

1 This PDF files contains on pages 1 and 2 the point-to-point response to the reviewers and
2 the list of all relevant changes made in the manuscript, inclusive the revised figures, the
3 expanded table 1 and the new tables 2 and 3. Then starting page 3 till the end on page 86,
4 the revised manuscript with yellow marked paragraphs for every relevant changes made.

5
6
7 **Point-to-point response to the reviewers and list of all relevant**
8 **changes made in the manuscript:** “Climate engineering by mimicking the natural
9 dust climate control: the Iron Salt Aerosols method”.

10
11 **Authors:**

12 Franz Dietrich OESTE ¹, Renaud de_RICHTER ², Tingzhen MING ³, Sylvain CAILLOL ²

13 * corresponding authors

14
15 **Affiliations & Addresses:**

16 1 gM-Ingenieurbüro, Tannenweg 2, D-35274 Kirchhain, Germany. Email: oeste@gm-ingenieurbuero.com

17 2 Institut Charles Gerhardt Montpellier – UMR5253 CNRS-UM2 – ENSCM-UM1 – Ecole Nationale Supérieure de
18 Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France. Email:
19 renaud.derichter@gmail.com

20 3 School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122, Luoshi Road,
21 Hongshan District, Wuhan, 430070 China.

Comments from Dr. Elliott		Completions of the paper as a response to the reviewers' comment	
Comment N°	Summary of reviewer's comment	Pages	Lines
1	General critic about geoengineering	60-61	2024-2076
2	European English used	English corrected in all the manuscript. Also Dr. Elliott proposed to send a list of edits and typos corrections	

Anonymous reviewers' comments		Completions of the paper as a response to the reviewers' comment	
Comment N°	Summary of reviewer's comment	Pages	Lines
1	The English is not adequate	English corrected in all the manuscript	
2	Organization is poor; most conclusion talk is about cost effectiveness	38, 39-41, 47, 62-63, 64-70	1219-1223, 1292-1332, 1572-1576, 2103-2385, 2222-2385,
3	Not always the right papers discussed and too great breadth discussed	2-3, 6, 7-9	61-94, 181-193, 253-398

4	Did not convince that the described feedbacks exist or may be large	Responses included in one or more of the responses 2-3 and 6-12	
5	Atmospheric aerosol impacts on land and ocean biogeochemistry are incomplete or wrong	Responses included in one or more of the responses 2-3 and 6-12, especially 6, 8 and 10	
6	Paper does a poor job describing the knowledge of iron in the oceans	35, 43-45	1167-1171, 1407-1509
7	People have rejected the idea of iron fertilization; this is not well described in the paper	6, 60-61	210-215, 2025-2077
8	Authors do not realize that if iron is added to aerosols, it may warm the planet by incoming radiation absorption	49-50, 59	1660-1671, 2007-2018
9	None of the effects (<i>albedo increase, methane oxidation, black carbon oxidation and ozone depletion</i>) convince that these effects will be significant	10, 12-13, 18, 22	344-348, 421-433, 589-593, 721-725.
10	The dust input to the Amazon rainforest as contribution delivery to climate cooling seems totally off base	50-53	1689-1799
11	The reviewer recommends to focus for each mechanism in separate articles and then pull them together later	As a response the paper has been reorganized and an answer has been made to the reviewer insisting on the pluri-disciplinary needs to fight global warming and to complete biogeochemical cycles	

24

Comments from other readers		Completions of the paper as a response to the comments received	
reader name	Summary of reviewer's comments	Pages	Lines
Sander	Data in table 1 is not from Sander, 2005	17	548-551
Zetzschen 1	The technical application of ISA for climate engineering is beyond the scope of our studies	Sentences in published work (ref. Wittmer et al., 2015a) state the contrary.	
Zetzschen 2	Technical comments on pH and particle size	54-55	1840-1855

25

26

27

28

29 **Climate engineering by mimicking the natural dust climate control:**
30 **the Iron Salt Aerosols method**

31 **Authors:**

32 Franz Dietrich OESTE ¹, Renaud de_RICHTER ², Tingzhen MING ³, Sylvain CAILLOL ²

33 * corresponding author

34 **Affiliations & Addresses:**

35 1 gM-Ingenieurbüro, Tannenweg 2, D-35274 Kirchhain, Germany. Email: oeste@gm-ingenieurbuero.com

36 2 Institut Charles Gerhardt Montpellier – UMR5253 CNRS-UM2 – ENSCM-UM1 – Ecole
37 Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier
38 Cedex 5, France. Email: renaud.derichter@gmail.com

39 3 School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122,
40 Luoshi Road, Hongshan District, Wuhan, 430070 China.

41 **Abstract**

42 Power stations, ship, and air traffic are among the most potent greenhouse gas emitters and
43 are primarily responsible for global warming.

44 Iron salt aerosols (ISA), composed partly of iron and chloride, exert a cooling effect on
45 climate in several ways. This article aims firstly to examine all direct and indirect natural
46 climate cooling mechanisms driven by ISA tropospheric aerosol particles, showing their
47 cooperation and interaction within the different environmental compartments. Secondly, it
48 looks at a proposal to enhance the cooling effects by ISA in order to reach the optimistic
49 target of the Paris climate agreement, to limit the global temperature increase between 1.5
50 and 2 °C.

51 Mineral dust played an important role during the glacial periods: by using mineral dust as a
52 natural analogue tool and by mimicking the same method used in nature, the proposed ISA
53 method might be able to reduce and stop climate warming. The first estimations made in this
54 article show that by doubling the current natural iron emissions by ISA into the troposphere,
55 i.e. by about 0.3 Tg Fe per year, artificial ISA would enable the prevention or even reversal of
56 global warming.

57 The ISA method proposed integrates technical and economically feasible tools.

58

59 **Keywords**

64 Iron salt aerosols, cooling the earth, reverse global warming, methane removal, CO₂ removal
65 phytoplankton fertilization, tropospheric ozone reduction, cloud albedo, carbon capture and
66 storage (CCS), climate engineering

67

68 1. Introduction

69 The 5th assessment report of the Intergovernmental Panel on Climate Change (IPPC),
70 released in November 2014, states that Global Warming (GW) has already begun to
71 dramatically change continental and marine ecosystems.

72 A recently noticed effect is that the vertical mixing in oceans decreases and even reaches a
73 stagnation point [1], thus weakening the net oceanic cumulative intake of atmospheric CO₂
74 [2, 3].

75 A consequence of decreasing vertical ocean mixing is a reduced or interrupted oxygen
76 supply to the depths of the ocean. Currently, the formation of low-oxygen areas in the oceans
77 is increasing [4, 5]. Furthermore, climate warming entails stratification of the water column
78 and blocks vertical flows. Stratification may develop by warming the upper water layer as well
79 as evaporation and precipitation. Generation of a fresh water layer on top of the water
80 column by precipitation, surface water runoff and melt water inflow induce stratification [6, 7].
81 Even the opposite, brine generation by evaporation may induce stratification [8]. Stratification
82 blocks the oxygen transfer through the water column and triggers the formation of oxygen-
83 depleted zones [9] that also emit nitrous oxide (N₂O), a potent GHG and a powerful ozone
84 depleting agent.

85 As iron is part of many enzymes directing the bioenergetic transformation of nitrogen in the
86 ocean, it has an additional direct influence on the cycling of these elements through the
87 oceanic environment [10, 11].

88 The severest consequence to oceanic ecosystems of such stratification is the development
89 of anoxic milieu within stratified ocean basins. An example of the development of halocline
90 and chemocline stratification is the Black Sea [12]. This ocean basin has a stable halocline
91 which coincides with a chemocline, dividing an oxic salt-poor surface water layer from a
92 saline anoxic sulfidic deep layer with a black sapropel sediment rich in organic C at the basin
93 bottom [12].

94 Geological past episodes with stratified ocean basins are regularly marked by black shale or
95 black limestone as remnants of sapropel sediments. Stratified ocean basins during the
96 Phanerozoic epoch occurred as a consequence of elevated CO₂ levels in the atmosphere.
97 This caused high sea surface temperatures [13] and, as a global consequence a global
98 increase of evaporation, precipitation and production of brines of higher concentrations.

99 It has been pointed out that the increasing melt water run-off from past polar and subpolar
100 ice layers may have induced the cover of denser ocean water by a melt water layer [6].
101 According to Praetorius et al. [14] climate warming events during the last deglacial transition
102 induced subsurface oxygen minimum zones accompanied by sea floor anoxia in the
103 Northern Pacific. This melt water-induced stratification had been accompanied by melt water
104 iron-induced phytoplankton blooms. The generation of increasing precipitation and surface
105 water run-off accompanied by increasing brine production plus elevated surface water
106 temperatures during hot CO₂-high climate episodes had similar consequences in the past
107 geological epochs [13].

108 Ocean basin stratifications may be induced by increasing precipitation with increased surface
109 water run-off [7] or by increased brine production [8]. These ocean stratification event is
110 characterized by regional to global ocean anoxia, black sediments with elevated organic C
111 and hot greenhouse climate, as we learn from the whole Phanerozoic past [13] and was
112 often accompanied by mass extinctions.

113 Even the largest mass extinction of ocean biota within the Phanerozoic epoch, during the
114 Permian-Triassic transition, has been induced by high temperatures as a consequence of
115 elevated CO₂-Levels, which induced the change of a well-mixed oxic to a stratified euxinic-
116 anoxic ocean [15].

117 What we have to face now is the extraordinary process developing from the recent situation:
118 the combination of the CO₂-dependent temperature rise-generated precipitation increase,
119 plus melt water increase. Mankind has to find now the appropriate tool to stop this dangerous
120 stratification process.

121 Warming surface waters and decreasing input of cold, oxygenated surface water, trigger a
122 temperature rise of sediments, transforming solid methane hydrate into gaseous methane
123 (CH₄) emissions in seawater [16]. CH₄ oxidation consumes additional oxygen, decreasing the
124 oxygen content above those areas [17].

125 The same effects are expected with an anticipated increase in spring and summer coastal
126 upwelling intensity, associated with increases in the rate of offshore advection, decreasing
127 the nutrient supply while producing a spatial or temporal (phenological) mismatch between
128 production and consumption in the world's most productive marine ecosystems [18].

129 These events have the threatening consequence of a sprawling lack of oxygen in the
130 oceans. In such low-oxygen areas (sub-oxic to anoxic) only bacterial life is possible: higher
131 life forms can not exist there. Accordingly, an early result of the climate warming progression
132 could lead to a dramatic limitation of the oceanic food sources that will be needed for the
133 projected 9-10 billion people by 2050. The same deleterious consequences on seafood
134 supply can also result in ocean surface acidification through increased CO₂ dissolution in sea

135 water and decreased flow of surface water currents to ocean basin bottoms, limiting reef fish
136 and shelled mollusk survival [19].

137 Any decrease of the THC has severe consequences on all kinds of ecosystems as it further
138 triggers climate warming by different interactions. THC decrease induces a reduction or
139 eventual disappearance of the phytoplankton fertilizers Si, P, N and Fe extracted on the
140 ocean surface from their resources at the bottom of the ocean basins. Hydrothermal fluid
141 cycling by mid-ocean ridges, off-axis hydrothermal fluid fluxes, subduction-dependent
142 hydrothermal convection fluids, hydrothermal fluxes at hot spot sea mount and fluid
143 emissions from anaerobic sediments, contain said elements as dissolved or colloidal phase
144 [20-27]. The deeper water of all ocean basins is enriched by these fertilizers. A THC
145 decrease within the ocean basins will result in a decrease of the assimilative transformation
146 of CO₂ into organic carbon.

147 Moreover, any THC decrease would further trigger the acidification of the ocean surface by
148 lowering or preventing the neutralization of dissolved CO₂ and HCO₃⁻, due to the alkalinity
149 decrease from hydrothermal sources [20, 28].

150 During the convective water flow through the huge alkaline ocean crust volume, estimated to
151 about 20 - 540 x 10³ km³ yr⁻¹ [29], ocean water is depleted in O₂, but enriched in its reductant
152 content such as CH₄ [20, 30]. Further elements are enriched in this convective water flow
153 through the Earth crust, essential for the existence of life. The re-oxygenation of this huge
154 water volume is retarded or even impossible with a minimized THC.

155 According to model calculations [31] the THC might have significantly changed between the
156 last glacial and interglacial periods. During the Cenozoic epoch, ice covered pole caps
157 limited the incorporation of carbon in the form of carbonate into the oceanic crust compared
158 to the warm Late Mesozoic period [32]. The findings of Coogan & Gillis show that during ice-
159 free periods, THCs were possible with much higher effectiveness than in modern times. Even
160 during those warm periods with low temperature gradients between polar and equatorial
161 oceans, an effective production of brines leading to buoyancy differences necessary for
162 development of effective THC may have been generated [33]. However, increased inflow rates
163 of high density brines coming from shallow shelf regions with high evaporation rates, induced
164 several collapses or vertical reductions of the strong Cretaceous THC. From here and for
165 more than a million years, the lower parts of ocean basins have been filled with anoxic brines
166 [8]. Further aspects of ocean stratification are discussed in chapter 4.1.

167 Remnants of these anoxic events are black shale sediments [34]. During such THC
168 collapses, the uptake of CO₂ into the oceanic crust stayed restricted to organic carbon
169 sediments. Additionally, the organic carbon productivity of the remaining oxic zone was
170 decreased, as well as eolic dust input, due to phytoplankton fertilizer production being limited
171 to continental weathering.

172 These examples point out the sensitivity of the THC to disturbances. Without action, the
173 weakness of our recent THC may worsen. Any THC collapse would not only result in severe
174 damages to ecosystems, food chains, and food resources of the oceans, but would also lead
175 to an acceleration of the increase of atmospheric CO₂ concentration, resulting in a faster
176 climate warming than forecasted.

177 The best way to prevent such disturbing situations and consequences is to stop GW.
178 A realistic chance of averting this development is the controlled application of a climate
179 cooling process, used several times by nature throughout the last ice ages with high
180 efficiency and, based on loess dust. Loess is a wind-blown dust sediment formed by
181 progressive accumulation and composed generally of clay, sand and silt (approximately a
182 ratio of 20:40:40 respectively), loosely cemented by calcium carbonate.

183 The dust concentration in the troposphere increased during every cold period in ice ages and
184 reached a multiple of today's levels [35]. Dust deposition in the Southern Ocean during
185 glacial periods was 3 to 10 times greater than during interglacial periods, and its major
186 source region was probably Australia or New Zealand (Lamy et al., 2014). The windblown
187 dust and its iron content effect on marine productivity in the Southern Ocean is thought to be
188 a key determinant of atmospheric CO₂ concentrations [36]. During high dust level periods,
189 the global average temperature fell down to 10°C [35, 37, 38], which is 4.5°C lower than
190 current global average temperature. Loess sediments in the northern and southern
191 hemisphere on continents and ocean floors originate from these cold dusty periods.

192 Former geoscientists had the predominant conception that the cold glacial temperatures had
193 caused dustiness, and not the reverse [39]. Meanwhile more evidence accumulates that
194 mineral dust was a main factor in the cause of the cold periods and that the iron (Fe) fraction
195 of wind-blown dust aerosol fertilized the oceans' phytoplankton, activating the assimilative
196 conversion of CO₂ into organic carbon [37-42] and carbonate which composes the main dry
197 body substance of phytoplankton, together with silica, another component of dust [43].

198 Evidence about the responsibility of iron-containing dust that triggered ice ages during the
199 late Paleozoic epoch are in discussion [44].

200 The biogeochemical cycles of carbon, nitrogen, oxygen, phosphorus, sulfur and water are
201 well described in the literature, but the biogeochemical cycle of the Earth's iron is often
202 overlooked. An overview of the progress made in the understanding of the iron cycle in the
203 ocean is given by several authors [45, 46].

204 The current state of knowledge of iron in the oceans is lower than that of carbon, although
205 numerous scientific publications deal with this topic [47-55], meanwhile the iron
206 biogeochemical cycle in the atmosphere is described by fewer ones [56-58], on the contrary
207 to the iron biogeochemical cycle in soil and land, as almost no recent publications details the

208 current knowledge of iron in soils and over the landscape [59-61], a task we attempt to do in
209 this review.

210 The process of iron fertilization by injection of iron salt solution into the ocean surface had
211 already been in discussion as an engineering scheme proposed to mitigate global warming
212 [62]. But iron fertilization experiments with FeSO_4 conducted over 300 km² into the Sub-
213 Antarctic Atlantic Ocean, although doubling primary productivity of Chlorophyll a, did not
214 enhance downdraft particles' flux into the deep ocean [63]. The researchers attribute the lack
215 of fertilization-induced export into the deep ocean to the limitation of silicon needed for
216 diatoms. Thus, ocean fertilization using only iron can increase the uptake of CO_2 across the
217 sea surface, but most of this uptake is transient and will probably not conduct to long-term
218 sequestration [64]. In other experiments, the authors [65] find that iron-fertilized diatom
219 blooms may sequester carbon for centuries in ocean bottom water, and for longer in the
220 sediments, as up to half the diatom bloom biomass sank below 1 km depth and reached the
221 sea floor. Meanwhile dissolution of olivine, a magnesium-iron-silicate containing silica, with a
222 Mg:Fe ratio of nearly 9:1, resulted in 35% marine carbon uptake (with the hypothesis of 1%
223 of the iron dissolved and biologically available), with communities of diatoms being one of the
224 phytoplankton winners [66].

225 The idea of climate cooling by CO_2 carbon conversion into organic sediment carbon by
226 addition and mixture of an iron salt solution into the ocean with the marine screw propeller
227 has been the object of controversial debates [67-69]. The eolic iron input per square meter of
228 ocean surface by natural ISA is in the single decadal order of $\text{mg Fe m}^{-2} \text{ yr}^{-1}$. In comparison,
229 the artificial Fe input by ship screws is orders of magnitude above the natural fertilizing with
230 ISA.

231 The small content of water-soluble iron salts (IS) in the dust particles triggers this fertilization
232 effect [70], and the soluble iron deposition during glaciations had been up to 10 times the
233 modern deposition [71]. According to Spolaor et al. [72], most of the bioavailable water
234 soluble Fe(II) has been linked, during the last 55,000 years, to the fine dust fraction, as it was
235 demonstrated from ice cores from Antarctica. During late Paleozoic epochs, glacial stage
236 dust fluxes of ~400 to 4,000 times those of interglacial times had been found [73], which
237 gives an estimated carbon fixation ~2-20 times that of modern carbon fixation due to dust
238 fertilization. Photochemistry by sunshine is the main trigger of the transformation of the
239 primary insoluble iron fraction of dust aerosols into soluble iron salts [74], and the
240 understanding of how the different iron content and speciation in aerosols affect the climate
241 is growing [75]. Currently, increased sub-glacial melt water and icebergs may supply large
242 amounts of bioavailable iron to the Southern Ocean [76]. The flux of bioavailable iron
243 associated with glacial runoff is estimated at 0.40–2.54 Tg yr^{-1} in Greenland and 0.06–
244 0.17 Tg yr^{-1} in Antarctica [77], which are comparable with aeolian dust fluxes to the oceans

245 surrounding Antarctica and Greenland, and will increase by enhanced melting in a warming
246 climate.

247 However, CO₂ uptake by the oceans is not the only effect of iron dust. The full carbon cycle
248 is well described in the literature; meanwhile we know less about the iron biogeochemical
249 cycle. Recently the major role of soluble iron emissions from combustion sources became
250 more evident. Today the anthropogenic combustion emissions play a significant role in the
251 atmospheric input of soluble iron to the ocean surface [78]. Combustion processes currently
252 contribute from 20 to 100% of the soluble iron deposition over many ocean regions [79].
253 Model results suggest that human activities contribute to about half of the soluble Fe supply
254 to a significant portion of the oceans in the Northern Hemisphere [80], and that deposition of
255 soluble iron from combustion sources contributes for more than 40% of the total soluble iron
256 deposition over significant portions of the open ocean in the Southern Hemisphere [81].
257 Anthropogenic aerosol associated with coal burning are maybe the major bioavailable iron
258 source in the surface water of the oceanic regions [82]. The higher than previously estimated
259 Fe emission from coal combustion implies a larger atmospheric anthropogenic input of
260 soluble Fe to the northern Atlantic and northern Pacific Oceans, which is expected to
261 enhance the biological carbon pump in those regions [83].

262 The limited knowledge about dissolved or even dispersed iron distributions in the ocean
263 confirms the work of Tagliabue et al. [55]: their calculation results about the residence time of
264 iron in the ocean differs up to three orders of magnitude between the different published
265 models.

266 The precipitation of any iron salt results from the pH and O₂ content of the ocean water
267 milieu. But the presence of organic Fe chelators such as humic or fulvic acids [54] as well as
268 complexing agents produced by microbes [49] and phytoplankton [84], life forms prevents
269 iron from precipitation. In principle, this allow the transport of iron, from its sources, to any
270 place within the ocean across huge distances with the ocean currents [25]. But organic
271 material as well as humic acids have limited lifetime in oxic environments due to their
272 depletion at last to CO₂. But within stratified anoxic ocean basins their lifetime is unlimited.
273 The iron inputs into the ocean regions occur by atmospheric dust, coastal and shallow
274 sediments, sea ice, icebergs and hydrothermal fluids and deep ocean sediments [47, 49, 56,
275 57, 83, 85-87].

276 Microbial life within the gradient of chemoclines dividing anoxic from oxic conditions generate
277 organic carbon from CO₂ or HCO₃⁻ carbon [88-90]. The activity at these chemoclines are
278 sources of dissolved Fe(II). Humic acid is a main product of the food chain within any life
279 habitat. Coastal, shelf, and ocean bottom sediments, as well as hydrothermal vents and
280 methane seeps are such habitats and known as iron sources (Boyd and Ellwood, 2010).
281 Insoluble Fe oxides are part of the lithogenic particles suspended at the surface of the

282 Southern Ocean. In addition to organic phytoplankton substance, the suspended inorganics
283 accompany the gut passage through the krill bodies. During gut passage of these animals,
284 iron is reduced and leaves the gut in dissolved state [91]. There is no doubt that gut-microbial
285 attack on ingested organics and inorganics produce faeces containing humic acids. This
286 metabolic humic acid production is known from earth worm faeces [92] and human faeces
287 [93, 94]. The effect of iron mobilization from lithogenic particles by reduction during gut
288 passage has been found in termites too [95]. The parallel generation of Fe-chelating humic
289 acids during gut passage guarantees, that the Fe is kept in solution after leaving the gut into
290 the ocean. The examples demonstrate that every link of the ocean food chain may act as
291 source of dissolved iron.

292 The co-generation of Fe(II) and Fe-chelating agents at any Fe sources at the bottom, surface
293 and shelves of the oceans is the precondition to the iron transport between source and
294 phytoplankton at the ocean surface. But the transport between sources and the
295 phytoplankton depends on the vertical and horizontal movement activity in the ocean basins
296 [48, 54]. Any movement between iron sources and the phytoplankton-rich surface in stratified
297 ocean basins keeps restricted to surface near Fe input from its sources (shelf sediments,
298 melt water, icebergs, rivers, surface water runoff and dust input).

299 During the glacial maxima the vertical movement activity arrived to an optimum. According to
300 that, the Fe transport from basin bottom sources and dust sources to the phytoplankton were
301 at their maximum and produce maximum primary productivity at the ocean surface but the
302 carbon burial became the lowest during that time [96] although the greenhouse gases
303 (GHGs) were at their lowest levels during the glacial maximum. Causal for this seemingly
304 contradiction are the changing burial ratios of organic C / carbonate C at the basin bottom(s).
305 The burial ratio is high during episodes with stratified water column and it is very low during
306 episodes with vertical mixed water column as we demonstrate in chapter 4 in detail.

307 This review aims to describe the multi-stage chemistry of the iron cycle on the atmosphere,
308 oceans, lands, sediments and ocean crust. This article is a comprehensive review of the
309 evidence for connections between the carbon cycle and the iron cycle, and their direct and
310 indirect planetary cooling effects. Numerous factors influence the Fe-cycle and the iron
311 dissolution: iron speciation, photochemistry, biochemistry, red-ox chemistry, mineralogy,
312 geology. In order to perform an accurate prediction of the impact of Fe-containing dusts, sea
313 salt, and acidic components, the atmospheric chemistry models need to incorporate all
314 relevant interaction compartments of the Fe-cycle with sun radiation, chlorine, sulfur, nitrogen
315 and water. This review advocates a balanced approach to benefit from the Fe-cycle to fight
316 global warming by enhancing natural processes of GHG depletion, albedo increase, carbon
317 burial increase and of de-stratification of the ocean basins.

318

319 **Breakdown of sections:**
320 The next three sections describe nearly a dozen different climate cooling processes induced
321 by iron salt aerosols (ISA) and their interaction for modeling parameter development
322 (sections 2, 3, 4 and 5). Then estimation of the requirements in terms of ISA, to stop global
323 warming will be given in section 6, followed by the description of a suggested ISA enhanced
324 method to fight global warming and induce planetary cooling in section 7, and the possible
325 risks of reducing acids and iron emissions in the future in section 8, followed by a general
326 discussion and concluding remarks in sections 9 and 10. To our knowledge, this review
327 completes, with atmospheric and terrestrial compartments [97], the previous ocean global
328 iron cycle vision of Parekh [98], Archer and Johnson [50], Boyd and Ellwood [49] and of
329 many others. It advocates a balanced approach to make use of the iron cycle to fight global
330 warming by enhancing natural processes.

331
332 **Components of the different natural cooling mechanism by ISA**
333 The best known cooling process induced by ISA is the phytoplankton fertilizing stage
334 described in the introduction. But this process is only part of a cascade of at least 12 climate
335 cooling stages presented in this review. These stages are embedded within the coexisting
336 multi-component complex networks of different reciprocal iron induced interactions across
337 the borders of atmosphere, surface ocean, sediment and igneous bedrock as well as across
338 the borders of chemistry, biology, and physics and across and along the borders of
339 illuminated, dark, gaseous, liquid, solid, semi-solid, animated, unanimated, dead and different
340 mix phase systems. Some impressions according to the complexity of iron acting in the
341 atmospheric environment have been presented by Al-Abadleh [75].
342 The ISA-induced cooling effect begins in the atmosphere. Each of the negative forcing
343 stages unfolds a climate-cooling potential for itself. Process stages 1-6 occur in the
344 troposphere (chapter 2), stage 6 at sunlit solid surfaces, stages 7-8 in the ocean (chapter 3),
345 and stages 9-12 in the oceanic sediment and ocean crust (chapter 4). Other possible cooling
346 stages over terrestrial landscapes and wetlands are described in chapter 5. The more than
347 12 stages of this cooling process cascade operate as described below.
348

349 **2. Tropospheric natural cooling effects of the iron cycle**

350 **2.1. ISA-induced cloud albedo increase**

351 ISA consists of iron-containing particles or droplets with a chloride content. Aerosols have
352 significant effects on the climate [99]. First, by direct scattering of radiation, and second, by
353 inducing a cloud albedo increase. The latter effect is induced by cloud whitening and cloud
354 life time elongation. Both effects induce a climate cooling effect by negative radiative forcing

355 of more than -1 W per square meter.

356 Aerosols have a climate impact through aerosol–cloud interactions and aerosol–radiation
357 interactions [100]. By reflecting sunlight radiation back to space, some types of aerosols
358 increase the local albedo (which is the fraction of solar energy that is reflected back to
359 space), producing a cooling effect [101]. If the top of clouds reflect back a part of the incident
360 solar radiation received, the base of clouds receive the longwave radiation emitted from the
361 Earth surface and reemit downward a part of it. Usually, the higher a cloud is, in the
362 atmosphere, the greater its effect on enhancing atmospheric greenhouse warming, and
363 therefore the overall effect of high altitude clouds, such as cirrus, is a positive forcing.
364 Meanwhile, the net effect of low altitude clouds (stratocumulus) is to cool the surface, as they
365 are thicker and prevent more sunlight from reaching the surface. The overall effect of other
366 types of clouds such as cumulonimbus is neutral: neither cooling nor warming.
367 More outgoing long-wave radiation is possible when the cirrus cover is reduced. Efficient ice
368 nuclei (such as bismuth tri-iodide) seeding of cirrus cloud might artificially reduce their cover
369 [102, 103].
370 In order to enhance the cooling effects of low altitude clouds, marine cloud brightening has
371 been proposed [104], for instance by injecting sea salt aerosols over the oceans. The effect
372 depends on both particle size and injection amount, but a warming effect is possible [105].
373 Aerosol effects on climate are complex because aerosols both reflect solar radiation to space
374 and absorb solar radiation. In addition, atmospheric aerosols alter cloud properties and cloud
375 cover depending on cloud type and geographical region [106]. The overall effect of aerosols
376 on solar radiation and clouds is negative (a cooling effect), which masks some of the GHGs-
377 induced warming. But some individual feedbacks and forcing agents (black carbon, organic
378 carbon, and dust) have positive forcing effects (a warming effect). For instance, brown clouds
379 are formed over large Asian urban areas [107] and have a warming effect. The forcing and
380 feedback effects of aerosols have been clarified [101] by separating direct, indirect, semi-
381 direct and surface albedo effects due to aerosols.
382 Differing to any natural dust iron-containing mineral aerosol, the ISA aerosol does not contain
383 any residual mineral components such as Fe_2O_3 minerals known as strong radiation
384 absorbers. Previous studies have shown that iron oxides are strong absorbers at visible
385 wavelengths and that they can play a critical role in climate perturbation caused by dust
386 aerosols [108, 109]. As the primary ochre colored aerosol particles emitted by the ISA
387 (method I, see chapter 7) have small diameters of $<0.05\text{ }\mu\text{m}$ and are made of pure $FeOOH$,
388 they become easily and rapidly dissolved within the plume of acidic flue gas. The ISA
389 $FeOOH$ aerosol is emitted with the parallel generated flue gas plumes containing SO_2 and
390 NO_x as sulfuric and nitric acid generators. ISA stays up for weeks within the troposphere
391 before precipitating on the ocean or land surfaces. Due to their small diameter and high

392 surface area, the aerosol particles will immediately react with HCl, generated as reaction
393 product between sea-salt aerosol and the flue gas borne acids. The reaction product is an
394 orange colored FeCl_3 aerosol: ISA. During day time the sunlight radiation bleaches ISA into
395 FeCl_2 and Cl^- ; at the night time the re-oxidation of ISA plus HCl absorption generates ISA
396 again. The FeCl_2 aerosol particles are colorless at low humidity; pale green during high
397 humidity episodes. The day time bleaching effect reduces the radiation absorption of ISA to
398 much lower levels comparing to oxides such as Fe_2O_3 .

