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Abstract

Power stations, ship, and air traffic are among the most potent greenhouse gas emitters and
are primarily responsible for global warming.

Iron salt aerosols (ISA), composed partly of iron and chloride, exert a cooling effect on
climate in several ways. This article aims firstly to examine all direct and indirect natural
climate cooling mechanisms driven by ISA tropospheric aerosol particles, showing their
cooperation and interaction within the different environmental compartments. Secondly, it
looks at a proposal to enhance the cooling effects by ISA in order to reach the optimistic
target of the Paris climate agreement, to limit the global temperature increase between 1.5
and 2 °C.

Mineral dust played an important role during the glacial periods: by using mineral dust as a
natural analogue tool and by mimicking the same method used in nature, the proposed ISA
method might be able to reduce and stop climate warming. The first estimations made in this
article show that by doubling the current natural iron emissions by ISA into the troposphere,
i.e. by about 0.3 Tg Fe per year, artificial ISA would enable the prevention or even reversal of
global warming.

The ISA method proposed integrates technical and economically feasible tools.
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Iron salt aerosols, cooling the earth, reverse global warming, methane removal, CO2 removal
phytoplankton fertilization, tropospheric ozone reduction, cloud albedo, carbon capture and

storage (CCS), climate engineering

1. Introduction

The 5% assessment report of the Intergovernmental Panel on Climate Change (IPPC),
released in November 2014, states that Global Warming (GW) has already begun to
dramatically change continental and marine ecosystems.

A recently noticed effect is that the vertical mixing in oceans decreases and even reaches a
stagnation point [1], thus weakening the net oceanic cumulative intake of atmospheric CO»
[2, 3].

A consequence of decreasing vertical ocean mixing is a reduced or interrupted oxygen
supply to the depths of the ocean. Currently, the formation of low-oxygen areas in the oceans
is increasing [4, 5]. Furthermore, climate warming entails stratification of the water column
and blocks vertical flows. Stratification may develop by warming the upper water layer as well
as evaporation and precipitation. Generation of a fresh water layer on top of the water
column by precipitation, surface water runoff and melt water inflow induce stratification [6, 7].
Even the opposite, brine generation by evaporation may induce stratification [8]. Stratification
blocks the oxygen transfer through the water column and triggers the formation of oxygen-
depleted zones [9] that also emit nitrous oxide (N2O), a potent GHG and a powerful ozone
depleting agent.

As iron is part of many enzymes directing the bioenergetic transformation of nitrogen in the
ocean, it has an additional direct influence on the cycling of these elements through the
oceanic environment [10, 11].

The severest consequence to oceanic ecosystems of such stratification is the development
of anoxic milieu within stratified ocean basins. An example of the development of halocline
and chemocline stratification is the Black Sea [12]. This ocean basin has a stable halocline
which coincides with a chemocline, dividing an oxic salt-poor surface water layer from a
saline anoxic sulfidic deep layer with a black sapropel sediment rich in organic C at the basin
bottom [12].

Geological past episodes with stratified ocean basins are regularly marked by black shale or
black limestone as remnants of sapropel sediments. Stratified ocean basins during the
Phanerozoic epoch occurred as a consequence of elevated CO; levels in the atmosphere.
This caused high sea surface temperatures [13] and, as a global consequence a global

increase of evaporation, precipitation and production of brines of higher concentrations.
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It has been pointed out that the increasing melt water run-off from past polar and subpolar
ice layers may have induced the cover of denser ocean water by a melt water layer [6].
According to Praetorius et al. [14] climate warming events during the last deglacial transition
induced subsurface oxygen minimum zones accompanied by sea floor anoxia in the
Northern Pacific. This melt water-induced stratification had been accompanied by melt water
iron-induced phytoplankton blooms. The generation of increasing precipitation and surface
water run-off accompanied by increasing brine production plus elevated surface water
temperatures during hot CO2-high climate episodes had similar consequences in the past
geological epochs [13].

Ocean basin stratifications may be induced by increasing precipitation with increased surface
water run-off [7] or by increased brine production [8]. These ocean stratification event is
characterized by regional to global ocean anoxia, black sediments with elevated organic C
and hot greenhouse climate, as we learn from the whole Phanerozoic past [13] and was
often accompanied by mass extinctions.

Even the largest mass extinction of ocean biota within the Phanerozoic epoch, during the
Permian-Triassic transition, has been induced by high temperatures as a consequence of
elevated COz-Levels, which induced the change of a well-mixed oxic to a stratified euxinic-
anoxic ocean [15].

What we have to face now is the extraordinary process developing from the recent situation:
the combination of the CO,-dependent temperature rise-generated precipitation increase,
plus melt water increase. Mankind has to find now the appropriate tool to stop this dangerous
stratification process.

Warming surface waters and decreasing input of cold, oxygenated surface water, trigger a
temperature rise of sediments, transforming solid methane hydrate into gaseous methane
(CH4) emissions in seawater [16]. CH4 oxidation consumes additional oxygen, decreasing the
oxygen content above those areas [17].

The same effects are expected with an anticipated increase in spring and summer coastal
upwelling intensity, associated with increases in the rate of offshore advection, decreasing
the nutrient supply while producing a spatial or temporal (phenological) mismatch between
production and consumption in the world’s most productive marine ecosystems [18].

These events have the threatening consequence of a sprawling lack of oxygen in the
oceans. In such low-oxygen areas (sub-oxic to anoxic) only bacterial life is possible: higher
life forms can not exist there. Accordingly, an early result of the climate warming progression
could lead to a dramatic limitation of the oceanic food sources that will be needed for the
projected 9-10 billion people by 2050. The same deleterious consequences on seafood

supply can also result in ocean surface acidification through increased CO- dissolution in sea
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water and decreased flow of surface water currents to ocean basin bottoms, limiting reef fish
and shelled mollusk survival [19].

Any decrease of the THC has severe consequences on all kinds of ecosystems as it further
triggers climate warming by different interactions. THC decrease induces a reduction or
eventual disappearance of the phytoplankton fertilizers Si, P, N and Fe extracted on the
ocean surface from their resources at the bottom of the ocean basins. Hydrothermal fluid
cycling by mid-ocean ridges, off-axis hydrothermal fluid fluxes, subduction-dependent
hydrothermal convection fluids, hydrothermal fluxes at hot spot sea mount and fluid
emissions from anaerobic sediments, contain said elements as dissolved or colloidal phase
[20-27]. The deeper water of all ocean basins is enriched by these fertilizers. A THC
decrease within the ocean basins will result in a decrease of the assimilative transformation
of CO; into organic carbon.

Moreover, any THC decrease would further trigger the acidification of the ocean surface by
lowering or preventing the neutralization of dissolved CO2 and HCOs3, due to the alkalinity
decrease from hydrothermal sources [20, 28].

During the convective water flow through the huge alkaline ocean crust volume, estimated to
about 20 - 540 x 10% km?® yr' [29], ocean water is depleted in O, but enriched in its reductant
content such as CH4 [20, 30]. Further elements are enriched in this convective water flow
through the Earth crust, essential for the existence of life. The re-oxygenation of this huge
water volume is retarded or even impossible with a minimized THC.

According to model calculations [31] the THC might have significantly changed between the
last glacial and interglacial periods. During the Cenozoic epoch, ice covered pole caps
limited the incorporation of carbon in the form of carbonate into the oceanic crust compared
to the warm Late Mesozoic peroid [32]. The findings of Coogan & Gillis show that during ice-
free periods, THCs were possible with much higher effectiveness than in modern times. Even
during those warm periods with low temperature gradients between polar and equatorial
oceans, an effective production of brines leading to buoyancy differences necessary for
development of effective THC may have ben generated [33]. However, increased inflow rates
of high density brines coming from shallow shelf regions with high evaporation rates, induced
several collapses or vertical reductions of the strong Cretaceous THC. From here and for
more than a million years, the lower parts of ocean basins have been filled with anoxic brines
[8]. Further aspects of ocean stratification are discussed in chapter 4.1.

Remnants of these anoxic events are black shale sediments [34]. During such THC
collapses, the uptake of CO; into the oceanic crust stayed restricted to organic carbon
sediments. Additionally, the organic carbon productivity of the remaining oxic zone was
decreased, as well as eolic dust input, due to phytoplankton fertilizer production being limited

to continental weathering.
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These examples point out the sensitivity of the THC to disturbances. Without action, the
weakness of our recent THC may worsen. Any THC collapse would not only result in severe
damages to ecosystems, food chains, and food resources of the oceans, but would also lead
to an acceleration of the increase of atmospheric CO2 concentration, resulting in a faster
climate warming than forecasted.

The best way to prevent such disturbing situations and consequences is to stop GW.

A realistic chance of averting this development is the controlled application of a climate
cooling process, used several times by nature throughout the last ice ages with high
efficiency and, based on loess dust. Loess is a wind-blown dust sediment formed by
progressive accumulation and composed generally of clay, sand and silt (approximately a
ratio of 20:40:40 respectively), loosely cemented by calcium carbonate.

The dust concentration in the troposphere increased during every cold period in ice ages and
reached a multiple of today’s levels [35]. Dust deposition in the Southern Ocean during
glacial periods was 3 to 10 times greater than during interglacial periods, and its major
source region was probably Australia or New Zealand (Lamy et al., 2014). The windblown
dust and its iron content effect on marine productivity in the Southern Ocean is thought to be
a key determinant of atmospheric CO, concentrations [36]. During high dust level periods,
the global average temperature fell down to 10°C [35, 37, 38], which is 4.5°C lower than
current global average temperature. Loess sediments in the northern and southern
hemisphere on continents and ocean floors originate from these cold dusty periods.

Former geoscientists had the predominant conception that the cold glacial temperatures had
caused dustiness, and not the reverse [39]. Meanwhile more evidence accumulates that
mineral dust was a main factor in the cause of the cold periods and that the iron (Fe) fraction
of wind-blown dust aerosol fertilized the oceans' phytoplankton, activating the assimilative
conversion of CO; into organic carbon [37-42] and carbonate which composes the main dry
body substance of phytoplankton, together with silica, another component of dust [43].
Evidence about the responsibility of iron-containing dust that triggered ice ages during the
late Paleozoic epoch are in discussion [44].

The biogeochemical cycles of carbon, nitrogen, oxygen, phosphorus, sulfur and water are
well described in the literature, but the biogeochemical cycle of the Earth's iron is often
overlooked. An overview of the progress made in the understanding of the iron cycle in the
ocean is given by several authors [45, 46].

The current state of knowledge of iron in the oceans is lower than that of carbon, although
numerous scientific publications deal with this topic [47-55], meanwhile the iron
biogeochemical cycle in the atmosphere is described by fewer ones [56-58], on the contrary

to the iron biogeochemical cycle in soil and land, as almost no recent publications details the
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current knowledge of iron in soils and over the landscape [59-61], a task we attempt to do in
this review.

The process of iron fertilization by injection of iron salt solution into the ocean surface had
already been in discussion as an engineering scheme proposed to mitigate global warming
[62]. But iron fertilization experiments with FeSO4 conducted over 300 km? into the Sub-
Antarctic Atlantic Ocean, although doubling primary productivity of Chlorophyll a, did not
enhance downdraft particles' flux into the deep ocean [63]. The researchers attribute the lack
of fertilization-induced export into the deep ocean to the limitation of silicon needed for
diatoms. Thus, ocean fertilization using only iron can increase the uptake of CO across the
sea surface, but most of this uptake is transient and will probably not conduct to long-term
sequestration [64]. In other experiments, the authors [65] find that iron-fertilized diatom
blooms may sequester carbon for centuries in ocean bottom water, and for longer in the
sediments, as up to half the diatom bloom biomass sank below 1 km depth and reached the
sea floor. Meanwhile dissolution of olivine, a magnesium-iron-silicate containing silica, with a
Mg:Fe ratio of nearly 9:1, resulted in 35% marine carbon uptake (with the hypothesis of 1%
of the iron dissolved and biologically available), with communities of diatoms being one of the
phytoplankton winners [66].

The idea of climate cooling by CO, carbon conversion into organic sediment carbon by
addition and mixture of an iron salt solution into the ocean with the marine screw propeller
has been the object of controversial debates [67-69]. The eolic iron input per square meter of
ocean surface by natural ISA is in the single decadal order of mg Fe m= yr'. In comparison,
the artificial Fe input by ship screws is orders of magnitude above the natural fertilizing with
ISA.

The small content of water-soluble iron salts (IS) in the dust particles triggers this fertilization
effect [70], and the soluble iron deposition during glaciations had been up to 10 times the
modern deposition [71]. According to Spolaor et al. [72], most of the bioavailable water
soluble Fe(ll) has been linked, during the last 55,000 years, to the fine dust fraction, as it was
demonstrated from ice cores from Antarctica. During late Paleozoic epochs, glacial stage
dust fluxes of ~400 to 4,000 times those of interglacial times had been found [73], which
gives an estimated carbon fixation ~2-20 times that of modern carbon fixation due to dust
fertilization. Photochemistry by sunshine is the main trigger of the transformation of the
primary insoluble iron fraction of dust aerosols into soluble iron salts [74], and the
understanding of how the different iron content and speciation in aerosols affect the climate
is growing [75]. Currently, increased sub-glacial melt water and icebergs may supply large
amounts of bioavailable iron to the Southern Ocean [76]. The flux of bioavailable iron
associated with glacial runoff is estimated at 0.40-2.54 Tg yr' in Greenland and 0.06—

0.17 Tg yr' in Antarctica [77], which are comparable with aeolian dust fluxes to the oceans
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surrounding Antarctica and Greenland, and will increase by enhanced melting in a warming
climate.

However, CO, uptake by the oceans is not the only effect of iron dust. The full carbon cycle
is well described in the literature; meanwhile we know less about the iron biogeochemical
cycle. Recently the major role of soluble iron emissions from combustion sources became
more evident. Today the anthropogenic combustion emissions play a significant role in the
atmospheric input of soluble iron to the ocean surface [78]. Combustion processes currently
contribute from 20 to 100% of the soluble iron deposition over many ocean regions [79].
Model results suggest that human activities contribute to about half of the soluble Fe supply
to a significant portion of the oceans in the Northern Hemisphere [80], and that deposition of
soluble iron from combustion sources contributes for more than 40% of the total soluble iron
deposition over significant portions of the open ocean in the Southern Hemisphere [81].
Anthropogenic aerosol associated with coal burning are maybe the major bioavailable iron
source in the surface water of the oceanic regions [82]. The higher than previously estimated
Fe emission from coal combustion implies a larger atmospheric anthropogenic input of
soluble Fe to the northern Atlantic and northern Pacific Oceans, which is expected to
enhance the biological carbon pump in those regions [83].

The limited knowledge about dissolved or even dispersed iron distributions in the ocean
confirms the work of Tagliabue et al. [55]: their calculation results about the residence time of
iron in the ocean differs up to three orders of magnitude between the different published
models.

The precipitation of any iron salt results from the pH and O, content of the ocean water
milieu. But the presence of organic Fe chelators such as humic or fulvic acids [54] as well as
complexing agents produced by microbes [49] and phytoplankton [84], life forms prevents
iron from precipitation. In principle, this allow the transport of iron, from its sources, to any
place within the ocean across huge distances with the ocean currents [25]. But organic
material as well as humic acids have limited lifetime in oxic environments due to their
depletion at last to CO». But within stratified anoxic ocean basins their lifetime is unlimited.
The iron inputs into the ocean regions occur by atmospheric dust, coastal and shallow
sediments, sea ice, icebergs and hydrothermal fluids and deep ocean sediments [47, 49, 56,
57, 83, 85-87].

Microbial life within the gradient of chemoclines dividing anoxic from oxic conditions generate
organic carbon from CO, or HCOs carbon [88-90]. The activity at these chemoclines are
sources of dissolved Fe(ll). Humic acid is a main product of the food chain within any life
habitat. Coastal, shelf, and ocean bottom sediments, as well as hydrothermal vents and
methane seeps are such habitats and known as iron sources (Boyd and Ellwood, 2010).

Insoluble Fe oxides are part of the lithogenic particles suspended at the surface of the

9
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Southern Ocean. In addition to organic phytoplankton substance, the suspended inorganics
accompany the gut passage through the krill bodies. During gut passage of these animals,
iron is reduced and leaves the gut in dissolved state [91]. There is no doubt that gut-microbial
attack on ingested organics and inorganics produce faeces containing humic acids. This
metabolic humic acid production is known from earth worm faeces [92] and human faeces
[93, 94]. The effect of iron mobilization from lithogenic particles by reduction during gut
passage has been found in termites too [95]. The parallel generation of Fe-chelating humic
acids during gut passage guarantees, that the Fe is kept in solution after leaving the gut into
the ocean. The examples demonstrate that every link of the ocean food chain may act as
source of dissolved iron.

The co-generation of Fe(ll) and Fe-chelating agents at any Fe sources at the bottom, surface
and shelves of the oceans is the precondition to the iron transport between source and
phytoplankton at the ocean surface. But the transport between sources and the
phytoplankton depends on the vertical and horizontal movement activity in the ocean basins
[48, 54]. Any movement between iron sources and the phytoplankton-rich surface in stratified
ocean basins keeps restricted to surface near Fe input from its sources (shelf sediments,
melt water, icebergs, rivers, surface water runoff and dust input).

During the glacial maxima the vertical movement activity arrived to an optimum. According to
that, the Fe transport from basin bottom sources and dust sources to the phytoplankton were
at their maximum and produce maximum primary productivity at the ocean surface but the
carbon burial became the lowest during that time [96] although the greenhouse gases
(GHGs) were at their lowest levels during the glacial maximum. Causal for this seemingly
contradiction are the changing burial ratios of organic C / carbonate C at the basin bottom(s).
The burial ratio is high during episodes with stratified water column and it is very low during
episodes with vertical mixed water column as we demonstrate in chapter 4 in detail.

This review aims to describe the multi-stage chemistry of the iron cycle on the atmosphere,
oceans, lands, sediments and ocean crust. This article is a comprehensive review of the
evidence for connections between the carbon cycle and the iron cycle, and their direct and
indirect planetary cooling effects. Numerous factors influence the Fe-cycle and the iron
dissolution: iron speciation, photochemistry, biochemistry, red-ox chemistry, mineralogy,
geology. In order to perform an accurate prediction of the impact of Fe-containing dusts, sea
salt, and acidic components, the atmospheric chemistry models need to incorporate all
relevant interaction compartments of the Fe-cycle with sun radiation, chlorine, sulfur, nitrogen
and water. This review advocates a balanced approach to benefit from the Fe-cycle to fight
global warming by enhancing natural processes of GHG depletion, albedo increase, carbon

burial increase and of de-stratification of the ocean basins.

10
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Breakdown of sections:

The next three sections describe nearly a dozen different climate cooling processes induced
by iron salt aerosols (ISA) and their interaction for modeling parameter development
(sections 2, 3, 4 and 5). Then estimation of the requirements in terms of ISA, to stop global
warming will be given in section 6, followed by the description of a suggested ISA enhanced
method to fight global warming and induce planetary cooling in section 7, and the possible
risks of reducing acids and iron emissions in the future in section 8, followed by a general
discussion and concluding remarks in sections 9 and 10. To our knowledge, this review
completes, with atmospheric and terrestrial compartments [97], the previous ocean global
iron cycle vision of Parekh [98], Archer and Johnson [50], Boyd and Ellwood [49] and of
many others. It advocates a balanced approach to make use of the iron cycle to fight global

warming by enhancing natural processes.

