statements regarding for example the warming rates of land versus ocean, high versus

low latitudes, and the likely changes in precipitation over many areas. Even where models disagree qualitatively amongst10

themselves (for example, concerning changes in ocean circulation and some regional details of precipitation patterns), their

range of results is still quantitatively limited. Climate models are probably the most widely-used tool for predicting future

climate changes, and their spread of results is commonly used as an indication of what future changes might occur in our

climate.

But should the consensus between models really lead to confidence in these results? If we were to re-run the same scenario15

with the same model 30 times, we would get the same answer 30 times, whether it be a good or bad model. This repetition

of results would not tell us how good the model is, and the behaviour of the real climate system would inevitably lie outside

this (empty) range of results. Different model development teams share code, and even when code is rewritten from scratch,

algorithms and methods are often copied, and many fundamental theories are common across all models (Knutti et al., 2013).

So how much confidence can we draw from the fact that multiple models provide consistent answers? How likely is it that20

all models are biased in the same ways, and thus too similar for their spread of results to be useful? These questions have

proved difficult to answer, and indeed there appears little consensus as to how we can even address them. Further questions

arise from the increasingly common situation where a single modelling centre contributes multiple model simulations to the

CMIP archive, some of which only differ in terms of the settings of uncertain parameters, or even just the initial state of the

atmosphere/ocean system. A common heuristic when performing multi-model analyses based on a generation of the CMIP25

ensemble is to use a single simulation from each modelling centre, but it is not clear where to draw the line when different
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centres may share a common core or sub-models. Is there a better way to select models, and should we use a weighted ensemble

— in which case, further questions arise as to how the weights should be defined, in terms of either model performance relative

to observations of the real climate, or else in terms of their relationship to other models?

Another important question that has been posed in recent years, is whether the scientific community could design or select

ensemble members in a more rational and scientifically defensible way than the current ad-hoc ‘ensemble of opportunity’. It5

may be possible to address this issue in terms of statistical sampling and experimental design, but appropriate methods and

even language do not yet appear to be well developed in this area.

A second motivation (which, as we shall see, is distinct but related) for considering the question of independence is in

synthesising various constraints on the equilibrium climate sensitivity. The equilibrium climate sensitivity S represents the

equilibrium change in global mean surface temperature following a doubling of atmospheric CO2, and while this is far from10

a complete description of our future climate, it is commonly used as an indication of the magnitude of changes. Different

approaches have been proposed for constraining S, for example using data drawn from the modern instrumental period (which

we refer to for convenience as the 20th century, although the data available does extend a little into the 19th and 21st centuries),

or looking to the paleoclimate record and particularly the Last Glacial Maximum, or searching for constraints that emerge

when process studies consider how well different models simulate various aspects of the climate system. Are these analyses15

‘independent’, and how do we synthesise these different approaches into an overall estimate (Annan and Hargreaves, 2006)?

In this paper, we consider these questions and discuss how they may be addressed. We present an approach which links the

usage in climate science to the statistical definition of independence, We do not claim to provide a full and final solution, but

hope that the ideas and theory presented here may form the basis for future progress. We start by reviewing in Section 2 how

the concept of independence has been discussed in the recent literature. In Section 3 we present a theoretical and statistical20

viewpoint of independence within the Bayesian paradigm, which we argue has direct relevance to this question. We consider

how this statistical viewpoint relates both to the question of model independence, and also to the independence of constraints

on climate system properties. In this section, we also sketch out some plans for how to make practical use of these ideas.

2 The literature on independence in climate research

The question of independence has featured widely in climate research, but the research community has not yet arrived at a25

clear and unambiguous definition. Different authors have approached the question of independence in different ways, and these

approaches are often mutually inconsistent. In this section, we firstly explore the literature as it pertains to climate model

independence, and then consider the literature on independence of constraints on climate sensitivity.