399 Hygroscopic salt aerosols act as cloud condensation nuclei (CCN) [110, 111]. ISA particles
400 are hygroscopic. High CCN particle concentrations have at least three different cooling
401 effects [112, 113]. Each effect triggers the atmospheric cooling effect by a separate increase
402 of earth reflectance (albedo) [114]:

- 403 • cloud formation (even at low super saturation);
- 404 • formation of very small cloud droplets, with an elevated number of droplets per
405 volume, which causes elevated cloud whiteness;
- 406 • extending the lifetime of clouds, as the small cloud droplets cannot coagulate with
407 each other to induce precipitation fall.

408 **Figure 1** illustrates this albedo change due to ISA-CCN particles.

409

410

411

412 **Figure 1.** Process of tropospheric cooling by direct and indirect increasing of the quantity of
 413 different cloud condensation nuclei (CCN) inducing albedo increase by cloud formation at low
 414 supersaturation, cloud whitening and cloud life elongation

415

416 Additional to climate cooling effects, CCN-active aerosols might induce a weakening of
 417 tropical cyclones. The cooling potential of the ocean surface in regions of hurricane genesis
 418 and early development, by cloud whitening potential [115] shall be causal. Further effects
 419 such as delayed development, weakened intensity, early dissipation, and increased
 420 precipitation have been found [116, 117].

421

422 **2.2. Oxidation of methane and further GHGs**

423 Currently, methane (CH_4) in the troposphere is destroyed mainly by the hydroxyl radical $^{\circ}\text{OH}$.
424 From 3 to 4% CH_4 (25 Tg yr^{-1}) [118, 119] are oxidized by $^{\circ}\text{Cl}$ in the troposphere, and larger
425 regional effects are predicted: up to 5.4 to 11.6% CH_4 (up to 75 Tg yr^{-1}) in the Cape Verde
426 region [120] and ~10 to >20% of total boundary layer CH_4 oxidation in some locations [121].
427 According to Blasing [99, 122, 123] the increase of the GHG CH_4 since 1750 induced a
428 radiative forcing of about +0.5 Watts per square meter. The research results of Wittmer et al.
429 [124-127] demonstrated the possibility to reduce the CH_4 lifetime by the ISA method
430 significantly. According to Anenberg et al. [128] the health effects of the combination of
431 increased CH_4 and NO_x induced O_3 levels in combination with an increase of black carbon
432 are responsible for tens of thousands deaths worldwide.

433 Any increase in the $^{\circ}\text{Cl}$ level will significant elevate the depletion rate of CH_4 and further
434 volatile organic compounds (VOCs) as well as ozone (O_3) and dark carbon aerosol as
435 described in sections 2.3 and 2.4.

436 Absorption of photons by semi-conductor metal oxides can provide the energy to produce an
437 electron-hole pair able to produce either a reduced or an oxidized compound. At suitable
438 conditions, UV and visible light can reduce a variety of metal ions in different environments
439 [129-131]. Photo-reduced metal compounds may further act as effective chemical reductants
440 [132, 133] and the oxidized compounds such as hydroxyl radicals or chlorine atoms, can
441 further act as effective oxidants. Zamaraev et al. [134] proposed the decomposition of
442 reducing atmospheric components such as CH_4 by photolytically induced oxidation power of
443 the oxides of iron, titanium and some further metal oxide containing mineral dust
444 components. In this sense Zamaraev designated the dust generating deserts of the globe as
445 “kidneys of the earth” [135] and the atmosphere as a “giant photocatalytic reactor” where
446 numerous physicochemical and photochemical processes occur [134]. Researches have
447 proposed giant photocatalytic reactors to clean the atmosphere of several GHGs, such as
448 N_2O [136], CFCs and HCFCs [137] and even CO_2 after direct air capture [138], as almost all
449 GHGs can be transformed or destroyed by photocatalysis [139, 140].

450 Oeste suggested [141] and Wittmer et al. confirmed [124-127] the emission of CH_4 depleting
451 chlorine atoms. This can be induced by 3 ways: sunlight photo reduction of Fe(III) to Fe(II)
452 from FeCl_3 or FeOOH containing salt pans, from FeCl_3 or FeOOH -containing sea spray
453 aerosols and from pure FeOOH aerosol in contact with air containing ppbv amounts of HCl .
454 Because the H abstraction from the GHG CH_4 as the first oxidation step by $^{\circ}\text{Cl}$ is at least
455 16 times faster compared to the oxidation by $^{\circ}\text{OH}$, which is the main CH_4 oxidant acting in
456 the ISA-free atmosphere, concentration of CH_4 can be significantly reduced by ISA emission.
457 Figure 2 illustrates by a simplified chemical reaction scheme this climate cooling mechanism
458 by the ISA method: a direct cooling of the troposphere by CH_4 oxidation induced by ISA

459 particles.

460

461

462

463 **Figure 2.** simplified chemical reaction scheme of the generation of chlorine radicals by iron
464 salt aerosols under sunlight radiation and the reaction of the chlorine radicals with
465 atmospheric methane.

466

467 At droplet or particle diameters below 1 μm , between 1 μm and 0,1 μm , contact or
468 coagulation actions between the particles within aerosol clouds are retarded [112, 142-144].
469 Otherwise the aerosol lifetime would be too short to bridge any intercontinental distance or
470 arrive in polar regions. That reduces the possible Cl⁻ exchange by particle contact. But
471 absorption of gaseous HCl by reactive iron oxide aerosols resulting in Fe(III) chloride
472 formation at the particle surfaces is possible [127]. Gaseous HCl and further gaseous chloro-
473 compounds are available in the troposphere: HCl (300 pptv above the oceans and 100 pptv
474 above the continents) [118], ClNO₂ (up to 1500 pptv near flue gas emitters) [145, 146] and
475 CH₃Cl (550 pptv remote from urban sources) [147, 148]. By or after sorption and reactions
476 such as photolysis, oxidation, and reduction, any kind of these chlorine species can induce
477 chloride condensation at the ISA particle surface. Acid tropospheric aerosols and gases such
478 as H₂SO₄, HNO₃, oxalic acid, and weaker organic acids further induce the formation of
479 gaseous HCl from sea-salt aerosol [149-151]. Since 2004, evidence and proposals for
480 possible catalyst-like sunshine-induced cooperative heterogeneous reaction between Fe(II),

481 Fe(III), Cl⁻, ³⁷Cl, and HCl fixed on mineral dust particles and in the gaseous phase on the CH₄
482 oxidation are known [127, 141]. Further evidence of sunshine-induced catalytic cooperation
483 of Fe and Cl came from the discovery of ³⁷Cl production and CH₄ depletion in volcanic
484 eruption plumes [152, 153]. Wittmer et al. presented sunshine-induced ³⁷Cl production by iron
485 oxide aerosols in contact with gaseous HCl [127]. Further evidence comes from ³⁷Cl found in
486 tropospheric air masses above the South China Sea [154]. It is known that the troposphere
487 above the South China Sea is often in contact with Fe-containing mineral dust aerosols (~18
488 g m⁻² a⁻¹) [155], which is further evidence that the Fe oxide-containing mineral dust aerosol
489 might be a source for the ³⁷Cl content within this area.

490 HCl, water content and pH within the surface layer of the aerosol particles depend on the
491 relative humidity. Both liquid contents, H₂O and HCl, grow with increasing humidity [156]. In
492 spite of growing HCl quantity with increasing humidity, pH increases, due to decreasing HCl
493 concentration within the surface layer. Hence, since the radiation induced ³⁷Cl production
494 decreases with decreasing pH, the ³⁷Cl emission decreases in humid conditions [127]. Under
495 dry conditions, even sulfate may be fixed as solid Na-sulfate hydrates. Solubilized sulfate
496 slightly inhibits the iron induced ³⁷Cl production [157].

497 Night or early morning humidity produces similarly the maximum chloride content on the
498 liquid aerosol particles surface. During day time, the humidity decrease induces ISA
499 photolysis and Cl⁻ conversion to ³⁷Cl production by decreasing water content and pH. The ISA
500 particle surface layer comes to Cl⁻ minima levels during after noon hours. In the continental
501 troposphere with low sea salt aerosol level, these effects enable the pure ISA iron oxide
502 aerosol particles to coat their surface with chloride solution at night and to produce chlorine
503 atom emission at daytime.

504 Freezing has different effects on the primary wet ISA particles. Changing by CCN action to
505 cloud droplets with solubilized chloride and iron content and when arriving to freezing
506 conditions, the frozen ice is covered by a mother liquor layer with elevated concentration of
507 both iron and chlorine. Some acids such as HCl do not decrease the mother liquor pH
508 proportional to concentration and the behavior of the ice surfaces, grown from low salt
509 content water, are different from high salt content water, thus the different kinds of ISA
510 behave differently [158-160]. Direct measurements of molecular chlorine levels in the Arctic
511 marine boundary layer in Barrow, Alaska, showed up to 400 pptv levels of molecular chlorine
512 [161]. The Cl concentrations fell to near-zero levels at night but peaked in the early morning
513 and late afternoon. The authors estimated that the Cl radicals oxidized on average more CH₄
514 than hydroxyl radicals, and enhanced the abundance of short-lived peroxy radicals.

515 Further investigations have to prove how the different types of ISA particles behave in clouds
516 below the freezing point or in the snow layer at different temperatures: the primary salt-poor

517 Fe-oxide, the poor FeCl_3 -hydrolyzed and the FeCl_3 -NaCl mixture, because the ${}^{\circ}\text{Cl}$ emission
 518 depends on pH, Fe and Cl concentration.
 519 Additional to iron photolysis, in a different and day-time independent chemical reaction, iron
 520 catalyzes the formation of ${}^{\circ}\text{Cl}$ or Cl_2 from chloride by tropospheric ozone [162]. Triggering the
 521 CH_4 decomposition, both kinds of iron and chlorine have a cooperative cooling effect on the
 522 troposphere: less GHG CH_4 in the atmosphere reduces the GH effect and allows more
 523 outgoing IR heat to the outer space [163].
 524 These reactions had been active during the glacial period: Levine et al. [164] found elevated
 525 ${}^{13}\text{CH}_4$ / ${}^{12}\text{CH}_4$ isotope ratios in those Antarctic ice core segments representing the coldest
 526 glacial periods. The much greater ${}^{\circ}\text{Cl}$ preference for ${}^{12}\text{CH}_4$ oxidation than ${}^{13}\text{CH}_4$ oxidation
 527 than by the ${}^{\circ}\text{OH}$ is an explanation for this unusual isotope ratio. Additional evidence gives the
 528 decreased CH_4 concentration during elevated loess dust emission epochs [165].
 529 As shown in more detail in the next section 2.3, ISA produces ${}^{\circ}\text{Cl}$ and much more hydrophilic
 530 ${}^{\circ}\text{OH}$ and ferryl as further possible CH_4 oxidants by the Fenton and photo-Fenton processes
 531 [75]. To gain the optimal reaction conditions within the heterogeneous gaseous / liquid / solid
 532 phase ISA system in the troposphere the CH_4 reductant and the oxidant (Fenton and photo-
 533 Fenton oxidant) have to be directed in a way, that oxidant and reductant can act within the
 534 identical medium.
 535 As seen on table 1, according to the CH_4 Henry's law constant the preference of the 1.8 ppm
 536 tropospheric CH_4 is undoubtedly the gaseous phase. ${}^{\circ}\text{Cl}$ has also a preference for the
 537 gaseous phase.
 538

539 **Table 1:** the Henry's law constants [166] and daylight stability for different gaseous or
 540 vaporous components reacting with or produced by ISA in the troposphere
 541

Substance	Henry's law constant ($\text{mol m}^{-3} \text{Pa}^{-1}$)	Stability against tropospheric day light (+ stable; - unstable)
CH_4	1.4×10^{-5}	+
${}^{\circ}\text{Cl}$	2.3×10^{-2}	+
Cl_2	9.2×10^{-4}	-
HCl	1.5×10^{-1}	+
HOCl	6.5	-
${}^{\circ}\text{OH}$	3.8×10^{-1}	+
H_2O_2	8.3×10^{-2}	-

542 Iron exists at least in part as Fe(III) during nighttime and at least in part as Fe(II) during
 543 daytime. The CH_4 oxidation by ${}^{\circ}\text{Cl}$ and ${}^{\circ}\text{OH}$ is restricted to the daytime as during night hours
 544 ${}^{\circ}\text{Cl}$ and ${}^{\circ}\text{OH}$ recombine fast to Cl_2 , HOCl , and H_2O_2 in the dark [167]. During daylight hours,
 545 these recombination products photolyze again by regeneration of the radicals. But even
 546

547 during day time these radicals and their recombination products co-exist due to the cycling
548 between ${}^{\circ}\text{Cl}$, ${}^{\circ}\text{OH}$, Cl_2 , HOCl , and H_2O_2 . This cycling is activated by sunlight photolysis and
549 radical recombination reactions [167, 168].

550 As we learn from Henry's law constants in Table 1 the oxygen species ${}^{\circ}\text{OH}$ and H_2O_2 have a
551 much higher tendency to stay in the liquid phase than the chlorine species ${}^{\circ}\text{Cl}$ and Cl_2 . Cl_2
552 has the tendency to react with water of neutral pH by producing HOCl . But the pH values of
553 ISA, especially if ISA is emitted as acid flue gas plumes are lower than 3. Within this acidic
554 region the tendency of HOCl generation from Cl_2 decreases to very low values and even at
555 those humidity levels when the ISA particles become deliquescent the majority of the
556 activated chlorine species will be localized in the gaseous phase containing CH_4 , not in the
557 liquid phase.

558 But ${}^{\circ}\text{OH}$ may leave the condensed phase into the gaseous phase at favorable circumstances
559 into the gaseous phase [169] and may contribute there to the oxidation of CH_4 during clear
560 dry conditions without liquid phase at the Fe(III) surfaces.

561 Comparably to the water-soluble Ammonia (5.9×10^{-1}), ${}^{\circ}\text{OH}$ has a similar Henry's law
562 constant. Therefore ${}^{\circ}\text{OH}$ has the tendency to stay within hydrous phases during humid
563 conditions. This tendency is 16 times lower for ${}^{\circ}\text{Cl}$. This property is combined with the
564 16 times higher reactivity in comparison to ${}^{\circ}\text{OH}$. At an equal production of ${}^{\circ}\text{Cl}$ and ${}^{\circ}\text{OH}$, the
565 reaction of ${}^{\circ}\text{Cl}$ with CH_4 has a probability of up to 250 times (16×16) that of the reaction of
566 ${}^{\circ}\text{OH}$ with CH_4 when the ISA particles are wet and 16 times that of ${}^{\circ}\text{OH}$ with CH_4 when the
567 ISA particles are dry. The probability of CH_4 oxidation by ISA derived ${}^{\circ}\text{Cl}$ against ISA derived
568 ${}^{\circ}\text{OH}$, may be restricted by the pH increase tendency within ISA during humid episodes
569 (decreased ${}^{\circ}\text{Cl}$ generation on ISA with rising pH), to values fluctuating between the extremes
570 1 and 250. Independently of the kind of oxidants produced by ISA – during dry, clear sky, and
571 sunshine episodes - the ISA deriving oxidants produce maximum oxidant concentrations
572 within the CH_4 -containing gaseous phase, producing optimum CH_4 depletion rates.

573 The ${}^{\circ}\text{Cl}$ reactivity on most VOC other than CH_4 is at least one order of magnitude higher than
574 that of ${}^{\circ}\text{OH}$ [170]. Halogen organics such as dichloromethane [171] as well as the
575 environmental persistent and bioaccumulating perfluoro organics such as perfluoro octane
576 sulfonate may be depleted by sunlit ISA [172].

577

578 2.3. Oxidation of organic aerosol particles containing black and brown carbon

579 Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere
580 [173]. Total global emission of black carbon is 7.5 Mt yr^{-1} [174]. Direct atmospheric forcing of
581 atmospheric black carbon is $+0.7 \text{ W m}^{-2}$ [174]. Above its climate relevance black carbon soot
582 induces severe health effects [128].

583 Andreae & Gelencsér [175] defined the differences between the carbons: black carbon
584 contains insoluble elemental carbon, brown carbon contains at least partly soluble organic
585 carbon. Black carbon contains as well additional extractable organics of more or less
586 volatility and/or water-solubility [175, 176]..

587 Black and brown carbonaceous aerosols have a positive radiative forcing (warming effect) on
588 clouds [177] as seen in sub-section 2.1, and also after deposition on snow, glaciers, sea ice
589 or on the polar regions, as the albedo is reduced and the surface is darkened [178]. One of
590 the most effective methods of slowing global warming rapidly on short-term is by reducing
591 the emissions of fossil-fuel particulate black carbon, organic matter and reducing of
592 tropospheric ozone [179].

593 Both aerosol types have adverse effects to health (human, animal, livestock, vegetal) and
594 reducing its levels will save lives and provide many benefits [180].

595 Thus any tropospheric lifetime reduction of both dark carbons would gain cooling effects and
596 further positive effects.

597 Both carbons are characterized by aromatic functions. The black carbons contain graphene
598 structures; the brown ones have low-molecular weight humic-like aromatic substances
599 (HULIS). HULIS derive from tarry combustion smoke residues and/or from aged secondary
600 organic aerosol (SOA). The source of SOA are biogenic VOCs such as terpenes [181].
601 HULIS contain polyphenolic red-ox mediators such as catechol and nitro-catechols [182-
602 185].

603 The polyphenolic HULIS compounds are ligands with very strong binding to iron. Rainwater-
604 dissolved HULIS prevent Fe(II) from oxidation and precipitation when mixing with seawater
605 [186]. Wood smoke derived HULIS nano-particles penetrate into living cell walls of
606 respiratory epithelia cells. After arrival in the cells the HULIS particles extract the cell iron
607 from the mitochondria by formation of HULIS iron complexes [187].

608 Beside iron, other metals such as manganese and copper have oxygen transport properties
609 which improve the oxidation power of H_2O_2 by Fenton reactions generating $^{\bullet}OH$ [188]. H_2O_2
610 is a troposphere-borne oxidant [189].

611 Polyphenolic and carboxylate ligands of HULIS enhance the dissolution of iron oxides. These
612 ligands bind to un-dissolved iron oxides [75].

613 Iron and catechols are both reversible electron shuttles:

616 The HULIS – iron connection enhances the oxidative degradation of organic compounds
617 such as aromatic compounds [75].

618 Oxidant generation by reaction of oxidizable dissolved or un-dissolved metal cations such as
619 $Fe(II)$, $Cu(I)$ and $Mn(II)$ with H_2O_2 had first been discovered for instance for $Fe(II)$ in 1894

620 [190]. Since then these reactions are known as Fenton reactions. Mechanisms and
621 generated oxidants of the Fenton reactions are still under discussion.

622 According to the participating metal ligand oxidants such as $^{\circ}\text{OH}$, $\text{Fe(IV)}\text{O}^{2+}$ (= Ferryl), $^{\circ}\text{Cl}$,
623 $^{\circ}\text{SO}_4^-$, organic peroxides and quinones may appear [191].

624 According to Barbusinsky et al. the primary reaction intermediate from Fe^{2+} and H_2O_2 is the
625 adduct $\{\text{Fe(II)}\text{H}_2\text{O}_2\}^{2+}$ which is transformed into the ferryl complex $\{\text{Fe(IV)}(\text{OH})_2\}^{2+}$. The latter
626 stabilizes as $\{\text{Fe(IV)}\text{O}\}^{2+} + \text{H}_2\text{O}$. Reductants may also react directly with $\{\text{Fe(IV)}\text{O}\}^{2+}$ or after
627 its decomposition to $\text{Fe}^{3+} + ^{\circ}\text{OH} + \text{OH}^-$ by $^{\circ}\text{OH}$. Fe^{3+} reacts with H_2O_2 to Fe^{2+} via $^{\circ}\text{O}_2\text{H}$
628 development; the latter decays into $\text{O}_2 + \text{H}_2\text{O}$.

629 Light enhances the Fenton reaction effectiveness. It reduces Fe^{3+} to Fe^{2+} by photolysis
630 inducing $^{\circ}\text{OH}$ or $^{\circ}\text{Cl}$ generation, the latter in the case of available Cl^- , which reduces the H_2O_2
631 demand [192, 193].

632 This process is illustrated by figure 3.

633

634

635

636 **Figure 3.** Schematic representation of the cooling of the troposphere, by inducing the
637 decrease of ozone and organic aerosol particles such as soot and smoke.
638

639 The Fenton reaction mechanism is dependent on pH and on the kinds of ligands bound to
640 the Fenton metal. The reaction mechanism with oxidants of SO_4^{2-} , NO_3^- , Cl^- and 1,2-
641 dihydroxy benzene ligands had been studied [194].

642 In biological systems, 1,2-dihydroxy benzenes (catecholamines) regulate the Fenton reaction
643 and orient it toward different reaction pathways [195].

644 Additionally, the fractal reaction environments like surface rich black and brown carbons and
645 ISA are of considerable influence on the Fenton reaction. By expanding the aqueous
646 interface, accelerations of the reaction velocity up to three orders of magnitude had been
647 measured [196]. This may be one of the reasons why iron-containing solid surfaces made of
648 fractal iron oxides, pyrite, activated carbon, graphite, carbon nanotubes, vermiculite, pillared
649 clays, zeolites have been tested as efficient Fenton reagents [197-199].

650 Even the oxidation power of artificial Fenton and photo-Fenton systems is known to be high
651 enough to hydroxylate aliphatic C-H bonds, inclusive CH_4 hydroxylation to methanol [200-
652 202].

653 But the HULIS itself becomes depleted by the Fenton oxidation when it remains as the only
654 reductant [195].

655 Like HULIS or humic substances, the different kinds of black carbons act as red-ox
656 mediators due to their oxygen functionalities bound to the aromatic hexagon network such as
657 hydroxyl, carbonyl, and ether [203, 204]. These functionalities act similarly as hydroquinone,
658 quinone, aromatic ether, pyrylium and pyrone at the extended graphene planes as electron
659 acceptor and donor moieties. Soot also possesses such red-ox mediator groups [205, 206].
660 Again these are ligands with well-known binding activity on iron compounds. Their difference
661 to the HULIS ligands is that they are attached to stacks of aromatic graphene hexagon
662 networks instead of mono- or oligo-cyclic aromatic hexagons of HULIS. As well as the HULIS
663 red-ox mediator ligands these hydroxyl and ketone groups transfer electrons from oxidants to
664 reductants and vice versa. Like the HULIS – iron couple, the black carbon - iron couple
665 enhances the red-ox mediation above the levels of every individual electron shuttle [207-
666 209]. Accordingly, any ISA doping of black carbons generates effective oxidation catalysts
667 [210, 211].

668 Lit by sunlight the ISA doped soot represents an oxidation catalyst to adsorbed organics
669 producing its own oxidants by the photo-Fenton reaction. In spite of the higher chemical
670 stability of the graphene network of soot compared to HULIS soot, by wet oxidation further
671 oxygen groups are fixed to the soot graphene stacks [212] increasing soot's hydrophilic
672 property, which is necessary to arrange its rain-out. The hydroxyl radical attack resulting from
673 the photo Fenton reaction at last breaks the graphene network into parts [213, 214]. Photo-

674 Fenton is much more efficient in $^{\bullet}\text{OH}$ generation than Fenton, because Fe(III) reduction as
675 regeneration step occurs by Fe(III) photo reduction, rather than consuming an organic
676 reductant.

677 The oxidized hydrophilic carbon particles are more readily washed out of the atmosphere by
678 precipitation [215]. ISA accelerates this oxidation process as the iron-induced Fenton and
679 photo-Fenton reaction cycles produce hydroxyl and chlorine radical oxidants, speeding up
680 the soot oxidation.

681 Fe(III) forms colored complexes with hydroxyl and carboxylic hydroxyl groups too, particularly
682 if two of them are in 1,2 or 1,3 position, such as in oxalic acid. The latter belong to the group
683 of dicarboxylic acids known to be formed as oxidation products from all kind of volatile,
684 dissolved or particular organic carbons in the atmosphere [216]. Dicarboxylate complexes
685 with iron are of outstanding sensitivity to destruction by photolysis [217-220]: photolysis
686 reduces Fe(III) to Fe(II) by producing H_2O_2 and oxidation of the organic complex compounds.
687 Then Fe(II) is re-oxidized to Fe(III) by H_2O_2 in the Fenton reaction by generation of $^{\bullet}\text{OH}$ [221].
688 According to their elevated polarity oxidation products containing hydroxyl and carboxyl
689 groups have increased wettability, are more water soluble and are thus rapidly washed out
690 from the atmosphere.

691 Due to their elevated reactivity compared to CH_4 the gas phase, oxidation of airborne organic
692 compounds by ISA-generated $^{\bullet}\text{OH}$ or $^{\bullet}\text{Cl}$ is enhanced. By eliminating black and brown
693 carbon aerosols, ISA contributes to global warming reduction and to decreasing polar ice
694 melting by surface albedo reduction caused by black-carbon snow contamination [173, 222].
695 The generation of ISA by combusting fuel oil with ferrocene or other oil soluble iron additives
696 in ship engines or heating oil burners has additional positive effects, because soot is
697 catalytically flame-oxidized in the presence of flame-borne ISA (detailed in chapter 6) as a
698 combustion product of the iron additive [223, 224].

699

700 **2.4. Tropospheric Ozone depletion by ISA**

701 An additional GHG is the tropospheric ozone [179]. Carbon dioxide is the principal cause of
702 GW and represents $\frac{2}{3}$ of the global radiative forcing, but long lived methane and short lived
703 tropospheric ozone are both GHGs and respectively responsible of the 2nd and 3rd most
704 important positive radiative forcing.

705 According to Blasing [99, 122, 123] tropospheric O_3 has an atmospheric forcing of +0.4 Watt
706 per square meter. Any direct depleting action of tropospheric O_3 by the ISA-induced $^{\bullet}\text{Cl}$ is
707 accompanied by an indirect emission decrease of O_3 as the reduction of CH_4 and further
708 VOC by the ISA method decreases the O_3 formation [225].

709 Reactive halogen species (mainly Cl, Br) cause stratospheric ozone layer destruction and
710 thus the “ozone layer hole”. Tropospheric ozone destruction by reactive halogen species is

711 also a reality [226]. Since long, ${}^{}{\text{Cl}}$ and ${}^{}{\text{Br}}$ are known as catalysts for O_3 destruction in the
712 Stratosphere [227]. Investigations both in laboratory and nature have shown that ${}^{}{\text{Br}}$ is a
713 much more effective catalyst of ozone depletion within the troposphere than ${}^{}{\text{Cl}}$ [161, 228,
714 229].

715 As discussed at the end of chapter 2.6 clear evidence exists, that the ozone depleting
716 "bromine explosions" known as regular phenomenons developing from cost-near snow layers
717 at sunrise in the polar spring [230, 231] are likely to be induced by the photolysed
718 precipitation of iron containing dust. According to Pratt, bromide enriched brines covering
719 acidified snow particles are oxidized by photolyzation to ${}^{}{\text{Br}}$.

720 In coastal areas of both the northern and southern Polar Regions during springtime, inert
721 halide salt ions (mainly Br^-) are converted by photochemistry into reactive halogen species
722 (mainly Br atoms and BrO) that deplete ozone in the boundary layer to near zero levels [232].

723 During these episodes called "*tropospheric ozone depletion events*" or "*polar tropospheric*
724 *ozone hole events*" O_3 is completely destroyed in the lowest kilometer of the atmosphere on
725 areas of several million square kilometers and has a negative climate feedback or cooling
726 effect [233].

727 In the tropics, halogen chemistry (mostly Br and I) is also responsible for a large fraction
728 (~30%) of tropospheric ozone destruction [120, 234] and up to 7% of the global methane
729 destruction is due to chlorine [121, 235]. It has been estimated that 25% of the global
730 oxidation of CH_4 occurs in the tropical marine boundary layer [236]. A one-dimensional model
731 has been used to simulate the chemical evolution of air masses in the tropical Atlantic Ocean
732 [120] and to evaluate the impact of the measured halogens levels. In this model, halogens
733 (mostly Br and I) accounted for 35–40% of total tropospheric O_3 destruction while the Cl
734 atoms accounted for 5.4–11.6% of total CH_4 sinks. Sherwen et al. [226] estimate at -
735 0.066 W m^{-2} the radiative forcing reduction due to O_3 pre-industrial to present-day changes.

736 The ISA-induced increase of ${}^{}{\text{Br}}$ concentration at sea-salt containing tropospheric conditions
737 has been confirmed [125]. This establishes ISA as part of an ozone-depleting reaction cycle
738 and additional cooling stage. This depletion effect of the GHG tropospheric ozone is worth
739 noting.

740

741 **2.5. ISA induced phytoplankton fertilization albedo increase (by enhancing DMS- 742 emissions) and CH_4 oxidation efficiency (by increasing MC- and DMS-emissions)**

743 One of the largest reservoirs of gas-phase chlorine is the about 5 Tg of methyl chloride (MC)
744 in the Earth's atmosphere [147]. Methyl-chloride is released from phytoplankton [237] and
745 from coastal forests, terrestrial plants and fungi [238].