Components of the different natural cooling mechanism by ISA

The best known cooling process induced by ISA is the phytoplankton fertilizing stage
described in the introduction. But this process is only part of a cascade of at least 12 climate
cooling stages presented in this review. These stages are embedded within the coexisting
multi-component complex networks of different reciprocal iron induced interactions across
the borders of atmosphere, surface ocean, sediment and igneous bedrock as well as across
the borders of chemistry, biology, and physics and across and along the borders of
illuminated, dark, gaseous, liquid, solid, semi-solid, animated, unanimated, dead and different
mix phase systems. Some impressions according to the complexity of iron acting in the
atmospheric environment have been presented by Al-Abadleh [75].

The ISA-induced cooling effect begins in the atmosphere. Each of the negative forcing
stages unfolds a climate-cooling potential for itself. Process stages 1-6 occur in the
troposphere (chapter 2), stage 6 at sunlit solid surfaces, stages 7-8 in the ocean (chapter 3),
and stages 9-12 in the oceanic sediment and ocean crust (chapter 4). Other possible cooling
stages over terrestrial landscapes and wetlands are described in chapter 5. The more than

12 stages of this cooling process cascade operate as described below.

2. Tropospheric natural cooling effects of the iron cycle
2.1. ISA-induced cloud albedo increase

ISA consists of iron-containing particles or droplets with a chloride content. Aerosols have
significant effects on the climate [99]. First, by direct scattering of radiation, and second, by
inducing a cloud albedo increase. The latter effect is induced by cloud whitening and cloud

life time elongation. Both effects induce a climate cooling effect by negative radiative forcing
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of more than -1 W per square meter.

Aerosols have a climate impact through aerosol—cloud interactions and aerosol-radiation
interactions [100]. By reflecting sunlight radiation back to space, some types of aerosols
increase the local albedo (which is the fraction of solar energy that is reflected back to
space), producing a cooling effect [101]. If the top of clouds reflect back a part of the incident
solar radiation received, the base of clouds receive the longwave radiation emitted from the
Earth surface and reemit downward a part of it. Usually, the higher a cloud is, in the
atmosphere, the greater its effect on enhancing atmospheric greenhouse warming, and
therefore the overall effect of high altitude clouds, such as cirrus, is a positive forcing.
Meanwhile, the net effect of low altitude clouds (stratocumulus) is to cool the surface, as they
are thicker and prevent more sunlight from reaching the surface. The overall effect of other
types of clouds such as cumulonimbus is neutral: neither cooling nor warming.

More outgoing long-wave radiation is possible when the cirrus cover is reduced. Efficient ice
nuclei (such as bismuth tri-iodide) seeding of cirrus cloud might artificially reduce their cover
[102, 103].

In order to enhance the cooling effects of low altitude clouds, marine cloud brightening has
been proposed [104], for instance by injecting sea salt aerosols over the oceans. The effect
depends on both particle size and injection amount, but a warming effect is possible [105].
Aerosol effects on climate are complex because aerosols both reflect solar radiation to space
and absorb solar radiation. In addition, atmospheric aerosols alter cloud properties and cloud
cover depending on cloud type and geographical region [106]. The overall effect of aerosols
on solar radiation and clouds is negative (a cooling effect), which masks some of the GHGs-
induced warming. But some individual feedbacks and forcing agents (black carbon, organic
carbon, and dust) have positive forcing effects (a warming effect). For instance, brown clouds
are formed over large Asian urban areas [107] and have a warming effect. The forcing and
feedback effects of aerosols have been clarified [101] by separating direct, indirect, semi-
direct and surface albedo effects due to aerosols.

Differing to any natural dust iron-containing mineral aerosol, the ISA aerosol does not contain
any residual mineral components such as Fe»Os; minerals known as strong radiation
absorbers. Previous studies have shown that iron oxides are strong absorbers at visible
wavelengths and that they can play a critical role in climate perturbation caused by dust
aerosols [108, 109]. As the primary ochre colored aerosol particles emitted by the ISA
(method |, see chapter 7) have small diameters of <0.05 ym and are made of pure FeOOH,
they become easily and rapidly dissolved within the plume of acidic flue gas. The ISA
FeOOH aerosol is emitted with the parallel generated flue gas plumes containing SO, and
NOy as sulfuric and nitric acid generators. ISA stays up for weeks within the troposphere

before precipitating on the ocean or land surfaces. Due to their small diameter and high
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surface area, the aerosol particles will immediately react with HCI, generated as reaction
product between sea-salt aerosol and the flue gas borne acids. The reaction product is an
orange colored FeCls aerosol: ISA. During day time the sunlight radiation bleaches ISA into
FeCl, and °Cl; at the night time the re-oxidation of ISA plus HCI absorption generates ISA
again. The FeCl, aerosol particles are colorless at low humidity; pale green during high
humidity episodes. The day time bleaching effect reduces the radiation absorption of ISA to
much lower levels comparing to oxides such as Fe>Os.
Hygroscopic salt aerosols act as cloud condensation nuclei (CCN) [110, 111]. ISA particles
are hygroscopic. High CCN particle concentrations have at least three different cooling
effects [112, 113]. Each effect triggers the atmospheric cooling effect by a separate increase
of earth reflectance (albedo) [114]:
e cloud formation (even at low super saturation);
e formation of very small cloud droplets, with an elevated number of droplets per
volume, which causes elevated cloud whiteness;
e extending the lifetime of clouds, as the small cloud droplets cannot coagulate with
each other to induce precipitation fall.

Figure 1 illustrates this albedo change due to ISA-CCN particles.
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Figure 1. Process of tropospheric cooling by direct and indirect increasing of the quantity of
different cloud condensation nuclei (CCN) inducing albedo increase by cloud formation at low

supersaturation, cloud whitening and cloud life elongation

Additional to climate cooling effects, CCN-active aerosols might induce a weakening of
tropical cyclones. The cooling potential of the ocean surface in regions of hurricane genesis
and early development, by cloud whitening potential [115] shall be casual. Further effects
such as delayed development, weakened intensity, early dissipation, and increased

precipitation have been found [116, 117].
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2.2. Oxidation of methane and further GHGs

Currently, methane (CHjs) in the troposphere is destroyed mainly by the hydroxyl radical °OH.
From 3 to 4% CH4 (25 Tg yr') [118, 119] are oxidized by °Cl in the troposphere, and larger
regional effects are predicted: up to 5.4 to 11.6% CHa (up to 75 Tg yr') in the Cape Verde
region [120] and ~10 to >20% of total boundary layer CH4 oxidation in some locations [121].
According to Blasing [99, 122, 123] the increase of the GHG CHs since 1750 induced a
radiative forcing of about +0.5 Watts per square meter. The research results of Wittmer et al.
[124-127] demonstrated the possibility to reduce the CHs lifetime by the ISA method
significantly. According to Anenberg et al. [128] the health effects of the combination of
increased CHs and NO, induced O3 levels in combination with an increase of black carbon
are responsible for tens of thousands deaths worldwide.

Any increase in the °Cl level will significant elevate the depletion rate of CH4 and further
volatile organic compounds (VOCs) as well as ozone (Os3) and dark carbon aerosol as
described in sections 2.3 and 2.4.

Absorption of photons by semi-conductor metal oxides can provide the energy to produce an
electron-hole pair able to produce either a reduced or an oxidized compound. At suitable
conditions, UV and visible light can reduce a variety of metal ions in different environments
[129-131]. Photo-reduced metal compounds may further act as effective chemical reductants
[132, 133] and the oxidized compounds such as hydroxyl radicals or chlorine atoms, can
further act as effective oxidants. Zamaraev et al. [134] proposed the decomposition of
reducing atmospheric components such as CH4 by photolytically induced oxidation power of
the oxides of iron, titanium and some further metal oxide containing mineral dust
components. In this sense Zamaraev designated the dust generating deserts of the globe as
“kidneys of the earth” [135] and the atmosphere as a “giant photocatalytic reactor” where
numerous physicochemical and photochemical processes occur [134]. Researches have
proposed giant photocatalytic reactors to clean the atmosphere of several GHGs, such as
N2O [136], CFCs and HCFCs [137] and even CO. after direct air capture [138], as almost all
GHGs can be transformed or destroyed by photocatalysis [139, 140].

Oeste suggested [141] and Wittmer et al. confirmed [124-127] the emission of CH4 depleting
chlorine atoms. This can be induced by 3 ways: sunlight photo reduction of Fe(lll) to Fe(ll)
from FeCls or FeEOOH containing salt pans, from FeCl; or FeOOH-containing sea spray
aerosols and from pure FeOOH aerosol in contact with air containing ppbv amounts of HCI.
Because the H abstraction from the GHG CH, as the first oxidation step by °Cl is at least
16 times faster compared to the oxidation by °OH, which is the main CH4 oxidant acting in
the ISA-free atmosphere, concentration of CH4 can be significantly reduced by ISA emission.
Figure 2 illustrates by a simplified chemical reaction scheme this climate cooling mechanism

by the ISA method: a direct cooling of the troposphere by CH4 oxidation induced by ISA
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Figure 2. simplified chemical reaction scheme of the generation of chlorine radicals by iron
salt aerosols under sunlight radiation and the reaction of the chlorine radicals with
atmospheric methane.

At droplet or particle diameters below 1 um, between 1 ym and 0,1 uym, contact or
coagulation actions between the particles within aerosol clouds are retarded [112, 142-144].
Otherwise the aerosol lifetime would be too short to bridge any intercontinental distance or
arrive in polar regions. That reduces the possible Cl- exchange by particle contact. But
absorption of gaseous HCI by reactive iron oxide aerosols resulting in Fe(lll) chloride
formation at the particle surfaces is possible [127]. Gaseous HCI and further gaseous chloro-
compounds are available in the troposphere: HCI (300 pptv above the oceans and 100 pptv
above the continents) [118], CINO: (up to 1500 pptv near flue gas emitters) [145, 146] and
CH3ClI (550 pptv remote from urban sources) [147, 148]. By or after sorption and reactions
such as photolysis, oxidation, and reduction, any kind of these chlorine species can induce
chloride condensation at the ISA particle surface. Acid tropospheric aerosols and gases such
as H»S0O4, HNOs3, oxalic acid, and weaker organic acids further induce the formation of
gaseous HCI from sea-salt aerosol [149-151]. Since 2004, evidence and proposals for

possible catalyst-like sunshine-induced cooperative heterogeneous reaction between Fe(ll),
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Fe(lll), CI, °Cl, and HCI fixed on mineral dust particles and in the gaseous phase on the CH4
oxidation are known [127, 141]. Further evidence of sunshine-induced catalytic cooperation
of Fe and Cl came from the discovery of °Cl production and CHs depletion in volcanic
eruption plumes [152, 153]. Wittmer et al. presented sunshine-induced °ClI production by iron
oxide aerosols in contact with gaseous HCI [127]. Further evidence comes from °Cl found in
tropospheric air masses above the South China Sea [154]. It is known that the troposphere
above the South China Sea is often in contact with Fe-containing mineral dust aerosols (~18
g m?2 a') [155], which is further evidence that the Fe oxide-containing mineral dust aerosol
might be a source for the °Cl content within this area.

HCI, water content and pH within the surface layer of the aerosol particles depend on the
relative humidity. Both liquid contents, H.O and HCI, grow with increasing humidity [156]. In
spite of growing HCI quantity with increasing humidity, pH increases, due to decreasing HCI
concentration within the surface layer. Hence, since the radiation induced °Cl production
decreases with decreasing pH, the °Cl emission decreases in humid conditions [127]. Under
dry conditions, even sulfate may be fixed as solid Na-sulfate hydrates. Solubilized sulfate
slightly inhibits the iron induced °Cl production [157].

Night or early morning humidity produces similarly the maximum chloride content on the
liquid aerosol particles surface. During day time, the humidity decrease induces ISA
photolysis and CI- conversion to °Cl production by decreasing water content and pH. The ISA
particle surface layer comes to ClI- minima levels during after noon hours. In the continental
troposphere with low sea salt aerosol level, these effects enable the pure ISA iron oxide
aerosol particles to coat their surface with chloride solution at night and to produce chlorine
atom emission at daytime.

Freezing has different effects on the primary wet ISA particles. Changing by CCN action to
cloud droplets with solubilized chloride and iron content and when arriving to freezing
conditions, the frozen ice is covered by a mother liquor layer with elevated concentration of
both iron and chlorine. Some acids such as HCI do not decrease the mother liquor pH
proportional to concentration and the behavior of the ice surfaces, grown from low salt
content water, are different from high salt content water, thus the different kinds of ISA
behave differently [158-160]. Direct measurements of molecular chlorine levels in the Arctic
marine boundary layer in Barrow, Alaska, showed up to 400 pptv levels of molecular chlorine
[161]. The CI concentrations fell to near-zero levels at night but peaked in the early morning
and late afternoon. The authors estimated that the ClI radicals oxidized on average more CH4
than hydroxyl radicals, and enhanced the abundance of short-lived peroxy radicals.

Further investigations have to prove how the different types of ISA particles behave in clouds

below the freezing point or in the snow layer at different temperatures: the primary salt-poor
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Fe-oxide, the poor FeCls-hydroyzed and the FeCls-NaCl mixture, because the °Cl emission
depends on pH, Fe and CI concentration.

Additional to iron photolysis, in a different and day-time independent chemical reaction, iron
catalyzes the formation of °Cl or Cl, from chloride by tropospheric ozone [162]. Triggering the
CH4 decomposition, both kinds of iron and chlorine have a cooperative cooling effect on the
troposphere: less GHG CH4 in the atmosphere reduces the GH effect and allows more
outgoing IR heat to the outer space [163].

These reactions had been active during the glacial period: Levine et al. [164] found elevated
8CH4 / 2CHy4 isotope ratios in those Antarctic ice core segments representing the coldest
glacial periods. The much greater °Cl preference for '2CH, oxidation than '*CH,4 oxidation
than by the °OH is an explanation for this unusual isotope ratio. Additional evidence gives the
decreased CH4 concentration during elevated loess dust emission epochs [165].

As shown in more detail in the next section 2.3, ISA produces °Cl and much more hydrophilic
°OH and ferryl as further possible CH4 oxidants by the Fenton and photo-Fenton processes
[75]. To gain the optimal reaction conditions within the heterogeneous gaseous / liquid / solid
phase ISA system in the troposphere the CH4 reductant and the oxidant (Fenton and photo-
Fenton oxidant) have to be directed in a way, that oxidant and reductant can act within the
identical medium.

As seen on table 1, according to the CH4 Henry’s law constant the preference of the 1.8 ppm
tropospheric CH4 is undoubtedly the gaseous phase. °Cl has also a preference for the

gaseous phase.

Table 1: the Henry’s law constants [166] and daylight stability for different gaseous or
vaporous components reacting with or produced by ISA in the troposphere

Substance | T ST | 2 ight (s stable. - netable)
CHs 1.4 x10° N
°Cl 23 %102 N
Cl2 9.2x10* g
HCI 15x 101 7
HOCI 6.5 I
°OH 3.8 x 10" ]
H202 8.3 x 102 1

Iron exists at least in part as Fe(lll) during nighttime and at least in part as Fe(ll) during
daytime. The CH4 oxidation by °Cl and °OH is restricted to the daytime as during night hours
°Cl and °OH recombine fast to Cl;, HOCI, and H2O- in the dark [167]. During daylight hours,

these recombination products photolyze again by regeneration of the radicals. But even
18
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during day time these radicals and their recombination products co-exist due to the cycling
between °Cl, °OH, Cl;, HOCI, and H2O.. This cycling is activated by sunlight photolysis and
radical recombination reactions [167, 168].

As we learn from Henry’s law constants in Table 1 the oxygen species °OH and H,O. have a
much higher tendency to stay in the liquid phase than the chlorine species °Cl and Cl,. Cl»
has the tendency to react with water of neutral pH by producing HOCI. But the pH values of
ISA, especially if ISA is emitted as acid flue gas plumes are lower than 3. Within this acidic
region the tendency of HOCI generation from Cl, decreases to very low values and even at
those humidity levels when the ISA particles become deliquescent the maijority of the
activated chlorine species will be localized in the gaseous phase containing CHa, not in the
liquid phase.

But °OH may leave the condensed phase into the gaseous phase at favorable circumstances
into the gaseous phase [169] and may contribute there to the oxidation of CH4 during clear
dry conditions without liquid phase at the Fe(lll) surfaces.

Comparably to the water-soluble Ammonia (5.9 x 10-'), °OH has a similar Henry’'s law
constant. Therefore °“OH has the tendency to stay within hydrous phases during humid
conditions. This tendency is 16 times lower for °Cl. This property is combined with the
16 times higher reactivity in comparison to °OH. At an equal production of °Cl and °OH, the
reaction of °Cl with CH4 has a probability of up to 250 times (16 x 16) that of the reaction of
°OH with CH4 when the ISA particles are wet and 16 times that of °OH with CH4 when the
ISA particles are dry. The probability of CH4 oxidation by ISA derived °CI against ISA derived
°OH, may be restricted by the pH increase tendency within ISA during humid episodes
(decreased °Cl generation on ISA with rising pH), to values fluctuating between the extremes
1 and 250. Independently of the kind of oxidants produced by ISA — during dry, clear sky, and
sunshine episodes - the ISA deriving oxidants produce maximum oxidant concentrations
within the CH4-containing gaseous phase, producing optimum CHs depletion rates.

The °Cl reactivity on most VOC other than CHy is at least one order of magnitude higher than
that of °OH [170]. Halogen organics such as dichloromethane [171] as well as the
environmental persistent and bioaccumulating perfluoro organics such as perfluoro octane

sulfonate may be depleted by sunlit ISA [172].

2.3. Oxidation of organic aerosol particles containing black and brown carbon

Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere
[173]. Total global emission of black carbon is 7.5 Mt yr' [174]. Direct atmospheric forcing of
atmospheric black carbon is +0.7 W m2 [174]. Above its climate relevance black carbon soot

induces severe health effects [128].
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Andreae & Gelencsér [175] defined the differences between the carbons: black carbon
contains insoluble elemental carbon, brown carbon contains at least partly soluble organic
carbon. Black carbon contains as well additional extractable organics of more or less
volatility and/or water-solubility [175, 176]..
Black and brown carbonaceous aerosols have a positive radiative forcing (warming effect) on
clouds [177] as seen in sub-section 2.1, and also after deposition on snow, glaciers, sea ice
or on the polar regions, as the albedo is reduced and the surface is darkened [178]. One of
the most effective methods of slowing global warming rapidly on short-term is by reducing
the emissions of fossil-fuel particulate black carbon, organic matter and reducing of
tropospheric ozone [179].
Both aerosol types have adverse effects to health (human, animal, livestock, vegetal) and
reducing its levels will save lives and provide many benefits [180].
Thus any tropospheric lifetime reduction of both dark carbons would gain cooling effects and
further positive effects.
Both carbons are characterized by aromatic functions. The black carbons contain graphene
structures; the brown ones have low-molecular weight humic-like aromatic substances
(HULIS). HULIS derive from tarry combustion smoke residues and/or from aged secondary
organic aerosol (SOA). The source of SOA are biogenic VOCs such as terpenes [181].
HULIS contain polyphenolic red-ox mediators such as catechol and nitro-catechols [182-
185].
The polyphenolic HULIS compounds are ligands with very strong binding to iron. Rainwater-
dissolved HULIS prevent Fe(ll) from oxidation and precipitation when mixing with seawater
[186]. Wood smoke derived HULIS nano-particles penetrate into living cell walls of
respiratory epithelia cells. After arrival in the cells the HULIS particles extract the cell iron
from the mitochondria by formation of HULIS iron complexes [187].
Beside iron, other metals such as manganese and copper have oxygen transport properties
which improve the oxidation power of H,O, by Fenton reactions generating °OH [188]. H202
is a troposphere-borne oxidant [189].
Polyphenolic and carboxylate ligands of HULIS enhance the dissolution of iron oxides. These
ligands bind to un-dissolved iron oxides [75].
Iron and catechols are both reversible electron shuttles:

Fe?* €> Fe¥* +e (Eq. 1);

catechol €<- quinone + 2e (Eq. 2).
The HULIS — iron connection enhances the oxidative degradation of organic compounds
such as aromatic compounds [75].
Oxidant generation by reaction of oxidizable dissolved or un-dissolved metal cations such as
Fe(ll), Cu(l) and Mn(ll) with H20, had first been discovered for instance for Fe(ll) in 1894
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[190]. Since then these reactions are known as Fenton reactions. Mechanisms and
generated oxidants of the Fenton reactions are still under discussion.