2.1 The literature on model independence

While the concept of model independence has been frequently discussed in recent years, a clear consensus of understanding30

has not yet emerged from the literature.
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One common approach has been to interpret model independence as meaning that the models can be considered as having

errors which are independent, identically distributed (i.i.d. in common statistical parlance) samples drawn from some distri-

bution with zero mean (Tebaldi and Knutti, 2007). This is the so-called ‘truth-centred’ hypothesis. An ensemble of samples

drawn from such a distribution would be an incredibly powerful tool. If we could build models with these properties, we could

generate arbitrarily precise statements about the climate, including future climate changes, merely by proceeding with the5

model-building process indefinitely and using the ensemble mean, without the need for any additional understanding of how

to accurately simulate the climate system. For example, if the 19 CMIP3 models listed in Table 8.2 of Randall et al. (2007)

provided independent estimates (in this sense) of the equilibrium climate sensitivity S, then we could immediately generate a

95% confidence interval for the real value for S of 3.2±0.3◦C (based on the first order assumption that the samples are drawn

from a Gaussian distribution of unknown variance).10

However, the truth-centred hypothesis is clearly refuted by numerous analyses of the ensemble. In particular, the errors of

different models are observed to be strongly related, as can be shown by the positive correlations between spatial patterns

of biases in climatology (Knutti et al., 2010, Figure 3). As a corollary of this, although the mean of the model ensemble

generally outperforms most if not all the ensemble’s constituent models (Annan and Hargreaves, 2011b), it does not actually

converge to reality as the ensemble size grows. Rather, the ensemble mean itself appears to have a significant bias. There have15

been some attempts to compensate for this shared bias, for example by estimating the number of ‘effectively independent’

models contained in the full ensemble (Jun et al., 2008b, a; Pennell and Reichler, 2010). However, the theoretical basis for

these calculations does not appear to be clearly justified, and the results presented have startling implications. If we accept the

arguments of Pennell and Reichler (2010) that the CMIP3 ensemble contains 8 ‘effectively independent’ models then their full

range of sensitivity values, 2.1–4.4◦C, would still be a valid 99% confidence interval, as the probability of 8 independent (in20

this sense) estimates all lying either below or above the truth is only 1 part in 27. The same argument would apply to any other

output or derived parameter of the model climates. That is, we should be extremely confident that the model ensemble bounds

the behaviour of the climate system generally. This conclusion does not seem very realistic, which must lead us to question the

validity of the assumptions underlying such analyses.

Abramowitz and Gupta (2008) define independence purely in terms of inter-model differences and suggest down weighting25

models that are too similar in outputs. This approach has the weakness that models that agree because they are all accurate

will be discounted, relative to much worse models, without any allowance being made for their good performance relative to

reality. A challenge for this and similar approaches is that the use of a distance measure does not readily suggest a threshold at

which models can be considered truly independent. All models are designed to simulate the real climate system, and are tuned

towards observations of it (Hourdin et al., 2016). Therefore it should not be surprising that climate models appear broadly30

similar, since the maximum distance (in any relevant metric space) between a pair of models can be no more than the sum of

the distances between each of these models and reality.

Some approaches to model independence have been less quantitative in nature. Masson and Knutti (2011) defines their

interpretation as “independent in the sense that every model contributes additional information” but information in this context

is not further defined or quantified. In fact the cluster analysis presented by Masson and Knutti (2011) may be more precisely35
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described by the phrasing in the related paper by Knutti et al. (2013), which states that independence is used “loosely to

express that the similarity between models sharing code is far greater than between those that do not”. While these papers

certainly establish that point convincingly, there is again no indication of how much similarity should be expected or tolerated

between truly ‘independent’ models, or whether complete independence is a meaningful concept in their terms. The interesting

philosophical discussions of Parker (2011) and Lloyd (2015) both consider the interpretation and implications of consensus5

across an ensemble of models that are not independent, but the premise of non-independence is adopted from the literature and

these two authors do not themselves attempt to further define this term in a quantifiable manner.

Perhaps the most constructive and complete approach to date is that of Sanderson et al. (2015). In this work, dependence

is again defined in terms of inter-model differences in output, and this distance measure is used to remove or downweight

the models which are most similar to other models in output. By comparing the inter-model distances both to model-data10

differences, and to what might be expected by chance with independent samples from a Gaussian distribution that summarises

the full distribution, they introduce a threshold at which model differences may be considered appropriately large. However,

the epistemic nature of their resulting ensemble is unclear and the resulting reduced ensemble is still only described in terms

of reducing rather than eliminating dependency.

To summarise, the literature presents a strong consensus that the models are not independent, but does not appear to present15

such a clear viewpoint concerning what to do about this, or even the meaning of this term. Given this lack of clarity, it is perhaps

unsurprising that the IPCC does not address this topic in detail, while nevertheless acknowledging its importance (Cubasch

et al., 2013, 1.4.2). Thus, we see not only the opportunity, but also the necessity, of making further progress.