746 Dimethylsulfide (DMS) is a volatile sulfur compound that plays an important role in the global
747 sulfur cycle. Through the emission of atmospheric aerosols, DMS may control climate by

748 influencing cloud albedo [239].
749 Currently, researchers [240] estimate that 28.1 (17.6–34.4) Tg of sulfur in the form of DMS
750 are transferred annually from the oceans into the atmosphere.
751 Ocean acidification has the potential to exacerbate anthropogenic warming through reduced
752 DMS emissions [241]. On the contrary, increased emissions of DMS and MC into the
753 troposphere are a consequence of the ISA-induced phytoplankton growth and DMS + MC
754 release into the troposphere. DMS is oxidized in the troposphere to sulfuric and sulfonic acid
755 aerosols, which are highly active CCN. This process enhances the direct ISA cooling effect
756 according to cooling section 2.1 [239].
757 In contact with this acidic aerosol with sea spray aerosol, sulfate and sulfonate aerosols are
758 formed and gaseous HCl is produced. Sulfate aerosols are known to have a negative
759 radiative forcing (a cooling effect) [242].
760 A further HCl source is the oxidation of MC. Both effects induce the tropospheric HCl level to
761 rise. According to cooling stage described in section 2.2, with the increased HCl level,
762 additional chlorine atoms are produced by reaction with ISA. This effect further accelerates
763 the CH₄ oxidation and its removal from the atmosphere, reducing its radiative forcing.
764

765 **2.6. Oxidation of CH₄ and further GHGs by sunlit solid surfaces**

766 Mineral aerosol particles adhere strongly to sunlit, dry and solid surfaces of rocks and stones.
767 A well-known remnant of the dust deposit in rock or stone deserts and rocky semi-arid
768 regions is the orange, brown, red or black colored “Desert Varnish” coat covering stones and
769 rocks. The hard desert varnish is the glued together and hardened residue of the primary
770 dust deposit. Daily sun radiation and humidity change, as well as microbe and fungi influence
771 grows up the varnish changing the primary aerosol deposit [243] by photolytic Fe(III) and
772 Mn(IV) reduction during daytime and night time oxidation of Fe(II) and Mn(II). The oxidation is
773 triggered further by Mn and Fe oxidizing microbes adapted to this habitat [244, 245]. Desert
774 varnish preserves the Fe and Mn photo reduction ability of the aerosol: lit by light the varnish
775 can produce chlorine from chloride containing solutions [246]. The photo, humidity, and
776 microbial induced permanent Fe and Mn valence change between night and day [247]
777 accompanied by adequate solubility changes seem to trigger the physico-chemical hardening
778 of every new varnish layer.

779 The varnish is composed of microscopic laminations of Fe and Mn oxides. Fe plus Mn
780 represent about 1/5 of the varnish. Meanwhile 4/5 of the laminations are composed of SiO₂,
781 clay and former dust particles. Dominant mineral is SiO₂ and/or clay [248, 249]. There is little
782 doubt that desert varnish can build up even from pure iron oxides or iron chloride aerosol
783 deposits such as ISA. The optimum pH to photo-generate the methane oxidizing chlorine
784 atoms from ISA is pH 2 [124]. Established by the gaseous HCl content of the troposphere

[118], a pH drop to pH 2 at the varnish surface is possible on neutral alkaline-free surfaces such as quartz, quartzite and sandstone. The humidity controlled mechanism acting between gaseous HCl and HCl dissolved in the liquid water layer absorbed on the solid iron oxide surface of ISA particles, as explained in the section 2.2, acts at the varnish surface analogue: a FeCl_3 stock can pile up by Fe(II) oxidation and humidity-triggered HCl absorption during night time. The FeCl_3 stock at the varnish surface is consumed during daytime by photolytic Fe(II) and chlorine atom generation.

ISA aerosol particles emit HCl during dry conditions. Like oxidic ISA, desert varnish absorbs H_2O and HCl from the atmosphere gathering it during night time as surface-bound H_2O , OH^- , and Cl^- coat. During sunlit day time, chloride and water desorbs from Fe(III) as $^\circ\text{Cl}$, $^\circ\text{OH}$ and H_2O , leaving Fe(II) in the varnish surface. The surface Fe(II) (and Mn(II)) is bound by oxygen bridges to the varnish bulk of Fe(III) (and Mn(IV)); may be like the combination of Fe(II) and Fe(III) within magnetite. During night time the Fe(III) (and Mn(IV)) surface coat is regenerated by microbial and/or abiotic oxidation with O_2 . It is worth mentioning, that desert varnish can exist only within dry regions.

Figure 4 illustrates the interactions of ISA at the phase borders of tropospheric aerosols, ocean surface, and dry solid surfaces.

802

803
804

Figure 4. Schematic representation of iron salt aerosols interactions with different solid surfaces:

Primary ISA precursor FeOOH particles (a) react with gaseous HCl by generation of ISA as FeCl_3 coated on FeOOH particles (c).

809 Coagulation, condensation and chemical reaction with particles and vapors produce
810 different kinds of liquid and/or solid ISA variants and sediments:

811 (b) hydrolyzed FeCl_3 coated on soot and/or HULIS particles

812 (d) hydrolyzed FeCl_3 coated on ice crystals

813 (e) hydrolyzed FeCl_3 coated on salt crystals

814 (f) hydrolyzed FeCl_3 coated on ice crystals of snow layers (ISA sediment)

815 (g) hydrolyzed FeCl_3 dissolved in cloud droplets

816 (h) FeCl_3 hydrolysate residue on desert varnish (ISA sediment)

817 (j) hydrolyzed FeCl_3 as dissolved residue in ocean surface water fertilizes the
818 phytoplankton growth and at last triggers the generation of sulfuric, sulfonic and
819 dicarboxylic acids by emission of DMS, MC and further organics. This activates the
820 tropospheric generation of vaporous HCl by reaction of sea-salt aerosol (i) with the
821 acids. HCl again changes the ISA precursor FeOOH aerosol (a) to ISA (c).

822
823 Similar daytime dependent microbial activated abiotic photo-reduction and photo-oxidation
824 reaction cycles are known from aquifer environments [250]. Thus the CH_4 depletion of the
825 former ISA deposits will persist even after change into desert varnish. As explained chapter
826 2.2 continental HCl (300 pptv above the oceans and 100 pptv above the continents) [118],
827 ClNO_2 (up to 1500 pptv near flue gas emitters) [145, 146] and CH_3Cl (550 pptv remote from
828 urban sources) [147, 148] and in deserts chloride salt containing dusts are direct and indirect
829 sources of chloride which could provide desert varnishes with Cl^- .

830 Furthermore, analogue to ISA deposited on solid desert surfaces, ISA depositions on dry
831 snow, snow cover and ice occurring in permanent snow-covered Mountain regions or within
832 polar and neighboring regions preserves its CH_4 destruction activity during sunlit day, spring,
833 and summer times [161].

834 The global area of the desert varnish surface does not change with changing dust
835 precipitation rates. It only depends on the precipitation frequency. It grows through
836 desertification and shrinks with increasing wet climate. Until now, quantitative measurements
837 about the specific amount of CH_4 depletion per square meter of desert varnish are not
838 known. Without this data, estimation about its influence on the CH_4 depletion and climate is
839 impossible.

840 The photochemical actions inducing CH_4 depletion of the desert varnish surfaces resulting
841 from dust precipitation are concurrent with the surfaces of deserts and semi deserts made of
842 sand or laterite soils. Their surface is colored by ochre to red iron oxide pigments. Their iron
843 components should act in principle by the same CH_4 depleting photochemistry such as ISA
844 and desert varnish.

845 As mentioned in chapter 2.4 the Cl and Br activation by iron photolysis changes after division
846 of the ingredients by freezing or drying of the former homogenous liquid between solid salt-
847 poor ice and liquid brine coat or solid salt and liquid brine coat. This inhomogeneous partition
848 phenomenon of the predominant transformation of aerosol droplets into solid, and vice versa,

849 applies to snow or salt layers containing a proportion of ISA.
850 It has been shown that cooling precipitation of the buffering influence of salts such as
851 carbonates, sulfates and chlorides of bromide and chloride rich mother liquors on arctic snow
852 packs or ice particles can minimize their buffering capacity against pH change [160, 231,
853 251]. Similar mechanisms may act when liquid aerosol particles become solid by drying.
854 Then, the uptake and contact over time of solid iron-bearing particles and airborne organic
855 and inorganic acids and acid precursors on, or with, ice crystal surfaces may drop the pH of
856 the former alkaline particle surface, into the reaction conditions of the bromide oxidation by
857 iron(III) photo reduction.
858 According to Kim et al. (Kim et al., 2010) the photogeneration of Fe(III) oxides, proceeding
859 slow at pH 3.5 in bulk solution, becomes significantly accelerated in polycrystalline arctic ice.
860 This effect is accompanied by an acceleration of the physical dissolution of the Fe(III) oxides
861 by freezing ice [252, 253].
862 The contact of arctic snow layers with iron oxides is confirmed by Kim [252]. Dorfman [254]
863 found recent loess dust sedimentation rates in the Alaskan Arctic Burial Lake of 0.15 mm/a.
864 According to the research results from artificial iron doped salt pans [125] iron salt doped
865 sea-salt aerosols [124] or sea-salt doped iron oxide aerosols or pure iron oxide aerosols in
866 contact with gaseous HCl [127] chloride and bromide in sun-lit surfaces are oxidized to ^{35}Cl
867 and ^{37}Br by photo-reduced Fe(III) if the pH of the reaction media is 3.5 or lower.
868 As known from the bromine explosions, they appear on acidified first-year tundra and first-
869 year sea ice snow lit by sunlight [230]. According to Kim et al. and Dorfman et al. the year-old
870 snow layers contain iron(III). This confirms, that sufficient reaction conditions exist to produce
871 bromine explosions by oxidation of iron(III) photoreduction.
872 Continents have considerable areas where the out flowing water is drained into "endorheic"
873 water bodies and not into the oceans. Endorheic lakes have no outlets other than
874 evaporation and thus dissolved salts and nutrients concentrate over time. Large surfaces of
875 these basins are covered by salt crusts, salt marshes, salty soils, or salt lakes. Most of these
876 areas are situated within desert or semi-desert areas [255]. These salt environments gain
877 iron from precipitating dust or from iron containing brines they have precipitated from. As far
878 as these environments become acidic they oxidize CH_4 by iron photolysis induced ^{35}Cl [125].
879 To summarize the climate-relevant action of ISA within the troposphere according to chapters
880 2.1-2.6: CH_4 , VOC, O_3 and dark carbon aerosol plus cloud albedo, in sum, have a similar
881 effect on the climate warming as CO_2 . The ISA method will have significant reductions in
882 CH_4 , VOC, O_3 are anticipated by the test results from Wittmer et al. [124-127] and significant
883 reductions in dark carbon aerosol and significant increase in cloud albedo are anticipated by
884 the literature cited. We found no arguments against these statements. This allows the
885 conclusion that only within the troposphere the ISA method should have significant climate

886 cooling effects.

887

888 **3. Oceanic natural cooling effects of the iron cycle**

889 **3.1. Biotic CO₂ conversion into organic and carbonate carbon**

890 Vegetation uses the oxidative power of organic metal compounds induced by photon
891 absorption, oxidizing water to oxygen and reducing CO₂ by organic carbon generation
892 (photosynthesis by chlorophyll, a green Mg-Porphyrin complex). This assimilation process is
893 retarded by prevailing iron deficiency in the oceans which retards the phytoplankton growth.
894 Meanwhile there is no doubt that ISA-containing dust precipitation fertilizes the phytoplankton
895 which in turn affects the climate [256].

896 ISA triggers the phytoplankton reproduction and increases the formation of organic carbon
897 from the GHG CO₂ [42]. The vast majority of the oxygen thus formed and only slightly water
898 soluble (11 mg O₂ l⁻¹) escapes into the atmosphere. In contrast, the organic carbon formed
899 remains completely in the ocean, forming the basis of the marine food and debris chain.

900 From the primary produced phytoplankton carbon only a small fraction arrives at the ocean
901 bottom as organic debris and becomes part of the sediment. Cartapanis et al. [257] and
902 Jaccard et al. [258] found direct evidence that during the glacial maxima, the accumulation
903 rate of organic carbon was consistently higher (50 %) than during inter-glacials. This resulted
904 from the high dust concentrations during the glacial maxima, fertilizing the phytoplankton with
905 ISA.

906 The build-up of Ca-carbonate shell and frame substances by the calcification process at the
907 ocean surface extracts additional CO₂-C from the troposphere. The bulk of calcification can
908 be attributed to corals, foraminifera and coccolithophores; the latter are believed to contribute
909 up to half of current oceanic CaCO₃ production [259].

910 Both carbon fixation processes increase the removal of the GHG CO₂ and thus contribute to
911 cool the troposphere. The Fe-fertilizing process worked during the ice ages, as the
912 evaluations of Antarctic ice cores show: the minimum CO₂ concentrations and temperatures
913 in the troposphere are connected to the high dust phases [165].

914 It has been discussed that the alkalinity loss by phytoplankton calcification and CaCO₃ loss
915 with phytoplankton debris from the ocean surface is said to produce calcium and alkalinity
916 deficit at the ocean surface [260, 261], producing additional acidification at the ocean surface
917 by CO₂ generation:

919 At least in part, this acidification is compensated by assimilative generation of organic carbon
920 by CO₂ consumption. Both organic debris and CaCO₃ become part of the ocean sediment.
921 But if the organic debris is re-oxidized during its journey downwards, some acidification could

922 result. Acidification could result too if more CO_2 is absorbed by the ocean, then is assimilated
923 and changed to organic debris. Sedimentation of organic debris and CaCO_3 , increase both,
924 according to the ISA-induced phytoplankton productivity.

925 The increasing amount of CaCO_3 sedimentation within iron fertilized ocean regions had been
926 discussed by Salter [262]. In a sufficient mixed ocean, alkalinity loss at the surface is more
927 than compensated by the different sources of alkali and earth alkali cations at the ocean
928 bottom and through continental weathering: in the first place these are the mechanisms of
929 alkalinity generated by the ocean water reactions within the ocean sediments and their bed-
930 rock, the oceanic crust. The latter mechanisms are described in more detail in chapters 4.1 –
931 4.3. The convection of the primary oxic ocean bottom water through the ocean crust
932 generates alkalinity by reduction of sulfate, nitrate and hydrogen carbonate, by dissolution of
933 silicates by reduced humic acids and further by serpentinization of basalt and peridotite
934 silicates [263, 264]. The alkalinity extracted from the oceanic crust keeps mainly positioned in
935 the dark water layers of the ocean basins if the decreased THC is not able to elevate the
936 alkaline extract into the phytoplankton layer in sufficient quantities.

937 The THC activation by the ISA method is described in the chapters 4.1 – 4.3.

938 Sudden ISA-induced phytoplankton growth generates increased calcite-shell production. This
939 lowers the Ca-concentration at the ocean surface. Even if the vertical cycling is not fast
940 enough to compensate the Ca-loss at once, or after a small time lag, this does no harm to
941 the phytoplankton growth, because Ca is not essential to it. Just the opposite is true:
942 phytoplankton uses the calcification as a detoxification measure to get rid of calcium ions
943 from their bodies [265]. As a consequence of this effect only the relation between Ca
944 carbonate sequestration and organic carbon sequestration will decrease during the time lag.
945 By additional direct alkalinity production of the phytoplankton itself, at least parts of the
946 acidity production by the lime shell production may be compensated: ISA-controlled
947 phytoplankton growth induces an increased synthesis of organic sulfur and of chlorine
948 compounds [266], emitted as dimethylsulfide (DMS) and methyl chloride (MC) [267].
949 Synthesis of organic sulfur and halogen organics as precursors of the volatile DMS and MC
950 emission is realized by the phytoplankton, by reduction of sulfate to organic sulfides, and
951 oxidation of chloride to carbon chlorine compounds. This precursor synthesis excretes
952 equivalent Na^+ and/or Ca^{2+} alkalinity, as Na_2SO_4 reduction/formation to DMS generates Na
953 alkalinity; NaCl oxidation/formation to MC also generates Na alkalinity: cations formerly
954 bound to SO_4^{2-} or Cl^- loose their anions, producing alkalinity. According to [268, 269] the
955 sulfur content of phytoplankton exclusively, exceeds the Ca^{2+} , Mg^{2+} , and K^+ alkaline load of
956 phytoplankton lost with the phytoplankton debris. Only half of the organic carbon assimilated
957 by phytoplankton derives from dissolved CO_2 . The other half derives from the ocean water
958 NaHCO_3 anion content [270]. The chemical reduction (reduction of HCO_3^- to organic C + O_2

959 by assimilation of HCO_3^- anions) produces alkalinity as further compensation of the alkalinity
960 loss by calcification. NaHCO_3 reduction/formation to organic carbon generates Na alkalinity.
961 The cation previously bound to HCO_3^- loses its anion and produces alkalinity.
962 These considerations demonstrate that any of the proposed enhanced weathering measures
963 to prevent ocean acidification by increasing the alkalinity [271] might not be necessary if the
964 ISA method is in action and keeps the vertical ocean mixing sufficiently active.
965 During the down-dripping of the very fine-shaped phytoplankton debris, bacterial oxidation,
966 fish and further food chain links minimize the organic debris up to an order of magnitude
967 [272]. Even the dissolution of the small carbonate debris reduces the carbonate fraction until
968 arriving at the sediment surface. In order to maximize the effect of the ISA method, within the
969 main ISA precipitation regions, the oxidation and dissolution of the organic and carbonate
970 phytoplankton debris during its dripping down through the ocean water column can be
971 reduced. To reach this goal, we suggest farming fixed filter feeders such as mussels and
972 oysters within the ISA precipitation region.
973 Mussels and oysters produce faeces and so called “Pseudo-faeces” in the shape of rather
974 solid pellets. Compared to the time of sedimentation of the unconditioned phytoplankton
975 debris, this expands the sedimentation time difference between excreted filter feeder faeces
976 and the phytoplankton faeces pellets sedimentation on the ocean floor by an order of
977 magnitude. Bivalve farming would significantly reduce the oxidative and solution loss of
978 phytoplankton debris attack. Mussel and oyster farming are well-known practices which have
979 been employed for long time as a measure to produce protein rich food. They have been
980 proposed as an element of climate engineering [273, 274].
981 To further optimize the CO_2 -C conversion to sediment-bound C the biomass of oysters and
982 mussels including their shells and fixing systems might be periodically dumped into the
983 sediment.
984 Additional floating supports such as coral habitats, sponges, sea lilies and sea anemones
985 between the mussel supports might complete and again optimize the ISA precipitation areas.
986 The oceanic water deserts can be changed into productive ecosystems and protein sources
987 for an increasing population by these measures, among others, for an optimized CO_2 fixation
988 induced by ISA.
989 A further proposal in order to maximize the CO_2 fixation induced by ISA is our suggestion to
990 integrate a solution to the plastic waste problem on the ocean surfaces into the ISA method.
991 About 5 to 13 million metric tons of solid plastic waste per year are entering the oceans [275].
992 Over the last years the plastic waste drifting on the ocean has developed into a huge
993 problem for the oceanic ecosystems [276]. Plastic keeps sunlight away from phytoplankton,
994 hampering it from effective growth. The plastic waste drifts with the ocean currents. It then
995 collects within accumulation zones predicted by a global surface circulation model [277].

996 Most plastic-covered ocean surfaces are concentrated in central-oceanic regions with low
997 iron content with predestination for applying the ISA method. Due to the trash, there would be
998 a reduction in the ISA efficiency so we propose the integration of the plastic depletion
999 problem into our ISA method: on both the side of and the outside of a container ship vessel, a
1000 specific technology can be installed: plastic trash collection, plastic trash sorting, plastic trash
1001 extrusion, plastic trash burning, ISA production and emission. The aforementioned processes
1002 are well known and need no description here. Trash or waste burning has the advantages of
1003 delivering an effective hot carrier gas with high buoyancy for uplift of ISA and for delivering
1004 HCl as co-catalyst of ISA. With the plastic extruder, most carrier parts of floating supports on
1005 the reef coral, sponge, and mussel habitats could be produced.

1006 Beside the larger plastic fragments, the floating plastic fine debris with particle diameters in
1007 the μm range is a further problem [278]. Instead of doing the micro-trash separation by
1008 technical means, the mussel and oyster farming may clean away this ocean surface
1009 environmental problem. The floating micro-trash particles are collected by the bivalves and
1010 excreted as pseudo-faeces pellets and at last become part of the sediment layer at the ocean
1011 bottom.

1012 Within the iron cycle, the photolytic driven oxidant production with iron participation may not
1013 be reduced to ${}^{\circ}\text{Cl}$ and ${}^{\circ}\text{OH}$ in the troposphere and O_2 by assimilation: When iron is cycled
1014 through the mantle at temperatures above 2500 K, Fe(III) is reduced to Fe(II) by release of
1015 O_2 [279]. This phenomenon may be driven by the blackbody radiation containing a great
1016 fraction of photons with wave length shorter than 2 μm at and above this temperature level.
1017

1018 **3.2. ISA activates the O_2 input to the deep ocean**

1019 Ocean ecosystems are based on certain balances between oxidizing and reducing agents.
1020 As a result of the ISA-triggered additional input of organic carbon in the ISA emission region
1021 (i.e. the ISA precipitation region), as described in chapter 3.1, oxygen consumption by
1022 increasing organic debris precipitation could increase. The recent O_2 decline in some oceanic
1023 regions may result, at least in part, from the deposition of soluble iron deriving from flue gas
1024 pollution. Equally discussed in chapter 3.1 is the decrease of the oxidation efficiency within
1025 the water column by measures to increase the sinking velocity of the organic C containing
1026 debris. The increase of the sinking velocity of the organic C containing debris, is an effect
1027 that might completely compensate the oxygen loss by oxidation of the ISA-induced debris
1028 mass increase.

1029 Recently, and without ISA influence, oxygen deficiency seems to develop in many parts of
1030 the ocean as described in the introduction. Oxygen deficiency is usually due to insufficient
1031 vertical water exchange owing to increased vertical density gradient rather than the result of
1032 increased phytoplankton production.

1033 Oxygen deficiency (hypoxia) is found frequently between the oxic surface layer (the
1034 oxygenated one) and the oxic deep water layer [4, 280]. Due to the climate warming, the
1035 localities with a lack of oxygen seem to intensify and expand already today [5].

1036 The deepest water layer of most ocean basins results from the Antarctic wintertime ocean
1037 surface ice generation by fractionating sea water into salt-poor sea ice and salt-rich dense
1038 brine. This results in the production of cold, high density oxic brines which sink to the bottom
1039 of the south ocean. The cold high density oxic brines spread as a thin oxic bottom layer up to
1040 the ocean basins north of the equator. The most recent severe climate warming, which
1041 induced disturbance of the THC, is likely to have been activated by the increasing inflow of
1042 the fresh melt water from Greenland into the North Atlantic. This inflow disturbs the down flow
1043 of the Gulf Stream water [281]. According to the increased melt of the glaciers of the
1044 Antarctic, the salt content of the ocean surface around Antarctica decreased. This effect
1045 increased the ocean surface covered by sea ice [282]. This freezing of the salt-poor melt
1046 water layer decreases the production of dense brines. This again decreases the down flow of
1047 brine, reducing again the vertical components of the ocean currents.

1048 Through the ISA induced cooling, the oxygen and CO₂ flux into the deep ocean basins will be
1049 restored due to the input of the cold dense oxygen and CO₂ enriched polar surface water:
1050 Reduced melt water production of the Greenlandic and Antarctic ice shields by falling surface
1051 layer temperatures will restore and intensify the thermohaline circulation within the northern
1052 polar regions, by increasing the amount of Gulf Stream dumped, and by producing the circum
1053 Antarctic sea ice cover without melt water dilution, which induces the production of cold high
1054 density brines sinking to the ocean basin bottoms [283, 284]. Figure 5 illustrates the ocean
1055 basins vertical mixing circles.

1056

1057
1058

1059 **Figure 5.** The motor of the Antarctic bottom water (AABW) current is the sea ice production
1060 of the Southern Ocean area bordering Antarctica. The North Atlantic Deep Water (NADW)
1061 current is driven by decreasing Gulf Stream temperature on its way north. Climate warming
1062 especially the faster temperature rise at higher latitudes shifts the region of the Gulf Stream
1063 down flow as NADW further to the north, as a result of the lowering Δt between equatorial
1064 and polar surface water. This shift sets additional Greenlandic coast regions in contact with
1065 warm Gulf Stream water and the rising air temperatures, as further component of poor
1066 increasing amounts of fresh melt water on the ocean surface. The rising melt water volume
1067 and the further north flowing Gulf Stream, increase the contact region between Gulf Stream
1068 water with fresh melt water. This produces increasing amounts of original Gulf Stream water
1069 but too low in density to sink and to become part of NADW.
1070 Temperature rise at higher latitudes reduce the salt content of ocean surface water around
1071 Greenland and Antarctica, inducing reduced NADW and AABW volumes. According to the
1072 reduced down flow current volumes, the amounts of CO_2 and O_2 to the deep ocean basin are
1073 reduced as well as the vertical fertilizer transport from the ocean basin bottom, to the
1074 phytoplankton at the surface.
1075

1076 **3.3. Phytoplankton fertilizer extraction from ocean sediments and underlying**
1077 **crust**

1078 The oceanic crust is composed of peridotites, basalts and serpentine rock and has a layer of
1079 sediment on top. Sediments and bed rock contain reductive and alkaline components
1080 extractable by sea water. The cause of the ocean water flow through the sediment layer and
1081 base rock is the temperature difference driven convection. Sediment compaction by gravity,
1082 subduction-induced compaction and subduction-induced hydroxyl mineral dehydration may
1083 be further reasons for water movement through the sediment layer at the ocean bottom.

1084 Olivine is one of the main mineral components of oceanic crust rock layers below the
1085 sediment layer. Hauck [285] simulated the effects of the annual dissolution of 3 Gt olivine as
1086 a geoengineering climate cooling measure in the open ocean, with uniform distribution of
1087 bicarbonate, silicic acid and iron produced by the olivine dissolution. An additional aim of this
1088 work was the development of a neutralization measure against the increasing acidification of
1089 sea water. All the components of olivine: SiO_2 , Fe(II) and Mg are phytoplankton fertilizers.
1090 They calculated that the iron-induced CO_2 removal saturates at on average $\sim 1.1 \text{ PgC yr}^{-1}$ for
1091 an iron input rate of $2.3 \text{ Tg Fe yr}^{-1}$ (1% of the iron contained in 3 Pg olivine), while CO_2
1092 sequestered by alkalinization is estimated to $\sim 1.1 \text{ PgC yr}^{-1}$ and the effect of silicic acid
1093 represents a CO_2 removal of $\sim 0.18 \text{ PgC yr}^{-1}$. This data represent the enormous potential of
1094 the ocean crust rock as source of phytoplankton fertilizer.

1095 The flow of sea water through anoxic sediments and bed rock results in the reduction of its
1096 SO_4^{2-} content, as well as extraction of the soluble fraction from the sediment such as Mn(II),
1097 Fe(II), NH_4^+ and PO_4^{3-} . The chemical and physical extraction processes are enhanced by the
1098 action of microbial attack at the border lines between oxic sea water and anoxic sediment
1099 parts within this huge aqueous system.

1100 At suboxic conditions soluble Fe(II) and Mn(II) have optimum solubility or may be fixed as
1101 solid $\text{Fe(II)}_3(\text{PO}_4)_2$, FeCO_3 , MnCO_3 , FeS_2 , S^0 and further Fe-S compounds [286-290].

1102 Silicon is mobilized too, from the dissolution of silicates and SiO_2 at methanogenic conditions
1103 by complexation with reduced humic acid (HA) [286, 291]. In the reduced conditions, HA is
1104 characterized by catechol and further polyphenolic functions, which allows HA to complex
1105 with silicon [292-294] and with further metal cations.

1106 Silicate dissolution mobilized Ca^{2+} , Mg^{2+} , Ba^{2+} , Fe^{2+} , Na^+ , K^+ , Fe^{2+} , Mn^{2+} and PO_4^{3-} precipitate
1107 more or less as sulfides, carbonates, within the sediment ($\text{Fe(II)}\text{S}_2$, CaCO_3 , $\text{MgCa}(\text{CO}_3)_2$,
1108 $\text{Fe(II)}\text{CO}_3$, $\text{Mn(II)}\text{CO}_3$, $\text{Fe(II)}_3(\text{PO}_4)_2$), and within its suboxic surface (BaSO_4) or at its oxic
1109 surface (SiO_2 , $\text{Fe(III)}\text{OOH}$, $\text{Mn(IV)}\text{O}_2$, clay minerals). The authigenic formed ferromanganese
1110 nodules [295] are formed by in situ microbial precipitation from sediment pore water,
1111 squeezed out to the seafloor on the sediment layer [296, 297]. Main components of the
1112 nodules are the phytoplankton fertilizer components: SiO_2 , Fe- and Mn-oxides [297].

1113 Having left the borderline between anoxic and suboxic near-surface sediment the HA
1114 catechols are changed by reversible oxidation into quinone or quinhydrone configurations by
1115 decay of the Si catechol complex. Like most of the chemical reactions within the sediment
1116 compartment, oxidation of the HA-Si complex is directed by microorganisms. The
1117 microorganisms involved use HA as external red-ox ferment [298-305]. After arrival of the
1118 pore water originating from the anoxic deeper sediment, or bed rock at the suboxic surface-
1119 near sediment layers, the oxidized HA releases $\text{Si}(\text{OH})_4$ and, NO_3^- produced by microbial
1120 NH_4^+ nitrification [306, 307]. Depending on the $\text{Si}(\text{OH})_4$ concentration produced, this can
1121 trigger the precipitation of layered silicates such as smectites, glauconite, and celadonite as
1122 well as silica [308-313]. Similar to HA, the clay mineral formation within the sediment, and the
1123 usage of the red-ox potential of these authigenic minerals, are, at least in part, the result of
1124 microbial action [314, 315].

1125 According to its chelating properties, HA generate soluble to neutral Fe complexes of high
1126 stability even at oxic and weak alkaline ocean water conditions. As iron and HA have
1127 identical sources, especially chemoclines, even faeces HA can act as shuttles between Fe
1128 sources and phytoplankton [91]. But within oxic ocean milieu they become depleted, at last
1129 like every organic C substance, by oxidation.

1130 The deep ocean currents take up the pore water percolates out of the sediment, and
1131 considerable amounts of the dissolved, colloidal or suspended sediment originating
1132 elements, are THC-conveyed to the surface [316] and activate there the phytoplankton
1133 production again. This as well, triggers the CO_2 -conversion to organic C resulting in cooling
1134 the troposphere according to chapter 3.1. Repeatedly it also cools the troposphere by
1135 increasing the DMS formation according to chapters 2.5 and 3.1.