According to the participating metal ligand oxidants such as °OH, Fe(IV)O?* (= Ferryl), °Cl,
°S0y, organic peroxides and quinones may appear [191].

According to Barbusinsky et al. the primary reaction intermediate from Fe?* and H.O; is the
adduct {Fe(ll)H202}?* which is transformed into the ferryl complex {Fe(IV)(OH).}?*. The latter
stabilizes as {Fe(IV)O}** + H,O. Reductants may also react directly with {Fe(IV)O}?* or after
its decomposition to Fe®* + °OH + OH- by °OH. Fe?®* reacts with H.O, to Fe?* via °O.H
development; the latter decays into O, + H,0.

Light enhances the Fenton reaction effectiveness. It reduces Fe®* to Fe?* by photolysis
inducing °OH or °Cl generation, the latter in the case of available CI-, which reduces the H2O-
demand [192, 193].

This process is illustrated by figure 3.
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Figure 3. Schematic representation of the cooling of the troposphere, by inducing the
decrease of ozone and organic aerosol particles such as soot and smoke.

The Fenton reaction mechanism is dependent on pH and on the kinds of ligands bound to
the Fenton metal. The reaction mechanism with oxidants of SO4%, NOs, ClI- and 1,2-
dihydroxy benzene ligands had been studied [194].
In biological systems, 1,2-dihydroxy benzenes (catecholamines) regulate the Fenton reaction
and orient it toward different reaction pathways [195].
Additionally, the fractal reaction environments like surface rich black and brown carbons and
ISA are of considerable influence on the Fenton reaction. By expanding the aqueous
interface, accelerations of the reaction velocity up to three orders of magnitude had been
measured [196]. This may be one of the reasons why iron-containing solid surfaces made of
fractal iron oxides, pyrite, activated carbon, graphite, carbon nanotubes, vermiculite, pillared
clays, zeolites have been tested as efficient Fenton reagents [197-199].
Even the oxidation power of artificial Fenton and photo-Fenton systems is known to be high
enough to hydroxylate aliphatic C-H bonds, inclusive CH4 hydroxylation to methanol [200-
202].
But the HULIS itself becomes depleted by the Fenton oxidation when it remains as the only
reductant [195].
Like HULIS or humic substances, the different kinds of black carbons act as red-ox
mediators due to their oxygen functionalities bound to the aromatic hexagon network such as
hydroxyl, carbonyl, and ether [203, 204]. These functionalities act similarly as hydroquinone,
quinone, aromatic ether, pyrylium and pyrone at the extended graphene planes as electron
acceptor and donor moieties. Soot also possesses such red-ox mediator groups [205, 206].
Again these are ligands with well-known binding activity on iron compounds. Their difference
to the HULIS ligands is that they are attached to stacks of aromatic graphene hexagon
networks instead of mono- or oligo-cyclic aromatic hexagons of HULIS. As well as the HULIS
red-ox mediator ligands these hydroxyl and ketone groups transfer electrons from oxidants to
reductants and vice versa. Like the HULIS — iron couple, the black carbon - iron couple
enhances the red-ox mediation above the levels of every individual electron shuttle [207-
209]. Accordingly, any ISA doping of black carbons generates effective oxidation catalysts
[210, 211].
Lit by sunlight the ISA doped soot represents an oxidation catalyst to adsorbed organics
producing its own oxidants by the photo-Fenton reaction. In spite of the higher chemical
stability of the graphene network of soot compared to HULIS soot, by wet oxidation further
oxygen groups are fixed to the soot graphene stacks [212] increasing soot's hydrophilic
property, which is necessary to arrange its rain-out. The hydroxyl radical attack resulting from
the photo Fenton reaction at last breaks the graphene network into parts [213, 214]. Photo-
22
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Fenton is much more efficient in °OH generation than Fenton, because Fe(lll) reduction as
regeneration step occurs by Fe(lll) photo reduction, rather than consuming an organic
reductant.

The oxidized hydrophilic carbon particles are more readily washed out of the atmosphere by
precipitation [215]. ISA accelerates this oxidation process as the iron-induced Fenton and
photo-Fenton reaction cycles produce hydroxyl and chlorine radical oxidants, speeding up
the soot oxidation.

Fe(lll) forms colored complexes with hydroxyl and carboxylic hydroxyl groups too, particularly
if two of them are in 1,2 or 1,3 position, such as in oxalic acid. The latter belong to the group
of dicarboxylic acids known to be formed as oxidation products from all kind of volatile,
dissolved or particular organic carbons in the atmosphere [216]. Dicaboxylate complexes
with iron are of outstanding sensitivity to destruction by photolysation [217-220]: photolysis
reduces Fe(lll) to Fe(ll) by producing H20, and oxidation of the organic complex compounds.
Then Fe(ll) is re-oxidized to Fe(lll) by H2O. in the Fenton reaction by generation of °OH [221].
According to their elevated polarity oxidation products containing hydroxyl and carboxyl
groups have increased wettability, are more water soluble and are thus rapidly washed out
from the atmosphere.

Due to their elevated reactivity compared to CH4 the gas phase, oxidation of airborne organic
compounds by ISA-generated °OH or °Cl is enhanced. By eliminating black and brown
carbon aerosols, ISA contributes to global warming reduction and to decreasing polar ice
melting by surface albedo reduction caused by black-carbon snow contamination [173, 222].
The generation of ISA by combusting fuel oil with ferrocene or other oil soluble iron additives
in ship engines or heating oil burners has additional positive effects, because soot is
catalytically flame-oxidized in the presence of flame-borne ISA (detailed in chapter 6) as a

combustion product of the iron additive [223, 224].

2.4. Tropospheric Ozone depletion by ISA

An additional GHG is the tropospheric ozone [179]. Carbon dioxide is the principal cause of
GW and represents ?/3 of the global radiative forcing, but long lived methane and short lived
tropospheric ozone are both GHGs and respectively responsible of the 2" and 3 most
important positive radiative forcing.

According to Blasing [99, 122, 123] tropospheric O3 has an atmospheric forcing of +0.4 Watt
per square meter. Any direct depleting action of tropospheric Os; by the ISA-induced °Cl is
accompanied by an indirect emission decrease of Os; as the reduction of CH4 and further
VOC by the ISA method decreases the O; formation [225].

Reactive halogen species (mainly Cl, Br) cause stratospheric ozone layer destruction and

thus the “ozone layer hole”. Tropospheric ozone destruction by reactive halogen species is
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also a reality [226]. Since long, °Cl and °Br are known as catalysts for O3 destruction in the
Stratosphere [227]. Investigations both in laboratory and nature have shown that °Br is a
much more effective catalyst of ozone depletion within the troposphere than °CI [161, 228,
229].

As discussed at the end of chapter 2.6 clear evidence exists, that the ozone depleting
“bromine explosions” known as regular phenomenons developing from cost-near snow layers
at sunrise in the polar spring [230, 231] are likely to be induced by the photolysed
precipitation of iron containing dust. According to Pratt, bromide enriched brines covering
acidified snow particles are oxidized by photolyzation to °Br.

In coastal areas of both the northern and southern Polar Regions during springtime, inert
halide salt ions (mainly Br~) are converted by photochemistry into reactive halogen species
(mainly Br atoms and BrO) that deplete ozone in the boundary layer to near zero levels [232].
During these episodes called “tropospheric ozone depletion events” or “polar tropospheric
ozone hole events” O3 is completely destroyed in the lowest kilometer of the atmosphere on
areas of several million square kilometers and has a negative climate feedback or cooling
effect [233].

In the tropics, halogen chemistry (mostly Br and 1) is also responsible for a large fraction
(~30%) of tropospheric ozone destruction [120, 234] and up to 7% of the global methane
destruction is due to chlorine [121, 235]. It has been estimated that 25% of the global
oxidation of CH4 occurs in the tropical marine boundary layer [236]. A one-dimensional model
has been used to simulate the chemical evolution of air masses in the tropical Atlantic Ocean
[120] and to evaluate the impact of the measured halogens levels. In this model, halogens
(mostly Br and I) accounted for 35-40% of total tropospheric O3 destruction while the ClI
atoms accounted for 5.4-11.6% of total CH4 sinks. Sherwen et al. [226] estimate at -
0.066 W m the radiative forcing reduction due to O3 pre-industrial to present-day changes.
The ISA-induced increase of °Br concentration at sea-salt containing tropospheric conditions
has been confirmed [125]. This establishes ISA as part of an ozone-depleting reaction cycle
and additional cooling stage. This depletion effect of the GHG tropospheric ozone is worth

noting.

2.5. ISA induced phytoplankton fertilization albedo increase (by enhancing DMS-

emissions) and CH,4 oxidation efficiency (by increasing MC- and DMS-emissions)

One of the largest reservoirs of gas-phase chlorine is the about 5 Tg of methyl chloride (MC)
in the Earth’s atmosphere [147]. Methyl-chloride is released from phytoplankton [237] and
from coastal forests, terrestrial plants and fungi [238].

Dimethylsulfide (DMS) is a volatile sulfur compound that plays an important role in the global
sulfur cycle. Through the emission of atmospheric aerosols, DMS may control climate by
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influencing cloud albedo [239].

Currently, researchers [240] estimate that 28.1 (17.6-34.4) Tg of sulfur in the form of DMS
are transferred annually from the oceans into the atmosphere.

Ocean acidification has the potential to exacerbate anthropogenic warming through reduced
DMS emissions [241]. On the contrary, increased emissions of DMS and MC into the
troposphere are a consequence of the ISA-induced phytoplankton growth and DMS + MC
release into the troposphere. DMS is oxidized in the troposphere to sulfuric and sulfonic acid
aerosols, which are highly active CCN. This process enhances the direct ISA cooling effect
according to cooling section 2.1 [239].

In contact with this acidic aerosol with sea spray aerosol, sulfate and sulfonate aerosols are
formed and gaseous HCI is produced. Sulfate aerosols are known to have a negative
radiative forcing (a cooling effect) [242].

A further HCI source is the oxidation of MC. Both effects induce the tropospheric HCI level to
rise. According to cooling stage described in section 2.2, with the increased HCI level,
additional chlorine atoms are produced by reaction with ISA. This effect further accelerates

the CH4 oxidation and its removal from the atmosphere, reducing its radiative forcing.

2.6. Oxidation of CH4 and further GHGs by sunlit solid surfaces

Mineral aerosol particles adhere strongly to sunlit, dry and solid surfaces of rocks and stones.
A well-known remnant of the dust deposit in rock or stone deserts and rocky semi-arid
regions is the orange, brown, red or black colored “Desert Varnish” coat covering stones and
rocks. The hard desert varnish is the glued together and hardened residue of the primary
dust deposit. Daily sun radiation and humidity change, as well as microbe and fungi influence
grows up the varnish changing the primary aerosol deposit [243] by photolytic Fe(lll) and
Mn(IV) reduction during daytime and night time oxidation of Fe(ll) and Mn(ll). The oxidation is
triggered further by Mn and Fe oxidizing microbes adapted to this habitat [244, 245]. Desert
varnish preserves the Fe and Mn photo reduction ability of the aerosol: lit by light the varnish
can produce chlorine from chloride containing solutions [246]. The photo, humidity, and
microbial induced permanent Fe and Mn valence change between night and day [247]
accompanied by adequate solubility changes seem to trigger the physico-chemical hardening
of every new varnish layer.

The varnish is composed of microscopic laminations of Fe and Mn oxides. Fe plus Mn
represent about /s of the varnish. Meanwhile /s of the laminations are composed of SiO,,
clay and former dust particles. Dominant mineral is SiO; and/or clay [248, 249]. There is little
doubt that desert varnish can build up even from pure iron oxides or iron chloride aerosol
deposits such as ISA. The optimum pH to photo-generate the methane oxidizing chlorine

atoms from ISA is pH 2 [124]. Established by the gaseous HCI content of the troposphere

25



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

803
804

805
806
807
808

[118], a pH drop to pH 2 at the varnish surface is possible on neutral alkaline-free surfaces
such as quartz, quartzite and sandstone. The humidity controlled mechanism acting between
gaseous HCI and HCI dissolved in the liquid water layer absorbed on the solid iron oxide
surface of ISA particles, as explained in the section 2.2, acts at the varnish surface analogue:
a FeCls; stock can pile up by Fe(ll) oxidation and humidity-triggered HCI absorption during
night time. The FeCls stock at the varnish surface is consumed during daytime by photolytic
Fe(ll) and chlorine atom generation.

ISA aerosol particles emit HCI during dry conditions. Like oxidic ISA, desert varnish absorbs
H,O and HCI from the atmosphere gathering it during night time as surface-bound H,O, OH-,
and CI- coat. During sunlit day time, chloride and water desorbs from Fe(lll) as °Cl, °OH and
H20O, leaving Fe(ll) in the varnish surface. The surface Fe(ll) (and Mn(ll)) is bound by oxygen
bridges to the varnish bulk of Fe(lll) (and Mn(lV)); may be like the combination of Fe(ll) and
Fe(lll) within magnetite. During night time the Fe(lll) (and Mn(lV)) surface coat is regenerated
by microbial and/or abiotic oxidation with O.. It is worth mentioning, that desert varnish can
exist only within dry regions.

Figure 4 illustrates the interactions of ISA at the phase borders of tropospheric aerosols,

ocean surface, and dry solid surfaces.

Figure 4. Schematic representation of iron salt aerosols interactions with different solid
surfaces:
Primary ISA precursor FeOOH particles (a) react with gaseous HCI by generation of
ISA as FeCls coated on FeOOH particles (c).
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Coagulation, condensation and chemical reaction with particles and vapors produce
different kinds of liquid and/or solid ISA variants and sediments:

(b) hydrolyzed FeCls coated on soot and/or HULIS particles

(d) hydrolyzed FeCls; coated on ice crystals

(e) hydrolyzed FeCls coated on salt crystals

(f) hydrolyzed FeCls coated on ice crystals of snow layers (ISA sediment)

(g) hydrolyzed FeCls dissolved in cloud droplets

(h) FeCls hydrolysate residue on desert varnish (ISA sediment)

(i) hydrolyzed FeCl; as dissolved residue in ocean surface water fertilizes the
phytoplankton growth and at last triggers the generation of sulfuric, sulfonic and
dicarboxylic acids by emission of DMS, MC and further organics. This activates the
tropospheric generation of vaporous HCI by reaction of sea-salt aerosol (i) with the
acids. HCI again changes the ISA precursor FeOOH aerosol (a) to ISA (c).

Similar daytime dependent microbial activated abiotic photo-reduction and photo-oxidation
reaction cycles are known from aquifer environments [250]. Thus the CH4 depletion of the
former ISA deposits will persist even after change into desert varnish. As explained chapter
2.2 continental HCI (300 pptv above the oceans and 100 pptv above the continents) [118],
CINO; (up to 1500 pptv near flue gas emitters) [145, 146] and CH3Cl (550 pptv remote from
urban sources) [147, 148] and in deserts chloride salt containing dusts are direct and indirect
sources of chloride which could provide desert varnishes with CI-.

Furthermore, analogue to ISA deposited on solid desert surfaces, ISA depositions on dry
snow, snow cover and ice occurring in permanent snow-covered Mountain regions or within
polar and neighboring regions preserves its CH4 destruction activity during sunlit day, spring,
and summer times [161].

The global area of the desert varnish surface does not change with changing dust
precipitation rates. It only depends on the precipitation frequency. It grows through
desertification and shrinks with increasing wet climate. Until now, quantitative measurements
about the specific amount of CH4 depletion per square meter of desert varnish are not
known. Without this data, estimation about its influence on the CH4 depletion and climate is
impossible.

The photochemical actions inducing CH4 depletion of the desert varnish surfaces resulting
from dust precipitation are concurrent with the surfaces of deserts and semi deserts made of
sand or laterite soils. Their surface is colored by ochre to red iron oxide pigments. Their iron
components should act in principle by the same CH4 depleting photochemistry such as ISA
and desert varnish.

As mentioned in chapter 2.4 the Cl and Br activation by iron photolysis changes after division
of the ingredients by freezing or drying of the former homogenous liquid between solid salt-
poor ice and liquid brine coat or solid salt and liquid brine coat. This inhomogeneous partition

phenomenon of the predominant transformation of aerosol droplets into solid, and vice versa,
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applies to snow or salt layers containing a proportion of ISA.

It has been shown that cooling precipitation of the buffering influence of salts such as
carbonates, sulfates and chlorides of bromide and chloride rich mother liquors on arctic snow
packs or ice particles can minimize their buffering capacity against pH change [160, 231,
251]. Similar mechanisms may act when liquid aerosol particles become solid by drying.
Then, the uptake and contact over time of solid iron-bearing particles and airborne organic
and inorganic acids and acid precursors on, or with, ice crystal surfaces may drop the pH of
the former alkaline particle surface, into the reaction conditions of the bromide oxidation by
iron(lll) photo reduction.

According to Kim et al. (Kim et al., 2010) the photogeneration of Fe(lll) oxides, proceeding
slow at pH 3.5 in bulk solution, becomes significantly accelerated in polycrystalline arctic ice.
This effect is accompanied by an acceleration of the physical dissolution of the Fe(lll) oxides
by freezing ice [252, 253].

The contact of arctic snow layers with iron oxides is confirmed by Kim [252]. Dorfman [254]
found recent loess dust sedimentation rates in the Alaskan Arctic Burial Lake of 0.15 mm/a.
According to the research results from artificial iron doped salt pans [125] iron salt doped
sea-salt aerosols [124] or sea-salt doped iron oxide aerosols or pure iron oxide aerosols in
contact with gaseous HCI [127] chloride and bromide in sun-lit surfaces are oxidized to °Cl
and °Br by photo-reduced Fe(lll) if the pH of the reaction media is 3.5 or lower.

As known from the bromine explosions, they appear on acidified first-year tundra and first-
year sea ice snow lit by sunlight [230]. According to Kim et al. and Dorfman et al. the year-old
snow layers contain iron(lll). This confirms, that sufficient reaction conditions exist to produce
bromine explosions by oxidation of iron(lll) photoreduction.

Continents have considerable areas where the out flowing water is drained into “endorheic”
water bodies and not into the oceans. Endorheic lakes have no outlets other than
evaporation and thus dissolved salts and nutrients concentrate over time. Large surfaces of
these basins are covered by salt crusts, salt marshes, salty soils, or salt lakes. Most of these
areas are situated within desert or semi-desert areas [255]. These salt environments gain
iron from precipitating dust or from iron containing brines they have precipitated from. As far
as these environments become acidic they oxidize CH4 by iron photolysis induced °CI [125].
To summarize the climate-relevant action of ISA within the troposphere according to chapters
2.1-2.6: CH4, VOC, O3 and dark carbon aerosol plus cloud albedo, in sum, have a similar
effect on the climate warming as CO,. The ISA method will have significant reductions in
CH4, VOC, O3 are anticipated by the test results from Wittmer et al. [124-127] and significant
reductions in dark carbon aerosol and significant increase in cloud albedo are anticipated by
the literature cited. We found no arguments against these statements. This allows the

conclusion that only within the troposphere the ISA method should have significant climate
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cooling effects.