2.2 The literature concerning the independence of observational constraints on climate system behaviour

The value of the equilibrium climate sensitivity S is one of the fundamental questions of climate change research. A wide20

range of approaches have been presented which attempt to estimate this number. Typically, a Bayesian approach (which will

be discussed in more detail in following sections) is used in which some prior assumptions are updated by means of an

observationally-based likelihood function to form a posterior estimate. The observations commonly relate to the warming

observed during the instrumental period (Tol and De Vos, 1998; Forest et al., 2006; Skeie et al., 2014), but analyses have also

been presented which use longer-term climate changes seen during the paleoclimate record (Annan et al., 2005; Köhler et al.,25

2010), or short-term variations seen at seasonal to interannual time scales (Wigley et al., 2005; Knutti et al., 2006). In each

case however, the observations are not a direct measure of the sensitivity S per se but must be related to it through the use

of a climate model or models, which may be simple or complex. Collins et al. (2013, Box 12.2) and Annan (2015) survey

and discuss some recent analyses which use a variety of observational data sets and modelling approaches, and Rohling et al.

(2012) covers the paleoclimate field in some detail.30

The question naturally arises as to whether these different constraints could, and should, be synthesised. In most of the

Bayesian analyses, the prior is typically chosen to be vague, though there is some debate concerning this choice (Annan and

Hargreaves, 2011a; Lewis, 2014). Irrespective of this, the prior then typically becomes substantially narrower when updated

with observations to form a posterior. One might reasonably wonder what the results would look like if this resulting posterior
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was then used as the prior in a new analysis in which it was updated by a different data set. This question was first explicitly

raised by Annan and Hargreaves (2006), who argued that an assumption of independence between the constraints allowed

for sequential updating which would result in a substantially tighter constraint than had previously been obtained. Hegerl

et al. (2006) also updated a posterior arising from the 20th century, with a separate data set relating to climate changes over

earlier centuries under an assumption of independence. However, the validity of these analyses is not immediately clear, as5

the independence of different constraints has not been clearly explained or demonstrated. Nevertheless, we always expect to

learn from new observations (Lindley, 1956), so it is reasonable to expect that an analysis which accounts for multiple lines of

evidence will generate a more precise and reliable result than analyses that do not. It is therefore surprising that there has been

so little subsequent discussion of this topic in the scientific literature, and very few recent attempts to combine diverse data

sources.10

3 The statistical context for independence

In probability theory, independence has a straightforward definition. Two events A and B are defined to be independent if the

probability ofA, P (A), is not affected by the occurrence ofB, so that P (A|B) = P (A) (e.g. Wilks, 1995, Section 2.4.3). Since

the joint probability of both events, P (A,B), is given by P (A|B)P (B) we see that two events are independent if their joint

probability is equal to the product of their individual probabilities, i.e. if P (A,B) = P (A)P (B). Independence is therefore a15

symmetric property: A is independent of B if and only if B is independent of A. The concept of independence can also be

generalised to the case of conditional independence: two events A and B are conditionally independent given an event S, if

their joint probability conditional on S, P (A,B|S), is equal to the product of their individual probabilities conditional on S,

P (A|S)P (B|S). Independence and conditional independence generalise naturally both to continuous distributions p(), which

is more appropriate for the scenarios considered in this paper, and also to more than two events.20

As we have seen in Section 2.1, much research on model independence either ignores or explicitly disavows any direct link

to this mathematical/statistical definition. Conversely, the primary goal of this manuscript is to argue that this definition must

be central to any usable, quantitative theory.

Bayes’ Theorem tells us that we can update a probabilistic estimate of an unknown quantity p(S) in light of some observa-

tions or evidence A via the equation25

p(S|A) = p(A|S)p(S)/p(A).

p(A|S) is known as the likelihood function (particularly when A is considered fixed, and S allowed to vary) and may be

written as L(S|A).

If we have two events A and B then the corresponding equation is

p(S|A,B) = p(A,B|S)p(S)/p(A,B).30
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The first term on the right hand side of this equation can be expanded by the laws of probability, resulting in the equivalent

equation

p(S|A,B) = p(B|S,A)p(A|S)p(S)/p(A,B).

Either of these two equations can in principle be used to calculate the posterior probability with two different observations or

lines of evidence. While some might have found it strange that the Intergovernmental Panel on Climate Change (IPCC) stated5

that the literature contained no consensus on such a method (Collins et al., 2013, Box 12.2), it is possible that they merely

meant that it is not clear how to calculate these terms, most specifically p(B|S,A).