1136

1137 4. The main cooling effects induced by the iron cycle on the ocean crust

1138 4.1. Carbon storage as authigenic carbonate in the ocean crust

1139 The mechanism described in this chapter has the highest influence on the climate, due to its
1140 carbon storage capacity which is greater than that of their sediment layer. The convective
1141 water flow through the huge alkaline ocean crust volume is estimated to about $20 - 540 \times 10^3$
1142 $\text{km}^3 \text{ yr}^{-1}$ [29]. The oceanic crust comprises the largest aquifer system of the Earth, with an
1143 estimated rock volume of $2,3 \times 10^9 \text{ km}^3$, and a fluid volume of 2 % of the total ocean or $\sim 10^7$
1144 km^3 [20]. The system of the mid-ocean rifts (MOR) and subduction zones and the sector
1145 between these volcanic active regions are part of the Earth Mantle convection cycle, and part
1146 of said interconnected aquifer system. The bottom water of the ocean basins are in close
1147 contact to this conveyor belt-like moving rock layer of the oceanic crust. New oceanic crust is
1148 produced at the MOR: during its cooling it is pulled apart from the MOR by the moving

1149 underlying mantel and, at last the moving mantle draws the crust down into the deeper
1150 mantle below the subduction zones. The oceanic crust has a sediment layer on top of its
1151 assemblage of multi-fractured crystalline and volcanic rocks. Both sediment and igneous bed
1152 rock interior are in an anoxic reduced and alkaline state; temperature on top of the sediment
1153 surface at the ocean bottom is round about 0 °C but temperature increases up to >1000 °C
1154 within the igneous bedrock basement. As there is no effective sealing between cold bottom
1155 water and high temperature zone, the water content of sediments and fractured basement
1156 flows through the crust in multiple thermal convection cycles positioned between cold surface
1157 and hot deep.

1158 Alkalinity and alkalinity-inducing compounds of the ocean crust rock layers extract CO₂ and
1159 HCO₃⁻ from sea water by carbonate precipitation in the fissures during sea water percolation
1160 through the multi-fractured rock [317]. A carbon uptake of 22 to 29 Mt C yr⁻¹ is estimated
1161 during the hydrothermal alteration of the oceanic crust [318]. This is more than the carbon
1162 uptake by the overlying sediment layer of the oceanic crust which is estimated to 13 to
1163 23 Mt C yr⁻¹ [318]. The oceanic crust is composed of peridotites, basalts and serpentine rock
1164 with a sediment layer on top. Said rock layers contain reductive and alkaline components.
1165 Sea water circling through these rock layers loses its contents of oxygen, sulfate, nitrate and
1166 even parts of hydrogen carbonate by reduction and precipitation, and becomes enriched with
1167 methane and further reductants [319-326].

1168 Figures 6A and 6B illustrate respectively the differences between a poorly and a sufficiently
1169 mixed ocean.

1170

1171

1172

A

1173

1174

B

1175 **Figures 6A and 6B.** present the essential differences between an unstratified well-mixed
1176 ocean basin under a cold and dusty atmosphere during the cold main glacial, with low
1177 atmospheric GHGs concentration (6A) and a stratified ocean basin with a melt water layer on
1178 top of a saline ocean water layer during a warm interglacial, with a hot and dust-free
1179 greenhouse atmosphere (6B).

1180 **Figure 6A:** According to the unstratified well mixed water column in Basin 6A CO_2 and O_2
1181 absorbed at the water surface are distributed within all parts of the basin. High production
1182 rates of organic carbon produced by phytoplankton in the top layer are oxidized during their
1183 way down on the sediment layer, with only minor generation of organic sediment. Carbonate
1184 carbon produced by the phytoplankton becomes dissolved to great parts within the deeper
1185 basin parts generating HCO_3^- . CO_2 and HCO_3^- . By cycling of the basin bottom water through
1186 the alkaline bottom sediment and ocean crust aquifer, CO_2 and HCO_3^- become precipitated
1187 and buried as carbonate C. The recycled bottom water becomes enriched by Fe fixed to
1188 organic chelators and is transported back to the surface. Due to the unrestricted down-flow
1189 and transfer of the CO_2 from the former surface water into sediments and into underlying
1190 base rock as carbonate carbon, the buried carbonate C exceeds the buried organic C
1191 amount.

1192 **Figure 6B:** An interglacial episode with high GHGs levels accompanied by elevated surface
1193 temperatures generates increased melt water and surface water runoff. Because the saline
1194 poor water layer spreads on the saline ocean water and induces at least a regional
1195 stratification of the ocean basins water column: this stops the production of brine-induced
1196 surface water down-flow, as melt water freezing generates neither brine nor any vertical
1197 surface water movement. This stops any down transport of absorbed CO_2 and O_2 too and
1198 generates anoxic conditions within the underlying saline layer. The anoxic saline layer
1199 becomes anoxic and alkaline by sulfate and nitrate reduction. Any phytoplankton-induced
1200 organic and carbonate litter trickles down through the anoxic and alkaline layer: Ca- and
1201 MgCO_3 without dilution in the alkaline water and organic C without oxidation in the anoxic
1202 milieu. At the chemocline between light acidic CO_2 saturated water and the alkaline saline
1203 layer may precipitate Ca- and MgCO_3 in small amounts and mix with the down-falling
1204 phytoplankton-originating litter.

1205
1206 Due to the opposing chemical milieu differences between the oxic ocean water inflow and
1207 anoxic reduced and alkaline sediment and basement, the ocean water convection cycles
1208 through the ocean crust act as continuous chemical reaction systems and forms habitats of
1209 intensive acting microbial action [327]. The most intensive chemical reaction intensity is
1210 found at MOR, subduction zones and at volcanic sea mounts, between MOR and subduction
1211 within the abyssal plain convection cycling occurs [20]. Because the hydrogen carbonate
1212 load of the ocean water inflow comes to precipitation as carbonates of Ca, Mg, Fe, and Mn
1213 within the alkaline rock interior and by chemical reduction of sulfate, nitrate and hydrogen
1214 carbonate, the ocean basements act as huge CO_2 -Carbon storages. No doubt: the ocean
1215 crust carbonate depot is the most effective carbon storage, more effective than any other
1216 organic carbon storages.

1217 Within the huge ocean crust contact volume, sea water changes the alkaline pyroxenes and
1218 basalts into serpentine, diabase and carbonates; by producing heat, hydrogen, rock volume
1219 expansion and by permanent production of numerous fissures. The ocean water sulfates
1220 react with the silicate components to magnetite, pyrite and barite. The sea waters hydrogen
1221 carbonate load precipitates within the rock fissures as magnesite, calcite, siderite and

1222 dolomite. By heat transfer from hot rock and chemical reaction, heat circling through the
1223 primary and new generated multiple fissures in the former mantle rock, the sea water inflow
1224 heats up, producing convective flow. At fissures where the alkalinized flow of convection water
1225 containing hot CH₄ and H₂ comes out with pH 9 to 11 and, contacts the fresh sea water,
1226 carbonate precipitates and builds up skyscraper high carbonate chimneys [328].

1227 The convective seawater flowing only through the MOR system is estimated to about 20 to
1228 540 x 10³ km³ yr-1 [29]. This volume is more than the global river flow of about 50 km³ yr-1
1229 [329].

1230 The weathering reaction conditions and the sea water alkalinization during the intense sea
1231 water contact with the alkaline MOR rocks are much more aggressive, so respectively more
1232 effective, comparatively to reaction conditions and alkalinization, during the precipitation water
1233 contact, during weathering reactions of continental rocks. This is confirmed by the alkaline
1234 pH of up to 11 of the "White Smoker" MOR outflow in spite of its haline salt buffered
1235 seawater origin [328]. Even the most alkali run-off from limestone karst spring fresh-waters or
1236 within karst cave fresh-waters does not exceed pH levels of 8.5 [330-332]. According to the
1237 enormous carbonate absorption capacity of the oceanic crust, it has been proposed to use it
1238 as a storage of CO₂ [333]. As the igneous crust rock aquifer generates H₂ during its contact
1239 with ocean water parts of the carbonate precipitation, carbonate is reduced in part to organic
1240 and / or graphitic C, depending on the reaction temperatures by biotic or abiotic reduction
1241 [334-338].

1242 There is no doubt that the efficiency of the pH dependent CO₂ absorption and carbonic acid
1243 neutralizing at the ocean surfaces and the hydrogen carbonate precipitation to carbonate
1244 processes at and within the oceanic crust, are dependent on the activity of the THC within
1245 the ocean basins. During cold climate epochs, with unstratified water column and
1246 undisturbed THC, the CO₂ conversion to ocean crust carbonate is activated, as well as the
1247 CO₂ conversion to the organic fraction of ocean sediments is activated. Just the opposite has
1248 been found to be true for the burial of organic C in ocean basin bottom sediments: according
1249 to Lopes et al. [96] the overwhelming organic debris fraction produced during main glacial
1250 episodes from the phytoplankton habitat at the surface, is oxidized and re-mineralized in the
1251 well-mixed ocean basin Lopes et al. [96]. As the CO₂ level in the atmosphere is at the lowest
1252 levels during the main glacials, the remaining C-sinks of the oceans seem to be of much
1253 bigger efficiency than the iron-induced production of organic C by assimilation: The most
1254 prominent C sink is the authigenic carbonate C burial in the alkaline ocean crust. There
1255 seems to be no doubt that the vertical well-mixed ocean during the main glacials works as an
1256 efficient pump, to transport dissolved CO₂ and O₂ to the ocean basin bottoms: There, O₂ act
1257 as mineralizer of organic C and CO₂-C is buried as authigenic carbonate C in the oceanic
1258 crust.

1259 Table 2 gives an overview about some trends in C burial depending on the climate condition
 1260 change between main glacial and interglacial.

1261
 1262
 1263 **Table 2:** Interglacial climate episodes where hot, nearly dust-free, and had elevated levels of
 1264 GHGs. The interglacials coincided with stratified water columns. The stratified ocean has a
 1265 much reduced activity due to the reduced CO₂ transport to the bottom of the ocean basin. As
 1266 the O₂ transport is reduced, and the lower part of the basin is anoxic, the oxidative
 1267 mineralization of the organic litter fall from the phytoplankton activity at the surface is
 1268 reduced and generates sediments rich in organic substances. As sulfate, nitrate and in part
 1269 CO₂ within the anoxic water column are reduced to sulfide, ammonium and CH₄, the pH
 1270 increases to alkaline. This can induce carbonate precipitation near the chemocline. During
 1271 the glacial maxima with cold temperatures, dustiness and low greenhouse gas levels the
 1272 ocean basins had well and vertical mixed water columns with highest carbonate C burial and
 1273 lowest organic C burial.

Effect on		Sediment + crust below well and vertical mixed water column	Sediment + crust below stratified and anoxic water column
Mass ratio of buried sediment & crust carbon	sediment C oceanic crust C	<<1	<1 to 1 or >1
Mass ratio of buried sediment & crust carbon	organic C carbonate C	<<1	up to 1 or >1
Authigenic carbonate produced within the water column		No	Yes
Tropospheric parameters	Dust	High	Low
	CO ₂	Low	High
	CH ₄	Low	High
	Temperature	Cold	Warm

1275
 1276 Lopes et al. [96] found just the opposite, in ocean sediment layers produced during the warm
 1277 interstadial, in comparison to the cold main glacial: high burial rate of organic C in the ocean
 1278 bottom sediment. But in spite of the high organic C burial rate, the interstadial CO₂ levels
 1279 where kept higher than those of the main glacial. Even to this point the Lopes et al. [96]
 1280 results fits well to our CO₂ sink model. During the glacial climate warming events, enormous
 1281 melt water volumes were generated and induced stratification effects in ocean basins by
 1282 placing a melt water blanket on the saline ocean water surface [14]. The transport of CO₂
 1283 and O₂ into the basin bottoms became interrupted. The drizzle of phytoplankton litter kept un-
 1284 oxidized, and as further consequence the amount of Carbonate C burial within the ocean
 1285 crust ceased.

1286 The continuous availability of chemical activity, as chemical reaction vessel and as an
1287 alkalinity reservoir of the oceanic crust, is maintained by the continuous generation of new
1288 crustal rock material of $21 \text{ km}^3 \text{ yr}^{-1}$ [20]. This huge rock volume production capacity has
1289 enough alkalinity and fertilizer reserves to maintain the absorption, neutralization and
1290 precipitation of a multiple of the recent incoming CO_2 and HCO_3^- .

1291 THC is the main transport medium of carbon from the atmosphere into the deep on Earth.
1292 This makes THC the most prominent climate stabilization element.

1293 The realization of the significance of THC as stabilization element of our recent climate
1294 model induces questions about the stability of the THC. As stated in chapter 1, the main
1295 factors for destabilizing the THC seems to be stratification of the water column by the
1296 desalting of surface ocean layers by freshwater dilution from increasing ice melting [6]. The
1297 low density melt water generates a layer onto the ocean water, producing a stratified water
1298 column. The stratification hampers or prevents the transport of CO_2 and O_2 -containing
1299 surface water into the deep ocean basin parts. The most severe consequence of such
1300 stratification, to oceanic ecosystems, is the development of anoxic milieu within the stratified
1301 ocean basins.

1302 Typical marks of episodes with stratified water columns in ocean basins are the black shales
1303 and black limestones as sapropel remnants. Repeated development of stratified ocean
1304 basins during the Phanerozoic epoch occurred as a consequence of elevated CO_2 levels in
1305 the atmosphere. This caused high sea surface temperatures [13], and as a global
1306 consequence: global increase of evaporation, precipitation and as well production of brines
1307 of higher concentrations.

1308 Hansen [6] pointed out too, that the increasing melt water run-off from polar and subpolar ice
1309 layers can induce the cover of denser ocean water by a melt water layer. But the generation
1310 of increasing precipitation and surface water run-off accompanied by increasing brine
1311 production during hot CO_2 -high climate episodes has just the same consequences in the past
1312 geological epochs as we learn from Meyers [13].

1313 Just that we now have to fear this combination, of both the CO_2 -dependent temperature rise-
1314 generated precipitation increase, plus the melt water increase from glacier melt. Mankind has
1315 to find now the appropriate tool to win or to fail this challenge.

1316 A melt increase might drive the destabilization of THC. And at first the top layers of the ocean
1317 basins will suffer from acidification and the deep layers will become alkaline and anoxic.

1318 By starting the ISA process, the induced climate cooling will decrease the Greenland glacier
1319 melt. The minimized freshwater inflow to the North Atlantic Ocean reduces the dilution of the
1320 salty Gulf Stream and increases the down flow quantity of oxic and CO_2 containing salty
1321 surface water. In parallel, the surface increase of sea-ice produced on the South Ocean
1322 surrounding the Antarctic continent is followed by increased down-flow of oxic and CO_2

1323 containing cold brine onto the bottoms of the oceanic basins. Both effects do increase the
1324 THC activation: the flow of alkaline, phytoplankton fertilizer enriched, and oxygen depleted
1325 deep-ocean water to the surface. This activates CO₂ absorption from the atmosphere by
1326 phytoplankton growth and by CO₂ absorption

1327 One of the proposed alternative climate engineering measures aims to absorb atmospheric
1328 CO₂ by reducing the surface ocean acidity and by producing phytoplankton fertilizers. To
1329 transfer $1.1 \times 10^9 \text{ t yr}^{-1}$ CO₂ carbon into the ocean a crushing of $3 \times 10^9 \text{ t yr}^{-1}$ of the ocean
1330 crust and mantel rock mineral olivine to a particle diameter of 1 μm and suspend it at the
1331 ocean surface would be necessary [285, 339, 340]. These numbers seem to be two orders of
1332 magnitude too high. Keleman & Manning calculate a carbon mass subduction of about $50 \times$
1333 10^6 t C yr^{-1} (C in oceanic crust, bedrock and sediment layer) [318]. Independently of which of
1334 both calculations has a mistake – technical activities to do the Hauck et al. proposal are far
1335 from any economic reality.

1336 The proposed reaction of CO₂ with olivine is done with much better effectiveness by nature,
1337 without any costs, within the ocean crust in sufficient quantity. To minimize CO₂ emission it
1338 has been proposed to minimize power stations flue gas CO₂ by absorption by lime
1339 suspension [341]. This measure seems to be unnecessary when the ISA method comes into
1340 practice.

1341 The fertilizing elements the phytoplankton needs, such as Si, P, and Fe, are all present in the
1342 ocean crust [342] and a property of the ocean crust water extract. Intensification of the THC
1343 would also increase the fertilizer concentration at the ocean surface in the phytoplankton
1344 layer. As demonstrated, the undisturbed THC is essential to keep the climate stabilized [32].
1345 The ocean crust from the warm Mesocoic epoch which had no frozen polar regions
1346 contained about five times more authigenic carbonate than ocean crust younger than 60
1347 million years [32]. Coogan interpreted this as possible consequences of higher bottom water
1348 temperature and/or different seawater composition. Insua et al. [343] found evidence, that
1349 the salinity of the ocean bottom water during the Last Glacial Maximum had been up to 4 %
1350 greater than today. It seems evident that the cause of the latter had been the higher volume
1351 of brine produced during sea-ice freezing. This fact demonstrates that disturbed or weakened
1352 THCs might be the cause of reduced carbonate C uptake of the ocean crust. The quantity of
1353 carbonate precipitation depends on the CO₂ and/or HCO₃⁻ input with seawater. As a
1354 consequence, the quantity of the ocean crust CO₃ uptake varies according to the activities of
1355 the THCs or stratified ocean basins: strong THCs increase the crust carbon content; weak
1356 THCs decrease it.

1357 Independently of the cause of stratification events: by brine generation, by freezing or by
1358 evaporation, the ocean basins possess a removal mechanism which extracts salt from the
1359 brine and change the brine to sea water of normal salt concentration. This mechanism has

1360 kept the salt concentration of sea water rather constant during the past geological epochs.
1361 This effect to achieve a constant salinity level, depletes any brine-induced stratification and
1362 restores well-mixed ocean basins again.

1363 According to Hovland et al. [344-346] this desalination takes place by continuous salt
1364 removal from the brine or seawater within the hot ocean crust. This desalination works
1365 independently of the salt concentration of brine or seawater. The salt removal process acts
1366 within the ocean crust aquifer at near critical to super-critical seawater temperature and
1367 pressure conditions. During subduction of the salty crust rock chloride and carbonate change
1368 their cations with silicate and are dissolved as HCl and CO₂. Accompanied by H₂O, these
1369 gases are recycled to the atmosphere, mainly by subduction volcanism, but at a much
1370 smaller amount by MOR and similar alkaline volcanism.

1371 During the time lag between the onsets of the ISA method cooling and the appearance of the
1372 alkalinity and fertilizer increase at the ocean surface, the cooling effect of ISA remains
1373 reduced. But after this time lag, the ISA method increases to optimal efficiency. Even from an
1374 economic viewpoint it seems better to compensate this by increasing the ISA emission at the
1375 beginning during the time lag, than doing the proposed suspending of olivine dust at the
1376 ocean's surface. Even lime shell wearing phytoplankton is able to accept small pH changes
1377 of CO₂ induced dependent acidification, because it uses the build-up of calcium carbonate
1378 shells as a detoxification measure to get rid of calcium ions from their bodies [265]. As a
1379 consequence of this effect, only the relation between Ca carbonate sequestration and
1380 organic carbon sequestration may decrease during the time lag.

1381 Summing up: through the huge aquifers of the alkaline and reducing ocean crust, any
1382 transport of former surface water enriched by CO₂ or HCO₃⁻ induces carbonate C burial
1383 within the aquifer interior. This is the situation within well-mixed Ocean basins without
1384 stratification. Any stratification decreases carbonate burial or even stops it. Stratification
1385 changes the red-ox milieu below the stratification-induced chemocline. The MOR and
1386 sediment-induced exhalation of Fe and further metals by the black smokers into the sulfidic
1387 stratified ocean basin are prevented from contact with the planktonic surface water habitat.
1388 But surface water runoff, as well as melt water inflow and iceberg melt during warm glacial
1389 climate intervals may compensate the lack of Fe from the MOR and bottom sediment
1390 sources, as well as from the decreasing dust fall during the warm climate intervals [6, 7].

1391
1392 **4.2. Carbon storage as organic and inorganic marine debris and as authigenic
1393 carbonate in the ocean sediment**

1394 The uptake of authigenic hydrogen carbonate from the ocean and precipitating it in the
1395 sediment, seems to play as well a major role in the carbon circle [347]. According to Kelemen
1396 [318] the carbon uptake by the sediment layer of the oceanic crust can be estimated to 13 to

1397 23 Mt C yr⁻¹. The carbon inventory consists of life and dead organic carbon, carbonate
1398 carbon and authigenic carbonate produced by excess alkalinity deriving mainly from sulfate
1399 reduction and silicate solution by reduced humic acids. According to Sun & Turchyn the
1400 formation of calcium carbonate and its burial in marine sediments accounts for about 80 % of
1401 the total carbon removed from the Earth surface [348]. Meanwhile it seems possible to
1402 distinguish between marine formed sediment carbonate and authigenic carbonate [349].

1403 As evidenced in chapter 4.1, stratified ocean basins can differ widely in quantity and quality
1404 of the buried C according to the prevailing climate conditions and their direct and indirect
1405 influences on ocean basin conditions. Table 2 lists some of the most prominent results.

1406 The cooling of the Troposphere by ISA action stops melt water inflow, destructs the
1407 stratification and starts the vertical mixture. During the former stratification event, alkalinized
1408 deep water layer had enormous CO₂ absorption capacity. The alkalinized anoxic sediment
1409 behaves in a similar manner. This makes a much increased CO₂ absorption activity at the
1410 beginning of the movement.

1411 Accordingly, excess alkalinity is produced by dissolution of silicates such as illite, kaolinite
1412 and feldspars, volcanic ash, pyroxene or other silicate components of ocean sediments and
1413 even opal by Si complexation with reduced HA at methanogenic conditions [286, 289, 350,
1414 351]. Compensation by hydrogen carbonate induces authigenic precipitation of microbial
1415 dolomite [352], Ca or Fe carbonate [286, 291, 348, 350, 353, 354] and further minerals [355].
1416 As mentioned in chapter 4.1, the biological processes of chemical sediment reduction
1417 induced by the ISA fertilization, changes NO₃⁻, SO₄²⁻, Fe(III), Mn(III/IV) and HCO₃⁻ to their
1418 deoxygenated and reduced species, inclusive CH₄ and NH₄⁺ generation, produces a pH
1419 increase and additional alkalinity. Further pH drop is induced by H₂ evolution from FeS₂
1420 generation from FeS and H₂S [356, 357] accompanied by CO₂ reduction to CH₄ [358] as well
1421 as N₂ reduction to NH₃ [359]. The alkalinity excess converts dissolved HCO₃⁻ into solid lime
1422 and dolomite [360-363]. The solid carbonates and CH₄ hydrate stabilize the sediment.
1423 Outside the polar permafrost region, methane hydrates are stable below 300 m below sea
1424 level and at ocean temperatures of nearly 0 °C [364]. The carbonate precipitation sequesters
1425 additional parts of CO₂, prevents the ocean water from acidifying and at last improves the
1426 CO₂ absorption by ocean water from the atmosphere. This again cools the troposphere.

1427 The enhanced dissolution of silicates from the ISA induced by methanogenic sedimentation
1428 additionally compensates the enhanced alkalinity loss at the ocean surface, attributed to the
1429 calcification due to foraminifera and coccolithophores phytoplankton growth by ISA fertilization.

1430 Summing up: within a well-mixed and unstratified ocean basin the surface layer absorb CO₂
1431 and O₂ and become well mixed into the unstratified ocean basin by the thermo-haline basin
1432 convection. Consequences of the good mixture are nearly quantitative oxidation of the food
1433 chain debris to CO₂ produced by phytoplankton. Most C is buried as carbonate in the ocean

1434 crust and its overlying sediment. The ratio of organic C burial to carbonate C burial is much
1435 smaller than 1. Results of Lopes et al. [96] from Northeast Pacific sediments demonstrate
1436 that, although estimated highest primary productivity during the Last Glacial Maximum,
1437 organic C burial was lowest. This coincides with our proposed optimum mixed O₂-rich milieu
1438 throughout the whole water column.

1439 During situations with stratified water columns in the ocean basins or parts of them the THC
1440 convection is disturbed or does not exist at all. Surface water layer enriched with CO₂ and O₂
1441 absorbed from the atmosphere cannot penetrate through the stratified water column, into the
1442 bottom of the basin. This induces sulfate reducing conditions below the surface layer. Only
1443 small parts of surface layer CO₂ are changed into carbonate C at the chemocline, with the
1444 alkaline sulfidic and anoxic parts below the chemocline. Below the chemocline, the water
1445 column is anoxic, the organic debris sediment with minor oxidation. Probably the ratio of
1446 organic C burial to carbonate C burial increases to a manifold during stratified conditions.
1447 Concerning to the huge fraction of organic C buried during the warm glacial intervals,
1448 according to the results of Lopes et al, [96] from Northeast Pacific, sediments demonstrate
1449 stratification events within their research area.

1450 Stratification events may develop by warming the upper water layer, as well as by
1451 evaporation and precipitation [6-8].

1452

1453 **4.3. Minimizing CH₄ emissions from sediments and igneous bedrock**

1454 The reaction product of oceanic crust minerals containing Fe(II) such as Olivine and
1455 Pyrrhotite with sea-water is hydrogen [365-367]. The hydrogen production rate at least along
1456 the MOR alone is estimated to ~10¹² mol H₂ yr⁻¹ [368]. Hydrogen is fermented by microbes
1457 with hydrogen carbonate into methane. The latter is known as constituent of the springs
1458 emitted by the ocean crust rocks (Früh-Green 2004).

1459 Such and further CH₄ emissions, such as anoxic sediments outside the CH₄ hydrate stable
1460 pressure and temperature region, induce de-oxygenation within the overlying water layer by
1461 CH₄ emission [17, 369]. CH₄ emissions are induced for instance by hydrothermal springs
1462 [370], sediment movement [371, 372], seawater warming induced by climate change [373,
1463 374], changing ocean circulation [375], ocean sediment subduction [376, 377]. At lower
1464 vertical sediment to ocean surface distances, the CH₄ emissions reach the troposphere. As
1465 the Arctic Ocean suffers at most from the climate change induced warming, the CH₄ release
1466 within this region rises extraordinary [16]. The most elevated Global surface-near oceanic
1467 CH₄ concentrations are located within the Arctic Ocean and the arctic troposphere [378]. This
1468 might be one of the reasons for the higher temperature rise of the Arctic region than the
1469 average surface Earth warming.

1470 Within the sediment and within the suboxic ocean water column, CH₄ is oxidized by sulfate.
1471 Iron is an accelerator of this microbial fermentation reaction [379]. The ocean water column
1472 and the underlying sediment having had contact with ISA-originating iron are elevated in their
1473 iron content. This has different cooling effects to the troposphere: at first the elevated iron
1474 content in the uppermost suboxic sediment reduces the CH₄ content emitted by the sediment
1475 by anaerobic oxidation of methane by sulfate-reducing bacteria.

1476 Below regions with ISA precipitation, not only the sediment, but even the whole water column
1477 of the ocean basin is enriched on iron. Any CH₄ molecule, independently of existent in the
1478 sediment, or just above in the water phase, or excreted into the water column as bubbles, is
1479 oxidized before it arrives at the water column top. By help of Fe containing enzymes the
1480 methane oxidation by sulfate is possible. This prevents the water layers above the sulfate
1481 oxidation zone from oxygen loss. Sulfate oxidizers of CH₄ are archaea and bacteria [380]. As
1482 these microbes use Fe-containing enzymes to do their anaerobic methane oxidation
1483 processes, they act better in iron-rich than in iron-poor environments [381, 382]. The iron
1484 containing debris fall of ISA-fed dead phytoplankton and phytoplankton dependent food chain
1485 links, feeds the methane depleting sulfate reducer community within or near the sediment
1486 surface.

1487 Next, the iron content reduces the CH₄ bubble-development within the sediment layer,
1488 preventing catastrophic CH₄ eruptions by sediment destabilization, CH₄ bursts and sediment
1489 avalanches.

1490 Third: elevated iron content prevents the ocean water column from CH₄-induced oxygen
1491 deficiency by the formation of ammonium. This oxygen deficiency prevention protects from
1492 generation of the extreme stable and very effective GHG N₂O [383].

1493 The oxygen-dependent life will become problematic, due to its decreasing oxygen content
1494 within a decreased vertical mixed ocean basin induced by climate warming. An additional
1495 input of CH₄ would increase the oxygen deficit death zones. Any CH₄ injection into regional
1496 oxygen deficit zones, will immediately increase their volume. Climate models predict declines
1497 in oceanic dissolved oxygen with global warming. The climate warming dependent decline of
1498 the oxygen content in many ocean regions has meanwhile become manifest [384]. Braking
1499 or reversal of this trend by reducing the oxygen depleting CH₄ emissions at least should help
1500 to prevent regions within the ocean basins from methane-induced oxygen deficit.

1501 The glacial age proved that in spite of the multiplicity of the cooling processes induced, they
1502 caused little disturbance to the ecosystems. This predestines ISA as a steering tool to
1503 prevent climate fluctuations such as the recent climate warming mankind is suffering from.
1504 The present study aims to describe in chapter 5 the technical means to realize this climate
1505 engineering project by the ISA method.

1506 This result is contradictrious to the calculations of Duprat et al. [385]. They found within the
1507 iron containing melt water trail of the giant Antarctica icebergs increased phytoplankton
1508 concentration. Duprat et al. assume that the iceberg induced carbon export increase by a
1509 factor of 5 to 10 within its influence locality and they expect an increase in carbon export by
1510 the expected increase of the iceberg production that has been predicted (for instance
1511 Jougin et al. [386]). We interpret the ongoing increase of icebergs and ice melt as a further
1512 severe warning sign that the ongoing destabilization might end soon in an insufficient mixed
1513 ocean.

1514 The only artificially realizable restoration tool to change an insufficiently or poorly mixed
1515 ocean into a well-mixed ocean is definitely by climate cooling. The ISA method appears to be
1516 the climate cooling method by means of choice, because it accelerates the conversion of
1517 atmospheric carbons into solid and even liquid carbons with the means of nature. Comparing
1518 to the artificial aerosol systems based on TiO_2 or H_2SO_4 [387], the sea-salt aerosol has
1519 advantages, such as better controllability and economy.

1520

1521 **5. Iron effects onshore**

1522 **5.1. Importance of iron on terrestrial landscapes**

1523 As seen in previous sections, atmospheric deposition of iron together with other
1524 macronutrients and micronutrients set important controls on marine ecology and
1525 biogeochemistry: for terrestrial ecology and biogeochemistry the importance of iron is similar.
1526 Iron is one of 17 essential elements for plant growth and reproduction [388]. Iron is an
1527 essential micronutrient (or trace element) only required by plants in small amounts, for bio-
1528 functions such as production of chlorophyll and photosynthesis [389]. Iron is involved in
1529 many other important physiological processes such as nitrogen fixation and nitrate reduction
1530 and is required for certain enzyme functions [390].