3. Oceanic natural cooling effects of the iron cycle
3.1. Biotic CO; conversion into organic and carbonate carbon

Vegetation uses the oxidative power of organic metal compounds induced by photon
absorption, oxidizing water to oxygen and reducing CO, by organic carbon generation
(photosynthesis by chlorophyll, a green Mg-Porphyrin complex). This assimilation process is
retarded by prevailing iron deficiency in the oceans which retards the phytoplankton growth.
Meanwhile there is no doubt that ISA-containing dust precipitation fertilizes the phytoplankton
which in turn affects the climate [256].
ISA triggers the phytoplankton reproduction and increases the formation of organic carbon
from the GHG CO; [42]. The vast majority of the oxygen thus formed and only slightly water
soluble (11 mg O I') escapes into the atmosphere. In contrast, the organic carbon formed
remains completely in the ocean, forming the basis of the marine food and debris chain.
From the primary produced phytoplankton carbon only a small fraction arrives at the ocean
bottom as organic debris and becomes part of the sediment. Cartapanis et al. [257] and
Jaccard et al. [258] found direct evidence that during the glacial maxima, the accumulation
rate of organic carbon was consistently higher (50 %) than during inter-glacials. This resulted
from the high dust concentrations during the glacial maxima, fertilizing the phytoplankton with
ISA.
The build-up of Ca-carbonate shell and frame substances by the calcification process at the
ocean surface extracts additional CO,-C from the troposphere. The bulk of calcification can
be attributed to corals, foraminifera and coccolithofores; the latter are believed to contribute
up to half of current oceanic CaCOs production [259].
Both carbon fixation processes increase the removal of the GHG CO, and thus contribute to
cool the troposphere. The Fe-fertilizing process worked during the ice ages, as the
evaluations of Antarctic ice cores show: the minimum CO- concentrations and temperatures
in the troposphere are connected to the high dust phases [165].
It has been discussed that the alkalinity loss by phytoplankton calcification and CaCOs loss
with phytoplankton debris from the ocean surface is said to produce calcium and alkalinity
deficit at the ocean surface [260, 261], producing additional acidification at the ocean surface
by CO. generation:

Ca(HCO3), > CaCOs3 + H,O + CO2 (Eq. 3)
At least in part, this acidification is compensated by assimilative generation of organic carbon
by CO, consumption. Both organic debris and CaCO3; become part of the ocean sediment.

But if the organic debris is re-oxidized during its journey downwards, some acidification could
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result. Acidification could result too if more CO: is absorbed by the ocean, then is assimilated
and changed to organic debris. Sedimentation of organic debris and CaCOs, increase both,
according to the ISA-induced phytoplankton productivity.

The increasing amount of CaCO3 sedimentation within iron fertilized ocean regions had been
discussed by Salter [262]. In a sufficient mixed ocean, alkalinity loss at the surface is more
than compensated by the different sources of alkali and earth alkali cations at the ocean
bottom and through continental weathering: in the first place these are the mechanisms of
alkalinity generated by the ocean water reactions within the ocean sediments and their bed-
rock, the oceanic crust. The latter mechanisms are described in more detail in chapters 4.1 —
4.3. The convection of the primary oxic ocean bottom water through the ocean crust
generates alkalinity by reduction of sulfate, nitrate and hydrogen carbonate, by dissolution of
silicates by reduced humic acids and further by serpentinization of basalt and peridotite
silicates [263, 264]. The alkalinity extracted from the oceanic crust keeps mainly positioned in
the dark water layers of the ocean basins if the decreased THC is not able to elevate the
alkaline extract into the phytoplankton layer in sufficient quantities.

The THC activation by the ISA method is described in the chapters 4.1 — 4.3.

Sudden ISA-induced phytoplankton growth generates increased calcite-shell production. This
lowers the Ca-concentration at the ocean surface. Even if the vertical cycling is not fast
enough to compensate the Ca-loss at once, or after a small time lag, this does no harm to
the phytoplankton growth, because Ca is not essential to it. Just the opposite is true:
phytoplankton uses the calcification as a detoxification measure to get rid of calcium ions
from their bodies [265]. As a consequence of this effect only the relation between Ca
carbonate sequestration and organic carbon sequestration will decrease during the time lag.
By additional direct alkalinity production of the phytoplankton itself, at least parts of the
acidity production by the lime shell production may be compensated: ISA-controlled
phytoplankton growth induces an increased synthesis of organic sulfur and of chlorine
compounds [266], emitted as dimethylsulfide (DMS) and methyl chloride (MC) [267].
Synthesis of organic sulfur and halogen organics as precursors of the volatile DMS and MC
emission is realized by the phytoplankton, by reduction of sulfate to organic sulfides, and
oxidation of chloride to carbon chlorine compounds. This precursor synthesis excretes
equivalent Na* and/or Ca?* alkalinity, as Na,SO4 reduction/formation to DMS generates Na
alkalinity; NaCl oxidation/formation to MC also generates Na alkalinity: cations formerly
bound to SO4% or CI- loose their anions, producing alkalinity. According to [268, 269] the
sulfur content of phytoplankton exclusively, exceeds the Ca?*, Mg?*, and K* alkaline load of
phytoplankton lost with the phytoplankton debris. Only half of the organic carbon assimilated
by phytoplankton derives from dissolved CO,. The other half derives from the ocean water

NaHCOs3 anion content [270]. The chemical reduction (reduction of HCO3™ to organic C + O,
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by assimilation of HCO3 anions) produces alkalinity as further compensation of the alkalinity
loss by calcification. NaHCOs3 reduction/formation to organic carbon generates Na alkalinity.
The cation previously bound to HCOs loses its anion and produces alkalinity.

These considerations demonstrate that any of the proposed enhanced weathering measures
to prevent ocean acidification by increasing the alkalinity [271] might not be necessary if the
ISA method is in action and keeps the vertical ocean mixing sufficiently active.

During the down-dripping of the very fine-shaped phytoplankton debris, bacterial oxidation,
fish and further food chain links minimize the organic debris up to an order of magnitude
[272]. Even the dissolution of the small carbonate debris reduces the carbonate fraction until
arriving at the sediment surface. In order to maximize the effect of the ISA method, within the
main ISA precipitation regions, the oxidation and dissolution of the organic and carbonate
phytoplankton debris during its dripping down through the ocean water column can be
reduced. To reach this goal, we suggest farming fixed filter feeders such as mussels and
oysters within the ISA precipitation region.

Mussels and oysters produce faeces and so called “Pseudo-faeces” in the shape of rather
solid pellets. Compared to the time of sedimentation of the unconditioned phytoplankton
debris, this expands the sedimentation time difference between excreted filter feeder faeces
and the phytoplankton faeces pellets sedimentation on the ocean floor by an order of
magnitude. Bivalve farming would significantly reduce the oxidative and solution loss of
phytoplankton debris attack. Mussel and oyster farming are well-known practices which have
been employed for long time as a measure to produce protein rich food. They have been
proposed as an element of climate engineering [273, 274].

To further optimize the CO,-C conversion to sediment-bound C the biomass of oysters and
mussels including their shells and fixing systems might be periodically dumped into the
sediment.

Additional floating supports such as coral habitats, sponges, sea lilies and sea anemones
between the mussel supports might complete and again optimize the ISA precipitation areas.
The oceanic water deserts can be changed into productive ecosystems and protein sources
for an increasing population by these measures, among others, for an optimized CO fixation
induced by ISA.

A further proposal in order to maximize the CO; fixation induced by ISA is our suggestion to
integrate a solution to the plastic waste problem on the ocean surfaces into the ISA method.
About 5 to 13 million metric tons of solid plastic waste per year are entering the oceans [275].
Over the last years the plastic waste drifting on the ocean has developed into a huge
problem for the oceanic ecosystems [276]. Plastic keeps sunlight away from phytoplankton,
hampering it from effective growth. The plastic waste drifts with the ocean currents. It then

collects within accumulation zones predicted by a global surface circulation model [277].
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Most plastic-covered ocean surfaces are concentrated in central-oceanic regions with low
iron content with predestination for applying the ISA method. Due to the trash, there would be
a reduction in the ISA efficiency so we propose the integration of the plastic depletion
problem into our ISA method: on both the side of and the outside of a container ship vessel, a
specific technology can be installed: plastic trash collection, plastic trash sorting, plastic trash
extrusion, plastic trash burning, ISA production and emission. The aforementioned processes
are well known and need no description here. Trash or waste burning has the advantages of
delivering an effective hot carrier gas with high buoyancy for uplift of ISA and for delivering
HCI as co-catalyst of ISA. With the plastic extruder, most carrier parts of floating supports on
the reef coral, sponge, and mussel habitats could be produced.

Beside the larger plastic fragments, the floating plastic fine debris with particle diameters in
the ym range is a further problem [278]. Instead of doing the micro-trash separation by
technical means, the mussel and oyster farming may clean away this ocean surface
environmental problem. The floating micro-trash particles are collected by the bivalves and
excreted as pseudo-faeces pellets and at last become part of the sediment layer at the ocean
bottom.

Within the iron cycle, the photolytic driven oxidant production with iron participation may not
be reduced to °Cl and °OH in the troposphere and O. by assimilation: When iron is cycled
through the mantle at temperatures above 2500 K, Fe(lll) is reduced to Fe(ll) by release of
Oz [279]. This phenomenon may be driven by the blackbody radiation containing a great

fraction of photons with wave length shorter than 2 ym at and above this temperature level.

3.2. ISA activates the O; input to the deep ocean

Ocean ecosystems are based on certain balances between oxidizing and reducing agents.
As a result of the ISA-triggered additional input of organic carbon in the ISA emission region
(i.e. the ISA precipitation region), as described in chapter 3.1, oxygen consumption by
increasing organic debris precipitation could increase. The recent O, decline in some oceanic
regions may result, at least in part, from the deposition of soluble iron deriving from flue gas
pollution. Equally discussed in chapter 3.1 is the decrease of the oxidation efficiency within
the water column by measures to increase the sinking velocity of the organic C containing
debris. The increase of the sinking velocity of the organic C containing debris, is an effect
that might completely compensate the oxygen loss by oxidation of the ISA-induced debris
mass increase.

Recently, and without ISA influence, oxygen deficiency seems to develop in many parts of
the ocean as described in the introduction. Oxygen deficiency is usually due to insufficient
vertical water exchange owing to increased vertical density gradient rather than the result of

increased phytoplankton production.
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Oxygen deficiency (hypoxia) is found frequently between the oxic surface layer (the
oxygenated one) and the oxic deep water layer [4, 280]. Due to the climate warming, the
localities with a lack of oxygen seem to intensify and expand already today [5].

The deepest water layer of most ocean basins results from the Antarctic wintertime ocean
surface ice generation by fractionating sea water into salt-poor sea ice and salt-rich dense
brine. This results in the production of cold, high density oxic brines which sink to the bottom
of the south ocean. The cold high density oxic brines spread as a thin oxic bottom layer up to
the ocean basins north of the equator. The most recent severe climate warming, which
induced disturbance of the THC, is likely to have been activated by the increasing inflow of
the fresh melt water from Greenland into the North Atlantic. This inflow disturbs the down flow
of the Gulf Stream water [281]. According to the increased melt of the glaciers of the
Antarctic, the salt content of the ocean surface around Antarctica decreased. This effect
increased the ocean surface covered by sea ice [282]. This freezing of the salt-poor melt
water layer decreases the production of dense brines. This again decreases the down flow of
brine, reducing again the vertical components of the ocean currents.

Through the ISA induced cooling, the oxygen and CO; flux into the deep ocean basins will be
restored due to the input of the cold dense oxygen and CO: enriched polar surface water:
Reduced melt water production of the Greenlandic and Antarctic ice shields by falling surface
layer temperatures will restore and intensify the thermohaline circulation within the northern
polar regions, by increasing the amount of Gulf Stream dumped, and by producing the circum
Antarctic sea ice cover without melt water dilution, which induces the production of cold high
density brines sinking to the ocean basin bottoms [283, 284]. Figure 5 illustrates the ocean

basins vertical mixing circles.
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Figure 5. The motor of the Antarctic bottom water (AABW) current is the sea ice production
of the Southern Ocean area bordering Antarctica. The North Atlantic Deep Water (NADW)
current is driven by decreasing Gulf Stream temperature on its way north. Climate warming
especially the faster temperature rise at higher latitudes shifts the region of the Gulf Stream
down flow as NADW further to the north, as a result of the lowering At between equatorial
and polar surface water. This shift sets additional Greenlandic coast regions in contact with
warm Gulf Stream water and the rising air temperatures, as further component of poor
increasing amounts of fresh melt water on the ocean surface. The rising melt water volume
and the further north flowing Gulf Stream, increase the contact region between Gulf Stream
water with fresh melt water. This produces increasing amounts of original Gulf Stream water
but too low in density to sink and to become part of NADW.

Temperature rise at higher latitudes reduce the salt content of ocean surface water around
Greenland and Antarctica, inducing reduced NADW and AABW volumes. According to the
reduced down flow current volumes, the amounts of CO; and O, to the deep ocean basin are
reduced as well as the vertical fertilizer transport from the ocean basin bottom, to the
phytoplankton at the surface.

34



1076
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

3.3. Phytoplankton fertilizer extraction from ocean sediments and underlying

crust

The oceanic crust is composed of peridotites, basalts and serpentine rock and has a layer of
sediment on top. Sediments and bed rock contain reductive and alkaline components
extractable by sea water. The cause of the ocean water flow through the sediment layer and
base rock is the temperature difference driven convection. Sediment compaction by gravity,
subduction-induced compaction and subduction-induced hydroxyl mineral dehydration may
be further reasons for water movement through the sediment layer at the ocean bottom.
Olivine is one of the main mineral components of oceanic crust rock layers below the
sediment layer. Hauck [285] simulated the effects of the annual dissolution of 3 Gt olivine as
a geoengineering climate cooling measure in the open ocean, with uniform distribution of
bicarbonate, silicic acid and iron produced by the olivine dissolution. An additional aim of this
work was the development of a neutralization measure against the increasing acidification of
sea water. All the components of olivine: SiOz, Fe(ll) and Mg are phytoplankton fertilizers.
They calculated that the iron-induced CO, removal saturates at on average ~1.1 PgC yr~' for
an iron input rate of 2.3 Tg Fe yr' (1% of the iron contained in 3 Pg olivine), while CO;
sequestered by alkalinization is estimated to ~1.1 PgC yr' and the effect of silicic acid
represents a CO, removal of ~0.18 PgC yr~'. This data represent the enormous potential of
the ocean crust rock as source of phytoplankton fertilizer.

The flow of sea water through anoxic sediments and bed rock results in the reduction of its
SO4* content, as well as extraction of the soluble fraction from the sediment such as Mn(ll),
Fe(ll), NHs* and PO4*. The chemical and physical extraction processes are enhanced by the
action of microbial attack at the border lines between oxic sea water and anoxic sediment
parts within this huge aqueous system.

At suboxic conditions soluble Fe(ll) and Mn(ll) have optimum solubility or may be fixed as
solid Fe(ll)3(PO4)2, FeCOs, MnCOs, FeS,, S° and further Fe-S compounds [286-290].

Silicon is mobilized too, from the dissolution of silicates and SiO» at methanogenic conditions
by complexation with reduced humic acid (HA) [286, 291]. In the reduced conditions, HA is
characterized by catechol and further polyphenolic functions, which allows HA to complex
with silicon [292-294] and with further metal cations.

Silicate dissolution mobilized Ca?*, Mg?*, Ba?*, Fe?*, Na*, K*. Fe?*, Mn?* and PO4* precipitate
more or less as sulfides, carbonates, within the sediment (Fe(ll)S2, CaCO3z, MgCa(COs)a,
Fe(INCO3, Mn(I1)COs, Fe(ll)s(PO4)2), and within its suboxic surface (BaSQO.) or at its oxic
surface (SiO2, Fe(ll)OOH, Mn(IV)O., clay minerals). The authigenic formed ferromanganese
nodules [295] are formed by in situ microbial precipitation from sediment pore water,
squeezed out to the seafloor on the sediment layer [296, 297]. Main components of the

nodules are the phytoplankton fertilizer components: SiO, Fe- and Mn-oxides [297].
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Having left the borderline between anoxic and suboxic near-surface sediment the HA
catechols are changed by reversible oxidation into quinone or quinhydrone configurations by
decay of the Si catechol complex. Like most of the chemical reactions within the sediment
compartment, oxidation of the HA-Si complex is directed by microorganisms. The
microorganisms involved use HA as external red-ox ferment [298-305]. After arrival of the
pore water originating from the anoxic deeper sediment, or bed rock at the suboxic surface-
near sediment layers, the oxidized HA releases Si(OH)s and, NOs produced by microbial
NH4* nitrification [306, 307]. Depending on the Si(OH)s concentration produced, this can
trigger the precipitation of layered silicates such as smectites, glauconite, and celadonite as
well as silica [308-313]. Similar to HA, the clay mineral formation within the sediment, and the
usage of the red-ox potential of these authigenic minerals, are, at least in part, the result of
microbial action [314, 315].

According to its chelating properties, HA generate soluble to neutral Fe complexes of high
stability even at oxic and weak alkaline ocean water conditions. As iron and HA have
identical sources, especially chemoclines, even faeces HA can act as shuttles between Fe
sources and phytoplankton [91]. But within oxic ocean milieu they become depleted, at last
like every organic C substance, by oxidation.

The deep ocean currents take up the pore water percolates out of the sediment, and
considerable amounts of the dissolved, colloidal or suspended sediment originating
elements, are THC-conveyed to the surface [316] and activate there the phytoplankton
production again. This as well, triggers the CO2-conversion to organic C resulting in cooling
the troposphere according to chapter 3.1. Repeatedly it also cools the troposphere by

increasing the DMS formation according to chapters 2.5 and 3.1.

4. The main cooling effects induced by the iron cycle on the ocean crust
4.1. Carbon storage as authigenic carbonate in the ocean crust

The mechanism described in this chapter has the highest influence on the climate, due to its
carbon storage capacity which is greater than that of their sediment layer. The convective
water flow through the huge alkaline ocean crust volume is estimated to about 20 - 540 x 103
km? yr' [29]. The oceanic crust comprises the largest aquifer system of the Earth, with an
estimated rock volume of 2,3 x 10° km?, and a fluid volume of 2 % of the total ocean or ~107
km? [20]. The system of the mid-ocean rifts (MOR) and subduction zones and the sector
between these volcanic active regions are part of the Earth Mantle convection cycle, and part
of said interconnected aquifer system. The bottom water of the ocean basins are in close
contact to this conveyor belt-like moving rock layer of the oceanic crust. New oceanic crust is

produced at the MOR: during its cooling it is pulled apart from the MOR by the moving
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underlying mantel and, at last the moving mantle draws the crust down into the deeper
mantle below the subduction zones. The oceanic crust has a sediment layer on top of its
assemblage of multi-fractured crystalline and volcanic rocks. Both sediment and igneous bed
rock interior are in an anoxic reduced and alkaline state; temperature on top of the sediment
surface at the ocean bottom is round about 0 °C but temperature increases up to >1000 °C
within the igneous bedrock basement. As there is no effective sealing between cold bottom
water and high temperature zone, the water content of sediments and fractured basement
flows through the crust in multiple thermal convection cycles positioned between cold surface
and hot deep.

Alkalinity and alkalinity-inducing compounds of the ocean crust rock layers extract CO; and
HCOs from sea water by carbonate precipitation in the fissures during sea water percolation
through the multi-fractured rock [317]. A carbon uptake of 22 to 29 Mt C yr' is estimated
during the hydrothermal alteration of the oceanic crust [318]. This is more than the carbon
uptake by the overlying sediment layer of the oceanic crust which is estimated to 13 to
23 Mt C yr' [318]. The oceanic crust is composed of peridotites, basalts and serpentine rock
with a sediment layer on top. Said rock layers contain reductive and alkaline components.
Sea water circling through these rock layers loses its contents of oxygen, sulfate, nitrate and
even parts of hydrogen carbonate by reduction and precipitation, and becomes enriched with
methane and further reductants [319-326].