If A and B are conditionally independent given S, then p(A,B|S) can also be decomposed as p(A|S)p(B|S). In practice,

the term ‘independent’ is frequently used to refer to conditional independence, especially when A and B are being discussed

primarily as observations of, or evidence concerning, some unknown S. The practical value of this conditional independence is10

that if we have likelihoods p(A|S) and p(B|S), then conditional independence allows us to directly create the joint likelihood

by multiplication, rather than requiring the construction of p(B|S,A) as an intermediate step.

Conditional independence of A and B given S is therefore equivalent to the condition that p(B|S,A) = p(B|S). This

equation states that the predictive probability of B, given both S and A, is equal to the predictive probability of B given S.

In other words, if we know S, then additionally learning A does not change our prediction of B. This interpretation can be a15

useful aid to understanding when independence does and does not occur.

3.1 The Bayesian perspective

The above elementary probability theory applies to both the frequentist and Bayesian paradigms. Within the Bayesian paradigm,

the probability calculus may be used to describe the subjective beliefs of the researcher. In the remainder of this manuscript, we

exclusively adopt this paradigm, since all the relevant uncertainties discussed here are epistemic in nature (relating to imperfect20

knowledge) and not aleatory (arising from some intrinsic source of ‘randomness’). Thus, rather than considering ‘the pdf of

S’ it is more correct to refer to ‘my pdf of S’ or perhaps ‘our pdf for S’ in the case that many researchers share a consensus

view. While of course we anticipate using S here primarily to refer to the equilibrium climate sensitivity, the discussion applies

equally to any unknown parameter (or vector of parameters) of the climate system.

While the subjective nature of the prior p(S) has been extensively discussed in the literature, it is less widely appreciated25

that the likelihood p(A|S) is also a fundamentally subjective matter. Even assuming that the parameter S is well-defined in

the real world (which, given a sufficiently precise definition, may be possible) there is no world in which S takes a different

value, with which we could check to see how the observations change. Therefore, while the likelihood should give a reasonable

prediction of the observations A when the correct value of S is used, there is no objective constraint or check on what it might

predict for some alternative incorrect S. The only practical way in which a likelihood can be constructed is via some model30

in which S varies, either as an explicit parameter in a simple model, or an emergent property of a more complex GCM. There

can be no ‘correct’ way to vary S, again because there is no world in which S takes a different value against which to validate
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our choices. Furthermore, it is trivial to create entirely artificial models with arbitrary behaviour (‘if 3.21< S < 3.22 then do

X, else do Y’). Within the Bayesian paradigm therefore, the likelihood can only reflect the researcher’s subjective beliefs and

modelling choices rather than any physical truth. Different models will in principle lead to different likelihoods, though in

practice there may be a reasonable level of agreement between researchers.

As we have seen, the question of (conditional) independence boils down to the question of whether p(B|S,A) is equal5

to p(B|S). Our discussion of the subjective nature of likelihood within the Bayesian probabilities should make it clear that

there is not an objectively correct answer to this question, but rather it depends on the subjective view of the researcher in

question. Posing the question presupposes that the researcher already has likelihoods p(A|S) and p(B|S) in mind, or else the

observations A and B would not be considered useful evidence on S. Would knowing A change their predictive distribution

(likelihood) p(B|S)? If it would not, then A and B are conditionally independent given S, for this researcher. That is, if the10

researcher does not know how to use the additional information A in order to better predict B, then A and B are conditionally

independent to that researcher. Thus, ignorance implies independence. If, conversely, A does provide helpful information

in addition to S, then their improved prediction is the new likelihood function p(B|S,A), which directly enables the joint

likelihood p(A,B|S) to also be created.

As an alternative to this uncompromisingly subjectivist viewpoint it is common to use modelling experiments (such as15

perturbed parameter ensembles) to generate likelihoods. In the following Subsections 3.2 and 3.3, we will demonstrate how

the question of independence as it relates first to climate models, and then to constraints on the climate sensitivity, can be

addressed in a more concrete manner using model ensembles.