1531 Iron is the 4th most abundant element of the earth's crust (4.2%) and thus iron is seldom
1532 deficient, as despite its high abundance in soil, iron solubility is extremely low and its
1533 availability depends of the whole soil system and chemistry. Chlorosis (yellowing) is
1534 associated with iron deficiency in plants over land [59, 61], but the chemistry of iron in soils
1535 and its availability to plants [60] is out of the scope of this review, thus only a brief overview is
1536 given. However, while small amounts are necessary for growth, iron can become toxic to
1537 plants. Iron toxicity is associated with large concentrations of Fe^{2+} in the soil solution [391]
1538 and leads to oxidative stress. As a consequence, iron-uptake systems are carefully regulated
1539 to ensure that iron homeostasis is maintained. Iron availability represents a significant
1540 constraint to plant growth and plants have developed distinct strategies to ensure Fe
1541 solubilization and uptake [392]. In forests, microorganisms such as fungi and bacteria, play a
1542 role in nutrient cycling [393]. A particularly efficient iron acquisition system involves the

1543 solubilization of iron by siderophores [394], which are biogenic chelators with high affinity and
1544 specificity for iron complexation.

1545 Iron deficiency induced chlorosis represents the main nutritional disorder in fruit tree
1546 orchards and in crops grown on calcareous and/or alkaline soils [395] in many areas of the
1547 world. Iron deficiency is a worldwide problem has calcareous soils cover over 30% of the
1548 earth's land surface [396] specially in arid and semi-arid regions and has a large economical
1549 impact, because crop quality and yield can be severely compromised [397, 398], thus several
1550 methods of correction have been developed. Iron canopy fertilization (foliar fertilization) can
1551 be a cheaper, more environmentally-friendly alternative to soil treatments with synthetic
1552 Fe(III) chelates for the control of Fe chlorosis in fruit trees [399]. But iron chelates are
1553 expensive and have to be applied annually. Several sprays aiming to activate the Fe pools in
1554 a chlorotic leaf by foliar iron fertilization have been tested and were generally as effective as
1555 simple spray fertilization with iron sulphate (Abadía et al., 2000) and both are effective in re-
1556 greening treated leaf areas, both in peach trees and sugar beet plants [397]. Iron-deficiency
1557 chlorosis in soybean was solved by foliar sprays which significantly increased the yield of
1558 three cultivars tested and the yield responses obtained, were about 300 kg ha⁻¹ [400].

1559 Although foliar Fe fertilization seems to be potentially effective, the scientific background for
1560 this practice is still scarce and we did not find evidence that soluble iron contained in
1561 atmospheric dust aerosols has already been proved to be able to play this role.

1562 The fertilizing role of African dust in the Amazon rainforest is well known [401] but attributed
1563 to the P input. On a basis of the 7-year average of trans-Atlantic dust transportation, Yu [402]
1564 calculated that 182 Tg yr⁻¹ dust leaves the coast of North Africa (15°W), of which 43 Tg yr⁻¹
1565 reaches America (75°W). The dust reaching the Caribbean and the Amazon come mainly of
1566 the northwestern Africa (Algeria, Mali, and Mauritania) [403].

1567 An average of dust deposition into the Amazon Basin over 7 years is estimated to be
1568 29 kg ha⁻¹ yr⁻¹ [401], providing about to 23 g ha⁻¹ yr⁻¹ of phosphorus to fertilize the Amazon
1569 rainforest, together with Mg and Fe. Although not directly related to ISA, this dust deposition
1570 allows biomass fertilization and thus CO₂ removal from the atmosphere.

1571 The wide spread tropical soils, mostly laterites, are deficient in phosphate and nitrogen but
1572 not in autochthon iron. The only exception to this is for all the epiphyte plants and the plants
1573 growing on the soil-free localities without any autochthon iron. These plants might gain profit
1574 from the ISA method. Such plant communities are localized for instance on top of the famous
1575 Tepuis (table mountains north of the Amazon basin near the borderlines of Brazil, Venezuela
1576 and Guyana) and on the tree branches in the rain forests without roots into the ground. From
1577 Köhler et al. [404] the epiphytes flora on the tree branches of the rain forests may contain up
1578 to 16 t ha⁻¹ (Costa Rica) up to 44 t ha⁻¹ (Colombia) of epiphyte plant + humus dry weight on
1579 the tree branches.

1580 The epiphytes, but much more the Tepui plants, would gain profit from ISA and even from
1581 undissolved iron oxides, because plant roots and fungal hyphae secrete iron-solubilizing
1582 organic acids and complexants. Microbial ferments have time enough to turn all kind of
1583 undissolvable Fe into dissolvable Fe.

1584 Is there a climate relevance to rain forest fertilizing by dust? Rizzolo et al. [405] states that
1585 the iron limited Amazon rainforest profits from the seasonal deposition of iron by Saharan
1586 dust. Especially the deposition of iron plus further nutrients on the Amazon biota is likely to
1587 increase both epiphytic growth and fungal and bacterial decomposition within the canopy
1588 [405]. The increase in iron bioavailability is also known to increase nutrient cycling within the
1589 forest.

1590 Large fractions of the organic biomass produced by help of iron and further eolic nutrients
1591 leave the Amazon region, are transported into the South Atlantic basin and at last become
1592 part of the shelf and basin sediments. This are aquatic life plants such as Water hyazinth and
1593 Water fern, plant litter such as driftwood, leaves, and particular, colloidal, and dissolved
1594 humic and fulvic acids. According to Ertel et al. [406] the flux of dissolved organic carbon
1595 fraction at Óbidos, situated about 800 km above the Amazon mouth, is $2 \times 10^{13} \text{ gC yr}^{-1}$.

1596 Some rain forests such as the Amazonian, benefit from sporadic dust plume fertilization of
1597 Saharan origin. Others may profit from an artificial ISA precipitation resulting in a significant
1598 additional epiphyte plant growth.

1599

1600 **5.2. Importance of iron for human food and health**

1601 All organisms on Earth ride upon a "ferrous wheel" made of different forms of iron that are
1602 essential for life [97]. Iron is an important micronutrient used by most organisms, including
1603 higher animals and human beings and is required for important cellular processes such as
1604 respiration, oxygen transport in the blood. Its bioavailability is of concern for all the Earth's
1605 living organisms, especially in aquatic ecosystems, including clear water and oceanic ones.
1606 In humans, iron deficiency and anemia remain the most common nutritional disorders in the
1607 world today [407].

1608 The World Health Organization [408] states that the lack of sufficient micro nutrients such as
1609 Fe and Zn, represents a major threat to the health and development of the world population.
1610 WHO [408] estimates that over 30 % of the world's population are anemic and even more in
1611 developing countries (every second pregnant woman and about 40% of preschool children).
1612 Iron deficiency affects more people than any other condition, and iron deficiency exacts its
1613 heaviest overall toll in terms of ill-health, premature death and lost earnings. Iron deficiency
1614 and anemia reduce the work capacity of individuals and of entire populations, causes
1615 maternal hemorrhage, impaired physical and cognitive development, reduced school

1616 performance and lowered productivity, bringing serious economic consequences and
1617 obstacles to national development.

1618 Iron deficiency in humans has been associated with heart failure [409, 410]; gastric
1619 ulceration and anemia induced by Helicobacter pylori [411]; negative impacts on skeletal
1620 integrity [412], cognitive disorders [413]. Iron deficiency in infancy leads to long-term deficits
1621 in executive function and recognition memory [414]. In experiments with animals, even if the
1622 iron and the hemoglobin levels return to normal after treatment from an early induced iron
1623 deficiency, there are long-lasting cognitive, physiological and hematological effects [415].
1624 Thus several strategies and technologies have been elaborated to manage iron deficiency in
1625 humans [416] such as food fortification (adding iron to food) [417] and biofortification (the
1626 process of enriching the nutrient content of crops, vegetables or fruit as they grow). WHO,
1627 FAO and UNICEF edit guidelines or recommendations on food fortification with
1628 micronutrients [418], for instance adding ferrous sulphate, ferrous fumarate, or iron
1629 complexes to wheat and maize flour (from 15 to 60 ppm depending on the regional average
1630 consumption ranges and on other iron food vehicles). Biofortification can be achieved by
1631 utilizing crop and soil management practices to increase micronutrient concentrations in the
1632 edible crop parts [419] and can provide a sustainable solution to malnutrition worldwide, as
1633 other methods, such as diversifying people's diets or providing dietary supplements, have
1634 proved impractical, especially in developing countries). Together with dietary modification
1635 and iron dietary supplementation, iron fortification (suitable food vehicle containing higher
1636 levels of bioavailable iron) are the main recommendations of WHO to increase iron intake,
1637 improve nutritional status and stop iron deficiency anemia. Increasing available iron levels in
1638 major staple food crops is an important strategy to reduce iron deficiency in people. WHO
1639 anticipates that benefits are substantial as timely treatment can restore personal health and
1640 raise national productivity levels by as much as 20%.

1641 The biofortification of bioavailable iron in staple plants provides a sustainable and
1642 economical tool to use, in order to rescue iron deficiency in target populations globally [420].
1643 In contrast with fruit trees, where foliar iron fertilization is generally used in chlorotic leaves,
1644 canopy, Fe-fertilization is increasingly being used in cereal crops to increase the Fe
1645 concentration in grains, in what is called biofortification. In these crops, which are generally
1646 treated with foliar iron sprays when there is no leaf chlorosis, applied iron has been shown to
1647 re-translocate efficiently to other plant organs, both in wheat [421] and rice [422]. Zuo and
1648 Zhang [419] have developed strategies to increase iron uptake by roots and transfer it to
1649 edible plant portions allowing absorption by humans from plant food sources.

1650

1651 **5.3. Active inhibition of methane emissions from wetlands, lakes, and sediments**

1652 Lipson et al. [423] found that in Arctic peat ecosystem, Fe and humic reduction competes
1653 with methanogenesis as e- acceptors and inhibit some CH₄ production and that on the basis
1654 of conservative measurements of net Fe reduction rates, this process is comparable in
1655 magnitude to methanogenesis.

1656 In wet sedge tundra landscapes Miller et al. [424] conducted experiments that showed an
1657 inverse relationship between dissolved iron and CH₄ concentrations and found that net CH₄
1658 fluxes were significantly suppressed following the experimental addition of iron and humic
1659 acids. Iron and humic acid amendments significantly suppressed *in-situ* net methane flux.

1660 Lipson et al. [425] conducted experiments on 2 different ecosystems: one with permafrost
1661 and naturally high levels of soil Fe and one with no permafrost and naturally low levels of soil
1662 Fe. The addition of Fe(III) and humic acids (electron acceptors) significantly reduced net CH₄
1663 flux for at least several weeks post-treatment, without significantly altering CO₂ fluxes. There
1664 was no significant difference between the reduction of CH₄ flux caused by Fe(III) and the one
1665 caused by humic acids. The future release of GHGs from high latitude wetland ecosystems
1666 can significantly be altered by this natural and widespread phenomenon. These results also
1667 show that the suppression of CH₄ flux in this type of ecosystem can be induced by artificial
1668 addition of Fe(III), humic acids or other electron acceptors.

1669 Zhang et al. [426, 427] found methanogenesis and sulfate reduction inhibition after ferric salt
1670 dosing to anaerobic sewer biofilms. Similar methanogenesis inhibition and even increases of
1671 rice productivity by ferric salt addition have been described by others [428-431].

1672 Amos et al. [432] found support for the hypothesis that Fe(III) mediates CH₄ oxidation in
1673 crude contaminated aquifer.

1674 Although some iron oxides such as magnetite and hematite have different properties and
1675 may facilitate methanogenesis by some types of micro-organisms [433] it is worth being
1676 noted that the iron solubility and bioavailability properties of the ISA are similar to the
1677 ferrihydrite which inhibits methanogenesis in the same experiments [433] and in general
1678 Fe(III)-reduction by methanogens contribute to Fe(III) inhibition of methanogenesis [434].

1679 Experiments conducted in tropical humid tropical forest soils, which are also an important
1680 source of atmospheric CH₄ and where Fe(III)-reducing bacteria coexist with methanogens,
1681 show that upon addition of acetate, production increase of CH₄ is much greater (67 times)
1682 than that of Fe²⁺ (2 times), indicating that the two process were acetate limited and
1683 suggesting that Fe(III)-reducing bacteria were suppressing methanogenesis when acetate
1684 availability is limited [435]. For Roden and Wetzel [436] a significant suppression of CH₄
1685 production in freshwater wetlands could be mediated by Fe(III) oxide reduction within globally
1686 extensive iron-rich tropical and subtropical soil regimes.

1687 All these results support the hypothesis, that additional to the many photolysis dominated
1688 CH₄-depletion actions by ISA in the troposphere, even after ISA precipitation on wetlands,

1689 marshes, lakes, rice paddies and shelf sediments it will inhibit the emission of CH₄. The
1690 degree to which Fe(III) reduction suppresses CH₄ emissions under different soil conditions
1691 should be considered by regional and global models of GHGs dynamics.
1692 No published studies were found about the biogeochemical cycle of iron to the continents
1693 and land in specialized journals such as "Global Biogeochemical Cycles", nor in the chapter
1694 about the biogeochemical cycles of the latest IPCC report and, the recent Iron Model
1695 Intercomparison Project (FeMIP) seems concentrated in oceans interactions [55, 437].
1696 It is now well known that in large areas of the open ocean iron is a key limiting nutrient and
1697 that in alkaline terrestrial landscapes iron deficiency induces plant chlorosis. The authors'
1698 hope is that bringing together under this review seemingly disparate lines of research from
1699 diverse disciplines, it will result a more global understanding of the global biogeochemical
1700 iron cycle, especially over terrestrial landscapes, peat-bogs, and other wetlands.
1701

1702 6. Estimations of the ISA demand by the ISA method

1703 6.1. ISA can induce a significant CH₄ depletion

1704 Wittmer [124-127] reported that the ISA method is very efficient for °Cl generation. Hence,
1705 ISA allows depletion of GHG methane by separation prior cooling effect. Therefore, ISA
1706 appears to be a very promising cooling method with technical and economic stakes. But the
1707 answer depends strongly on the volume of ISA to be produced and emitted. Indeed, ISA
1708 plume should be released high enough in the troposphere to get sufficient distribution and
1709 residence time in combination with °Cl generation quantity.

1710 Based on results of Fe photolysis induced °Cl production, Wittmer et al. [124] estimated the
1711 feasibility of CH₄ depletion by NaCl-diluted ISA. Wittmer found a °Cl emission of 1.9×10^5
1712 °Cl/cm³ at a Cl/Fe(III) molar ratio of 101 within the pH range of 2.1-2.3. The same °Cl
1713 generation was found at the suboptimal pH of 3.3 – 3.5 and at a Cl/Fe(III) molar ratio of 51.
1714 This Cl generation is four times higher than the reference which corresponds to a significant
1715 CH₄ lifetime reduction in the troposphere [124]. A pH range of around 2 corresponds to the
1716 natural aerosol pH within the oceanic boundary layer. The optimum efficiency of °Cl
1717 production by photolysis of ISA corresponds to pH 2, whatever the source of Cl⁻, NaCl or
1718 gaseous HCl and whatever if ISA is an iron(III) oxide or an iron(III) chloride aerosol [124].

1719 According to Lim et al. [438] and to Meyer-Oeste [439] the optimum °Cl production by
1720 sunlight photolysis of FeCl₃ solutions or ISA, is generated in the acidic pH range. The
1721 efficient °Cl generation is necessary for an efficient CH₄ depletion by ISA. Except if made by
1722 condensation and hydrolysis of FeCl₃ vapor or by nebulization of pure FeCl₃ solution, or
1723 produced by combustion to pyrogenic FeOOH and reaction and hydrolysis with HCl and H₂O

1724 to FeCl_3 solution: FeCl_3 has an acidic pH from the beginning because it hydrolyses according
1725 to equation 4.

1728 6.2. ISA demand calculation

1729 Current CH_4 depletion by ${}^{\circ}\text{Cl}$ is estimated from 3.3% [440] to 4.3% [119]. According to the
1730 results of Wittmer [124] at a $\text{Cl}^-/\text{Fe(III)}$ molar ratio of 101, this amount would rise fourfold:
1731 from 13 to 17%.

1732 1. Wittmer et al. used their results obtained at a $\text{Cl}^-/\text{Fe(III)}$ ratio of 51 at the pH of
1733 3.3-3.5: $1.9 \times 10^5 {}^{\circ}\text{Cl}/\text{cm}^3$. We consider that this pH is suboptimal. Instead it should be
1734 used the results obtained at a $\text{Cl}^-/\text{Fe(III)}$ ratio of 101 at the pH of 2.1-2.3: 1.9×10^5
1735 ${}^{\circ}\text{Cl}/\text{cm}^3$.

1736 Moreover, Wittmer et al. made two limitative estimations:

1737 2. They only focused on the Cl delivery in the condensed state by coagulation as
1738 Cl^- transfer option between ISA particles and the Cl source sea-salt aerosol ignoring
1739 other Cl sources, Cl aggregate states, and Cl transfer mechanisms.

1740 According to this model, the ISA particles should continuously lose in the daylight their Cl
1741 load by ${}^{\circ}\text{Cl}$ emission and as a consequence they could gain back Cl only by coagulation with
1742 sea-salt aerosol particles. As further consequences of this model the $\text{Cl}^-/\text{Fe(III)}$ ratio of ISA
1743 particles would decrease, their diameter increase and their residence time in the troposphere
1744 would decrease.

1745 But according to Graedel and Keene [118] and Keene et al. [441] the next prominent source
1746 of inorganic Cl in the troposphere beside sea-salt aerosol is vaporous HCl. This is the main
1747 source where the ISA particles can refill the chloride lost by photolysis. The main Cl uptake
1748 mechanism from this Cl source is the sorption from the gaseous phase.

1749 Main HCl sources are the sea-salt reaction with acids, CH_4 and further hydrocarbon reactions
1750 with ${}^{\circ}\text{Cl}$ [441], flue gases of coal, biomass and garbage combustion [442], as shown in the
1751 "global reactive chlorine emissions inventory" [441], HCl from chlorocarbons being a
1752 significant part [443] in particular from CH_3Cl which is the largest, natural contributor to
1753 organic chlorine in the atmosphere [444].

1754 3. They estimate that the global production rate of 1785 Tg yr^{-1} of sea-salt
1755 aerosol Cl^- has to be doped with iron at a $\text{Cl}^-/\text{Fe(III)}$ molar ratio of 51 meanwhile
1756 we consider it has to be estimated at a molar ratio of 101 (according to 1.).

1757 The calculations made with these limitative assumptions resulted in an iron demand of
1758 56 Tg yr^{-1} Fe(III) to obtain the desired CH_4 depletion effect [124].

1759 Whereas, with the limitative assumption that there is no further Cl^- source than sea-salt, the
1760 calculations with a $\text{Cl}^-/\text{Fe(III)}$ ratio of 101 results in a Fe(III) demand of only 18 Tg yr^{-1} .

1761 ISA can be produced from pyrogenic iron oxides according to method I (see chapter 7).
1762 Pyrogenic oxides have particle sizes lower than $0.1\mu\text{m}$. Diameters of the NaCl-diluted ISA
1763 particles of the Wittmer tests [124] are round about $0.5\mu\text{m}$. This confirms the test results of
1764 Wittmer et al. as calculation basis without any cut.

1765 But Wittmer et al. made two other limitative assumptions:

- 1766 4. ISA has the same particle size and corresponding surface range as sea-salt;
- 1767 5. ISA has the same residence time as sea-salt aerosol in the troposphere."

1768 According to their coarse aerosol particle range, the residence time of sea-salt particles in
1769 the troposphere is inferior to 1 day [445] while the artificial ISA particles with diameters lower
1770 than $0.5\mu\text{m}$ have residence times in the troposphere of at least 10 days up to several weeks
1771 [446, 447].

1772 Known salt aerosol generation methods by vapor condensation or nebulization [448, 449]
1773 allow not only the flame descending ISA type 1 [141], but also the condensation and
1774 nebulization descending ISA variants 2 and 3 (see chapter 7) to be produced with aerosol
1775 particle diameters between 0.1 and $0.01\mu\text{m}$. Diameters of salt aerosol particles according to
1776 these physical aerosol generation methods are up to, or more, than one order of magnitude
1777 smaller than of those used in the experiments by Wittmer et al. [124].

1778 Analogue to CCN behavior in cloud processing [113] most of the small-sized ISA particles
1779 are protected by their small sizes from coagulation or coalescence with sea-salt aerosol
1780 particles. This effect prevents ISA from leaving the optimum active atomic chlorine emission
1781 conditions: low pH and low particle diameter range.

1782 The residence time difference of more than one order of magnitude in comparison to sea-salt
1783 aerosol further reduces the Fe demand for ISA production from 18 Tg yr^{-1} to less than
1784 1.8 Tg yr^{-1} .

1785 6. The properties of the ISA particles produced by the most preferred ISA
1786 method variant are explained in chapter 4. Their difference to the NaCl-diluted ISA
1787 tested by Wittmer [124] are: ISA particles are made of $\text{FeCl}_3 \times n\text{H}_2\text{O}$ undiluted by
1788 NaCl, or FeOOH coated by $\text{FeCl}_3 \times n\text{H}_2\text{O}$ undiluted by NaCl [439, 450]. The $\text{Cl}/\text{Fe(III)}$
1789 molar ratios of $\text{FeCl}_3 \times n\text{H}_2\text{O}$ are at 3 or even lower. The $\text{Cl}/\text{Fe(III)}$ molar ratio of
1790 typical ISA particles is at least 30 times smaller than the molar $\text{Cl}/\text{Fe(III)}$ ratio of 101
1791 of the tested ISA by Wittmer [124]. This reduces the Fe demand for ISA production
1792 again at least by 1 order of magnitude from $<1.8\text{ Tg yr}^{-1}$ to about $<0.2\text{ Tg yr}^{-1}$.

1793 Wittmer et al. [124] considered only sea-salt aerosol particles as transport vehicles for ISA
1794 and as only possible contact medium to gain chloride ions as $^{\circ}\text{Cl}$ source. It is well known that
1795 coal combustion is a major source of active chlorine [441-443], as well as iron [78, 79, 83,
1796 451], thus both iron and chlorine are jointly issued by other mechanisms and sources.

1797 As stated in our chapter 6.2 below point 5, sea salt aerosol has residence times in the
1798 troposphere lower than one day according to its coarse particle diameters without any
1799 possible bridging of intercontinental distances.

1800 In reality the chloride transfer between sea-salt aerosol particles and ISA particles may take
1801 place without any touch or coagulation, because the troposphere is an acidic environment.
1802 Troposphere is a source of organic and inorganic acids which are in permanent contact with
1803 the sea-salt aerosol. The acid ingredients in contact with sea spray produce HCl. Further ISA
1804 is produced by combustion and is elevated by flue gas plumes: acid precursors such as SO₂
1805 or NO_x are in higher concentrations within the flue gas plume comparing to the tropospheric
1806 environment. The acids generated by flue gas plume produce additional HCl by reaction with
1807 the sea-salt aerosol [167]. As a result, ISA and ISA precursors may absorb any chloride
1808 requirement via HCl vapor from the sea-spray source by itself [127].

1809 Additionally to the ³⁵Cl emission increase with increasing iron concentration in the tested
1810 aerosols, the results of Wittmer verify an increase in ³⁵Cl emission with decreasing pH [124].
1811 According to Wittmer and Meyer-Oeste [439, 450], oxidic ISA aerosol particles may be
1812 generated free from any pH-buffering alkaline components. This hampers their pH decrease
1813 by air-borne HCl to the optimum pH around pH 2. Sea-salt buffering of the absorbed HCl
1814 [452] by the alkali and earthen alkali content of sea-salt aerosol can occur only by
1815 coagulation, most probable in a minor ISA particle fraction but not in the bulk. From the
1816 beginning of its action in the troposphere, ISA keeps in the optimum ³⁵Cl emission mode: low
1817 pH, and high iron concentration levels.

1818 Preferred ISA is produced by the ISA method variant 1 or variant 3 as described in chapter 7.
1819 Hence, ISA are composed of particles made by flame pyrolysis or iron salt vapor
1820 condensation. The mentioned ISA particles have diameters of $1/10$ of the particle diameters of
1821 the Wittmer tests. These ISA particles have optimum chlorine activation efficiency:

- 1822 • In an appropriate chloride dotation or chloride delivering environment;
- 1823 • At a pH <2;
- 1824 • If they are emitted above the tropospheric boundary layer.

1825 Then the Fe demand may fall up even shorter than the calculated 0.2 Tg Fe yr⁻¹ due to their
1826 far extended surface area and far extended residence time in the atmosphere.

1827 It has to be noted that this ISA demand calculation result refers only to the ISA cooling
1828 property according to CH₄ depletion; further cooling properties according to cloud albedo,
1829 depletion of CO₂, black and brown aerosol, ozone decrease and further causes are still kept
1830 unconsidered.

1831 Further oxidation activity on GHGs and aerosols are induced by the ³⁷OH generation activity
1832 of ISA: volcanic eruption plumes contain high concentrations of ³⁵Cl plus ³⁷OH [152] and are
1833 characterized by decreased CH₄ concentrations [153]. Co-absorption of H₂O and HCl is the

1834 main reason of the generation of volcanic ash particle coats containing soluble Fe salts
1835 originating from insoluble Fe oxides and Fe silicates [453, 454]. Gaseous HCl from the
1836 eruption plume entails Fe chlorides covering the surfaces of volcanic ash particles [455].
1837 Therefore, it is reasonable that photolysis of those chlorides is the origin of both: ${}^{\circ}\text{Cl}$ and ${}^{\circ}\text{OH}$
1838 generation in volcanic plumes.

1839 Hydroxide radical ${}^{\circ}\text{OH}$ can change from the liquid aerosol phase into gaseous phase [169].
1840 But by far, not as easy as ${}^{\circ}\text{Cl}$ can. Indeed, the Henry's law solubility constant of ${}^{\circ}\text{OH}$ is about
1841 one order of magnitude higher than that of ${}^{\circ}\text{Cl}$ and is in the same range than that of NH_3
1842 [166]. But when their hygroscopic water layer shrinks in dry air or by freezing, ISA particles
1843 might act as ${}^{\circ}\text{OH}$ emitters. These additional ${}^{\circ}\text{OH}$ emissions might further increase the CH_4
1844 oxidation potential of volcanic ash or artificial ISA and thus reduce even more the Fe demand
1845 for ISA, though this has not been tested yet, it cannot be ruled out.

1846 In order to take care not to overstep the cooling effect too far, a reasonable goal might be to
1847 start the ISA method with a global ISA emission of $0.1 \text{ Tg Fe yr}^{-1}$. This quantity corresponds
1848 to the magnitude of the actual Fe input from the atmosphere into the oceans under the form
1849 of soluble salt, which is estimated to be from 0.1 up to 0.26 Tg yr^{-1} [74, 80, 456]. Doubling or
1850 even tripling of this input quantity by the ISA method is of easy technical and economic
1851 feasibility as will been seen in chapter 7.

1852

1853 **7. The ISA method: how to increase artificial iron emissions**

1854 Preceding calculation evidenced that the ISA method has the potential to cut back the rise of
1855 CH_4 and CO_2 and, vice versa, the small decline of atmospheric oxygen content [457, 458]
1856 because it acts by a bundle of chemical and physical means. The ISA method might retard,
1857 stop or even help to restore these GHGs contents to pre-industrial levels. By the ISA method,
1858 doubling or tripling of the ISA level in the troposphere seems to be possible by feasible
1859 technical and economical means.

1860 Since 2004 proposals have been published [141, 439, 450, 459, 460] to modify combustion
1861 processes and flue gas emissions in order to use them as ISA plume emission sources in the
1862 troposphere, by traffic and power generating combustions and their warm uplifting flue gases.
1863 Predestined for the ISA method are any hot flue gas plumes emitted by ship and air traffic,
1864 fossil and sunshine power.

1865 At least three variants of ISA production are proposed:

1866 • Variant 1: Emission of flame pyrolytic FeOOH aerosol with particle diameters smaller
1867 than 100 nm [461, 462] as ISA precursor by co-combustion of organic iron or carbonyl
1868 iron additives with liquid or gaseous fuels, or heating oils combusted in ship or and jet
1869 engines, or by oil or gas combustors. Co-combustion of iron compounds is a possible

measure in coal power stations and mixing the ISA precursor containing off combustion flue gas to the coal combustion flue gas after the dry flue gas cleaning stage. Useful side effects of iron additives are fuel efficiency optimization and soot emission minimizing [223, 224, 463, 464]. The emitted FeOOH aerosol plumes convert immediately into the ISA plume after leaving the emission sources, due to the high reactivity of flame pyrolytic Fe oxides. The period to cover the flame pyrolytic FeOOH particle surface by HCl absorption from the gaseous phase with Fe(III) chlorides is several times shorter comparing to the generation of iron chlorides from natural iron oxide minerals in loess dust particles [452, 465].

• Variant 2: Injection of vaporous ISA precursor iron compounds such as FeCl_3 into a carrier gas. By contacting the carrier gas and/or the atmosphere the vaporous iron compounds condenses and/or converts by physical and/or chemical means directly into ISA. Contrary to all other ISA precursors, the sunlit FeCl_3 vapor is photo-reduced by concomitant generation of ${}^{\circ}\text{Cl}$ [466]. Thus methane depleting ${}^{\circ}\text{Cl}$ emission can start even before this ISA precursor has changed into hydrated FeCl_3 .

• Variant 3: Injection of ultrasonic nebulized aqueous FeCl_3 solution as ISA precursor into a carrier gas. By water evaporation from the aerosol droplets ISA is generated.

The preferred heights of ISA plume generation in the troposphere are 1000 m above ground or higher altitudes in order to pass the boundary layer. There, the ISA plumes have optimum conditions to spread over sufficient life-times. The necessary buoyancy to lift up the ISA plumes can be regulated by controlling their carrier gas temperatures. Uplift towers [467], vortex generators [468] or tethered balloons [469, 470] are preferential means to direct ISA by carrier gas uplift to said heights.