Figures 6A and 6B illustrate respectively the differences between a poorly and a sufficiently

mixed ocean.
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Figures 6A and 6B. present the essential differences between an unstratified well-mixed
ocean basin under a cold and dusty atmosphere during the cold main glacial, with low
atmospheric GHGs concentration (6A) and a stratified ocean basin with a melt water layer on
top of a saline ocean water layer during a warm interglacial, with a hot and dust-free
greenhouse atmosphere (6B).

Figure 6A: According to the unstratified well mixed water column in Basin 6A CO; and Oz
absorbed at the water surface are distributed within all parts of the basin. High production
rates of organic carbon produced by phytoplankton in the top layer are oxidized during their
way down on the sediment layer, with only minor generation of organic sediment. Carbonate
carbon produced by the phytoplankton becomes dissolved to great parts within the deeper
basin parts generating HCO3;~. CO, and HCOs'. By cycling of the basin bottom water through
the alkaline bottom sediment and ocean crust aquifer, CO, and HCO3; become precipitated
and buried as carbonate C. The recycled bottom water becomes enriched by Fe fixed to
organic chelators and is transported back to the surface. Due to the unrestricted down-flow
and transfer of the CO; from the former surface water into sediments and into underlying
base rock as carbonate carbon, the buried carbonate C exceeds the buried organic C
amount.

Figure 6B: An interglacial episode with high GHGs levels accompanied by elevated surface
temperatures generates increased melt water and surface water runoff. Because the saline
poor water layer spreads on the saline ocean water and induces at least a regional
stratification of the ocean basins water column: this stops the production of brine-induced
surface water down-flow, as melt water freezing generates neither brine nor any vertical
surface water movement. This stops any down transport of absorbed CO, and O, too and
generates anoxic conditions within the underlying saline layer. The anoxic saline layer
becomes anoxic and alkaline by sulfate and nitrate reduction. Any phytoplankton-induced
organic and carbonate litter trickles down through the anoxic and alkaline layer: Ca- and
MgCO3z without dilution in the alkaline water and organic C without oxidation in the anoxic
milieu. At the chemocline between light acidic CO, saturated water and the alkaline saline
layer may precipitate Ca- and MgCOs; in small amounts and mix with the down-falling
phytoplankton-originating litter.

Due to the opposing chemical milieu differences between the oxic ocean water inflow and
anoxic reduced and alkaline sediment and basement, the ocean water convection cycles
through the ocean crust act as continuous chemical reaction systems and forms habitats of
intensive acting microbial action [327]. The most intensive chemical reaction intensity is
found at MOR, subduction zones and at volcanic sea mounts, between MOR and subduction
within the abyssal plain convection cycling occurs [20]. Because the hydrogen carbonate
load of the ocean water inflow comes to precipitation as carbonates of Ca, Mg, Fe, and Mn
within the alkaline rock interior and by chemical reduction of sulfate, nitrate and hydrogen
carbonate, the ocean basements act as huge CO,-Carbon storages. No doubt: the ocean
crust carbonate depot is the most effective carbon storage, more effective than any other
organic carbon storages.

Within the huge ocean crust contact volume, sea water changes the alkaline pyroxenes and
basalts into serpentine, diabase and carbonates; by producing heat, hydrogen, rock volume
expansion and by permanent production of numerous fissures. The ocean water sulfates
react with the silicate components to magnetite, pyrite and barite. The sea waters hydrogen

carbonate load precipitates within the rock fissures as magnesite, calcite, siderite and
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dolomite. By heat transfer from hot rock and chemical reaction, heat circling through the
primary and new generated multiple fissures in the former mantle rock, the sea water inflow
heats up, producing convective flow. At fissures where the alkalized flow of convection water
containing hot CH4 and H> comes out with pH 9 to 11 and, contacts the fresh sea water,
carbonate precipitates and builds up skyscraper high carbonate chimneys [328].

The convective seawater flowing only through the MOR system is estimated to about 20 to
540 x 10% km3 yr-1 [29]. This volume is more than the global river flow of about 50 km?3 yr-1
[329].

The weathering reaction conditions and the sea water alkalization during the intense sea
water contact with the alkaline MOR rocks are much more aggressive, so respectively more
effective, comparatively to reaction conditions and alkalization, during the precipitation water
contact, during weathering reactions of continental rocks. This is confirmed by the alkaline
pH of up to 11 of the “White Smoker” MOR outflow in spite of its haline salt buffered
seawater origin [328]. Even the most alkali run-off from limestone karst spring fresh-waters or
within karst cave fresh-waters does not exceed pH levels of 8.5 [330-332]. According to the
enormous carbonate absorption capacity of the oceanic crust, it has been proposed to use it
as a storage of CO; [333]. As the igneous crust rock aquifer generates H; during its contact
with ocean water parts of the carbonate precipitation, carbonate is reduced in part to organic
and / or graphitic C, depending on the reaction temperatures by botic or abiotic reduction
[334-338].

There is no doubt that the efficiency of the pH dependent CO, absorption and carbonic acid
neutralizing at the ocean surfaces and the hydrogen carbonate precipitation to carbonate
processes at and within the oceanic crust, are dependent on the activity of the THC within
the ocean basins. During cold climate epochs, with unstratified water column and
undisturbed THC, the CO, conversion to ocean crust carbonate is activated, as well as the
CO; conversion to the organic fraction of ocean sediments is activated. Just the opposite has
been found to be true for the burial of organic C in ocean basin bottom sediments: according
to Lopes et al. [96] the overwhelming organic debris fraction produced during main glacial
episodes from the phytoplankton habitat at the surface, is oxidized and re-mineralized in the
well-mixed ocean basin Lopes et al. [96]. As the CO; level in the atmosphere is at the lowest
levels during the main glacials, the remaining C-sinks of the oceans seem to be of much
bigger efficiency than the iron-induced production of organic C by assimilation: The most
prominent C sink is the authigenic carbonate C burial in the alkaline ocean crust. There
seems to be no doubt that the vertical well-mixed ocean during the main glacials works as an
efficient pump, to transport dissolved CO; and O, to the ocean basin bottoms: There, O, act
as mineralizer of organic C and CO.-C is buried as authigenic carbonate C in the oceanic

crust.
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Table 2 gives an overview about some trends in C burial depending on the climate condition

change between main glacial and interglacial.

Table 2: Interglacial climate episodes where hot, nearly dust-free, and had elevated levels of
GHGs. The interglacials coincided with stratified water columns. The stratified ocean has a
much reduced activity due to the reduced CO, transport to the bottom of the ocean basin. As
the O, transport is reduced, and the lower part of the basin is anoxic, the oxidative
mineralization of the organic litter fall from the phytoplankton activity at the surface is
reduced and generates sediments rich in organic substances. As sulfate, nitrate and in part
CO; within the anoxic water column are reduced to sulfide, ammonium and CHj, the pH
increases to alkaline. This can induce carbonate precipitation near the chemocline. During
the glacial maxima with cold temperatures, dustiness and low greenhouse gas levels the
ocean basins had well and vertical mixed water columns with highest carbonate C burial and
lowest organic C burial.

Sediment + crust below Sediment + crust
Effect on well and vertical mixed | below stratified and
water column anoxic water column

Mass ratio of buried sediment C

sediment & crust —_— <<1 <1to 1 or >1
oceanic crust C
carbon

Mass ratio of buried
sediment & crust
carbon

organic C =

carbonate C up to 1 or >1

Authigenic carbonate
produced within the No Yes
water column

Dust High Low

Tropospheric CO, Low High
parameters CHq Low High
Temperature Cold Warm

Lopes et al. [96] found just the opposite, in ocean sediment layers produced during the warm
interstadial, in comparison to the cold main glacial: high burial rate of organic C in the ocean
bottom sediment. But in spite of the high organic C burial rate, the interstadial CO, levels
where kept higher than those of the main glacial. Even to this point the Lopes et al. [96]
results fits well to our CO; sink model. During the glacials climate warming events, enormous
melt water volumes were generated and induced stratification effects in ocean basins by
placing a melt water blanket on the saline ocean water surface [14]. The transport of CO,
and O into the basin bottoms became interrupted. The drizzle of phytoplankton litter kept un-
oxidized, and as further consequence the amount of Carbonate C burial within the ocean

crust ceased.
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The continuous availability of chemical activity, as chemical reaction vessel and as an
alkalinity reservoir of the oceanic crust, is maintained by the continuous generation of new
crustal rock material of 21 km?yr' [20]. This huge rock volume production capacity has
enough alkalinity and fertilizer reserves to maintain the absorption, neutralization and
precipitation of a multiple of the recent incoming CO; and HCOs'.

THC is the main transport medium of carbon from the atmosphere into the deep on Earth.
This makes THC the most prominent climate stabilization element.

The realization of the significance of THC as stabilization element of our recent climate
model induces questions about the stability of the THC. As stated in chapter 1, the main
factors for destabilizing the THC seems to be stratification of the water column by the
desalting of surface ocean layers by freshwater dilution from increasing ice melting [6]. The
low density melt water generates a layer onto the ocean water, producing a stratified water
column. The stratification hampers or prevents the transport of CO, and O;-containing
surface water into the deep ocean basin parts. The most severe consequence of such
stratification, to oceanic ecosystems, is the development of anoxic milieu within the stratified
ocean basins.

Typical marks of episodes with stratified water columns in ocean basins are the black shales
and black limestones as sapropel remnants. Repeated development of stratified ocean
basins during the Phanerozoic epoch occurred as a consequence of elevated CO; levels in
the atmosphere. This caused high sea surface temperatures [13], and as a global
consequence: global increase of evaporation, precipitation and as well production of brines
of higher concentrations.

Hansen [6] pointed out too, that the increasing melt water run-off from polar and subpolar ice
layers can induce the cover of denser ocean water by a melt water layer. But the generation
of increasing precipitation and surface water run-off accompanied by increasing brine
production during hot CO2-high climate episodes has just the same consequences in the past
geological epochs as we learn from Meyers [13].

Just that we now have to fear this combination, of both the CO»-dependent temperature rise-
generated precipitation increase, plus the melt water increase from glacier melt. Mankind has
to find now the appropriate tool to win or to fail this challenge.

A melt increase might drive the destabilization of THC. And at first the top layers of the ocean
basins will suffer from acidification and the deep layers will become alkaline and anoxic.

By starting the ISA process, the induced climate cooling will decrease the Greenland glacier
melt. The minimized freshwater inflow to the North Atlantic Ocean reduces the dilution of the
salty Gulf Stream and increases the down flow quantity of oxic and CO, containing salty
surface water. In parallel, the surface increase of sea-ice produced on the South Ocean

surrounding the Antarctic continent is followed by increased down-flow of oxic and CO»

42



1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

containing cold brine onto the bottoms of the oceanic basins. Both effects do increase the
THC activation: the flow of alkaline, phytoplankton fertilizer enriched, and oxygen depleted
deep-ocean water to the surface. This activates CO, absorption from the atmosphere by
phytoplankton growth and by CO, absorption

One of the proposed alternative climate engineering measures aims to absorb atmospheric
CO2 by reducing the surface ocean acidity and by producing phytoplankton fertilizers. To
transfer 1.1 x 10° t yr' CO; carbon into the ocean a crushing of 3 x 10° t yr' of the ocean
crust and mantel rock mineral olivine to a particle diameter of 1 ym and suspend it at the
ocean surface would be necessary [285, 339, 340]. These numbers seem to be two orders of
magnitude too high. Keleman & Manning calculate a carbon mass subduction of about 50 x
106t C yr' (C in oceanic crust, bedrock and sediment layer) [318]. Independently of which of
both calculations has a mistake — technical activities to do the Hauck et al. proposal are far
from any economic reality.

The proposed reaction of CO; with olivine is done with much better effectiveness by nature,
without any costs, within the ocean crust in sufficient quantity. To minimize CO, emission it
has been proposed to minimize power stations flue gas CO; by absorption by lime
suspension [341]. This measure seems to be unnecessary when the ISA method comes into
practice.

The fertilizing elements the phytoplankton needs, such as Si, P, and Fe, are all present in the
ocean crust [342] and a property of the ocean crust water extract. Intensification of the THC
would also increase the fertilizer concentration at the ocean surface in the phytoplankton
layer. As demonstrated, the undisturbed THC is essential to keep the climate stabilized [32].
The ocean crust from the warm Mesocoic epoch which had no frozen polar regions
contained about five times more authigenic carbonate than ocean crust younger than 60
million years [32]. Coogan interpreted this as possible consequences of higher bottom water
temperature and/or different seawater composition. Insua et al. [343] found evidence, that
the salinity of the ocean bottom water during the Last Glacial Maximum had been up to 4 %
greater than today. It seems evident that the cause of the latter had been the higher volume
of brine produced during sea-ice freezing. This fact demonstrates that disturbed or weakened
THCs might be the cause of reduced carbonate C uptake of the ocean crust. The quantity of
carbonate precipitation depends on the CO, and/or HCO; input with seawater. As a
consequence, the quantity of the ocean crust CO3; uptake varies according to the activities of
the THCs or stratified ocean basins: strong THCs increase the crust carbon content; weak
THCs decrease it.

Independently of the cause of stratification events: by brine generation, by freezing or by
evaporation, the ocean basins possess a removal mechanism which extracts salt from the

brine and change the brine to sea water of normal salt concentration. This mechanism has
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kept the salt concentration of sea water rather constant during the past geological epochs.
This effect to achieve a constant salinity level, depletes any brine-induced stratification and
restores well-mixed ocean basins again.

According to Hovland et al. [344-346] this desalination takes place by continuous salt
removal from the brine or seawater within the hot ocean crust. This desalination works
independently of the salt concentration of brine or seawater. The salt removal process acts
within the ocean crust aquifer at near critical to super-critical seawater temperature and
pressure conditions. During subduction of the salty crust rock chloride and carbonate change
their cations with silicate and are dissolved as HCI and CO,. Accompanied by H20, these
gases are recycled to the atmosphere, mainly by subduction volcanism, but at a much
smaller amount by MOR and similar alkaline volcanism.

During the time lag between the onsets of the ISA method cooling and the appearance of the
alkalinity and fertilizer increase at the ocean surface, the cooling effect of ISA remains
reduced. But after this time lag, the ISA method increases to optimal efficiency. Even from an
economic viewpoint it seems better to compensate this by increasing the ISA emission at the
beginning during the time lag, than doing the proposed suspending of olivine dust at the
ocean’s surface. Even lime shell wearing phytoplankton is able to accept small pH changes
of CO; induced dependent acidification, because it uses the build-up of calcium carbonate
shells as a detoxification measure to get rid of calcium ions from their bodies [265]. As a
consequence of this effect, only the relation between Ca carbonate sequestration and
organic carbon sequestration may decrease during the time lag.

Summing up: through the huge aquifers of the alkaline and reducing ocean crust, any
transport of former surface water enriched by CO, or HCOs induces carbonate C burial
within the aquifer interior. This is the situation within well-mixed Ocean basins without
stratification. Any stratification decreases carbonate burial or even stops it. Stratification
changes the red-ox milieu below the stratification-induced chemocline. The MOR and
sediment-induced exhalation of Fe and further metals by the black smokers into the sulfidic
stratified ocean basin are prevented from contact with the planktonic surface water habitat.
But surface water runoff, as well as melt water inflow and iceberg melt during warm glacial
climate intervals may compensate the lack of Fe from the MOR and bottom sediment

sources, as well as from the decreasing dust fall during the warm climate intervals [6, 7].

4.2. Carbon storage as organic and inorganic marine debris and as authigenic

carbonate in the ocean sediment

The uptake of authigenic hydrogen carbonate from the ocean and precipitating it in the
sediment, seems to play as well a major role in the carbon circle [347]. According to Kelemen

[318] the carbon uptake by the sediment layer of the oceanic crust can be estimated to 13 to
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23 Mt Cyr'. The carbon inventory consists of life and dead organic carbon, carbonate
carbon and authigenic carbonate produced by excess alkalinity deriving mainly from sulfate
reduction and silicate solution by reduced humic acids. According to Sun & Turchyn the
formation of calcium carbonate and its burial in marine sediments accounts for about 80 % of
the total carbon removed from the Earth surface [348]. Meanwhile it seems possible to
distinguish between marine formed sediment carbonate and authigenic carbonate [349].

As evidenced in chapter 4.1, stratified ocean basins can differ widely in quantity and quality
of the buried C according to the prevailing climate conditions and their direct and indirect
influences on ocean basin conditions. Table 2 lists some of the most prominent results.

The cooling of the Troposphere by ISA action stops melt water inflow, destructs the
stratification and starts the vertical mixture. During the former stratification event, alkalized
deep water layer had enormous CO, absorption capacity. The alkalized anoxic sediment
behaves in a similar manner. This makes a much increased CO; absorption activity at the
beginning of the movement.

Accordingly, excess alkalinity is produced by dissolution of silicates such as illite, kaolinite
and feldspars, volcanic ash, pyroxene or other silicate components of ocean sediments and
even opal by Si complexation with reduced HA at methanogenic conditions [286, 289, 350,
351]. Compensation by hydrogen carbonate induces authigenic precipitation of microbial
dolomite [352], Ca or Fe carbonate [286, 291, 348, 350, 353, 354] and further minerals [355].
As mentioned in chapter 4.1, the biological processes of chemical sediment reduction
induced by the ISA fertilization, changes NOs,, SO4%, Fe(lll), Mn(lll/IV) and HCOs to their
deoxygenated and reduced species, inclusive CHs and NH4* generation, produces a pH
increase and additional alkalinity. Further pH drop is induced by H. evolution from FeS,
generation from FeS and H,S [356, 357] accompanied by CO- reduction to CH4 [358] as well
as Nz reduction to NH3 [359]. The alkalinity excess converts dissolved HCOs into solid lime
and dolomite [360-363]. The solid carbonates and CH4 hydrate stabilize the sediment.
Outside the polar permafrost region, methane hydrates are stable below 300 m below sea
level and at ocean temperatures of nearly 0 °C [364]. The carbonate precipitation sequesters
additional parts of CO,, prevents the ocean water from acidifying and at last improves the
CO. absorption by ocean water from the atmosphere. This again cools the troposphere.

The enhanced dissolution of silicates from the ISA induced by methanogenic sedimentation
additionally compensates the enhanced alkalinity loss at the ocean surface, attributed to the
calcification due to foraminifera and coccolithofores phytoplankton growth by ISA fertilization.
Summing up: within a well-mixed and unstratified ocean basin the surface layer absorb CO;
and O and become well mixed into the unstratified ocean basin by the thermo-haline basin
convection. Consequences of the good mixture are nearly quantitative oxidation of the food

chain debris to CO, produced by phytoplankton. Most C is buried as carbonate in the ocean
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crust and its overlying sediment. The ratio of organic C burial to carbonate C burial is much
smaller than 1. Results of Lopes et al. [96] from Northeast Pacific sediments demonstrate
that, although estimated highest primary productivity during the Last Glacial Maximum,
organic C burial was lowest. This coincides with our proposed optimum mixed Oz-rich milieu
throughout the whole water column.