3.2 Model independence in the Bayesian framework

We now explore how this Bayesian framework can be applied to the question of model independence. We first consider the20

‘truth-centred’ hypothesis which is perhaps most clearly presented in Tebaldi et al. (2005). In that work, the outputs of the

models,Mi (where 1< i < n indexes the different models) are assumed to be samples from multivariate Gaussian distributions

centred on the truth T . The likelihood for each model p(Mi|T ) is therefore a Gaussian of the same width centred on the model

outputs. Furthermore, in this scenario the joint likelihood for multiple models is the product of the individual likelihoods, which

as we have seen above is equivalent to considering that the models are independent conditional on the truth (i.e., that they are25

independent estimates of the truth). The joint likelihood is centred on the ensemble mean and will narrow in proportion to the

square root of the number of models, which is the mathematical justification for the expectation that the ensemble mean will

converge to the truth. As we have already mentioned, this behaviour is contradicted by analysis of the model outputs (Knutti

et al., 2010). Thus, although such an interpretation of model independence can be presented in terms of the statistical definition

of independence, it does not describe the behaviour of the models adequately because the models do in fact commonly share30

biases.

Another way of understanding how this lack of independence relates to shared model biases is to consider the subjective

conditional likelihoods that a typical researcher might adopt. If we believe that the equilibrium climate of a typical model

usually has RMS temperature errors of around σ◦C at the local scale, and are furthermore told the true annual mean temperature
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in London is 10.4◦C, and, then an obvious prior prediction p(Mn|T ) for this output of an arbitrarily selected model Mn

would be N(10.4,σ). If we then learn that model M1 actually simulates a temperature of 11.6◦C at this point, then it would

be reasonable to update the prediction for Mn to N(10.4 + δ,σ) for some δ > 0, also expecting it to over predict to some

extent (since we know that models tend to have biases of the same sign) and possibly also adjusting the uncertainty. Thus,

p(Mn|T,M1) 6= p(Mn|T ) and the models are not conditionally independent given the truth, so the truth-centred interpretation5

fails.

In light of the failure of the truth-centred approach, we now present an alternative application of statistical independence as

follows. Consider that the outputs of modelsM1, . . . ,Mn−1 (that is, the ensemble with one member omitted) can be summarised

by the multivariate Gaussian distributionN(M,ε) whereM =
∑

i=1,...,n−1Mi/(n−1) is now the sample mean of the reduced

set and ε also measures the spread of this reduced ensemble. While the subjective nature of Bayesian probability does not10

allow for a definitive assertion, it seems reasonable that many researchers, if provided with such an M and ε and asked for

a probabilistic prediction of the outputs of an additional model Mn, would answer with the distribution N(M,ε). Would

additionally knowing the outputs from one named member of the ensemble, M1 say, change this prediction? In most cases,

it seems likely that the prediction would in fact be unchanged. For example, knowing the output of the HadGEM model in

addition to the ensemble statistics is unlikely to provide much guidance to help in predicting the outputs of a previously unseen15

model from GISS. In this case, the two models could be considered independent, conditional on the ensemble distribution

N(M,ε). However, if the two models were known to have some particular relationship, such as being two model versions from

the same research centre, or even two instances of the same model structure with merely different parameters, then knowledge

ofM1 would probably provide information concerning the targetMn and allow for an improved prediction of its outputs. This,

we believe, encapsulates many of the same ideas as the model similarity analyses of Abramowitz and Gupta (2008); Knutti20

et al. (2013); Sanderson et al. (2015) and others. However, it has the advantage that the independence here can be defined in

absolute terms (albeit conditional onN(M,ε)) and is not merely a measure of relative difference. If a researcher does not know

how to improve their prediction of Mn, in light of the outputs of M1, then the models are in fact independent to them.

To provide a concrete demonstration of the previous ideas, we analyse the models which contributed to the CMIP3 database.

Several modelling centres contributed more than one model version and we expect, based on the existing literature such25

as Knutti et al. (2013), that these may be noticeably more similar to each other, than models from different randomly-selected

centres. In total, we use the outputs of 25 climate model simulations, and analyse two-dimensional climatological fields of

surface air temperature (TAS), precipitation (PREC) and sea level pressure (PSL) for their pre-industrial control simulations.