The primary ochre colored FeOOH aerosol particles emitted by ISA method have diameters of $<0,05 \text{ } \mu\text{m}$. According to previous studies iron oxides are strong absorbers at visible wavelengths and might play a critical role in climate perturbation caused by dust aerosols [108, 109]. But this effect is not applicable to the ISA methods FeOOH aerosol because it is emitted by parallel generated flue gas plumes containing SO_2 and NO_x as sulfuric and nitric acid generators. Due to their small diameter dependent high surface area the aerosol particles immediately react with HCl. HCl is generated by the reaction between sea-salt aerosol and flue gas borne acids. Primary reaction product is the orange colored FeCl_3 aerosol: ISA. But the day time sun radiation bleaches ISA by FeCl_2 and ${}^{\circ}\text{Cl}$ generation; the night time re-oxidation of ISA plus HCl absorption regenerates FeCl_3 again. FeCl_2 is colorless at low humidity; pale green at high humidity.

Provision of the phytoplankton to optimize its growth with further nutrients such as Mn, Zn, Co, Cu, Mo, B, Si and P by the ISA method is possible by at least the variants 1-3 of the ISA method by co-combustion, co-condensation or co-nebulizing.

1907 Global fixing regulations of GHGs emission certificate prices, values, and ISA emission
1908 certificate credit values would be simple but effective measures for the quickest world-wide
1909 implementation of the ISA flue gas conditioning method.

1910 Anderson [471] reminded that of the 400 IPCC scenarios that keep warming below the Paris
1911 agreement target, “344 involve the deployment of negative emissions technologies”, which
1912 he qualifies of “speculative” or requiring geoengineering.

1913 A large part of the research devoted to climate engineering methods concerns SRM (sunlight
1914 reduction methods), such as mimicking the effects of large volcanic emissions by adding
1915 sulfates aerosols into the stratosphere as suggested for instance by Crutzen [242].
1916 Numerous other types of particles have been suggested for these aerosols for instance
1917 titania by Jones [472]. But SRM only buys time and has numerous drawbacks.
1918 On the one hand, SRM did not address the main cause of global warming (GHG emissions),
1919 nor prevents ocean acidification. On the other hand, several CDR technologies do, but their
1920 costs are much larger than SRM and the scale requested poses many technological
1921 challenges, for instance “scaling up carbon dioxide capture and storage from megatons to
1922 gigatons” [473].

1923 Very few CDR methods without emission of disadvantageous pollution are known. One of
1924 those is the Terra Preta method: it is characterized by the mixing of grinded bio-char into
1925 agricultural soils. The climate relevancies of this method are sustained fixation of former CO₂
1926 carbon, minimizing fertilizer consumption and N₂O emission reduction from the fertilized
1927 Terra Preta soils. Char has similar properties within the soil environment than humic
1928 substances, but in the environment, char is resistant against oxidation.

1929 Comparing the Terra Preta method to other CDR methods such as fertilizing the ocean by
1930 micro nutrients, results in lower specific material expenses by CDR methods per unit of CO₂
1931 removed from the atmosphere [474]. The ISA method we propose is a member of this CDR
1932 group, thus this result is also valid. in addition the further climate effects of the ISA method
1933 (such as depletion of CH₄, tropospheric ozone, and soot, plus cloud whitening) reduce the
1934 specific material expense level. Furthermore, the ISA method mimics a natural phenomenon
1935 (mineral iron-dust transport and deposition) and only proposes to improve the efficiency of an
1936 already existing anthropogenic pollution. Myriokefalitakis et al. [475] estimates that “*The
1937 present level of atmospheric deposition of dissolved Fe over the global ocean is calculated to
1938 be about 3 times higher than for 1850 emissions, and about a 30% decrease is projected for
1939 2100 emissions. These changes are expected to impact most on the high-nutrient-low-
1940 chlorophyll oceanic regions.*” Their model “*results show a 5-fold decrease in Fe emissions
1941 from anthropogenic combustion sources in the year 2100 against in the present day, and
1942 about 45% reduction in mineral-Fe dissolution compared to the present day*”. Meanwhile the
1943 model used by [54] predicts by 2090 an iron supply increase to HNLC surface waters

1944 especially in the eastern equatorial Pacific attributed by the authors to changes in the
1945 meridional overturning and gyre-scale circulations that might intensify the advective supply of
1946 iron to surface waters. Furthermore, several authors [77, 87, 476-478] point out that both
1947 glacial and deep-water Fe sources may increase with continued climate warming due to Fe
1948 input from other sources, such as shelf sediments, melt water, icebergs, rivers, surface water
1949 runoff and dust input.

1950 Recently Boyd and Bressac [67] suggested starting rapidly tests to determine efficiency and
1951 side effects of CDR ocean iron fertilizing methods, and analyzed possible geopolitical
1952 conflicts together with some other geoengineering methods [479].

1953 Several experts, for instance Hansen et al. [6], expressed recently the urgent warning that
1954 mankind has only short time left to address and control climate warming. As a consequence
1955 mankind ought to find out as soon as possible climate controlling matter which might
1956 generate the most effective and reversible climate cooling effects within the shortest period.
1957 Lifetime of ISA emissions in the troposphere are much shorter than that of sulfates in the
1958 stratosphere. Of course, such tools and agents have to be rapidly evaluated against side-
1959 effects to ecosystems, human health, and last but not least their economic burdens.

1960

1961 **8. Interaction of the ISA method with further measures to protect the environment**

1962 According to Wittmer & Zetzs [127] elevated HCl content in the atmosphere triggers the
1963 methane depleting coating of oxidic ISA precursors by photolytic active Fe(III) chlorides. Any
1964 measure triggering the reduction of the HCl content of the atmosphere would impair the
1965 effectiveness of the ISA method based on this kind of method.

1966 In this sense all kind of measures to reduce the sulfur and NO_x content of the flue gas
1967 content of gaseous, liquid or gaseous fuels belongs would decrease the effectiveness of
1968 oxidic ISA precursors, as the S and NO_x oxidation products sulfuric acid aerosol and gaseous
1969 nitric acid are the main producers of HCl by changing sea salt aerosol into sulfate and nitrate
1970 aerosol. Even the measures of reducing the energy production from fuel burning by changing
1971 to wind and photovoltaic energy would reduce this HCl source.

1972 Sea salt aerosols produce HCl after contact with organic aerosol and organic volatile matter
1973 as the latter generates acid oxidation products from the latter such as oxalic acid [150, 480,
1974 481]. A large fraction of organic aerosols and secondary organic aerosols originate from
1975 anthropogenic sources such as combustions. The change to wind and photovoltaic energy
1976 would reduce this HCl source.

1977 The proposed CE measure of producing sulfuric acid aerosol within the stratosphere by
1978 inducing an albedo increase would increase the HCl content, during contact of the
1979 precipitating acid aerosol with tropospheric sea salt aerosol. Even the proposed CE measure

1980 of increasing the sea salt aerosol content of the troposphere by artificial sea salt aerosol as
1981 cloud whitening measure could be used as ISA method trigger if flue gas is used to elevate
1982 the sea salt aerosol.

1983

1984 **9. Discussion**

1985 In order to fight global warming, this review proposes to enhance the natural actions of Cl
1986 atoms in the troposphere, together with the synergistic action of iron in the atmosphere,
1987 ocean, oceanic sediment and land compartments, as a climate engineering method. The
1988 main results expected are a diminution of long lived well mixed atmospheric methane and
1989 carbon dioxide, but the diminution of local short lived tropospheric ozone is also possible, as
1990 well as effects on the Earth albedo, restoration of the oxygen flux into the deep ocean basins,
1991 organic carbon storage, etc.

1992 The most important actor in the process of CO₂ C transfer from atmosphere into the Earth
1993 interior is the carbonate C precipitation in the crust rocks and sediments below the ocean.
1994 The ocean crust acts like a conveyor belt between crust evolution at MOR and its subduction
1995 zones into the mantle. Transported medium are carbonate C, small amounts of organic C,
1996 ocean salt, ocean water and sediments. This process is part of the homeostasis of the
1997 planet. Disturbances of this system part are induced by stratification processes within the
1998 ocean basins caused by density differences between different layers of the water column.
1999 Most stratification events are induced by climate warmings. Any of these homeostasis
2000 disturbances are removed by the system within geological time scales. Signs of such
2001 disturbances are more or less prominent events of extinction and of elevated organic C
2002 content in the ocean sediments. Because the recent climate warming will induce a new
2003 ocean stratification event, mankind ought to stop it. Like several interglacial stratification
2004 events in the glacial periods, the actual stratification is also induced by increasing melt water
2005 discharge. The past interruptions of the interglacial climate warmings teach us, that the
2006 interruption events were accompanied as a rule by dust events. As demonstrated, the
2007 climate cooling effects of these dust events are induced by the chemical and physical actions
2008 of ISA.

2009 In high-nutrient, low-chlorophyll oceanic areas, where the contribution of atmospheric
2010 deposition of iron to the surface ocean could account for about 50% of C fixation, as well as
2011 in oceanic nitrogen-limited areas, where atmospheric iron relieves the iron limitation of
2012 diazotrophic organisms (thus contributing to the rate of N fixation), atmospheric deposition of
2013 iron has the potential to augment atmospherically supported rates of C fixation [482] and thus
2014 "cool the Earth" by removing CO₂ from the atmosphere.

2015 Maybe the iron atmospheric deposition over terrestrial landscapes and wetlands has similar
2016 effects? Are there possible benefits of atmospheric deposition of soluble iron over the
2017 continents, where iron deficiency in plants occurs over 30% of them which are high pH
2018 calcareous soils that make soil Fe unavailable for plants [395]? Iron deficiency induced
2019 chlorosis in plants can be solved by addition of soluble iron complexes to the soil, or by foliar
2020 application of sprays containing mineral iron (for instance FeSO_4) [396] or iron chelates (Fe-
2021 EDTA among others) [399]. Iron, sulfate and several organic iron complexes such as iron-
2022 oxalate are known constituents of atmospheric dust [74], but unfortunately no published work
2023 was found about possible effects on plant chlorosis by foliar deposition of soluble iron from
2024 atmospheric dust.

2025 We did not find studies about the impacts of atmospheric iron nutrient deposition on
2026 terrestrial ecosystems productivity. More research is needed to continue to enhance our
2027 understanding of the possible benefits of the iron cycling in freshwater and terrestrial
2028 landscape environments, as well as in atmospheric and sediment environments, in particular
2029 on its numerous potential capacities to fight global warming. The cooling effects of ISA and
2030 iron reviewed in this article already provide insight into the progress made on understanding
2031 the iron cycles from a range of perspectives.

2032 There is abundant literature on the many geoengineering methods that have been proposed
2033 to “cool the Earth” [483, 484]. In particular, the injection of sulfate aerosols into the
2034 stratosphere is the most studied method, as it mimics the episodic action of natural
2035 volcanoes [163, 387]. Injected particles into the stratosphere reduce the radiative balance of
2036 Earth by scattering solar radiation back to space, so several types of particles are envisioned
2037 with a wide range of side-effects [472].

2038 The literature also describes many options to deliver sulfates, their precursors (or other
2039 particles) to the stratosphere [469]. For instance, airplane delivery of the sulfate aerosols by
2040 the kerosene combustion process requires military jets due to commercial aircrafts limited
2041 altitude of 10 km (30,000 feet), and not the 20 km requested [469].

2042 In the case of ISA, the altitude needed to “cool the Earth” is much lower: it is in the
2043 troposphere and the total quantities to deliver are 1 order of magnitude smaller. So air travel
2044 is a possible means for ISA delivery. But the global jet fuel consumption is only about
2045 240,000 t yr^{-1} . Even by assuming the very high emission rate of 1 kg ISA precursor iron per
2046 ton of jet fuel, only 240 t yr^{-1} might be emitted. This seems far away from the order of
2047 magnitude of the target ISA emissions.

2048 From the many other possible delivery strategies envisioned for SRM by stratospheric
2049 aerosols, many are not suited for ISA, such as artillery, missiles and rockets [469]: it will be
2050 cheaper with less pollution to use the flue gas of a reduced number of thermal power plants.
2051 That might be efficient enough to deliver the artificial iron aerosol needed over the boundary

2052 layer, in order to the aerosols to stay several days or weeks in the troposphere and become
2053 widely distributed [485].

2054 According to Luo [79], deposition of soluble iron from combustion already contributes from 20
2055 to 100% of the soluble iron deposition over many ocean regions.

2056 As an example we calculated the possible production and emission of the ISA precursor
2057 FeOOH aerosol using the flue gas of the German power station Niederaußem; with the input
2058 of 25 million t yr⁻¹ of lignite (brown coal), this power station produces 3,600 MW.

2059 According to ISA production variant 1 (chapter 6) the ISA precursor FeOOH aerosol may be
2060 produced by burning of a ferrocene ($Fe(C_5H_5)_2$) oil solution containing 1% ferrocene in a
2061 separate simple oil burner. The hot oil burner flue gas containing the ISA precursor FeOOH
2062 aerosol is injected and mixed into the cleaned power station flue gas. The power station flue
2063 gas emission rate is calculated to 9,000 m³ flue gas per ton of lignite. As the ISA precursor
2064 containing flue gas will be elevated to heights of more than 1000 m above ground, dust
2065 levels of the ISA precursor FeOOH aerosol of 20 mg m⁻³ flue gas seem to be acceptable.
2066 This allows a quantity of 180 g of FeOOH per ton of combusted lignite (9000 m³ t⁻¹ x 0,02
2067 g m⁻³). At a lignite quantity of 25 million t yr⁻¹, this corresponds to 4,500 t FeOOH yr⁻¹. FeOOH
2068 has an iron content of 63%. This corresponds to a possible iron emission of 2,831 t yr⁻¹ and a
2069 possible ferrocene consumption of 9,438 t yr⁻¹.

2070 Corresponding to this calculation about 100 of such huge power stations should have the
2071 ability to produce the sufficient ISA quantity of an equivalent of 200,000 to 300,000 t Fe yr⁻¹.
2072 Further optimization of the cooling capacity of the produced ISA is possible by a co-emission
2073 of HCl, for instance by co-burning of an organic HCl precursor.

2074 This example illustrates that ISA emission at only 100 power stations, or any similar ISA
2075 emission measures, is quite feasible compared to the alternative of CCS by CO₂ capture
2076 from the flue gas of 40 Gt yr⁻¹, compression of the CO₂ until the liquid state, followed by
2077 transportation and CO₂ storage by injection into underground rock aquifers or into old and
2078 depleted fossil fuel reservoirs.

2079 In order to increase the effectiveness of the buoyancy capacity of the power works the usual
2080 wet cooling tower might be replaced by a dry cooling tower to mix the dry and warm air
2081 emission from the cooling tower with the hot flue gas as additional buoyancy and due point
2082 reduction mean. Further the flue gas buoyancy may increase by increasing the flue gas
2083 temperature. This or other simple techniques to realize ISA plumes may be used within the
2084 troposphere.

2085 One alternative delivery method that seems promising and can easily be adapted to ISA
2086 method, is the use of tethered balloons [486], and will cost much less as 1 or 2 km altitude
2087 will be sufficient for ISA emissions, requiring much lower pressures in the pipes than for SO₂
2088 delivery at 20 km for the geoengineering method. Technical and economic feasibility have

2089 already been studied for the SPICE project [470] which was planning to release sea water
2090 spray at 1 km altitude.

2091 Furthermore, as iron emissions only stay in the troposphere for weeks compared to SRM
2092 sulfates in the stratosphere that stay 1 or 2 years. In case any unintentional side effect or
2093 problem occurs, stopping the emissions is rapidly possible and the reversibility of its effects
2094 are much shorter than for solar radiation management by sulfates aerosols.

2095 Other geoengineering strategies to cool the Earth, such as carbon dioxide removal by iron
2096 fertilization [64] have several pros and cons, such as localized release, less dispersion, in a
2097 form that is not readily bio-available, resulting in restricted cooling effects and high expenses.

2098 The idea of ocean fertilization by iron to enhance the CO₂ conversion by phytoplankton
2099 assimilation came up within the last two decades. Proposed was the mixing of an iron salt
2100 solution by ships into the ocean surface. This idea was debated controversial. Example of
2101 this debate is the discussion between KS Johnson et al. and SW Chisholm et al. [68, 69].

2102 Deeper insight into this debate is given by Boyd and Bressac [67].

2103 The iron fertilization procedure tests done so far had been restricted to relatively small ocean
2104 regions [51, 52, 487]. These tests produced iron concentrations orders of magnitude above
2105 those produced by natural ISA processing which are in the single decadal order of milligrams
2106 of additional dissolved iron input per square meter per year. In this sense the ISA method is
2107 quite different from "iron fertilization". As known from satellite views, phytoplankton blooms
2108 induced by natural dust emission events from the Sahara, Gobi and further dust sources,
2109 there is no doubt about the fertilizing effect of iron. Meanwhile this kind of natural iron
2110 fertilization enhancing the transfer of CO₂-Carbon into organic sediment carbon via the
2111 oceanic food chain seems to be un-contradicted and accepted [6].

2112 The ISA method allows the use of the same atom of iron several times by catalytic and
2113 photocatalytic processes into the atmosphere, with different cooling effects (such as albedo
2114 modification and enhancement of the methane destruction) and then reaches the oceans,
2115 with further cooling effects such as the enhancement of CO₂ carbon fixation.

2116 Harrison [488] estimates that a single ship based fertilization of the Southern Ocean will
2117 result only in a net sequestration of 0.01 t Carbon km⁻² for 100 years at a cost of US\$457 per
2118 ton of CO₂, as the economic challenge of distributing low concentrations of iron over large
2119 ocean surface areas, has been underestimated [489], as well as the numerous loss
2120 processes (i.e.: soluble iron loss and organic carbon that do not sink till the bottom of the
2121 ocean) resulting in reduced net storage of carbon per km² of ocean fertilized.

2122 Figure 7 summarizes many of the cooling effects of the ISA method.

2123

2124

2125 **Figure 7.** Summary of the principal cooling effects of the proposed iron salt aerosols method.
 2126 The organic C / carbonate C burial ratio in sediments and bedrock increase after ISA method
 2127 start, until a maximum. Then this ratio begins to decrease as soon as the vertical current
 2128 components in the ocean basin begin to act. Then the ratio arrives to a very low permanent
 2129 level, while the total of buried C arrives at a permanent maximum level when the maximum
 2130 vertical mixing conditions have been obtained by the ISA method.
 2131

2132 Why does ISA appear to be more effective than ocean iron fertilization? For ocean iron
 2133 fertilization several tons of $\text{Fe}(\text{II})$ are dispersed in a short time (hours) over only some km^2 of
 2134 ocean with several drawbacks and a massive algae bloom can change the local biotopes.
 2135 Meanwhile ISA releases iron continuously, reaching the entire 510 million km^2 of Earth
 2136 surface. The current iron inputs (in the form of soluble salts) into the oceans are estimated
 2137 between 0.1 and 0.26 Tg yr^{-1} [74, 80, 456]. As water covers nearly 72% of Earth surface (362
 2138 million km^2), if ISA delivers 1 Tg Fe yr^{-1} evenly distributed (in addition to natural and
 2139 anthropogenic current emissions), which is 4 times more than the expected needs (chapter
 2140 5.2), on average every km^2 of ocean receives $5.4 \text{ g Fe km}^{-2} \text{ day}^{-1}$ ($1/510 \text{ t Fe km}^{-2} \text{ yr}^{-1}$).
 2141

2142

10 Conclusion

2143 At ideal circumstances the ocean acts as an optimum transport medium for CO₂ carbon from
 2144 the atmosphere into the ocean crust. Such circumstances are present when the vertical
 2145 cycling components between ocean surface and ocean bottom are undisturbed.
 2146 Any stratification event disturbs this cycling and interrupts the CO₂ transport. Climate
 2147 warming can induce stratification events by producing huge amounts of melt water. Recent
 2148 research found signs of at least regional development of a beginning stratification.
 2149 The numerous climate cooling effects of natural dust show in this review, according to its
 2150 soluble iron content, demonstrate that dust is of a central significance as steering element of
 2151 this carbon transport from the atmosphere into the ocean crust.
 2152 This review article demonstrates the enormous effects of atmospheric iron dusts and focuses
 2153 first on the tropospheric aerosol particles composed partly of iron and chloride (iron salt
 2154 aerosols ISA), showing their cooperation and interactions with several components of the
 2155 atmosphere for instance with CH₄, as the chlorine atom is responsible for the removal of a
 2156 significant part of this GHG (3 to 4 % of CH₄) in the troposphere [118, 119]. This article
 2157 summarizes a dozen of other possible direct and indirect natural climate cooling mechanisms
 2158 induced by the iron biogeochemistry in all the Earth compartments: atmosphere, oceans,
 2159 land (surface, soil), sediment and crust.
 2160 These dozen possible climate cooling effects due to the multi-stage chemistry of iron within
 2161 the atmosphere, hydrosphere, geosphere and lithosphere are described all together for the
 2162 first time and are summarized in table 3, which shows the most probable climate cooling
 2163 effects of ISA. They include the ocean fertilization effect which allows enhanced algal and
 2164 phytoplankton growth, which removes mineral CO₂ from the atmosphere and transforms it in
 2165 organic carbon, a part of which can sink to the bottom of the oceans and be stored for long
 2166 periods of time by different mechanisms that are described.
 2167

2168 **Table 3:** principal effects of the ISA method proposed - or its natural equivalent - and their
 2169 probable effect on the different biosphere compartments.
 2170
 2171
 2172
 2173

Compartment	Locality and/or action	Effect	Most probable cooling efficiency	Time delay between cooling on-set or off-set after ISA method start or stop
Troposphere	Boundary layer and lower	Cloud albedo increase	+++	<1 yr

	troposphere	Methane and VOC depletion	+++	<1 yr
		Black and brown carbon precipitation	++	<1 yr
		Ozone depletion	++	<1 yr
Continent	Forests and further primary producer	Organic C burial increase by assimilation increase	+	<5 yr
	Wetlands, marshes, peat bogs, lake sediments	Methane emission decrease by methanogenesis inhibition	+++	<5 yr
	Desert surfaces	Methane and VOC depletion	+ / -	<1 yr
Ocean and ocean sediment aquifer at the ocean bottom	Phytoplankton and the further food chain links	Organic and Carbonate C burial increase by assimilation increase	1) ++++ 2) +	<1 yr <1 yr
	Activation of the ocean basin vertical cycling	Carbonate C burial increase in the ocean crust rock	3) +++++ 4) + / +++	>10 yr >10 yr

2174

2175 1) The euxinic and alkaline bottom water of the stratified ocean have no oxidation and calcite
2176 solution capacity, thus produce a high burial rate of organic sediment C and carbonate C
2177 2) The oxic, hydrogen carbonate and CO₂-containing bottom water of the well-mixed ocean
2178 have high oxidation capacity and high calcite dissolving capacity, thus produce a low burial
2179 rate of organic and inorganic Sediment C
2180 3) The high inorganic C load of the oxic, hydrogen carbonate and CO₂-containing bottom
2181 water of the well-mixed ocean comes to total precipitation within the alkaline and reducing
2182 crust aquifer, thus produce a very high burial rate of inorganic C and small amounts of
2183 organic C precipitation
2184 4) The euxinic and alkaline bottom water of the stratified ocean has low content of dissolved
2185 inorganic C and contains methane C up to saturation, thus produce low to medium C burial
2186 rate during cycling through the crust aquifer.

2187

2188 In order to explicitly handle the interaction of climate and biogeochemistry, the complex
2189 interactions between climate and the cycles of C, N, P, H₂O and micronutrients call for
2190 models that integrate global biogeochemical cycles of terrestrial, oceanic and atmospheric
2191 components of the biosphere.

2192 While the iron biogeochemical cycle between the atmosphere and the ocean is considered in
2193 numerous publications, the treatment of key processes and feedbacks within the terrestrial
2194 compartment has been rather limited, and further development is urgently needed.

2195 Mineral dust aerosols containing iron and other important nutrients or micro-nutrients are well
2196 studied components of the iron biogeochemical cycle in the atmosphere and the oceans, but
2197 the absence of recent bibliography about the full iron biogeochemical cycle over terrestrial
2198 landscapes, soils, wetlands and all clear water compartments (glaciers, ice, snow, lakes, and
2199 groundwater) points out a lack of up-to-date overview. In our opinion, the atmospheric

2200 chemistry models need to incorporate all relevant interaction compartments of the Fe-cycle
2201 with sun radiation, chlorine, sulphur, nitrogen, oxygen, carbon and water in order to model
2202 the several planetary cooling effects of the iron cycle.

2203 Acid rain sulphate (SO_4^{2-}) deposition on peatlands and wetlands from natural sources
2204 (volcanoes), or anthropogenic sources (fossil fuel combustion) is a known suppressant of
2205 CH_4 production [490, 491] and emissions [492-494] and may be an important process in
2206 terms of global climate. The importance of the Fe input associated with anthropogenic
2207 aerosol deposition in terrestrial biogeochemistry deserves further investigation as well as the
2208 possible impacts of a drastic diminution of anthropogenic iron and sulfates emissions from
2209 combustion processes expected by 2050 to satisfy the Paris climate agreement.

2210 This review completes the previous global iron cycle visions [50, 52, 74, 97, 98, 495-497] and
2211 advocates a balanced approach to make profit of the iron cycle to fight global warming by
2212 enhancing natural processes.

2213 Climate cooling by natural ISA involves the troposphere, dry solid surfaces, ocean waters,
2214 ocean sediment, ocean crust and land. Several GHG factors are controlled by ISA: CO_2 ,
2215 CH_4 , tropospheric O_3 , black carbon, dust, cloud albedo, and vertical ocean mixing.

2216 Using mineral dust as a natural analogue tool, this article proposes to enhance the natural
2217 ISA in order to raise and heighten the cooling impacts of at least two of the dozen natural
2218 effects found: i.e. CH_4 removal by tropospheric Cl and CO_2 removal by soluble-Fe ocean
2219 fertilization.

2220 The ISA method proposed is feasible, probably with few to no-environmental side-effects, as
2221 it relates to chemical and/or physical combustion processes occurring currently. Actual iron
2222 production and coal combustion together with other combustions sources already release in
2223 the atmosphere a very significant part of the global bioavailable iron in the northern oceans:
2224 from 15% [80] to 80% [82, 83] depending on the iron solubility parameters taken into
2225 account.

2226 The present level of atmospheric deposition of soluble Fe over the global ocean is evaluated
2227 to be about 3 times higher than for 1850 emissions [475], as increases in anthropogenic and
2228 biomass burning-emissions resulted in both enhanced Fe combustion emissions and a more
2229 acidic environment and thus more than double soluble Fe deposition (nearly 0.5 Tg-Fe yr^{-1}
2230 nowadays versus nearly 0.2 Tg-Fe yr^{-1} in 1850).

2231 Inevitable reduction of aerosol emissions to improve air quality in the future might accelerate
2232 the decline of oceanic productivity per unit warming and accelerate decline in oceanic NPP
2233 [498]. Myriokefalitakis model projected results for 2100 indicate about a $^{1/4}$ decrease in
2234 atmospheric deposition of soluble Fe, with a 5-fold decrease in Fe emissions from
2235 anthropogenic combustion sources (~ 0.070 Tg-Fe yr^{-1} nowadays against ~ 0.013 Tg-Fe yr^{-1} in
2236 2100). These changes are expected to impact most on the high-nutrient-low-chlorophyll

2237 oceanic regions. According to Myriokefalitakis [475], in view of the importance of Fe as a
2238 micronutrient for marine ecosystems, the calculated projected changes in soluble iron
2239 emissions, requires the implementation of comprehensive mineral-Fe dissolution processes
2240 as well as Fe combustion emissions in coupled climate-biogeochemistry models to account
2241 for feedbacks between climate and biogeochemical cycles. This review shows that the
2242 effects on CH₄ of ISA and of anthropogenic Fe emissions in the troposphere also deserve to
2243 be taken into account.

2244 According to Wang et al. [83], taking into consideration the relatively high solubility of
2245 anthropogenic iron, combustion sources contribution to soluble Fe supply for northern Pacific
2246 and northern Atlantic oceanic ecosystems could be amplified by 1–2 orders of magnitude. To
2247 stop global warming, we estimated the requirements in terms of ISA by extrapolation of
2248 experiments of iron catalyzed activation by artificial sea-salt aerosols [124, 127]. Our first
2249 estimations show that by doubling the current natural Fe emissions by ISA emissions into the
2250 troposphere, i.e. by about 0.3 Tg Fe yr⁻¹, artificial ISA would enable the prevention or even
2251 the reversal of GW.

2252 The adjustable flue gas temperatures for different types of combustions are a means to lift
2253 the ISA plumes to optimal heights within the troposphere. Thus, we believe that the ISA
2254 method proposed integrates technical and economically feasible tools that can help to stop
2255 GW.

2256 According to our remarks in chapter 2, the reactions of ISA in the troposphere are the most
2257 prominent results for a surface temperature decrease [439]. This stops further ice melting,
2258 which activates the different vertical ocean water movements. As a result, the dissolved CO₂
2259 is then buried as carbonate C within the ocean bottom sediments and crust.

2260

2261

2262 **Abbreviations:**

2263 Carbon capture and storage: CCS; Cloud condensation nuclei: CCN; Global Warming: GW;
2264 Intergovernmental Panel on Climate Change: IPPC; Iron salt: IS; Iron salt aerosols: ISA;
2265 Humic-like substances: HULIS; Hydroxyl radical: [•]OH; Chlorine radical: [•]Cl; Bromine radical:
2266 [•]Br; Ligand: L; Methane: CH₄; Mid-ocean rift: MOR; Secondary organic aerosol: SOA;
2267 Thermohaline circulation: THC; Volatile organic compounds: VOC.

2268

2269 **Authors contribution:**

2270 F.D. Oeste suggested the review idea and performed initial bibliographical search completed
2271 by R. de Richter. F.D. Oeste and R. de Richter prepared the manuscript and the figures with
2272 contributions from all co-authors. T. Ming and S. Caillol also contributed to structuring the
2273 manuscript, ideas, submitting bibliography and English corrections.

2274

2275 **Competing interests**

2276 The authors declare that they have no conflict of interest.

2277

2278 **Acknowledgment:**

2279 This research was supported by the Scientific Research Foundation of Wuhan University of
2280 Technology (No. 40120237) and the ESI Discipline Promotion Foundation of WUT
2281 (No.35400664).