During situations with stratified water columns in the ocean basins or parts of them the THC
convection is disturbed or does not exist at all. Surface water layer enriched with CO, and O»
absorbed from the atmosphere cannot penetrate through the stratified water column, into the
bottom of the basin. This induces sulfate reducing conditions below the surface layer. Only
small parts of surface layer CO, are changed into carbonate C at the chemocline, with the
alkaline sulfidic and anoxic parts below the chemocline. Below the chemocline, the water
column is anoxic, the organic debris sediment with minor oxidation. Probably the ratio of
organic C burial to carbonate C burial increases to a manifold during stratified conditions.
Concerning to the huge fraction of organic C buried during the warm glacial intervals,
according to the results of Lopes et al, [96] from Northeast Pacific, sediments demonstrate
stratification events within their research area.

Stratification events may develop by warming the upper water layer, as well as by

evaporation and precipitation [6-8].

4.3. Minimizing CH4 emissions from sediments and igneous bedrock

The reaction product of oceanic crust minerals containing Fe(ll) such as Olivine and
Pyrrhotite with sea-water is hydrogen [365-367]. The hydrogen production rate at least along
the MOR alone is estimated to ~10'> mol H, yr' [368]. Hydrogen is fermented by microbes
with hydrogen carbonate into methane. The latter is known as constituent of the springs
emitted by the ocean crust rocks (Frih-Green 2004).

Such and further CH4 emissions, such as anoxic sediments outside the CH4 hydrate stable
pressure and temperature region, induce de-oxygenation within the overlying water layer by
CH4 emission [17, 369]. CH4 emissions are induced for instance by hydrothermal springs
[370], sediment movement [371, 372], seawater warming induced by climate change [373,
374], changing ocean circulation [375], ocean sediment subduction [376, 377]. At lower
vertical sediment to ocean surface distances, the CH4 emissions reach the troposphere. As
the Arctic Ocean suffers at most from the climate change induced warming, the CH4 release
within this region rises extraordinary [16]. The most elevated Global surface-near oceanic
CH4 concentrations are located within the Arctic Ocean and the arctic troposphere [378]. This
might be one of the reasons for the higher temperature rise of the Arctic region than the

average surface Earth warming.
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Within the sediment and within the suboxic ocean water column, CHs is oxidized by sulfate.
Iron is an accelerator of this microbial fermentation reaction [379]. The ocean water column
and the underlying sediment having had contact with ISA-originating iron are elevated in their
iron content. This has different cooling effects to the troposphere: at first the elevated iron
content in the uppermost suboxic sediment reduces the CH4 content emitted by the sediment
by anaerobic oxidation of methane by sulfate-reducing bacteria.

Below regions with ISA precipitation, not only the sediment, but even the whole water column
of the ocean basin is enriched on iron. Any CHs molecule, independently of existent in the
sediment, or just above in the water phase, or excreted into the water column as bubbles, is
oxidized before it arrives at the water column top. By help of Fe containing enzymes the
methane oxidation by sulfate is possible. This prevents the water layers above the sulfate
oxidation zone from oxygen loss. Sulfate oxidizers of CH4 are archaea and bacteria [380]. As
these microbes use Fe-containing enzymes to do their anaerobic methane oxidation
processes, they act better in iron-rich than in iron-poor environments [381, 382]. The iron
containing debris fall of ISA-fed dead phytoplankton and phytoplankton dependent food chain
links, feeds the methane depleting sulfate reducer community within or near the sediment
surface.

Next, the iron content reduces the CHs bubble-development within the sediment layer,
preventing catastrophic CH4 eruptions by sediment destabilization, CH4 bursts and sediment
avalanches.

Third: elevated iron content prevents the ocean water column from CHs-induced oxygen
deficiency by the formation of ammonium. This oxygen deficiency prevention protects from
generation of the extreme stable and very effective GHG N2O [383].

The oxygen-dependent life will become problematic, due to its decreasing oxygen content
within a decreased vertical mixed ocean basin induced by climate warming. An additional
input of CH4 would increase the oxygen deficit death zones. Any CHys injection into regional
oxygen deficit zones, will immediately increase their volume. Climate models predict declines
in oceanic dissolved oxygen with global warming. The climate warming dependent decline of
the oxygen content in many ocean regions has meanwhile become manifest [384]. Braking
or reversal of this trend by reducing the oxygen depleting CH,4 emissions at least should help
to prevent regions within the ocean basins from methane-induced oxygen deficit.

The glacial age proved that in spite of the multiplicity of the cooling processes induced, they
caused little disturbance to the ecosystems. This predestines ISA as a steering tool to
prevent climate fluctuations such as the recent climate warming mankind is suffering from.
The present study aims to describe in chapter 5 the technical means to realize this climate

engineering project by the ISA method.
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This result is contradictious to the calculations of Duprat et al. [385]. They found within the
iron containing melt water trail of the giant Antarctica icebergs increased phytoplankton
concentration. Duprat et al. assume that the iceberg induced carbon export increase by a
factor of 5 to 10 within its influence locality and they expect an increase in carbon export by
the expected increase of the iceberg production that has been predicted (for instance
Joughin et al. [386] ). We interpret the ongoing increase of icebergs and ice melt as a further
severe warning sign that the ongoing destabilization might end soon in an insufficient mixed
ocean.

The only artificially realizable restoration tool to change an insufficiently or poorly mixed
ocean into a well-mixed ocean is definitely by climate cooling. The ISA method appears to be
the climate cooling method by means of choice, because it accelerates the conversion of
atmospheric carbons into solid and even liquid carbons with the means of nature. Comparing
to the artificial aerosol systems based on TiO, or H,SO4 [387], the sea-salt aerosol has

advantages, such as better controllability and economy.

5. Iron effects onshore
5.1. Importance of iron on terrestrial landscapes

As seen in previous sections, atmospheric deposition of iron together with other
macronutrients and micronutrients set important controls on marine ecology and
biogeochemistry: for terrestrial ecology and biogeochemistry the importance of iron is similar.
Iron is one of 17 essential elements for plant growth and reproduction [388]. Iron is an
essential micronutrient (or trace element) only required by plants in small amounts, for bio-
functions such as production of chlorophyll and photosynthesis [389]. Iron is involved in
many other important physiological processes such as nitrogen fixation and nitrate reduction
and is required for certain enzyme functions [390].

Iron is the 4" most abundant element of the earth's crust (4.2%) and thus iron is seldom
deficient, as despite its high abundance in soil, iron solubility is extremely low and its
availability depends of the whole soil system and chemistry. Chlorosis (yellowing) is
associated with iron deficiency in plants over land [59, 61], but the chemistry of iron in soils
and its availability to plants [60] is out of the scope of this review, thus only a brief overview is
given. However, while small amounts are necessary for growth, iron can become toxic to
plants. Iron toxicity is associated with large concentrations of Fe?* in the soil solution [391]
and leads to oxidative stress. As a consequence, iron-uptake systems are carefully regulated
to ensure that iron homeostasis is maintained. Iron availability represents a significant
constraint to plant growth and plants have developed distinct strategies to ensure Fe
solubilization and uptake [392]. In forests, microorganisms such as fungi and bacteria, play a

role in nutrient cycling [393]. A particularly efficient iron acquisition system involves the
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solubilization of iron by siderophores [394], which are biogenic chelators with high affinity and
specificity for iron complexation.

Iron deficiency induced chlorosis represents the main nutritional disorder in fruit tree
orchards and in crops grown on calcareous and/or alkaline soils [395] in many areas of the
world. Iron deficiency is a worldwide problem has calcareous soils cover over 30% of the
earth’s land surface [396] specially in arid and semi-arid regions and has a large economical
impact, because crop quality and yield can be severely compromised [397, 398], thus several
methods of correction have been developed. Iron canopy fertilization (foliar fertilization) can
be a cheaper, more environmentally-friendly alternative to soil treatments with synthetic
Fe(lll) chelates for the control of Fe chlorosis in fruit trees [399]. But iron chelates are
expensive and have to be applied annually. Several sprays aiming to activate the Fe pools in
a chlorotic leaf by foliar iron fertilization have been tested and were generally as effective as
simple spay fertilization with iron sulphate (Abadia et al., 2000) and both are effective in re-
greening treated leaf areas, both in peach trees and sugar beet plants [397]. Iron-deficiency
chlorosis in soybean was solved by foliar sprays which significantly increased the yield of
three cultivars tested and the yield responses obtained, were about 300 kg ha™" [400].
Although foliar Fe fertilization seems to be potentially effective, the scientific background for
this practice is still scarce and we did not found evidence that soluble iron contained in
atmospheric dust aerosols has already been proved to be able to play this role.

The fertilizing role of African dust in the Amazon rainforest is well known [401] but attributed
to the P input. On a basis of the 7-year average of trans-Atlantic dust transportation, Yu [402]
calculated that 182 Tg yr' dust leaves the coast of North Africa (15°W), of which 43 Tg yr™’
reaches America (75°W). The dust reaching the Caribbean and the Amazon come mainly of
the northwestern Africa (Algeria, Mali, and Mauritania) [403].

An average of dust deposition into the Amazon Basin over 7 years is estimated to be
29 kg ha' yr' [401], providing about to 23 g ha™' yr' of phosphorus to fertilize the Amazon
rainforest, together with Mg and Fe. Although not directly related to ISA, this dust deposition
allows biomass fertilization and thus CO; removal from the atmosphere.

The wide spread tropical soils, mostly laterites, are deficient in phosphate and nitrogen but
not in autochthon iron. The only exception to this is for all the epiphyte plants and the plants
growing on the soil-free localities without any autochthon iron. These plants might gain profit
from the ISA method. Such plant communities are localized for instance on top of the famous
Tepuis (table mountains north of the Amazon basin near the borderlines of Brazil, Venezuela
and Guyana) and on the tree branches in the rain forests without roots into the ground. From
Kohler et al. [404] the epiphytes flora on the tree branches of the rain forests may contain up
to 16 t ha' (Costa Rica) up to 44 t ha' (Colombia) of epiphyte plant + humus dry weight on

the tree branches.
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The epiphytes, but much more the Tepui plants, would gain profit from ISA and even from
undissolved iron oxides, because plant roots and fungal hyphae secrete iron-solubilizing
organic acids and complexants. Microbial ferments have time enough to turn all kind of
undissolvable Fe into dissolvable Fe.

Is there a climate relevance to rain forest fertilizing by dust? Rizzolo et al. [405] states that
the iron limited Amazon rainforest profits from the seasonal deposition of iron by Saharan
dust. Especially the deposition of iron plus further nutrients on the Amazon biota is likely to
increase both epiphytic growth and fungal and bacterial decomposition within the canopy
[405]. The increase in iron bioavailability is also known to increase nutrient cycling within the
forest.

Large fractions of the organic biomass produced by help of iron and further eolic nutrients
leave the Amazon region, are transported into the South Atlantic basin and at last become
part of the shelf and basin sediments. This are aquatic life plants such as Water hyazinth and
Water fern, plant litter such as driftwood, leaves, and particular, colloidal, and dissolved
humic and fulvic acids. According to Ertel et al. [406] the flux of dissolved organic carbon
fraction at Obidos, situated about 800 km above the Amazon mouth, is 2 x 103 gC yr.

Some rain forests such as the Amazonian, benefit from sporadic dust plume fertilization of
Saharan origin. Others may profit from an artificial ISA precipitation resulting in a significant

additional epiphyte plant growth.

5.2. Importance of iron for human food and health

All organisms on Earth ride upon a "ferrous wheel" made of different forms of iron that are
essential for life [97]. Iron is an important micronutrient used by most organisms, including
higher animals and human beings and is required for important cellular processes such as
respiration, oxygen transport in the blood. Its bioavailability is of concern for all the Earth's
living organisms, especially in aquatic ecosystems, including clear water and oceanic ones.
In humans, iron deficiency and anemia remain the most common nutritional disorders in the
world today [407].

The World Health Organization [408] states that the lack of sufficient micro nutrients such as
Fe and Zn, represents a major threat to the health and development of the world population.
WHO [408] estimates that over 30 % of the world’s population are anemic and even more in
developing countries (every second pregnant woman and about 40% of preschool children).
Iron deficiency affects more people than any other condition, and iron deficiency exacts its
heaviest overall toll in terms of ill-health, premature death and lost earnings. Iron deficiency
and anemia reduce the work capacity of individuals and of entire populations, causes

maternal hemorrhage, impaired physical and cognitive development, reduced school
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performance and lowered productivity, bringing serious economic consequences and
obstacles to national development.

Iron deficiency in humans has been associated with heart failure [409, 410]; gastric
ulceration and anemia induced by Helicobacter pylori [411]; negative impacts on skeletal
integrity [412], cognitive disorders [413]. Iron deficiency in infancy leads to long-term deficits
in executive function and recognition memory [414]. In experiments with animals, even if the
iron and the hemoglobin levels return to normal after treatment from an early induced iron
deficiency, there are long-lasting cognitive, physiological and hematological effects [415].
Thus several strategies and technologies have been elaborated to manage iron deficiency in
humans [416] such as food fortification (adding iron to food) [417] and biofortification (the
process of enriching the nutrient content of crops, vegetables or fruit as they grow). WHO,
FAO and UNICEF edit guidelines or recommendations on food fortification with
micronutrients [418], for instance adding ferrous sulphate, ferrous fumarate, or iron
complexes to wheat and maize flour (from 15 to 60 ppm depending on the regional average
consumption ranges and on other iron food vehicles). Biofortification can be achieved by
utilizing crop and soil management practices to increase micronutrient concentrations in the
edible crop parts [419] and can provide a sustainable solution to malnutrition worldwide, as
other methods, such as diversifying people's diets or providing dietary supplements, have
proved impractical, especially in developing countries). Together with dietary modification
and iron dietary supplementation, iron fortification (suitable food vehicle containing higher
levels of bioavailable iron) are the main recommendations of WHO to increase iron intake,
improve nutritional status and stop iron deficiency anemia. Increasing available iron levels in
major staple food crops is an important strategy to reduce iron deficiency in people. WHO
anticipates that benefits are substantial as timely treatment can restore personal health and
raise national productivity levels by as much as 20%.

The biofortification of bioavailable iron in staple plants provides a sustainable and
economical tool to use, in order to rescue iron deficiency in target populations globally [420].
In contrast with fruit trees, where foliar iron fertilization is generally used in chlorotic leaves,
canopy, Fe-fertilization is increasingly being used in cereal crops to increase the Fe
concentration in grains, in what is called biofortification. In these crops, which are generally
treated with foliar iron sprays when there is no leaf chlorosis, applied iron has been shown to
re-translocate efficiently to other plant organs, both in wheat [421] and rice [422]. Zuo and
Zhang [419] have developed strategies to increase iron uptake by roots and transfer it to

edible plant portions allowing absorption by humans from plant food sources.

5.3. Active inhibition of methane emissions from wetlands, lakes, and sediments
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Lipson et al. [423] found that in Arctic peat ecosystem, Fe and humic reduction competes
with methanogenesis as e- acceptors and inhibit some CHs4 production and that on the basis
of conservative measurements of net Fe reduction rates, this process is comparable in
magnitude to methanogenesis.

In wet sedge tundra landscapes Miller et al. [424] conducted experiments that showed an
inverse relationship between dissolved iron and CH4 concentrations and found that net CH4
fluxes were significantly suppressed following the experimental addition of iron and humic
acids. lron and humic acid amendments significantly suppressed in-situ net methane flux.
Lipson et al. [425] conducted experiments on 2 different ecosystems: one with permafrost
and naturally high levels of soil Fe and one with no permafrost and naturally low levels of soil
Fe. The addition of Fe(lll) and humic acids (electron acceptors) significantly reduced net CH4
flux for at least several weeks post-treatment, without significantly altering CO» fluxes. There
was no significant difference between the reduction of CH4 flux caused by Fe(lll) and the one
caused by humic acids. The future release of GHGs from high latitude wetland ecosystems
can significantly be altered by this natural and widespread phenomenon. These results also
show that the suppression of CH4 flux in this type of ecosystem can be induced by artificial
addition of Fe(lll), humic acids or other electron acceptors.

Zhang et al. [426, 427] found methanogenesis and sulfate reduction inhibition after ferric salt
dosing to anaerobic sewer biofilms. Similar methanogenesis inhibition and even increases of
rice productivity by ferric salt addition have been described by others [428-431].

Amos et al. [432] found support for the hypothesis that Fe(lll) mediates CH4 oxidation in
crude contaminated aquifer.

Although some iron oxides such as magnetite and hematite have different properties and
may facilitate methanogenesis by some types of micro-organisms [433] it is worth being
noted that the iron solubility and bioavailability properties of the ISA are similar to the
ferrihydrite which inhibits methanogenesis in the same experiments [433] and in general
Fe(lll)-reduction by methanogens contribute to Fe(lll) inhibition of methanogenesis [434].
Experiments conducted in tropical humid tropical forest soils, which are also an important
source of atmospheric CH4 and where Fe(lll)-reducing bacteria coexist with methanogens,
show that upon addition of acetate, production increase of CH4 is much greater (67 times)
than that of Fe?* (2 times), indicating that the two process were acetate limited and
suggesting that Fe(lll)-reducing bacteria were suppressing methanogenesis when acetate
availability is limited [435]. For Roden and Wetzel [436] a significant suppression of CH4
production in freshwater wetlands could be mediated by Fe(lll) oxide reduction within globally
extensive iron-rich tropical and subtropical soil regimes.

All these results support the hypothesis, that additional to the many photolysis dominated

CHs-depletion actions by ISA in the troposphere, even after ISA precipitation on wetlands,
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marshes, lakes, rice paddies and shelf sediments it will inhibit the emission of CH4. The
degree to which Fe(lll) reduction suppresses CH4 emissions under different soil conditions
should be considered by regional and global models of GHGs dynamics.

No published studies were found about the biogeochemical cycle of iron to the continents
and land in specialized journals such as “Global Biogeochemical Cycles », nor in the chapter
about the biogeochemical cycles of the latest IPCC report and, the recent Iron Model
Intercomparison Project (FeMIP) seems concentrated in oceans interactions [55, 437].

It is now well known that in large areas of the open ocean iron is a key limiting nutrient and
that in alkaline terrestrial landscapes iron deficiency induces plant chlorosis. The authors’
hope is that bringing together under this review seemingly disparate lines of research from
diverse disciplines, it will result a more global understanding of the global biogeochemical

iron cycle, especially over terrestrial landscapes, peat-bogs, and other wetlands.

6. Estimations of the ISA demand by the ISA method

6.1. ISA can induce a significant CH4 depletion

Wittmer [124-127] reported that the ISA method is very efficient for °Cl generation. Hence,
ISA allows depletion of GHG methane by separation prior cooling effect. Therefore, ISA
appears to be a very promising cooling method with technical and economic stakes. But the
answer depends strongly on the volume of ISA to be produced and emitted. Indeed, ISA
plume should be released high enough in the troposphere to get sufficient distribution and
residence time in combination with °Cl generation quantity.