We use as a simple distance metric the area-weighted root mean square difference between the climatological data fields (of

commensurate variables) after regridding to a common 5 degree Cartesian grid. Considering firstly the temperature fields, the30

distance between a single target model and the mean of the remaining ensemble is just under 2◦C. A randomly-selected model

from the ensemble is of course usually (though not always) rather further from the target, with these distances averaging around

3◦C. However, 6 climate centres provided two models and one (GISS) contributed three to the database, giving us 9 pairs of

models that we might expect to be unusually close. Indeed, the pairwise distances within this set are clearly lower than they

were for random model pairs, averaging around 2.1◦C. Note that these distances are still greater than for the ensemble mean,35
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Figure 1. Analysis of CMIP models. Crosses represent TAS, circles PREC and diamonds PSL. Black symbols indicate distance of target

model from mean of residual ensemble, blue symbols indicate distance of target model from plausibly related model, and red indicates

distance of target model from interpolated prediction. Interpolation (red) generates smaller distances than black for almost all cases, and

overall.

but only marginally. Therefore, using each model as a predictor for its colleague would actually lead to a worse prediction,

compared to just using the ensemble mean. Qualitatively similar results are obtained for the PREC and PSL fields, with the

related models being unusually close to each other compared to random model pairs, but generally not closer than they are to

the ensemble mean of the other 24 models.
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However, even though the ‘related’ climate model is usually a little further from the target than the ensemble mean is, trial

and error finds that a simple interpolation between these climate fields to M ′ = 0.6M + 0.4M1 generates a noticeably lower

prediction error, by roughly 10 – 15% across the three data fields used, than the original ensemble mean M . That is, we can

replace our original prediction N(M,ε) which was based on the ensemble summary, with N(M ′,0.9× ε), to give a better

prediction of the unseen Mn. Thus we have demonstrated empirically and numerically that two models contributed by a single5

research centre are not conditionally independent given M and ε, according to the standard statistical definition. The results

for each pair of related models and for each of the three climate fields considered here are presented graphically in Figure 1.

We must bear in mind that more sophisticated analyses might also be possible, which could give further improvements.

For instance, experts with knowledge of the model structures might be able to predict more detailed similarities between the

outputs of model pairs. However, our result here is sufficient to illustrate how the concept of statistical independence can be10

directly applied to the question of model independence, while encapsulating much of what is discussed in the literature.

An important point to note is that this interpretation of independence is entirely unrelated to model performance. Reality

(e.g. observations of the real climate system) does not enter into any of the calculations or definitions above. Thus, the two

concepts of performance and independence as used here are entirely unrelated. It remains a challenge to develop some useful

interpretation of (conditional) independence which does use real data and which is informative regarding both model perfor-15

mance and pairwise similarity. However, the definition as presented here does have obvious applications in terms of interpreting

and using the model ensemble. It suggests that we may be able to usefully reduce the full CMIP ensemble to a set which are

independent (conditional on the ensemble statistics, as above). This will provide a smaller set of models for analysis and use in

downstream applications including downscaling to higher resolution regional simulations of climate change. This is likely to

be increasingly important and necessary given the heterogenous nature of simulations which will likely be submitted to future20

CMIP databases.

While the question of model similarity and ensemble member selection has already been considered by others (eg Sanderson

et al., 2015), the work here provides a more clear-cut definition of what it means to be independent, which is directly testable.

If researchers can demonstrate dependence (in terms of an improved prediction of model outputs as illustrated here) then inde-

pendence is violated, and if not, it may be reasonably assumed. Another important difference between the approach presented25

here, and that of many other authors, is that independence is determined a priori in terms of the anticipated outputs of a model,

rather than a posteriori in light of the model outputs. Pairwise similarity between model outputs may arise through convergence

of different approaches to simulation, and not merely through copying of ideas. For example, one pair of models which exhibit

unusually similar temperature fields in our analysis consists of the model from CNRM and one of the GFDL models, which do

not share any particularly obvious genealogy. We do not believe that a coincidentally similar behaviour should be penalised by30

downweighting of these models, as it may represent a true ‘emergent constraint’ on system behaviour. An obvious test of our

ideas would be to apply this analysis to the CMIP5/6 climate model ensembles, to check whether the interpolation and depen-

dence ideas presented here apply generally to ensembles of climate models rather than being an example of over-enthusiastic

data mining.
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3.3 Independence of constraints in the Bayesian context

To paraphrase a statement made in Section 3.1, ignorance is independence. Given a likelihood p(A|S) we ask ourselves,

how can we change this by additionally including B to form p(A|B,S)? If the answer is that B provides no additional

information on A, then A and B are conditionally independent given S. This answer may seem a little unsatisfactory, as it

relies on a dogmatically subjectivist and personal interpretation of probability. While we emphasise that Bayesian probability5

is fundamentally subjective, it is quite usual to use models as a tool to represent and understand our uncertainties. We must

however remember that as discussed in Section 3.1, even the likelihood is itself a subjective function: there is no such thing as

the “correct” likelihood p(A|S).