2282 The co-authors would like to thank both reviewers S.M. Elliott and Anonymous for their
2283 constructive and thoughtful reviews which greatly improved this manuscript, in particular
2284 chapters 5, 9 and 10. We also thank Rolf Sander and Cornelius Zetzscher for their constructive
2285 comments and Louise Phillips for grammatical corrections and re-reading.

2286

2287 **Bibliography:**

2288

2289 [1] de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I. Cessation of deep convection in the open
2290 Southern Ocean under anthropogenic climate change. *Nature Climate Change*. 2014;4:278-82.

2291 [2] Bernardello R, Marinov I, Palter JB, Galbraith ED, Sarmiento JL. Impact of Weddell Sea deep convection on
2292 natural and anthropogenic carbon in a climate model. *Geophysical Research Letters*. 2014;41:7262-9.

2293 [3] Bernardello R, Marinov I, Palter JB, Sarmiento JL, Galbraith ED, Slater RD. Response of the ocean natural
2294 carbon storage to projected twenty-first-century climate change. *Journal of Climate*. 2014;27:2033-53.

2295 [4] Capone DG, Hutchins DA. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean.
2296 *Nature geoscience*. 2013;6:711-7.

2297 [5] Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L, Löscher CR, et al. Nitrogen cycling driven by organic
2298 matter export in the South Pacific oxygen minimum zone. *Nature geoscience*. 2013;6:228-34.

2299 [6] Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, et al. Ice melt, sea level rise and
2300 superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2° C global
2301 warming is highly dangerous. *Atmospheric Chemistry and Physics Discussions*. 2016;15:20059-179.

2302 [7] van Helmond NA, Sluijs A, Sinninghe Damsté JS, Reichart G-J, Voigt S, Erbacher J, et al. Freshwater
2303 discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf
2304 (Wunstorf, northern Germany). *Climate of the Past*. 2015;11:495-508.

2305 [8] Friedrich O, Erbacher J, Moriya K, Wilson PA, Kuhnert H. Warm saline intermediate waters in the Cretaceous
2306 tropical Atlantic Ocean. *Nature Geoscience*. 2008;1:453-7.

2307 [9] Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B. The marine nitrogen cycle: recent
2308 discoveries, uncertainties and the potential relevance of climate change. *Philosophical Transactions of the Royal
2309 Society B: Biological Sciences*. 2013;368:20130121.

2310 [10] Klotz MG, Stein LY. Nitrifier genomics and evolution of the nitrogen cycle. *FEMS microbiology letters*.
2311 2008;278:146-56.

2312 [11] Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound
2313 transformations. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*. 2013;1827:114-35.

2314 [12] Eckert S, Brumsack H-J, Severmann S, Schnetger B, März C, Fröllje H. Establishment of euxinic conditions
2315 in the Holocene Black Sea. *Geology*. 2013;41:431-4.

2316 [13] Meyers PA. Why are the δ13Corg values in Phanerozoic black shales more negative than in modern marine
2317 organic matter? *Geochemistry, Geophysics, Geosystems*. 2014;15:3085-106.

2318 [14] Praetorius S, Mix A, Walczak M, Wolhowe M, Addison J, Prahl F. North Pacific deglacial hypoxic events
2319 linked to abrupt ocean warming. *Nature*. 2015;527:362-6.

2320 [15] Kaiho K, Saito R, Ito K, Miyaji T, Biswas R, Tian L, et al. Effects of soil erosion and anoxic–euxinic ocean in
2321 the Permian–Triassic marine crisis. *Heliyon*. 2016;2:e00137.

2322 [16] Phrampus BJ, Hornbach MJ, Ruppel CD, Hart PE. Widespread gas hydrate instability on the upper US
2323 Beaufort margin. *Journal of Geophysical Research: Solid Earth*. 2014;119:8594-609.

2324 [17] Yamamoto A, Yamanaka Y, Oka A, Abe □ Ouchi A. Ocean oxygen depletion due to decomposition of
2325 submarine methane hydrate. *Geophysical Research Letters*. 2014;41:5075-83.

2326 [18] Bakun A, Black B, Bograd SJ, Garcia-Reyes M, Miller A, Rykaczewski R, et al. Anticipated effects of climate
2327 change on coastal upwelling ecosystems. *Current Climate Change Reports*. 2015;1:85-93.

2328 [19] Branch TA, DeJoseph BM, Ray LJ, Wagner CA. Impacts of ocean acidification on marine seafood. *Trends in
2329 ecology & evolution*. 2013;28:178-86.

2330 [20] Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the
 2331 seafloor. *Microbiology and Molecular Biology Reviews*. 2011;75:361-422.

2332 [21] Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IA, Allen JF, et al. Early bioenergetic evolution.
 2333 *Philosophical Transactions of the Royal Society of London B: Biological Sciences*. 2013;368:20130088.

2334 [22] Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. The microbiology of deep-sea hydrothermal
 2335 vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. *Hydrothermal*
 2336 *microbial ecosystems*. 2015;79.

2337 [23] Postec A, Quéméneur M, Meline Bes NM, Benaissa F, Payri C, Pelletier B, et al. Microbial diversity in a
 2338 submarine carbonate edifice from the serpentizing hydrothermal system of the Prony Bay (New Caledonia) over
 2339 a 6-year period. *Frontiers in microbiology*. 2015;6.

2340 [24] Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. *Philosophical*
 2341 *Transactions of the Royal Society of London B: Biological Sciences*. 2007;362:1887-926.

2342 [25] Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, et al. Basin-scale transport of
 2343 hydrothermal dissolved metals across the South Pacific Ocean. *Nature*. 2015;523:200-3.

2344 [26] Hawkes JA, Connelly D, Gledhill M, Achterberg EP. The stabilisation and transportation of dissolved iron from
 2345 high temperature hydrothermal vent systems. *Earth and Planetary Science Letters*. 2013;375:280-90.

2346 [27] Holm NG, Neubeck A. Reduction of nitrogen compounds in oceanic basement and its implications for HCN
 2347 formation and abiotic organic synthesis. *Geochem Trans*. 2009;10.

2348 [28] Monnin C, Chavagnac V, Boulart C, Ménez B, Gérard M, Gérard E, et al. Fluid chemistry of the low
 2349 temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). *Biogeosciences*. 2014;11:5687-
 2350 706.

2351 [29] Nielsen SG, Rehkämper M, Teagle DA, Butterfield DA, Alt JC, Halliday AN. Hydrothermal fluid fluxes
 2352 calculated from the isotopic mass balance of thallium in the ocean crust. *Earth and Planetary Science Letters*.
 2353 2006;251:120-33.

2354 [30] Kawagucci S, Chiba H, Ishibashi J-i, Yamanaka T, Toki T, Muramatsu Y, et al. Hydrothermal fluid
 2355 geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor
 2356 fluid circulation systems. *Geochemical Journal*. 2011;45:109-24.

2357 [31] Watson AJ, Vallis GK, Nikurashin M. Southern Ocean buoyancy forcing of ocean ventilation and glacial
 2358 atmospheric CO₂. *Nature Geoscience*. 2015.

2359 [32] Coogan LA, Gillis KM. Evidence that low-temperature oceanic hydrothermal systems play an important role
 2360 in the silicate-carbonate weathering cycle and long-term climate regulation. *Geochemistry, Geophysics,*
 2361 *Geosystems*. 2013;14:1771-86.

2362 [33] Otto-Bliesner BL, Brady EC, Shields C. Late Cretaceous ocean: coupled simulations with the national center
 2363 for atmospheric research climate system model. *Journal of Geophysical Research: Atmospheres*. 2002;107.

2364 [34] Takashima R, Nishi H, Huber BT, Leckie EM. Greenhouse world and the Mesozoic Ocean. *The*
 2365 *Oceanography Society*. 2006;19:82-92.

2366 [35] Martínez-García A, Rosell-Melé A, Jaccard SL, Geibert W, Sigman DM, Haug GH. Southern Ocean dust-
 2367 climate coupling over the past four million years. *Nature*. 2011;476:312-5.

2368 [36] Maher BA, Dennis P. Evidence against dust-mediated control of glacial-interglacial changes in atmospheric
 2369 CO₂. *Nature*. 2001;411:176-80.

2370 [37] Lamy F, Gersonde R, Winckler G, Esper O, Jaeschke A, Kuhn G, et al. Increased dust deposition in the
 2371 Pacific Southern Ocean during glacial periods. *Science*. 2014;343:403-7.

2372 [38] Martin JH. Glacial-interglacial CO₂ change: the Iron hypothesis. *Paleoceanography*. 1990;5:1-13.

2373 [39] Maher B, Prospero J, Mackie D, Gaiero D, Hesse P, Balkanski Y. Global connections between aeolian dust,
 2374 climate and ocean biogeochemistry at the present day and at the last glacial maximum. *Earth-Science Reviews*.
 2375 2010;99:61-97.

2376 [40] Anderson RF, Barker S, Fleisher M, Gersonde R, Goldstein SL, Kuhn G, et al. Biological response to
 2377 millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. *Philosophical*
 2378 *Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*.
 2379 2014;372:20130054.

2380 [41] Ziegler M, Diz P, Hall IR, Zahn R. Millennial-scale changes in atmospheric CO₂ levels linked to the Southern
 2381 Ocean carbon isotope gradient and dust flux. *Nature Geoscience*. 2013;6:457-61.

2382 [42] Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M, Hodell DA, et al. Iron fertilization of the
 2383 Subantarctic Ocean during the last ice age. *Science*. 2014;343:1347-50.

2384 [43] Tréguer P, Pondaven P. Global change: silica control of carbon dioxide. *Nature*. 2000;406:358-9.

2385 [44] Sur S, Owens JD, Soreghan GS, Lyons TW, Raiswell R, Heavens NG, et al. Extreme eolian delivery of
 2386 reactive iron to late Paleozoic icehouse seas. *Geology*. 2015;43:1099-102.

2387 [45] Breitbarth E, Achterberg EP, Ardelan M, Baker AR, Bucciarelli E, Chever F, et al. Iron biogeochemistry
 2388 across marine systems—progress from the past decade. *Biogeosciences*. 2010;7:1075-97.

2389 [46] Raiswell R, Canfield DE. The iron biogeochemical cycle past and present. *Geochemical Perspectives*.
 2390 2012;1:1-2.

2391 [47] Moore J, Braucher O. Sedimentary and mineral dust sources of dissolved iron to the world ocean.
 2392 *Biogeosciences*. 2008;5.

2393 [48] Moore JK, Lindsay K, Doney SC, Long MC, Misumi K. Marine ecosystem dynamics and biogeochemical
 2394 cycling in the Community Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under
 2395 the RCP4.5 and RCP8.5 scenarios. *Journal of Climate*. 2013;26:9291-312.

2396 [49] Boyd P, Ellwood M. The biogeochemical cycle of iron in the ocean. *Nature Geoscience*. 2010;3:675-82.

2397 [50] Archer D, Johnson K. A model of the iron cycle in the ocean. *Global Biogeochemical Cycles*. 2000;14:269-79.

2398 [51] Johnson KS, Moore JK, Smith WO. A report on the US JGOFS workshop on iron dynamics in the carbon
 2399 cycle. Citeseer; 2002.

2400 [52] Johnson KS, Moore JK, Smith WO. Workshop highlights iron dynamics in ocean carbon cycle. *Eos, Transactions American Geophysical Union*. 2002;83.

2401 [53] Turner DR, Hunter KA. The biogeochemistry of iron in seawater: Wiley Chichester; 2001.

2402 [54] Misumi K, Lindsay K, Moore JK, Doney SC, Bryan FO, Tsumune D, et al. The iron budget in ocean surface
 2403 waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1.
 2404 *Biogeosciences*. 2014;11.

2405 [55] Tagliabue A, Aumont O, DeAth R, Dunne JP, Dutkiewicz S, Galbraith E, et al. How well do global ocean
 2406 biogeochemistry models simulate dissolved iron distributions? *Global Biogeochemical Cycles*. 2015.

2407 [56] Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, et al. Atmospheric global dust
 2408 cycle and iron inputs to the ocean. *Global biogeochemical cycles*. 2005;19.

2409 [57] Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, et al. Atmospheric Iron
 2410 Deposition: Global Distribution, Variability, and Human Perturbations*. *Annual Review of Marine Science*.
 2411 2009;1:245-78.

2412 [58] Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnell JR, et al. Observed 20th
 2413 century desert dust variability: impact on climate and biogeochemistry. *Atmospheric Chemistry and Physics*.
 2414 2010;10:10875-93.

2415 [59] Anderson WB. Diagnosis and correction of iron deficiency in field crops— an overview. *Journal of Plant
 2416 Nutrition*. 1982;5:785-95.

2417 [60] Lindsay W, Schwab A. The chemistry of iron in soils and its availability to plants. *Journal of Plant Nutrition*.
 2418 1982;5:821-40.

2419 [61] Mengel K, Geurtzen G. Iron chlorosis on calcareous soils. Alkaline nutritional condition as the cause for the
 2420 chlorosis. *Journal of Plant Nutrition*. 1986;9:161-73.

2421 [62] Smetacek V, Naqvi S. The next generation of iron fertilization experiments in the Southern Ocean.
 2422 *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*.
 2423 2008;366:3947-67.

2424 [63] Martin P, Loeff MR, Cassar N, Vandromme P, d'Ovidio F, Stemmann L, et al. Iron fertilization enhanced net
 2425 community production but not downward particle flux during the Southern Ocean iron fertilization experiment
 2426 LOHAFEX. *Global Biogeochemical Cycles*. 2013;27:871-81.

2427 [64] Williamson P, Wallace DW, Law CS, Boyd PW, Collos Y, Croot P, et al. Ocean fertilization for
 2428 geoengineering: a review of effectiveness, environmental impacts and emerging governance. *Process Safety and
 2429 Environmental Protection*. 2012;90:475-88.

2430 [65] Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, et al. Deep carbon export from a
 2431 Southern Ocean iron-fertilized diatom bloom. *Nature*. 2012;487:313-9.

2432 [66] Köhler P, Hauck J, Völker C, Wolf-Gladrow D. The role of iron during the open ocean dissolution of olivine in
 2433 a simulated CO₂ removal experiment—enhanced weathering, ocean alkalinization, ocean fertilization. 2015.

2434 [67] Boyd PW, Bressac M. Developing a test-bed for robust research governance of geoengineering: the
 2435 contribution of ocean iron biogeochemistry. *Phil Trans R Soc A*. 2016;374:20150299.

2436 [68] Johnson KS, Karl DM. Is ocean fertilization credible and creditable? *Science*. 2002;296:467-8.

2437 [69] Chisholm SW, Falkowski PG, Cullen JJ. Response to the letter of Johnson, K.S. and Karl, D.M. *Science*.
 2438 2002;296:467-8.

2439 [70] Duggen S, Croot P, Schacht U, Hoffmann L. Subduction zone volcanic ash can fertilize the surface ocean
 2440 and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. *Geophysical
 2441 Research Letters*. 2007;34.

2442 [71] Conway T, Wolff E, Röthlisberger R, Mulvaney R, Elderfield H. Constraints on soluble aerosol iron flux to the
 2443 Southern Ocean at the Last Glacial Maximum. *Nature communications*. 2015;6.

2444 [72] Spolaor A, Valletlonga P, Cozzi G, Gabrieli J, Varin C, Kehrwald N, et al. Iron speciation in aerosol dust
 2445 influences iron bioavailability over glacial-interglacial timescales. *Geophysical Research Letters*. 2013;40:1618-
 2446 23.

2447 [73] Soreghan GS, Sur S, Owens JD, Raiswell R, Heavens NG, Natalie M, et al. The potential biological impact of
 2448 eolian delivery of reactive iron to late Paleozoic icehouse seas. 2014 *GSA Annual Meeting* in Vancouver, British
 2449 Columbia2014.

2450 [74] Johnson M, Meskhidze N. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-
 2451 promoted Fe dissolution, photochemical redox cycling, and dust mineralogy. *Geoscientific Model Development
 2452 Discussions*. 2013;6:1901-47.

2453 [75] Al-Abadleh HA. Review of the bulk and surface chemistry of iron in atmospherically relevant systems
 2454 containing humic-like substances. *RSC Advances*. 2015;5:45785-811.

2455 [76] Death R, Wadham J, Monteiro F, Le Brocq A, Tranter M, Ridgwell A, et al. Antarctic ice sheet fertilises the
 2456 Southern Ocean. *Biogeosciences*. 2014;11:2635-43.

2457 [77] Hawkins JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, et al. Ice sheets as a significant
 2458 source of highly reactive nanoparticulate iron to the oceans. *Nature communications*. 2014;5.

2459 [78] Sedwick PN, Sholkovitz ER, Church TM. Impact of anthropogenic combustion emissions on the fractional
 2460 solubility of aerosol iron: Evidence from the Sargasso Sea. *Geochemistry, Geophysics, Geosystems*. 2007;8.

2461 [79] Luo C, Mahowald N, Bond T, Chuang P, Artaxo P, Siefert R, et al. Combustion iron distribution and
 2462 deposition. *Global Biogeochemical Cycles*. 2008;22.

2463 [80] Ito A, Shi Z. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the
 2464 ocean. *Atmospheric Chemistry and Physics Discussions*. 2015;15:23051-88.

2466 [81] Ito A. Atmospheric processing of combustion aerosols as a source of bioavailable iron. *Environmental*
 2467 *Science & Technology Letters*. 2015;2:70-5.

2468 [82] Lin YC, Chen JP, Ho TY, Tsai I. Atmospheric iron deposition in the northwestern Pacific Ocean and its
 2469 adjacent marginal seas: the importance of coal burning. *Global Biogeochemical Cycles*. 2015;29:138-59.

2470 [83] Wang R, Balkanski Y, Boucher O, Bopp L, Chappell A, Ciais P, et al. Sources, transport and deposition of
 2471 iron in the global atmosphere. *Atmospheric Chemistry and Physics*. 2015;15:6247-70.

2472 [84] Shaked Y, Lis H. Disassembling iron availability to phytoplankton. *Environmental Bioinorganic Chemistry of*
 2473 *Aquatic Microbial Organisms*. 2012:28.

2474 [85] Johnson KS, Chavez FP, Friederich GE. Continental-shelf sediment as a primary source of iron for coastal
 2475 phytoplankton. *Nature*. 1999;398:697-700.

2476 [86] Elrod VA, Berelson WM, Coale KH, Johnson KS. The flux of iron from continental shelf sediments: A missing
 2477 source for global budgets. *Geophysical Research Letters*. 2004;31.

2478 [87] Raiswell R, Hawkings JR, Benning LG, Baker AR, Death R, Albani S, et al. Potentially bioavailable iron
 2479 delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. *Biogeosciences*. 2016;13:3887.

2480 [88] Schmidt C, Vuillemin R, Le Gall C, Gaill F, Le Bris N. Geochemical energy sources for microbial primary
 2481 production in the environment of hydrothermal vent shrimps. *Marine Chemistry*. 2008;108:18-31.

2482 [89] Sylvan JB, Toner BM, Edwards KJ. Life and death of deep-sea vents: bacterial diversity and ecosystem
 2483 succession on inactive hydrothermal sulfides. *MBio*. 2012;3:e00279-11.

2484 [90] Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, et al. Biogeochemical redox
 2485 processes and their impact on contaminant dynamics. *Environmental Science & Technology*. 2009;44:15-23.

2486 [91] Schmidt K, Schlosser C, Atkinson A, Fielding S, Venables HJ, Waluda CM, et al. Zooplankton gut passage
 2487 mobilizes lithogenic iron for ocean productivity. *Current Biology*. 2016;26:2667-73.

2488 [92] Muscolo A, Sidari M, Pizzeghello D, Nardi S. Effects of humic substances isolated from earthworm faeces.
 2489 *Dynamic Soil, Dynamic Plant*. 2009;2:45-52.

2490 [93] Reck M, Tomasch J, Deng Z, Jarek M, Husemann P, Wagner-Döbler I. Stool metatranscriptomics: A
 2491 technical guideline for mRNA stabilisation and isolation. *BMC genomics*. 2015;16:494.

2492 [94] Wagner Mackenzie B, Waite DW, Taylor MW. Evaluating variation in human gut microbiota profiles due to
 2493 DNA extraction method and inter-subject differences. *Frontiers in microbiology*. 2015;6:130.

2494 [95] Vu AT, Nguyen NC, Leadbetter JR. Iron reduction in the metal-rich guts of wood-feeding termites.
 2495 *Geobiology*. 2004;2:239-47.

2496 [96] Lopes C, Kucera M, Mix AC. Climate change decouples oceanic primary and export productivity and organic
 2497 carbon burial. *Proceedings of the National Academy of Sciences*. 2015;112:332-5.

2498 [97] Pérez-Guzmán L, Bogner K, Lower B. Earth's Ferrous Wheel. *Nature Education Knowledge*. 2010;1:8.

2499 [98] Parekh P, Follows MJ, Boyle E. Modeling the global ocean iron cycle. *Global biogeochemical cycles*.
 2500 2004;18.

2501 [99] Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, et al. Changes in atmospheric
 2502 constituents and in radiative forcing. Chapter 2. . *Climate Change 2007 The Physical Science Basis*
 2503 [www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2pdf2007](http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2pdf2007.pdf).

2504 [100] Boucher O. *Biogeochemical Effects and Climate Feedbacks of Aerosols*. *Atmospheric Aerosols*: Springer;
 2505 2015. p. 247-69.

2506 [101] Bauer SE, Menon S. Aerosol direct, indirect, semidirect, and surface albedo effects from sector
 2507 contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions. *Journal of*
 2508 *Geophysical Research: Atmospheres* (1984–2012). 2012;117.

2509 [102] Mitchell DL, Finnegan W. Modification of cirrus clouds to reduce global warming. *Environmental Research*
 2510 *Letters*. 2009;4:045102.

2511 [103] Storelvmo T, Kristjánsson J, Muri H, Pfeffer M, Barahona D, Nenes A. Cirrus cloud seeding has potential to
 2512 cool climate. *Geophysical Research Letters*. 2013;40:178-82.

2513 [104] Latham J, Bower K, Choularton T, Coe H, Connolly P, Cooper G, et al. Marine cloud brightening.
 2514 *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*.
 2515 2012;370:4217-62.

2516 [105] Alterskjaer K, Kristjánsson J. The sign of the radiative forcing from marine cloud brightening depends on
 2517 both particle size and injection amount. *Geophysical Research Letters*. 2013;40:210-5.

2518 [106] Koch D, Del Genio A. Black carbon absorption effects on cloud cover, review and synthesis. *Atmospheric*
 2519 *Chemistry & Physics Discussions*. 2010;10:7323-46.

2520 [107] Ramanathan V, Li F, Ramana M, Praveen P, Kim D. Atmospheric brown clouds: hemispherical and regional
 2521 variations in long-range transport, absorption, and radiative forcing. *J Geophys Res*. 2007;112:D22S1.

2522 [108] Zhang X, Wu G, Zhang C, Xu T, Zhou Q. What is the real role of iron oxides in the optical properties of dust
 2523 aerosols? *Atmospheric Chemistry and Physics*. 2015;15:12159-77.

2524 [109] Sokolik IN, Toon OB. Incorporation of mineralogical composition into models of the radiative properties of
 2525 mineral aerosol from UV to IR wavelengths. *Journal of Geophysical Research*. 1999;104:9423-44.

2526 [110] Karydis V, Kumar P, Barahona D, Sokolik I, Nenes A. Assessing the Impact of Mineral Dust and Adsorption
 2527 Activation on Cloud Droplet Formation. *Advances in Meteorology, Climatology and Atmospheric Physics*:
 2528 Springer; 2013. p. 515-20.

2529 [111] Levin Z, Teller A, Ganor E, Yin Y. On the interactions of mineral dust, sea-salt particles, and clouds: A
 2530 measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. *Journal of*
 2531 *Geophysical Research: Atmospheres* (1984–2012). 2005;110.

2532 [112] Rosenfeld D, Freud E. Number of activated CCN as a key property in cloud aerosol interactions or, more on
 2533 simplicity in complex systems. *WCRP First Open Science Conference*. Denver, USA2011.

2534 [113] Rosenfeld D, Lohmann U, Raga GB, O'Dowd CD, Kulmala M, Fuzzi S, et al. Flood or drought: how do
2535 aerosols affect precipitation? *science*. 2008;321:1309-13.

2536 [114] Rosenfeld D, Andreae MO, Asmi A, Chin M, Leeuw G, Donovan DP, et al. Global observations of
2537 aerosol□cloud□precipitation□climate interactions. *Reviews of Geophysics*. 2014;52:750-808.

2538 [115] Latham J, Parkes B, Gadian A, Salter S. Weakening of hurricanes via marine cloud brightening (MCB).
2539 *Atmospheric Science Letters*. 2012;13:231-7.

2540 [116] Wang Y, Lee K-H, Lin Y, Levy M, Zhang R. Distinct effects of anthropogenic aerosols on tropical cyclones.
2541 *Nature Climate Change*. 2014;4:368-73.

2542 [117] Zhang H, McFarquhar GM, Cotton WR, Deng Y. Direct and indirect impacts of Saharan dust acting as cloud
2543 condensation nuclei on tropical cyclone eyewall development. *Geophysical Research Letters*. 2009;36.

2544 [118] Graedel TE, Keene W. The budget and cycle of Earth's natural chlorine. *Pure and applied chemistry*.
2545 1996;68:1689-97.

2546 [119] Allan W, Struthers H, Lowe D. Methane carbon isotope effects caused by atomic chlorine in the marine
2547 boundary layer: Global model results compared with Southern Hemisphere measurements. *Journal of*
2548 *Geophysical Research: Atmospheres* (1984–2012). 2007;112.

2549 [120] Sommariva R, von Glasow R. Multiphase halogen chemistry in the tropical Atlantic Ocean. *Environmental*
2550 *science & technology*. 2012;46:10429-37.

2551 [121] Hossaini R, Chipperfield MP, Saiz□Lopez A, Fernandez R, Monks S, Brauer P, et al. A global model of
2552 tropospheric chlorine chemistry: organic versus inorganic sources and impact on methane oxidation. *Journal of*
2553 *Geophysical Research: Atmospheres*. 2016.

2554 [122] Blasing T. Recent greenhouse gas concentrations, Carbon Dioxide Information Analysis Center, Oak Ridge
2555 National Laboratory, US Department of Energy [Online], 2009. Doi: 10.3334/CDIAC/atg.032. 2010.

2556 [123] Blasing T. Recent Greenhouse Gas Concentrations. Carbon Dioxide Information Analysis Center CDIAC.
2557 DOI: 10.3334/CDIAC/atg.032 http://cdiac.ornl.gov/pns/current_ghg.html. DOE - Oak Ridge2016.

2558 [124] Wittmer J, Bleicher S, Ofner J, Zetzs C. Iron (III)-induced activation of chloride from artificial sea-salt
2559 aerosol. *Environmental Chemistry*. 2015;12:461-75.

2560 [125] Wittmer J, Bleicher S, Zetzs C. Iron (III)-Induced Activation of Chloride and Bromide from Modeled Salt
2561 Pans. *The Journal of Physical Chemistry A*. 2015;119:4373–85.

2562 [126] Wittmer J, Bleicher S, Zetzs C. Report on the Photochemical Induced Halogen Activation of Fe-containing
2563 Aerosols. *J Climatol Weather Forecasting*. 2016;4:2.

2564 [127] Wittmer J, Zetzs C. Photochemical activation of chlorine by iron-oxide aerosol. *Journal of Atmospheric*
2565 *Chemistry* Doi:101007/s10874-016-9336-6. 2016;1-18.

2566 [128] Anenberg SC, Schwartz J, Shindell DT, Amann M, Faluvegi GS, Klimont Z, et al. Global air quality and
2567 health co-benefits of mitigating near-term climate change through methane and black carbon emission controls.
2568 2012.

2569 [129] Oster GK, Oster G. Photoreduction of Metal Ions by Visible Light1. *Journal of the American Chemical*
2570 *Society*. 1959;81:5543-5.

2571 [130] Monico L, Janssens K, Hendriks E, Vanmeert F, Van der Snickt G, Cotte M, et al. Evidence for Degradation
2572 of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and
2573 Synchrotron□Radiation□Based X□ray Techniques. *Angewandte Chemie*. 2015;127:14129-33.

2574 [131] Thakur RS, Chaudhary R, Singh C. Influence of pH on photocatalytic reduction, adsorption, and deposition
2575 of metal ions: speciation modeling. *Desalination and Water Treatment*. 2015;56:1335-63.

2576 [132] Ola O, Maroto-Valer MM. Transition metal oxide based TiO₂ nanoparticles for visible light induced CO₂
2577 photoreduction. *Applied Catalysis A: General*. 2015;502:114-21.

2578 [133] Xu H-Q, Hu J, Wang D, Li Z, Zhang Q, Luo Y, et al. Visible-Light Photoreduction of CO₂ in a Metal–Organic
2579 Framework: Boosting Electron–Hole Separation via Electron Trap States. *Journal of the American Chemical*
2580 *Society*. 2015;137:13440-3.

2581 [134] Zamaraev KI, Khramov MI, Parmon VN. Possible impact of heterogeneous photocatalysis on the global
2582 chemistry of the Earth's atmosphere. *Catalysis Reviews—Science and Engineering*. 1994;36:617-44.

2583 [135] Zamaraev K. Catalytic science and technology for environmental issues. *Catalysis today*. 1997;35:3-13.

2584 [136] de Richter R, Ming T, Shen S, Caillol S. Fighting global warming by greenhouse gas removal: destroying
2585 atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. *Environmental Science*
2586 *and Pollution Research*. 2016;23:6119-38.

2587 [137] de Richter R, Ming T, Caillol S, Liu W. Fighting global warming by GHG removal: Destroying CFCs and
2588 HCFCs in solar-wind power plant hybrids producing renewable energy with no-intermittency. *International Journal*
2589 *of Greenhouse Gas Control*. 2016;49:449-72.

2590 [138] Kiesgen de_Richter R, Ming T, Caillol S. Fighting global warming by photocatalytic reduction of CO₂ using
2591 giant photocatalytic reactors. *Renewable and Sustainable Energy Reviews*. 2013;19:82-106.

2592 [139] de Richter R, Caillol S. Fighting global warming: the potential of photocatalysis against CO₂, CH₄, N₂O,
2593 CFCs, tropospheric O₃, BC and other major contributors to climate change. *Journal of Photochemistry and*
2594 *Photobiology C: Photochemistry Reviews*. 2011;12:1-19.