Based on results of Fe photolysis induced °Cl production, Wittmeret al. [124] estimated the
feasibility of CH4 depletion by NaCl-diluted ISA. Wittmer found a °Cl emission of 1.9 x 10°
°Cl/cm?® at a CI/Fe(lll) molar ratio of 101 within the pH range of 2.1-2.3. The same °Cl
generation was found at the suboptimal pH of 3.3 — 3.5 and at a CI/Fe(lll) molar ratio of 51.
This CI generation is four times higher than the reference which corresponds to a significant
CH, lifetime reduction in the troposphere [124]. A pH range of around 2 corresponds to the
natural aerosol pH within the oceanic boundary layer. The optimum efficiency of °Cl
production by photolysis of ISA corresponds to pH 2, whatever the source of Cl-, NaCl or
gaseous HCI and whatever if ISA is an iron(lll) oxide or an iron(lll) chloride aerosol [124].
According to Lim et al. [438] and to Meyer-Oeste [439] the optimum °Cl production by
sunlight photolysis of FeCls solutions or ISA, is generated in the acidic pH range. The
efficient °Cl generation is necessary for an efficient CH4 depletion by ISA. Except if made by
condensation and hydrolysis of FeCls vapor or by nebulization of pure FeCls solution, or

produced by combustion to pyrogenic FEOOH and reaction and hydrolysis with HCI and H2O
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to FeCls solution: FeClz has an acidic pH from the beginning because it hydrolyses according
to equation 4.
FeCl; + 2H,O > FeCl,OH + H3O* + CI- (Eq. 4)

6.2. ISA demand calculation
Current CH4 depletion by °Cl is estimated from 3.3% [440] to 4.3% [119]. According to the
results of Wittmer [124] at a Cl/Fe(lll) molar ratio of 101, this amount would rise fourfold:
from 13 to 17%.
1. Wittmer et al. used their results obtained at a Cl-/Fe(lll) ratio of 51 at the pH of
3.3-3.5: 1.9 x 10% °Cl/cm3. We consider that this pH is suboptimal. Instead it should be
used the results obtained at a Cl/Fe(lll) ratio of 101 at the pH of 2.1-2.3: 1.9 x 10°
°Cl/cm3.
Moreover, Wittmer et al. made two limitative estimations:
2. They only focused on the Cl delivery in the condensed state by coagulation as
CI- transfer option between ISA particles and the Cl source sea-salt aerosol ignoring
other Cl sources, Cl aggregate states, and Cl transfer mechanisms.
According to this model, the ISA particles should continuously lose in the daylight their CI-
load by °Cl emission and as a consequence they could gain back Cl only by coagulation with
sea-salt aerosol particles. As further consequences of this model the CI-/Fe(lll) ratio of ISA
particles would decrease, their diameter increase and their residence time in the troposphere
would decrease.
But according to Graedel and Keene [118] and Keene et al. [441] the next prominent source
of inorganic Cl in the troposphere beside sea-salt aerosol is vaporous HCI. This is the main
source where the ISA particles can refill the chloride lost by photolysis. The main Cl uptake
mechanism from this Cl source is the sorption from the gaseous phase.
Main HCI sources are the sea-salt reaction with acids, CH4 and further hydrocarbon reactions
with °Cl [441], flue gases of coal, biomass and garbage combustion [442], as shown in the
“global reactive chlorine emissions inventory” [441], HCI from chlorocarbons being a
significant part [443] in particular from CHsCl which is the largest, natural contributor to
organic chlorine in the atmosphere [444].
3. They estimate that the global production rate of 1785 Tgyr' of sea-salt
aerosol CI- has to be doped with iron at a CI/Fe(lll) molar ratio of 51 meanwhile
we consider it has to be estimated at a molar ratio of 101 (according to 1.).
The calculations made with these limitative assumptions resulted in an iron demand of
56 Tg yr' Fe(lll) to obtain the desired CH, depletion effect [124].
Whereas, with the limitative assumption that there is no further CI- source than sea-salt, the

calculations with a CI-/Fe(lll) ratio of 101 results in a Fe(lll) demand of only 18 Tg yr'.
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ISA can be produced from pyrogenic iron oxides according to method | (see chapter 7).
Pyrogenic oxides have particle sizes lower than 0.1um. Diameters of the NaCl-diluted ISA
particles of the Wittmer tests [124] are round about 0.5um. This confirms the test results of
Wittmer et al. as calculation basis without any cut.
But Wittmer et al. made two other limitative assumptions:
4, ISA has the same particle size and corresponding surface range as sea-salt;
5. ISA has the same residence time as sea-salt aerosol in the troposphere.”
According to their coarse aerosol particle range, the residence time of sea-salt particles in
the troposphere is inferior to 1 day [445] while the artificial ISA particles with diameters lower
than 0.5 ym have residence times in the troposphere of at least 10 days up to several weeks
[446, 447].
Known salt aerosol generation methods by vapor condensation or nebulization [448, 449]
allow not only the flame descending ISA type 1 [141], but also the condensation and
nebulization descending ISA variants 2 and 3 (see chapter 7) to be produced with aerosol
particle diameters between 0.1 and 0.01 um. Diameters of salt aerosol particles according to
these physical aerosol generation methods are up to, or more, than one order of magnitude
smaller than of those used in the experiments by Wittmer et al. [124].
Analogue to CCN behavior in cloud processing [113] most of the small-sized ISA particles
are protected by their small sizes from coagulation or coalescence with sea-salt aerosol
particles. This effect prevents ISA from leaving the optimum active atomic chlorine emission
conditions: low pH and low particle diameter range.
The residence time difference of more than one order of magnitude in comparison to sea-salt
aerosol further reduces the Fe demand for ISA production from 18 Tg yr' to less than
1.8 Tgyr'.
6. The properties of the ISA particles produced by the most preferred ISA
method variant are explained in chapter 4. Their difference to the NaCl-diluted ISA
tested by Wittmer [124] are: ISA particles are made of FeCl; x nH2O undiluted by
NaCl, or FeEOOH coated by FeCls; x nH20 undiluted by NaCl [439, 450]. The CI/Fe(lll)
molar ratios of FeCl; x nH2O are at 3 or even lower. The CI/Fe(lll) molar ratio of
typical ISA particles is at least 30 times smaller than the molar Cl-/Fe(lll) ratio of 101
of the tested ISA by Wittmer [124]. This reduces the Fe demand for ISA production
again at least by 1 order of magnitude from <1.8 Tg yr' to about <0.2 Tg yr.
Wittmer et al. [124] considered only sea-salt aerosol particles as transport vehicles for ISA
and as only possible contact medium to gain chloride ions as °Cl source. It is well known that
coal combustion is a major source of active chlorine [441-443], as well as iron [78, 79, 83,

451], thus both iron and chlorine are jointly issued by other mechanisms and sources.
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As stated in our chapter 6.2 below point 5, sea salt aerosol has residence times in the
troposphere lower than one day according to its coarse particle diameters without any
possible bridging of intercontinental distances.

In reality the chloride transfer between sea-salt aerosol particles and ISA particles may take
place without any touch or coagulation, because the troposphere is an acidic environment.
Troposphere is a source of organic and inorganic acids which are in permanent contact with
the sea-salt aerosol. The acid ingredients in contact with sea spray produce HCI. Further ISA
is produced by combustion and is elevated by flue gas plumes: acid precursors such as SO-
or NOx are in higher concentrations within the flue gas plume comparing to the tropospheric
environment. The acids generated by flue gas plume produce additional HCI by reaction with
the sea-salt aerosol [167]. As a result, ISA and ISA precursors may absorb any chloride
requirement via HCI vapor from the sea-spray source by itself [127].

Additionally to the °Cl emission increase with increasing iron concentration in the tested
aerosols, the results of Wittmer verify an increase in °Cl emission with decreasing pH [124].
According to Wittmer and Meyer-Oeste [439, 450], oxidic ISA aerosol particles may be
generated free from any pH-buffering alkaline components. This hampers their pH decrease
by air-borne HCI to the optimum pH around pH 2. Sea-salt buffering of the absorbed HCI
[452] by the alkali and earthen alkali content of sea-salt aerosol can occur only by
coagulation, most probable in a minor ISA particle fraction but not in the bulk. From the
beginning of its action in the troposphere, ISA keeps in the optimum °Cl emission mode: low
pH, and high iron concentration levels.

Preferred ISA is produced by the ISA method variant 1 or variant 3 as described in chapter 7.
Hence, ISA are composed of particles made by flame pyrolysis or iron salt vapor
condensation. The mentioned ISA particles have diameters of /1o of the particle diameters of

the Wittmer tests. These ISA particles have optimum chlorine activation efficiency:

) In an appropriate chloride dotation or chloride delivering environment;
o At a pH <2;
o If they are emitted above the tropospheric boundary layer.

Then the Fe demand may fall up even shorter than the calculated 0.2 Tg Fe yr' due to their
far extended surface area and far extended residence time in the atmosphere.

It has to be noted that this ISA demand calculation result refers only to the ISA cooling
property according to CH4 depletion; further cooling properties according to cloud albedo,
depletion of CO,, black and brown aerosol, ozone decrease and further causes are still kept
unconsidered.

Further oxidation activity on GHGs and aerosols are induced by the °OH generation activity
of ISA: volcanic eruption plumes contain high concentrations of °Cl plus °OH [152] and are

characterized by decreased CH4 concentrations [153]. Co-absorption of H,O and HCI is the
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main reason of the generation of volcanic ash particle coats containing soluble Fe salts
originating from insoluble Fe oxides and Fe silicates [453, 454]. Gaseous HCI from the
eruption plume entails Fe chlorides covering the surfaces of volcanic ash particles [455].
Therefore, it is reasonable that photolysis of those chlorides is the origin of both: °Cl and °OH
generation in volcanic plumes.

Hydroxide radical °OH can change from the liquid aerosol phase into gaseous phase [169].
But by far, not as easy as °Cl can. Indeed, the Henry’s law solubility constant of °OH is about
one order of magnitude higher than that of °Cl and is in the same range than that of NH3
[166]. But when their hygroscopic water layer shrinks in dry air or by freezing, ISA particles
might act as °OH emitters. These additional °OH emissions might further increase the CH,
oxidation potential of volcanic ash or artificial ISA and thus reduce even more the Fe demand
for ISA, though this has not been tested yet, it cannot be ruled out.

In order to take care not to overstep the cooling effect too far, a reasonable goal might be to
start the ISA method with a global ISA emission of 0.1 Tg Fe yr'. This quantity corresponds
to the magnitude of the actual Fe input from the atmosphere into the oceans under the form
of soluble salt, which is estimated to be from 0.1 up to 0.26 Tg yr' [74, 80, 456]. Doubling or
even ftripling of this input quantity by the ISA method is of easy technical and economic

feasibility as will been seen in chapter 7.

7. The ISA method: how to increase artificial iron emissions

Preceding calculation evidenced that the ISA method has the potential to cut back the rise of
CH4 and CO; and, vice versa, the small decline of atmospheric oxygen content [457, 458]
because it acts by a bundle of chemical and physical means. The ISA method might retard,
stop or even help to restore these GHGs contents to pre-industrial levels. By the ISA method,
doubling or tripling of the ISA level in the troposphere seems to be possible by feasible
technical and economical means.
Since 2004 proposals have been published [141, 439, 450, 459, 460] to modify combustion
processes and flue gas emissions in order to use them as ISA plume emission sources in the
troposphere, by traffic and power generating combustions and their warm uplifting flue gases.
Predestined for the ISA method are any hot flue gas plumes emitted by ship and air traffic,
fossil and sunshine power.
At least three variants of ISA production are proposed:
* Variant 1: Emission of flame pyrolytic FeEOOH aerosol with particle diameters smaller
than 100 nm [461, 462] as ISA precursor by co-combustion of organic iron or carbonyl
iron additives with liquid or gaseous fuels, or heating oils combusted in ship or and jet

engines, or by oil or gas combustors. Co-combustion of iron compounds is a possible
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measure in coal power stations and mixing the ISA precursor containing eil
combustion flue gas to the coal combustion flue gas after the dry flue gas cleaning
stage. Useful side effects of iron additives are fuel efficiency optimization and soot
emission minimizing [223, 224, 463, 464]. The emitted FeOOH aerosol plumes
convert immediately into the ISA plume after leaving the emission sources, due to the
high reactivity of flame pyrolytic Fe oxides. The period to cover the flame pyrolytic
FeOOH particle surface by HCI absorption from the gaseous phase with Fe(lll)
chlorides is several times shorter comparing to the generation of iron chlorides from
natural iron oxide minerals in loess dust particles [452, 465].
* Variant 2: Injection of vaporous ISA precursor iron compounds such as FeCl; into a
carrier gas. By contacting the carrier gas and/or the atmosphere the vaporous iron
compounds condenses and/or converts by physical and/or chemical means directly
into ISA. Contrary to all other ISA precursors, the sunlit FeCls vapor is photo-reduced
by concomitant generation of °Cl [466]. Thus methane depleting °Cl emission can
start even before this ISA precursor has changed into hydrated FeCls.
* Variant 3: Injection of ultrasonic nebulized aqueous FeCl; solution as ISA precursor
into a carrier gas. By water evaporation from the aerosol droplets ISA is generated.
The preferred heights of ISA plume generation in the troposphere are 1000 m above ground
or higher altitudes in order to pass the boundary layer. There, the ISA plumes have optimum
conditions to spread over sufficient life-times. The necessary buoyancy to lift up the ISA
plumes can be regulated by controlling their carrier gas temperatures. Uplift towers [467],
vortex generators [468] or tethered balloons [469, 470] are preferential means to direct ISA
by carrier gas uplift to said heights.
The primary ochre colored FeOOH aerosol particles emitted by ISA method | have diameters
of <0,05 um. According to previous studies iron oxides are strong absorbers at visible
wavelengths and might play a critical role in climate perturbation caused by dust aerosols
[108, 109]. But this effect is not applicable to the ISA methods FeOOH aerosol because it is
emitted by parallel generated flue gas plumes containing SO, and NOy as sulfuric and nitric
acid generators. Due to their small diameter dependent high surface area the aerosol
particles immediately react with HCI. HCI is generated by the reaction between sea-salt
aerosol and flue gas borne acids. Primary reaction product is the orange colored FeCls
aerosol: ISA. But the day time sun radiation bleaches ISA by FeCl, and °Cl generation; the
night time re-oxidation of ISA plus HCI absorption regenerates FeCls again. FeCl; is colorless
at low humidity; pale green at high humidity.
Provision of the phytoplankton to optimize its growth with further nutrients such as Mn, Zn,
Co, Cu, Mo, B, Si and P by the ISA method is possible by at least the variants 1-3 of the ISA

method by co-combustion, co-condensation or co-nebulizing.
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Global fixing regulations of GHGs emission certificate prices, values, and ISA emission
certificate credit values would be simple but effective measures for the quickest world-wide
implementation of the ISA flue gas conditioning method.

Anderson [471] reminded that of the 400 IPCC scenarios that keep warming below the Paris
agreement target, “344 involve the deployment of negative emissions technologies”, which
he qualifies of “speculative” or requiring geoengineering.

A large part of the research devoted to climate engineering methods concerns SRM (sunlight
reduction methods), such as mimicking the effects of large volcanic emissions by adding
sulfates aerosols into the stratosphere as suggested for instance by Crutzen [242].
Numerous other types of particles have been suggested for these aerosols for instance
titania by Jones [472]. But SRM only buys time and has numerous drawbacks.

On the one hand, SRM did not address the main cause of global warming (GHG emissions),
nor prevents ocean acidification. On the other hand, several CDR technologies do, but their
costs are much larger than SRM and the scale requested poses many technological
challenges, for instance “scaling up carbon dioxide capture and storage from megatons to
gigatons” [473].

Very few CDR methods without emission of disadvantageous pollution are known. One of
those is the Terra Preta method: it is characterized by the mixing of grinded bio-char into
agricultural soils. The climate relevancies of this method are sustained fixation of former CO»
carbon, minimizing fertilizer consumption and N2O emission reduction from the fertilized
Terra Preta soils. Char has similar properties within the soil environment than humic
substances, but in the environment, char is resistant against oxidation.

Comparing the Terra Preta method to other CDR methods such as fertilizing the ocean by
micro nutrients, results in lower specific material expenses by CDR methods per unit of CO-
removed from the atmosphere [474]. The ISA method we propose is a member of this CDR
group, thus this result is also valid. in addition the further climate effects of the ISA method
(such as depletion of CH4, tropospheric ozone, and soot, plus cloud whitening) reduce the
specific material expense level. Furthermore, the ISA method mimics a natural phenomenon
(mineral iron-dust transport and deposition) and only proposes to improve the efficiency of an
already existing anthropogenic pollution. Myriokefalitakis et al. [475] estimates that “The
present level of atmospheric deposition of dissolved Fe over the global ocean is calculated to
be about 3 times higher than for 1850 emissions, and about a 30% decrease is projected for
2100 emissions. These changes are expected to impact most on the high-nutrient—low-
chlorophyll oceanic regions.” Their model “results show a 5-fold decrease in Fe emissions
from anthropogenic combustion sources in the year 2100 against in the present day, and
about 45% reduction in mineral-Fe dissolution compared to the present day”. Meanwhile the

model used by [54] predicts by 2090 an iron supply increase to HNLC surface waters
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especially in the eastern equatorial Pacific attributed by the authors to changes in the
meridional overturning and gyre-scale circulations that might intensify the advective supply of
iron to surface waters. Furthermore, several authors [77, 87, 476-478] point out that both
glacial and deep-water Fe sources may increase with continued climate warming due to Fe
input from other sources, such as shelf sediments, melt water, icebergs, rivers, surface water
runoff and dust input.

Recently Boyd and Bressac [67] suggested starting rapidly tests to determine efficiency and
side effects of CDR ocean iron fertilizing methods, and analyzed possible geopolitical
conflicts together with some other geoengineering methods [479].

Several experts, for instance Hansen et al. [6], expressed recently the urgent warning that
mankind has only short time left to address and control climate warming. As a consequence
mankind ought to find out as soon as possible climate controlling matter which might
generate the most effective and reversible climate cooling effects within the shortest period.
Lifetime of ISA emissions in the troposphere are much shorter than that of sulfates in the
stratosphere. Of course, such tools and agents have to be rapidly evaluated against side-

effects to ecosystems, human health, and last but not least their economic burdens.

8. Interaction of the ISA method with further measures to protect the environment

According to Wittmer & Zetzsch [127] elevated HCI content in the atmosphere triggers the
methane depleting coating of oxidic ISA precursors by photolytic active Fe(lll) chlorides. Any
measure triggering the reduction of the HCI content of the atmosphere would impair the
effectiveness of the ISA method based on this kind of method.

In this sense all kind of measures to reduce the sulfur and NOy content of the flue gas
content of gaseous, liquid or gaseous fuels belongs would decrease the effectiveness of
oxidic ISA precursors, as the S and NOy oxidation products sulfuric acid aerosol and gaseous
nitric acid are the main producers of HCI by changing sea salt aerosol into sulfate and nitrate
aerosol. Even the measures of reducing the energy production from fuel burning by changing
to wind and photovoltaic energy would reduce this HCI source.

Sea salt aerosols produce HCI after contact with organic aerosol and organic volatile matter
as the latter generates acid oxidation products from the latter such as oxalic acid [150, 480,
481]. A large fraction of organic aerosols and secondary organic aerosols originate from
anthropogenic sources such as combustions. The change to wind and photovoltaic energy
would reduce this HCI source.

The proposed CE measure of producing sulfuric acid aerosol within the stratosphere by
inducing an albedo increase would increase the HCI content, during contact of the

precipitating acid aerosol with tropospheric sea salt aerosol. Even the proposed CE measure
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of increasing the sea salt aerosol content of the troposphere by artificial sea salt aerosol as
cloud whitening measure could be used as ISA method trigger if flue gas is used to elevate

the sea salt aerosol.

9. Discussion

In order to fight global warming, this review proposes to enhance the natural actions of CI
atoms in the troposphere, together with the synergistic action of iron in the atmosphere,
ocean, oceanic sediment and land compartments, as a climate engineering method. The
main results expected are a diminution of long lived well mixed atmospheric methane and
carbon dioxide, but the diminution of local short lived tropospheric ozone is also possible, as
well as effects on the Earth albedo, restoration of the oxygen flux into the deep ocean basins,
organic carbon storage, etc.