In this section, we explore these ideas in a little more detail, to sketch out how we may be able to provide a credible basis

for our judgements. Typically, a likelihood p(A|S) is generated not as a purely subjective matter of belief, but instead justified10

via a model or ensemble of models. For example, if the equilibrium sensitivity is varied across an ensemble of energy balance

models (along with other input parameters: S here may be used as a shorthand for a vector of relevant uncertainties) then we

will find that in simulations of the 20th century, the warming observed will vary across the ensemble. This can then be used

as the basis for the likelihood function (eg Tol and De Vos, 1998; Forest et al., 2006; Skeie et al., 2014). Similarly, for another

observable B, which may require another set of simulations using the same ensemble. We now outline how it is possible to test15

whether B is conditionally independent of A given S, in the context of this model.

We firstly form the likelihood p(A|S), and use this to generate the appropriate predictions of A for each ensemble member,

given its known value of S. There will of course be residuals, the magnitude of which indicate the limited information which

S provides concerning A. We can then explore whether an additional observable B is informative regarding these residuals. If

it is not, then we may reasonably conclude that B provides no additional information on, and is conditionally independent of,20

A given S. Conversely, if B is informative regarding the residuals, then this is proof that it is not independent of A.

A simple example is used to illustrate the point graphically. We use a zero dimensional energy balance model to simulate

the changes of both the 20th century and the Last Glacial Maximum. For simplicity, we only consider a subset of relevant

uncertainties: the equilibrium sensitivity S, the planetary effective heat capacity C, the uncertainties in radiative forcing due

to aerosol forcing over the 20th century F , and atmospheric dust and the large ice sheets which existed during the Last Glacial25

Maximum, D and I respectively.

For the warming of the 20th century, we assume a linear forcing ramp from 0 in 1900 to 2−F in 2000 (using a value of

2Wm−2 to approximately represent the sum of all other forcings other than aerosols, which are dominated by greenhouse

gases). The zero dimensional energy balance model satisfies the equation

C · dT/dt= (G−T )/S, (1)30
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where T = T (t) is the temperature anomaly (relative to 1900) at time t, andG=G(t) is the total forcing. Our first observable

A, the change in global mean surface air temperature over the 20th century is taken to be the linear trend over this interval. For

the LGM, the temperature change B is calculated as

B = (3 +D+ I)/S (2)

where the total forcing 3+D+I is the sum of greenhouse gases (3Wm−2), the uncertain dust forcing (D) and the uncertain5

effective forcing of the ice sheet (I) respectively. The ice sheet forcing uncertainty term here implicitly accounts for the

nonlinearity of how this combines with the other forcings. For simplicity, we do not consider observational uncertainties

for either the LGM or 20th century temperature changes, though accounting for these would be straightforward. We use the

following priors:

S ∼ U [0.5,6]10

C ∼ U [10,30]

F ∼N [1,0.5]
15

D ∼N [1,0.5]

I ∼N [3,1]

A plot of the simulated 20th century warming A versus sensitivity S is shown in Figure 2a. The relationship shown demon-

strates the basis for a likelihood function p(A|S): for any specified sensitivity we can predict the resulting temperature (with20

uncertainty), and therefore for any specific warming A we can calculate how the probability of this being observed varies

with S. In this example, the linear regression provides a good fit to the data, though the errors clearly grow towards larger

sensitivity values. Similarly, the LGM cooling B is also linked to S (Figure 2b) and this relationship can be used as the basis

for a likelihood function p(B|S).

By construction, we already know that the two constraints are independent given S, since the other uncertain parameters25

that relate to each observations are disjoint. However, if we did not know this analytically a priori but were instead merely

able to use the model as a black box, we could check in the following manner. In order to check for the independence of these

constraints, we need to determine whether p(A|S,B) differs from p(A|S). In order to do this, we create an ensemble with an

arbitrary but fixed value of S = 3.5◦C, say, and simulate both the 20th century warming and the LGM state for each member of

this ensemble. The likelihood function arising from Figure 2a gives us a predicted warming of A= 0.85◦C (with uncertainty30

of 0.4◦C) for these ensemble simulations. We now check the prediction errors to see if they exhibit any relationship with B.