The most important actor in the process of CO, C transfer from atmosphere into the Earth
interior is the carbonate C precipitation in the crust rocks and sediments below the ocean.
The ocean crust acts like a conveyor belt between crust evolution at MOR and its subduction
zones into the mantle. Transported medium are carbonate C, small amounts of organic C,
ocean salt, ocean water and sediments. This process is part of the homeostasis of the
planet. Disturbances of this system part are induced by stratification processes within the
ocean basins caused by density differences between different layers of the water column.
Most stratification events are induced by climate warmings. Any of these homeostasis
disturbances are removed by the system within geological time scales. Signs of such
disturbances are more or less prominent events of extinction and of elevated organic C
content in the ocean sediments. Because the recent climate warming will induce a new
ocean stratification event, mankind ought to stop it. Like several interglacial stratification
events in the glacial periods, the actual stratification is also induced by increasing melt water
discharge. The past interruptions of the interglacial climate warmings teach us, that the
interruption events were accompanied as a rule by dust events. As demonstrated, the
climate cooling effects of these dust events are induced by the chemical and physical actions
of ISA.

In high-nutrient, low-chlorophyll oceanic areas, where the contribution of atmospheric
deposition of iron to the surface ocean could account for about 50% of C fixation, as well as
in oceanic nitrogen-limited areas, where atmospheric iron relieves the iron limitation of
diazotrophic organisms (thus contributing to the rate of N fixation), atmospheric deposition of
iron has the potential to augment atmospherically supported rates of C fixation [482] and thus

“cool the Earth” by removing CO- from the atmosphere.
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Maybe the iron atmospheric deposition over terrestrial landscapes and wetlands has similar
effects? Are there possible benefits of atmospheric deposition of soluble iron over the
continents, where iron deficiency in plants occurs over 30% of them which are high pH
calcareous soils that make soil Fe unavailable for plants [395]? Iron deficiency induced
chlorosis in plants can be solved by addition of soluble iron complexes to the soil, or by foliar
application of sprays containing mineral iron (for instance FeSO,) [396] or iron chelates (Fe-
EDTA among others) [399]. Iron, sulfate and several organic iron complexes such as iron-
oxalate are known constituents of atmospheric dust [74], but unfortunately no published work
was found about possible effects on plant chlorosis by foliar deposition of soluble iron from
atmospheric dust.

We did not find studies about the impacts of atmospheric iron nutrient deposition on
terrestrial ecosystems productivity. More research is needed to continue to enhance our
understanding of the possible benefits of the iron cycling in freshwater and terrestrial
landscape environments, as well as in atmospheric and sediment environments, in particular
on its numerous potential capacities to fight global warming. The cooling effects of ISA and
iron reviewed in this article already provide insight into the progress made on understanding
the iron cycles from a range of perspectives.

There is abundant literature on the many geoengineering methods that have been proposed
to “cool the Earth” [483, 484]. In particular, the injection of sulfate aerosols into the
stratosphere is the most studied method, as it mimics the episodic action of natural
volcanoes [163, 387]. Injected particles into the stratosphere reduce the radiative balance of
Earth by scattering solar radiation back to space, so several types of particles are envisioned
with a wide range of side-effects [472].

The literature also describes many options to deliver sulfates, their precursors (or other
particles) to the stratosphere [469]. For instance, airplane delivery of the sulfate aerosols by
the kerosene combustion process requires military jets due to commercial aircrafts limited
altitude of 10 km (30,000 feet), and not the 20 km requested [469].

In the case of ISA, the altitude needed to “cool the Earth” is much lower: it is in the
troposphere and the total quantities to deliver are 1 order of magnitude smaller. So air travel
is a possible means for ISA delivery. But the global jet fuel consumption is only about
240,000 t yr'. Even by assuming the very high emission rate of 1 kg ISA precursor iron per
ton of jet fuel, only 240t yr' might be emitted. This seems far away from the order of
magnitude of the target ISA emissions.

From the many other possible delivery strategies envisioned for SRM by stratospheric
aerosols, many are not suited for ISA, such as artillery, missiles and rockets [469]: it will be
cheaper with less pollution to use the flue gas of a reduced number of thermal power plants.

That might be efficient enough to deliver the artificial iron aerosol needed over the boundary
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layer, in order to the aerosols to stay several days or weeks in the troposphere and become
widely distributed [485].

According to Luo [79], deposition of soluble iron from combustion already contributes from 20
to 100% of the soluble iron deposition over many ocean regions.

As an example we calculated the possible production and emission of the ISA precursor
FeOOH aerosol using the flue gas of the German power station NiederauRem; with the input
of 25 million t yr' of lignite (brown coal), this power station produces 3,600 MW.

According to ISA production variant 1 (chapter 6) the ISA precursor FeEOOH aerosol may be
produced by burning of a ferrocene (Fe(CsHs)2) oil solution containing 1% ferrocene in a
separate simple oil burner. The hot oil burner flue gas containing the ISA precursor FeOOH
aerosol is injected and mixed into the cleaned power station flue gas. The power station flue
gas emission rate is calculated to 9,000 m? flue gas per ton of lignite. As the ISA precursor
containing flue gas will be elevated to heights of more than 1000 m above ground, dust
levels of the ISA precursor FeOOH aerosol of 20 mg m= flue gas seem to be acceptable.
This allows a quantity of 180 g of FeOOH per ton of combusted lignite (9000 m3t* x 0,02
g m3). At a lignite quantity of 25 million t yr', this corresponds to 4,500 t FeOOH yr'. FeOOH
has an iron content of 63%. This corresponds to a possible iron emission of 2,831 tyr' and a
possible ferrocene consumption of 9,438 t yr.

Corresponding to this calculation about 100 of such huge power stations should have the
ability to produce the sufficient ISA quantity of an equivalent of 200,000 to 300,000 t Fe yr'.
Further optimization of the cooling capacity of the produced ISA is possible by a co-emission
of HCI, for instance by co-burning of an organic HCI precursor.

This example illustrates that ISA emission at only 100 power stations, or any similar ISA
emission measures, is quite feasible compared to the alternative of CCS by CO, capture
from the flue gas of 40 Gt yr', compression of the CO- until the liquid state, followed by
transportation and CO; storage by injection into underground rock aquifers or into old and
depleted fossil fuel reservoirs.

In order to increase the effectiveness of the buoyancy capacity of the power works the usual
wet cooling tower might be replaced by a dry cooling tower to mix the dry and warm air
emission from the cooling tower with the hot flue gas as additional buoyancy and due point
reduction mean. Further the flue gas buoyancy may increase by increasing the flue gas
temperature. This or other simple techniques to realize ISA plumes may be used within the
troposphere.

One alternative delivery method that seems promising and can easily be adapted to ISA
method, is the use of tethered balloons [486], and will cost much less as 1 or 2 km altitude
will be sufficient for ISA emissions, requiring much lower pressures in the pipes than for SO,

delivery at 20 km for the geoengineering method. Technical and economic feasibility have
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already been studied for the SPICE project [470] which was planning to release sea water
spray at 1 km altitude.

Furthermore, as iron emissions only stay in the troposphere for weeks compared to SRM
sulfates in the stratosphere that stay 1 or 2 years. In case any unintentional side effect or
problem occurs, stopping the emissions is rapidly possible and the reversibility of its effects
are much shorter than for solar radiation management by sulfates aerosols.

Other geoengineering strategies to cool the Earth, such as carbon dioxide removal by iron
fertilization [64] have several pros and cons, such as localized release, less dispersion, in a
form that is not readily bio-available, resulting in restricted cooling effects and high expenses.
The idea of ocean fertilization by iron to enhance the CO; conversion by phytoplankton
assimilation came up within the last two decades. Proposed was the mixing of an iron salt
solution by ships into the ocean surface. This idea was debated controversial. Example of
this debate is the discussion between KS Johnson et al. and SW Chisholm et al. [68, 69].
Deeper insight into this debate is given by Boyd and Bressac [67].

The iron fertilization procedure tests done so far had been restricted to relatively small ocean
regions [51, 52, 487]. These tests produced iron concentrations orders of magnitude above
those produced by natural ISA processing which are in the single decadal order of milligrams
of additional dissolved iron input per square meter per year. In this sense the ISA method is
quite different from “iron fertilization”. As known from satellite views, phytoplankton blooms
induced by natural dust emission events from the Sahara, Gobi and further dust sources,
there is no doubt about the fertilizing effect of iron. Meanwhile this kind of natural iron
fertilization enhancing the transfer of CO2-Carbon into organic sediment carbon via the
oceanic food chain seems to be un-contradicted and accepted [6].

The ISA method allows the use of the same atom of iron several times by catalytic and
photocatalytic processes into the atmosphere, with different cooling effects (such as albedo
modification and enhancement of the methane destruction) and then reaches the oceans,
with further cooling effects such as the enhancement of CO; carbon fixation.

Harrison [488] estimates that a single ship based fertilization of the Southern Ocean will
result only in a net sequestration of 0.01 t Carbon km=2 for 100 years at a cost of US$457 per
ton of CO, as the economic challenge of distributing low concentrations of iron over large
ocean surface areas, has been underestimated [489], as well as the numerous loss
processes (i.e.: soluble iron loss and organic carbon that do not sink till the bottom of the
ocean) resulting in reduced net storage of carbon per km? of ocean fertilized.

Figure 7 summarizes many of the cooling effects of the ISA method.
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Figure 7. Summary of the principal cooling effects of the proposed iron salt aerosols method.
The organic C / carbonate C burial ratio in sediments and bedrock increase after ISA method
start, until a maximum. Then this ratio begins to decrease as soon as the vertical current
components in the ocean basin begin to act. Then the ratio arrives to a very low permanent
level, while the total of buried C arrives at a permanent maximum level when the maximum
vertical mixing conditions have been obtained by the ISA method.

Why does ISA appear to be more effective than ocean iron fertilization? For ocean iron
fertilization several tons of Fe(ll) are dispersed in a short time (hours) over only some km? of
ocean with several drawbacks and a massive algae bloom can change the local biotopes.
Meanwhile ISA releases iron continuously, reaching the entire 510 million km? of Earth
surface. The current iron inputs (in the form of soluble salts) into the oceans are estimated
between 0.1 and 0.26 Tg yr' [74, 80, 456]. As water covers nearly 72% of Earth surface (362
million km?), if ISA delivers 1 Tg Fe yr' evenly distributed (in addition to natural and
anthropogenic current emissions), which is 4 times more than the expected needs (chapter

5.2), on average every km? of ocean receives 5.4 g Fe km= day™' (/510 t Fe km=2 yr).

10 Conclusion
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At ideal circumstances the ocean acts as an optimum transport medium for CO, carbon from

2144  the atmosphere into the ocean crust. Such circumstances are present when the vertical
2145  cycling components between ocean surface and ocean bottom are undisturbed.
2146  Any stratification event disturbs this cycling and interrupts the CO; transport. Climate
2147  warming can induce stratification events by producing huge amounts of melt water. Recent
2148  research found signs of at least regional development of a beginning stratification.
2149  The numerous climate cooling effects of natural dust show in this review, according to its
2150  soluble iron content, demonstrate that dust is of a central significance as steering element of
2151  this carbon transport from the atmosphere into the ocean crust.
2152  This review article demonstrates the enormous effects of atmospheric iron dusts and focuses
2153  first on the tropospheric aerosol particles composed partly of iron and chloride (iron salt
2154  aerosols ISA), showing their cooperation and interactions with several components of the
2155 atmosphere for instance with CH4, as the chlorine atom is responsible for the removal of a
2156  significant part of this GHG (3 to 4 % of CH4) in the troposphere [118, 119]. This article
2157  summarizes a dozen of other possible direct and indirect natural climate cooling mechanisms
2158 induced by the iron biogeochemistry in all the Earth compartments: atmosphere, oceans,
2159 land (surface, soil), sediment and crust.
2160 These dozen possible climate cooling effects due to the multi-stage chemistry of iron within
2161  the atmosphere, hydrosphere, geosphere and lithosphere are described all together for the
2162  first time and are summarized in table 3, which shows the most probable climate cooling
2163  effects of ISA. They include the ocean fertilization effect which allows enhanced algal and
2164  phytoplankton growth, which removes mineral CO; from the atmosphere and transforms it in
2165  organic carbon, a part of which can sink to the bottom of the oceans and be stored for long
2166  periods of time by different mechanisms that are described.
2167
2168 Table 3: principal effects of the ISA method proposed - or its natural equivalent - and their
2169  probable effect on the different biosphere compartments.
2170
2171
2172
2173
Time delay
Most between
efficiency ISA method
start or stop
Troposphere Sr?ngv?lg' el Cloud albedo increase S <1yr

66



HsRESpIIE Methane and VOC depletion +++ <1yr
Black and .br.ow.n carbon mn <Ayr
precipitation
Ozone depletion ++ <1yr
Forests and . —
further primary Organlg C bgrla! Ingesielo, + <5 yr
assimilation increase
producer
Wetlands,
. marshes, peat Methane emission decrease
Conthent bogs, lake by methanogenesis inhibition il S
sediments
Desert surfaces | Methane and VOC depletion +/- <1yr
Oce_an e ocean Phytoplankton Organic and Carbonate C |1) ++++ <1yr
sediment aquifer .
and the further burial increase by
at the ocean o T
b food chain links assimilation increase 2) + <1yr
ottom
Ocean crust Actlvatlt;)n Ofthe | ~arbonate C burial increase |3) **+++ >10yr
aquifer Rerataasll in the ocean crust rock
vertical cycling 4) +/[+++ >10 yr
2174
2175 1) The euxinic and alkaline bottom water of the stratified ocean have no oxidation and calcite
2176  solution capacity, thus produce a high burial rate of organic sediment C and carbonate C
2177  2) The oxic, hydrogen carbonate and CO,-containing bottom water of the well-mixed ocean
2178  have high oxidation capacity and high calcite dissolving capacity, thus produce a low burial
2179  rate of organic and inorganic Sediment C
2180  3) The high inorganic C load of the oxic, hydrogen carbonate and CO»-containing bottom
2181  water of the well-mixed ocean comes to total precipitation within the alkaline and reducing
2182  crust aquifer, thus produce a very high burial rate of inorganic C and small amounts of
2183  organic C precipitation
2184  4) The euxinic and alkaline bottom water of the stratified ocean has low content of dissolved
2185 inorganic C and contains methane C up to saturation, thus produce low to medium C burial
2186  rate during cycling through the crust aquifer.
2187
2188 In order to explicitly handle the interaction of climate and biogeochemistry, the complex
2189 interactions between climate and the cycles of C, N, P, H,O and micronutrients call for
2190 models that integrate global biogeochemical cycles of terrestrial, oceanic and atmospheric
2191  components of the biosphere.
2192 While the iron biogeochemical cycle between the atmosphere and the ocean is considered in
2193  numerous publications, the treatment of key processes and feedbacks within the terrestrial
2194  compartment has been rather limited, and further development is urgently needed.
2195  Mineral dust aerosols containing iron and other important nutrients or micro-nutrients are well
2196  studied components of the iron biogeochemical cycle in the atmosphere and the oceans, but
2197  the absence of recent bibliography about the full iron biogeochemical cycle over terrestrial
2198  landscapes, soils, wetlands and all clear water compartments (glaciers, ice, snow, lakes, and
2199  groundwater) points out a lack of up-to-date overview. In our opinion, the atmospheric
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chemistry models need to incorporate all relevant interaction compartments of the Fe-cycle
with sun radiation, chlorine, sulphur, nitrogen, oxygen, carbon and water in order to model
the several planetary cooling effects of the iron cycle.

Acid rain sulphate (SO.?") deposition on peatlands and wetlands from natural sources
(volcanoes), or anthropogenic sources (fossil fuel combustion) is a known suppressant of
CHs4 production [490, 491] and emissions [492-494] and may be an important process in
terms of global climate. The importance of the Fe input associated with anthropogenic
aerosol deposition in terrestrial biogeochemistry deserves further investigation as well as the
possible impacts of a drastic diminution of anthropogenic iron and sulfates emissions from
combustion processes expected by 2050 to satisfy the Paris climate agreement.

This review completes the previous global iron cycle visions [50, 52, 74, 97, 98, 495-497] and
advocates a balanced approach to make profit of the iron cycle to fight global warming by
enhancing natural processes

Climate cooling by natural ISA involves the troposphere, dry solid surfaces, ocean waters,
ocean sediment, ocean crust and land. Several GHG factors are controlled by ISA: COy,
CHa4, tropospheric Oz, black carbon, dust, cloud albedo, and vertical ocean mixing.

Using mineral dust as a natural analogue tool, this article proposes to enhance the natural
ISA in order to raise and heighten the cooling impacts of at least two of the dozen natural
effects found: i.e. CH4 removal by tropospheric °Cl and CO, removal by soluble-Fe ocean
fertilization.

The ISA method proposed is feasible, probably with few to no-environmental side-effects, as
it relates to chemical and/or physical combustion processes occurring currently. Actual iron
production and coal combustion together with other combustions sources already release in
the atmosphere a very significant part of the global bioavailable iron in the northern oceans:
from 15% [80] to 80% [82, 83] depending on the iron solubility parameters taken into
account.

The present level of atmospheric deposition of soluble Fe over the global ocean is evaluated
to be about 3 times higher than for 1850 emissions [475], as increases in anthropogenic and
biomass burning-emissions resulted in both enhanced Fe combustion emissions and a more
acidic environment and thus more than double soluble Fe deposition (nearly 0.5 Tg-Fe yr’
nowadays versus nearly 0.2 Tg-Fe yr' in 1850).

Inevitable reduction of aerosol emissions to improve air quality in the future might accelerate
the decline of oceanic productivity per unit warming and accelerate decline in oceanic NPP
[498]. Myriokefalitakis model projected results for 2100 indicate about a '/4 decrease in
atmospheric deposition of soluble Fe, with a 5-fold decrease in Fe emissions from
anthropogenic combustion sources (~0.070 Tg-Fe yr' nowadays against ~0.013 Tg-Fe yr' in

2100). These changes are expected to impact most on the high-nutrient—low-chlorophyll
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oceanic regions. According to Myriokefalitakis [475], in view of the importance of Fe as a
micronutrient for marine ecosystems, the calculated projected changes in soluble iron
emissions, requires the implementation of comprehensive mineral-Fe dissolution processes
as well as Fe combustion emissions in coupled climate-biogeochemistry models to account
for feedbacks between climate and biogeochemical cycles. This review shows that the
effects on CH4 of ISA and of anthropogenic Fe emissions in the troposphere also deserve to
be taken into account.

According to Wang et al. [83], taking into consideration the relatively high solubility of
anthropogenic iron, combustion sources contribution to soluble Fe supply for northern Pacific
and northern Atlantic oceanic ecosystems could be amplified by 1-2 orders of magnitude. To
stop global warming, we estimated the requirements in terms of ISA by extrapolation of
experiments of iron catalyzed activation by artificial sea-salt aerosols [124, 127]. Our first
estimations show that by doubling the current natural Fe emissions by ISA emissions into the
troposphere, i.e. by about 0.3 Tg Fe yr', artificial ISA would enable the prevention or even
the reversal of GW.

The adjustable flue gas temperatures for different types of combustions are a means to lift
the ISA plumes to optimal heights within the troposphere. Thus, we believe that the ISA
method proposed integrates technical and economically feasible tools that can help to stop
GW.

According to our remarks in chapter 2, the reactions of ISA in the troposphere are the most
prominent results for a surface temperature decrease [439]. This stops further ice melting,
which activates the different vertical ocean water movements. As a result, the dissolved CO»

is then buried as carbonate C within the ocean bottom sediments and crust.

Abbreviations:

Carbon capture and storage: CCS; Cloud condensation nuclei: CCN; Global Warming: GW,;
Intergovernmental Panel on Climate Change: IPPC; Iron salt: IS; Iron salt aerosols: ISA;
Humic-like substances: HULIS; Hydroxyl radical: °OH; Chlorine radical: °Cl; Bromine radical:
°Br; Ligand: L; Methane: CH4; Mid-ocean rift: MOR; Secondary organic aerosol: SOA;
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