Figure 2c indicates that they do not, with the regression coefficients being insignificantly different from zero. The conclusion

is that the additional knowledge of B, once the sensitivity S is known to be 3.5◦C, does not provide any additional help in

predicting A. A and B are therefore independent, conditional on S = 3.5C. This experiment can be repeated for as many
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Figure 2. Outputs of ensemble simulations: (a) 20th Century warming versus equilibrium sensitivity (b) LGM cooling versus equilibrium

sensitivity (c) 20th century prediction residuals versus LGM cooling, dependent case (d) 20th century prediction residuals versus LGM

cooling, independent case.

different values of S as is desired, and the same negative result will be found. This is of course not surprising, as the model has

been constructed in this way.
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We now make a small change to the model, and substitute D with F in Equation 2. This modified model now makes the

assumption that the effective dust forcing at the LGM is the same as the aerosol forcing during the 20th century. This is of

course again a very simplistic approach but it is not completely unreasonable to assume a link, as both forcings relate to the

effects of condensation nuclei on clouds. Importantly, the univariate likelihood functions p(A|S) and p(B|S) are unchanged

by this substitution, as D and F are identically distributed. Therefore, we can generate the same prediction for A, conditional5

on a known S = 3.5◦C. However, in this case the prediction errors are strongly correlated with B, as is shown in Figure 2d.

Therefore, a new distribution function p(A|S,B) can be created which makes a more precise prediction of A given knowledge

of both S and B. Thus it can be diagnosed from the model outputs alone, without direct knowledge of the model’s internal

structure, that A and B are not independent conditional on S. This result is of course easily interpreted in terms of the known

model structure: for a given sensitivity, a smaller than expected cooling at the LGM suggests a low dust/aerosol forcing, which10

then implies that the 20th century warming will be greater than originally expected.

The linear regressions are not necessarily the best way to represent a relationship that may in practice be more complex. The

point of these numerical experiments is to demonstrate that this dependence can be diagnosed from model outputs directly, in

the case that the model structure is imperfectly understood or known. Furthermore, the conditional likelihood p(A|S,B) can

be generated from the ensemble outputs. This then enables us to generate the joint likelihood p(A,B|S) = p(A|B,S)p(B|S)15

as required for a Bayesian inversion.

Such analyses may be impractical for the outputs of small ensembles such as those arising from the CMIP multi-model ex-

periments which explore structural uncertainties. However, they are plausible for larger ensembles where parameters are varied

within a single model structure. The key requirement is that the simulations relating to different observables are performed

with the same ensemble members, in order that any dependence between constraints can be explored. The results will of course20

depend on the model used, but this is as expected: the likelihood does not reflect reality, but rather, the modelling assumptions,

as discussed in Section 3.1.

4 Conclusions

We have discussed and presented a coherent statistical framework for understanding independence, and explained how this

applies in two distinct applications. Climate models cannot sensibly be considered independent estimates of reality, but fortu-25

nately this strong assumption is not required in order to make use of them. A more plausible, though still optimistic, assumption,

might be to interpret the ensemble as merely constituting independent samples of a distribution which represents our collective

understanding of the climate system. This assumption is challenged by the near-replication of some climate models within the

ensemble, and therefore re-weighting or sub-sampling the ensemble could improve its usefulness. We have shown how the

statistical definition of (conditional) independence can apply and how it helps in defining independence in a quantifiable man-30

ner. The definition we have presented is certainly not the only possible one and we expect that others may be able to suggest

improvements within this framework.
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When considering the use of observational evidence in constraining climate system behaviour (including the specific exam-

ple of the equilibrium climate sensitivity), observational uncertainties themselves can generally be regarded as independent.

However, the independence of the resulting likelihood functions is not so immediately clear, as it typically also rests on a

number of modelling assumptions and uncertainties. Here we have shown how the question of independence can be readily

interpreted and understood in terms of the conditional prediction of observations. These ideas may be useful in the design and5

analysis of ensemble experiments underpinning the analysis of observational constraints.

While our analyses may not provide complete solutions to the questions raised, we have shown how the statistical frame-

work can be usefully applied. Further, we see little prospect for progress to be made unless it is underpinned by a rigorous

mathematical framework. Therefore, we hope that other researchers will be able to make use of these ideas in their future work.
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