2595 [140] de Richter R, Ming T, Davies P, Liu W, Caillol S. Removal of non-CO₂ greenhouse gases by large-scale
2596 atmospheric solar photocatalysis. *Progress in Energy and Combustion Science* Submitted. 2017.

2597 [141] Oeste FD. Climate cooling by interaction of artificial loess haze with seasalt haze induced by iron- or
2598 titanium-doped ship- and aircraft-fuel. *Geo Leipzig* 2004, *Gemeinschaftstagung DGG und GGW. Schriftenreihe*
2599 *der Deutschen Geologischen Gesellschaft*, 34, p. 344, ISBN 3-932537-06-8.2004. p. 344.

2600 [142] Santachiara G, Prodi F, Belosi F. A review of thermo-and diffusio-phoresis in the atmospheric aerosol
2601 scavenging process. Part 1: Drop Scavenging. *Atmospheric and Climate Sciences*. 2012;2:148-58.

2602 [143] Ardon-Dryer K, Huang Y-W, Cziczo D. Laboratory studies of collection efficiency of sub-micrometer aerosol
2603 particles by cloud droplets on a single droplet basis. *Atmospheric Chemistry and Physics Discussions*.
2604 2015;15:6207-36.

2605 [144] Wang P, Grover S, Pruppacher H. On the effect of electric charges on the scavenging of aerosol particles
2606 by clouds and small raindrops. *Journal of the Atmospheric Sciences*. 1978;35:1735-43.

2607 [145] Osthoff HD, Roberts JM, Ravishankara A, Williams EJ, Lerner BM, Sommariva R, et al. High levels of nitryl
2608 chloride in the polluted subtropical marine boundary layer. *Nature Geoscience*. 2008;1:324-8.

2609 [146] Riedel T, Wolfe G, Danas K, Gilman J, Kuster W, Bon D, et al. An MCM modeling study of nitryl chloride
2610 (CINO₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow.
2611 *Atmospheric Chemistry and Physics*. 2014;14:3789-800.

2612 [147] Khalil M, Rasmussen R. Atmospheric methyl chloride. *Atmospheric Environment*. 1999;33:1305-21.

2613 [148] Yokouchi Y, Nojiri Y, Barrie L, Toom-Sauntry D, Machida T, Inuzuka Y, et al. A strong source of methyl
2614 chloride to the atmosphere from tropical coastal land. *Nature*. 2000;403:295-8.

2615 [149] Kim J-S, Park K. Atmospheric aging of Asian dust particles during long range transport. *Aerosol Science*
2616 and Technology

2617 [150] Drozd G, Woo J, Häkkinen S, Nenes A, McNeill VF. Inorganic salts interact with oxalic acid in submicron
2618 particles to form material with low hygroscopicity and volatility. *Atmospheric Chemistry and Physics*.
2619 2014;14:5205-15.

2620 [151] Pechtl S, von Glasow R. Reactive chlorine in the marine boundary layer in the outflow of polluted continental
2621 air: A model study. *Geophysical research letters*. 2007;34.

2622 [152] Baker AK, Rauthe Schöch A, Schuck TJ, Brenninkmeijer CA, van Velthoven PF, Wisher A, et al.
2623 Investigation of chlorine radical chemistry in the Eyjafjallajökull volcanic plume using observed depletions in
2624 non-methane hydrocarbons. *Geophysical Research Letters*. 2011;38.

2625 [153] Rose WI, Millard GA, Mather TA, Hunton DE, Anderson B, Oppenheimer C, et al. Atmospheric chemistry of
2626 a 33–34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of
2627 chemical box modeling. *Journal of Geophysical Research: Atmospheres (1984–2012)*. 2006;111.

2628 [154] Baker AK, Sauvage C, Thorenz UR, Brenninkmeijer CA, Oram DE, van Velthoven P, et al. Evidence for
2629 widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea. *EGU General
2630 Assembly Conference Abstracts* 2015. p. 10370.

2631 [155] Wang SH, Hsu NC, Tsay SC, Lin NH, Sayer AM, Huang SJ, et al. Can Asian dust trigger phytoplankton
2632 blooms in the oligotrophic northern South China Sea? *Geophysical Research Letters*. 2012;39.

2633 [156] von Glasow R, Sander R. Variation of sea salt aerosol pH with relative humidity. *Geophysical research
2634 letters*. 2001;28:247-50.

2635 [157] Bleicher S, Buxmann J, Sander R, Riedel T, Thornton J, Platt U, et al. The influence of nitrogen oxides on
2636 the activation of bromide and chloride in salt aerosol. *Atmospheric Chemistry and Physics Discussions*.
2637 2014;14:10135-66.

2638 [158] Wren S, Donaldson D. How does deposition of gas phase species affect pH at frozen salty interfaces?
2639 *Atmospheric Chemistry and Physics*. 2012;12:10065-73.

2640 [159] Kahan TF, Wren SN, Donaldson DJ. A Pinch of Salt Is All It Takes: Chemistry at the Frozen Water Surface.
2641 *Accounts of chemical research*. 2014;47:1587-94.

2642 [160] Bartels-Rausch T, Jacobi H-W, Kahan TF, Thomas JL, Thomson ES, Abbott JP, et al. A review of air–ice
2643 chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. *Atmospheric Chemistry and
2644 Physics*. 2014;14:1587-633.

2645 [161] Liao J, Huey LG, Liu Z, Tanner DJ, Cantrell CA, Orlando JJ, et al. High levels of molecular chlorine in the
2646 Arctic atmosphere. *Nature Geoscience*. 2014;7:91-4.

2647 [162] Sadanaga Y, Hirokawa J, Akimoto H. Formation of molecular chlorine in dark condition: Heterogeneous
2648 reaction of ozone with sea salt in the presence of ferric ion. *Geophysical research letters*. 2001;28:4433-6.

2649 [163] Ming T, de_Richter R, Liu W, Caillol S. Fighting global warming by climate engineering: Is the Earth
2650 radiation management and the solar radiation management any option for fighting climate change? *Renewable
2651 and Sustainable Energy Reviews*. 2014;31:792-834.

2652 [164] Levine JG, Wolff EW, Jones AE, Sime LC. The role of atomic chlorine in glacial-interglacial changes in the
2653 carbon-13 content of atmospheric methane. *Geophysical Research Letters*. 2011;38.

2654 [165] Skinner L. Facing future climate change: is the past relevant? *Philosophical Transactions of the Royal
2655 Society of London A: Mathematical, Physical and Engineering Sciences*. 2008;366:4627-45.

2656 [166] Sander R. Compilation of Henry's law constants (version 4.0) for water as solvent. *Atmospheric Chemistry
2657 and Physics*. 2015;15:4399-981.

2658 [167] von Glasow R. Modeling the gas and aqueous phase chemistry of the marine boundary layer. Available at
2659 www.rolandvonglasow.de: Universität Mainz, Germany,; 2000.

2660 [168] Luna A, Nascimento C, Chiavone-Filho O. Photodecomposition of hydrogen peroxide in highly saline
2661 aqueous medium. *Brazilian Journal of Chemical Engineering*. 2006;23:341-9.

2662 [169] Nie W, Ding A, Wang T, Kermanen V-M, George C, Xue L, et al. Polluted dust promotes new particle
2663 formation and growth. *Scientific reports*. 2014;4.

2664 [170] Young C, Washenfelder R, Edwards P, Parrish D, Gilman J, Kuster W, et al. Chlorine as a primary radical:
2665 evaluation of methods to understand its role in initiation of oxidative cycles. *Atmospheric Chemistry and Physics*.
2666 2014;14:3427-40.

2667 [171] Pena AL, Segura E R, Chan M A, Hoggard E P. Photodegradation of dichloromethane catalyzed by iron (III)
2668 chloride on silica gel. *Current Catalysis*. 2014;3:35-8.

2669 [172] Jin L, Zhang P, Shao T, Zhao S. Ferric ion mediated photodecomposition of aqueous perfluorooctane
2670 sulfonate (PFOS) under UV irradiation and its mechanism. *Journal of hazardous materials*. 2014;271:9-15.
2671 [173] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. *Nature
2672 geoscience*. 2008;1:221-7.
2673 [174] Bond TC, Doherty SJ, Fahey D, Forster P, Berntsen T, DeAngelo B, et al. Bounding the role of black carbon
2674 in the climate system: A scientific assessment. *Journal of Geophysical Research: Atmospheres*. 2013;118:5380-
2675 552.
2676 [175] Andreae M, Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous
2677 aerosols. *Atmospheric Chemistry and Physics*. 2006;6:3131-48.
2678 [176] Nguyen TH, Ball WP. Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane
2679 soot. *Environmental science & technology*. 2006;40:2958-64.
2680 [177] Ramana M, Ramanathan V, Feng Y, Yoon S, Kim S, Carmichael G, et al. Warming influenced by the ratio of
2681 black carbon to sulphate and the black-carbon source. *Nature Geoscience*. 2010;3:542-5.
2682 [178] Hadley OL, Kirchstetter TW. Black-carbon reduction of snow albedo. *Nature Climate Change*. 2012;2:437-
2683 40.
2684 [179] Jacobson MZ. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective
2685 method of slowing global warming. *Journal of Geophysical Research: Atmospheres (1984–2012)*. 2002;107:ACH
2686 16-1-ACH -22.
2687 [180] Shindell D, Kylenstierna JC, Vignati E, van Dingenen R, Amann M, Klimont Z, et al. Simultaneously
2688 mitigating near-term climate change and improving human health and food security. *Science*. 2012;335:183-9.
2689 [181] Fry JL, Draper DC, Barsanti KC, Smith JN, Ortega J, Winkler PM, et al. Secondary organic aerosol
2690 formation and organic nitrate yield from NO₃ oxidation of biogenic hydrocarbons. *Environmental science &
2691 technology*. 2014;48:11944-53.
2692 [182] Pillar EA, Camm RC, Guzman MI. Catechol oxidation by ozone and hydroxyl radicals at the air–water
2693 interface. *Environmental science & technology*. 2014;48:14352-60.
2694 [183] Ofner J, Krüger H-U, Grothe H, Schmitt-Kopplin P, Whitmore K, Zetzs C. Physico-chemical
2695 characterization of SOA derived from catechol and guaiacol—a model substance for the aromatic fraction of
2696 atmospheric HULIS. *Atmospheric Chemistry and Physics*. 2011;11:1-15.
2697 [184] Hoffer A, Kiss G, Blazso M, Gelencsér A. Chemical characterization of humic-like substances (HULIS)
2698 formed from a lignin-type precursor in model cloud water. *Geophysical research letters*. 2004;31:L06115.
2699 [185] Claeys M, Vermeylen R, Yasmineen F, Gómez-González Y, Chi X, Maenhaut W, et al. Chemical
2700 characterisation of humic-like substances from urban, rural and tropical biomass burning environments using
2701 liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry.
2702 *Environmental Chemistry*. 2012;9:273-84.
2703 [186] Willey JD, Kieber RJ, Seaton PJ, Miller C. Rainwater as a source of Fe (II)-stabilizing ligands to seawater.
2704 *Limnology and Oceanography*. 2008;53:1678.
2705 [187] Ghio AJ, Soukup JM, Dailey LA, Tong H, Kesic MJ, Budinger GS, et al. Wood smoke particle sequesters
2706 cell iron to impact a biological effect. *Chemical research in toxicology*. 2015;28:2104-11.
2707 [188] Chemizmu K, Fenton R. Fenton reaction-controversy concerning the chemistry. *Ecological chemistry and
2708 engineering*. 2009;16:347-58.
2709 [189] Vione D, Maurino V, Minero C, Pelizzetti E. The atmospheric chemistry of hydrogen peroxide: A review.
2710 *ANNALI DI CHIMICA-ROMA-*. 2003;93:477-86.
2711 [190] Fenton H. LXXIII.—Oxidation of tartaric acid in presence of iron. *Journal of the Chemical Society,
2712 Transactions*. 1894;65:899-910.
2713 [191] Barbusiński K. Fenton reaction-controversy concerning the chemistry. *Ecological chemistry and
2714 engineering*. 2009;16:347-58.
2715 [192] Southworth BA, Voelker BM. Hydroxyl radical production via the photo-Fenton reaction in the presence of
2716 fulvic acid. *Environmental science & technology*. 2003;37:1130-6.
2717 [193] Machulek Jr A, Moraes JEF, Okano LT, Silvério CA, Quina FH. Photolysis of ferric ions in the presence of
2718 sulfate or chloride ions: implications for the photo-Fenton process. *Photochemical & Photobiological Sciences*.
2719 2009;8:985-91.
2720 [194] De Laat J, Le GT, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the
2721 rates of decomposition of H₂O₂ and organic compounds by Fe (II)/H₂O₂ and Fe (III)/H₂O₂. *Chemosphere*.
2722 2004;55:715-23.
2723 [195] Salgado P, Melin V, Contreras D, Moreno Y, Mansilla HD. Fenton reaction driven by iron ligands. *Journal of
2724 the Chilean Chemical Society*. 2013;58:2096-101.
2725 [196] Enami S, Sakamoto Y, Colussi AJ. Fenton chemistry at aqueous interfaces. *Proceedings of the National
2726 Academy of Sciences*. 2014;111:623-8.
2727 [197] Teixeira APC, Tristão JC, Araujo MH, Oliveira LC, Moura FC, Ardisson JD, et al. Iron: a versatile element to
2728 produce materials for environmental applications. *Journal of the Brazilian Chemical Society*. 2012;23:1579-93.
2729 [198] Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction
2730 based on the Fenton reaction and related chemistry. *Critical reviews in environmental science and technology*.
2731 2006;36:1-84.
2732 [199] Pinto IS, Pacheco PH, Coelho JV, Lorençon E, Ardisson JD, Fabris JD, et al. Nanostructured δ-FeOOH: an
2733 efficient Fenton-like catalyst for the oxidation of organics in water. *Applied Catalysis B: Environmental*.
2734 2012;119:175-82.

2735 [200] Gopakumar G, Belanzoni P, Baerends EJ. Hydroxylation catalysis by mononuclear and dinuclear iron oxo
2736 catalysts: a methane monooxygenase model system versus the Fenton reagent FeIVO (H₂O) 52+. Inorganic
2737 chemistry. 2011;51:63-75.

2738 [201] Hammond C, Forde MM, Rahim A, Hasbi M, Thetford A, He Q, et al. Direct Catalytic Conversion of Methane
2739 to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. *Angewandte Chemie International
2740 Edition*. 2012;51:5129-33.

2741 [202] Yoshizawa K, Shiota Y, Yumura T, Yamabe T. Direct methane-methanol and benzene-phenol conversions
2742 on Fe-ZSM-5 zeolite: Theoretical predictions on the reaction pathways and energetics. *The Journal of Physical
2743 Chemistry B*. 2000;104:734-40.

2744 [203] Klüpfel L, Keiluweit M, Kleber M, Sander M. Redox properties of plant biomass-derived black carbon
2745 (biochar). *Environmental science & technology*. 2014;48:5601-11.

2746 [204] Oh S-Y, Chiu PC. Graphite-and soot-mediated reduction of 2, 4-dinitrotoluene and hexahydro-1, 3, 5-trinitro-
2747 1, 3, 5-triazine. *Environmental science & technology*. 2009;43:6983-8.

2748 [205] Studebaker ML, Huffman E, Wolfe A, Nabors L. Oxygen-containing groups on the surface of carbon black.
2749 *Industrial & Engineering Chemistry*. 1956;48:162-6.

2750 [206] Drushel HV, Hallum JV. The Organic Nature of Carbon Black Surfaces. II. Quinones and Hydroquinones by
2751 Coulometry at Controlled Potential. *The Journal of Physical Chemistry*. 1958;62:1502-5.

2752 [207] Lima SB, Borges SMS, Rangel MdC, Marchetti SG. Effect of iron content on the catalytic properties of
2753 activated carbon-supported magnetite derived from biomass. *Journal of the Brazilian Chemical Society*.
2754 2013;24:344-54.

2755 [208] Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, et al. Activated carbon fibers as an excellent partner of
2756 Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. *Chemical Engineering
2757 Journal*. 2014;251:348-54.

2758 [209] Kim JR, Santiano B, Kim H, Kan E. Heterogeneous oxidation of methylene blue with surface-modified iron-
2759 amended activated carbon. 2013.

2760 [210] Oeste FD. Die H₂S-Oxidation an aktiver Kohle-ein elektrochemischer Prozess? *Carbon*. 1977;15:225-8.

2761 [211] Song P, Wang Y, Pan J, Xu W, Zhuang L. Structure-activity relationship in high-performance iron-based
2762 electrocatalysts for oxygen reduction reaction. *Journal of Power Sources*. 2015;300:279-84.

2763 [212] Moreno-Castilla C, Lopez-Ramon M, Carrasco-Marín F. Changes in surface chemistry of activated carbons
2764 by wet oxidation. *Carbon*. 2000;38:1995-2001.

2765 [213] Bai H, Jiang W, Kotchey GP, Saidi WA, Bythell BJ, Jarvis JM, et al. Insight into the mechanism of graphene
2766 oxide degradation via the photo-Fenton reaction. *The Journal of Physical Chemistry C*. 2014;118:10519-29.

2767 [214] Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, et al. Photo-Fenton reaction of graphene oxide: a new
2768 strategy to prepare graphene quantum dots for DNA cleavage. *Ac_s Nano*. 2012;6:6592-9.

2769 [215] Zuberi B, Johnson KS, Aleks GK, Molina LT, Molina MJ, Laskin A. Hydrophilic properties of aged soot.
2770 *Geophysical research letters*. 2005;32.

2771 [216] Kawamura K, Umemoto N, Mochida M, Bertram T, Howell S, Huebert B. Water-soluble dicarboxylic acids
2772 in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft.
2773 *Journal of Geophysical Research: Atmospheres* (1984–2012). 2003;108.

2774 [217] Eder JM. Über die Zersetzung des Eisenchlorides und einiger organischer Ferridsalze im Lichte.
2775 *Monatshefte für Chemie/Chemical Monthly*. 1880;1:755-62.

2776 [218] Eder JM. *Ausführliches Handbuch der Photographie, Erster Band, 2. Teil: Photochemie (die chemischen
2777 Wirkungen des Lichtes)*: Wilhelm Knapp; 1906.

2778 [219] Zhu X, Prospero JM, Savoie DL, Millero FJ, Zika RG, Saltzman ES. Photoreduction of iron (III) in marine
2779 mineral aerosol solutions. *Journal of Geophysical Research: Atmospheres* (1984–2012). 1993;98:9039-46.

2780 [220] Weller C, Tilgner A, Bräuer P, Herrmann H. Modeling the Impact of Iron–Carboxylate Photochemistry on
2781 Radical Budget and Carboxylate Degradation in Cloud Droplets and Particles. *Environmental science &
2782 technology*. 2014;48:5652-9.

2783 [221] Cunningham KM, Goldberg MC, Weiner ER. Mechanisms for aqueous photolysis of adsorbed benzoate,
2784 oxalate, and succinate on iron oxyhydroxide (goethite) surfaces. *Environmental science & technology*.
2785 1988;22:1090-7.

2786 [222] Flanner MG, Zender CS, Randerson JT, Rasch PJ. Present-day climate forcing and response from black
2787 carbon in snow. *Journal of Geophysical Research: Atmospheres*. 2007;112.

2788 [223] Kasper M, Sattler K, Siegmann K, Matter U. The effect of ferrocene addition on particle formation and
2789 burnout in combustion processes. *Journal of Aerosol Science*. 1998;29:S617-S8.

2790 [224] Weiser V, Eisenreich N, Roth E, Pfeil A. Mechanisms of Soot Reduction in Diesel Pool Fire by Ferrocene.

2791 [225] Cooper OR, Parrish D, Ziemke J, Balashov N, Cupeiro M, Galbally I, et al. Global distribution and trends of
2792 tropospheric ozone: An observation-based review. *Elementa: Science of the Anthropocene*. 2014;2:000029.

2793 [226] Sherwen T, Evans MJ, Carpenter LJ, Schmidt JA, Mickely L. Halogen chemistry reduces tropospheric O₃
2794 radiative forcing. *Atmos Chem Phys Discuss*, doi. 2016;10.

2795 [227] Crutzen PJ, Oppenheimer M. Learning about ozone depletion. *Climatic Change*. 2008;89:143-54.

2796 [228] Wayne RP, Poulet G, Biggs P, Burrows J, Cox R, Crutzen P, et al. Halogen oxides: Radicals, sources and
2797 reservoirs in the laboratory and in the atmosphere. *Atmospheric Environment*. 1995;29:2677-881.

2798 [229] Le Bras G, Platt U. A possible mechanism for combined chlorine and bromine catalyzed destruction of
2799 tropospheric ozone in the Arctic. *Geophysical research letters*. 1995;22:599-602.

2800 [230] Pratt KA, Custard KD, Shepson PB, Douglas TA, Pöhler D, General S, et al. Photochemical production of
2801 molecular bromine in Arctic surface snowpacks. *Nature Geoscience*. 2013;6:351-6.

2802 [231] Blechschmidt A-M, Richter A, Burrows J, Kaleschke L, Strong K, Theys N, et al. An exemplary case of a
2803 bromine explosion event linked to cyclone development in the Arctic. *Atmospheric Chemistry and Physics*.
2804 2016;16:1773-88.

2805 [232] Simpson W, Glasow Rv, Riedel K, Anderson P, Ariya P, Bottenheim J, et al. Halogens and their role in polar
2806 boundary-layer ozone depletion. *Atmospheric Chemistry and Physics*. 2007;7:4375-418.

2807 [233] Roscoe H, Kreher K, Friess U. Ozone loss episodes in the free Antarctic troposphere, suggesting a possible
2808 climate feedback. *Geophysical research letters*. 2001;28:2911-4.

2809 [234] Read KA, Mahajan AS, Carpenter LJ, Evans MJ, Faria BV, Heard DE, et al. Extensive halogen-mediated
2810 ozone destruction over the tropical Atlantic Ocean. *Nature*. 2008;453:1232-5.

2811 [235] Lawler M, Finley B, Keene W, Pszenny A, Read K, Von Glasow R, et al. Pollution-enhanced reactive
2812 chlorine chemistry in the eastern tropical Atlantic boundary layer. *Geophysical Research Letters*. 2009;36.

2813 [236] Bloss WJ, Evans MJ, Lee JD, Sommariva R, Heard DE, Pilling MJ. The oxidative capacity of the
2814 troposphere: Coupling of field measurements of OH and a global chemistry transport model. *Faraday discussions*.
2815 2005;130:425-36.

2816 [237] Hu L, Yvon-Lewis SA, Butler JH, Lobert JM, King DB. An improved oceanic budget for methyl chloride.
2817 *Journal of Geophysical Research: Oceans*. 2013;118:715-25.

2818 [238] Khalil M, Moore R, Harper D, Lobert J, Erickson VK, Keene W. Natural emissions of chlorine-containing
2819 gases: Reactive Chlorine Emissions Inventory. 1999.

2820 [239] Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud
2821 albedo and climate. *Nature*. 1987;326:655-61.

2822 [240] Lana A, Bell T, Simó R, Vallina SM, Ballabriga-Poy J, Kettle A, et al. An updated climatology of surface
2823 dimethylsulfide concentrations and emission fluxes in the global ocean. *Global Biogeochemical Cycles*. 2011;25.

2824 [241] Six KD, Kloster S, Ilyina T, Archer SD, Zhang K, Maier-Reimer E. Global warming amplified by reduced
2825 sulphur fluxes as a result of ocean acidification. *Nature Climate Change*. 2013;3:975-8.

2826 [242] Crutzen PJ. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy
2827 dilemma? *Climatic change*. 2006;77:211-20.

2828 [243] Perry RS, Kolb VM, Lynne BY, Sephton MA, McLaughlin N, Engel MH, et al. How desert varnish forms?
2829 *Optics & Photonics 2005: International Society for Optics and Photonics*; 2005. p. 59060V-V-12.

2830 [244] Hungate B, Danin A, Pellerin N, Stummel J, Kjellander P, Adams J, et al. Characterization of manganese-
2831 oxidizing (MnII— MnIV) bacteria from Negev Desert rock varnish: implications in desert varnish formation.
2832 *Canadian Journal of Microbiology*. 1987;33:939-43.

2833 [245] Allen CC, Westall F, Schelble RT. Importance of a martian hematite site for astrobiology. *Astrobiology*.
2834 2001;1:111-23.

2835 [246] Johnson L, Eggleston C. The photocatalytic actions of desert varnish. : University of Wyoming; 2013.

2836 [247] Matsunaga K, Ohyama T, Kuma K, Kudo I, Suzuki Y. Photoreduction of manganese dioxide in seawater by
2837 organic substances under ultraviolet or sunlight. *Water Research*. 1995;29:757-9.

2838 [248] Liu T, Dorn RI. Understanding the spatial variability of environmental change in drylands with rock varnish
2839 microlaminations. *Annals of the Association of American Geographers*. 1996;86:187-212.

2840 [249] Dorn RI. The Rock Varnish Revolution: New Insights from Microlaminations and the Contributions of
2841 Tanzhuo Liu. *Geography Compass*. 2009;3:1804-23.

2842 [250] Gammons C, Parker S, Nimick D. Diel iron cycling in acidic rivers of southwestern Spain. *Geochimica et
2843 Cosmochimica Acta: Pergamon - Elsevier Science Ltd, Oxford, England*; 2007. p. A305-A.

2844 [251] Sander R, Burrows J, Kaleschke L. Carbonate precipitation in brine - a potential trigger for tropospheric
2845 ozone depletion events. *Atmospheric Chemistry and Physics*. 2006;6:4653-8.

2846 [252] Kim K, Choi W, Hoffmann MR, Yoon H-I, Park B-K. Photoreductive dissolution of iron oxides trapped in ice
2847 and its environmental implications. *Environmental science & technology*. 2010;44:4142-8.

2848 [253] Jeong D, Kim K, Choi W. Accelerated dissolution of iron oxides in ice. *Atmospheric Chemistry and Physics*.
2849 2012;12:11125-33.

2850 [254] Dorfman J, Stoner J, Finkenbinder M, Abbott M, Xuan C, St-Onge G. A 37,000-year environmental magnetic
2851 record of aeolian dust deposition from Burial Lake, Arctic Alaska. *Quaternary Science Reviews*. 2015;128:81-97.

2852 [255] Hammer UT. Saline lake ecosystems of the world: Springer Science & Business Media; 1986.

2853 [256] Albani S, Mahowald N, Murphy L, Raiswell R, Moore J, Anderson R, et al. Paleodust variability since the
2854 Last Glacial Maximum and implications for iron inputs to the ocean. *Geophysical Research Letters*. 2016;43:3944-
2855 54.

2856 [257] Cartapanis O, Bianchi D, Jaccard SL, Galbraith ED. Global pulses of organic carbon burial in deep-sea
2857 sediments during glacial maxima. *Nature communications*. 2016;7.

2858 [258] Jaccard SL, Galbraith ED, Martínez-García A, Anderson RF. Covariation of deep Southern Ocean
2859 oxygenation and atmospheric CO₂ through the last ice age. *Nature*. 2016;530:207-10.

2860 [259] Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C. Molecular mechanisms underlying
2861 calcification in coccolithophores. *Geomicrobiology Journal*. 2010;27:585-95.

2862 [260] Rost B, Riebesell U. Coccolithophores and the biological pump: responses to environmental changes.
2863 *Coccolithophores*: Springer; 2004. p. 99-125.

2864 [261] Meyer J, Riebesell U. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a
2865 meta-analysis. *Biogeosciences (BG)*. 2015;12:1671-82.

2866 [262] Salter I, Schiebel R, Ziveri P, Movellan A, Lampitt R, Wolff GA. Carbonate counter pump stimulated by
2867 natural iron fertilization in the Polar Frontal Zone. *Nature Geoscience*. 2014.

2868 [263] Alt JC, Shanks WC. Serpentization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur
2869 geochemistry and reaction modeling. *Geochimica et Cosmochimica Acta*. 2003;67:641-53.

2870 [264] Früh-Green GL, Connolly JA, Plas A, Kelley DS, Grobety B. Serpentization of oceanic peridotites:
2871 implications for geochemical cycles and biological activity. *The subseafloor biosphere at mid-ocean ridges.*
2872 2004;119-36.

2873 [265] Müller M, Barcelos e Ramos J, Schulz KG, Riebesell U, Kazmierczak J, Gallo F, et al. Phytoplankton
2874 calcification as an effective mechanism to prevent cellular calcium poisoning. *Biogeosciences Discussions.*
2875 2015;12:12691-712.

2876 [266] Matrai P, Keller M. Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: intracellular
2877 variations. *Marine Biology.* 1994;119:61-8.

2878 [267] Carpenter LJ, Archer SD, Beale R. Ocean-atmosphere trace gas exchange. *Chemical Society Reviews.*
2879 2012;41:6473-506.

2880 [268] Chen C-TA, Lin C-M, Huang B-T, Chang L-F. Stoichiometry of carbon, hydrogen, nitrogen, sulfur and
2881 oxygen in the particulate matter of the western North Pacific marginal seas. *Marine Chemistry.* 1996;54:179-90.

2882 [269] Fujita T. Concentration of major chemical elements in marine plankton. *Geochemical Journal.* 1971;4:143-
2883 56.

2884 [270] Cassar N, Laws EA, Bidigare RR, Popp BN. Bicarbonate uptake by Southern Ocean phytoplankton. *Global
2885 Biogeochemical Cycles.* 2004;18.

2886 [271] Taylor LL, Quirk J, Thorley RM, Kharecha PA, Hansen J, Ridgwell A, et al. Enhanced weathering strategies
2887 for stabilizing climate and averting ocean acidification. *Nature Climate Change.* 2015.

2888 [272] Weber T, Cram JA, Leung SW, DeVries T, Deutsch C. Deep ocean nutrients imply large latitudinal variation
2889 in particle transfer efficiency. *Proceedings of the National Academy of Sciences.* 2016;201604414.

2890 [273] Dimitrova K, Sarkisyan A, Koleva V. Vertical mussel reef farming: Exploring climate change solutions with
2891 economic and ecologic significance. *Climate Engineering Research Symposium.* Berlin2015.

2892 [274] Lenton A, Sen Gupta A. Carbon credits for oyster farming: fact or fiction? *Fish2010.* p. 30.

2893 [275] Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrade A, et al. Plastic waste inputs from land
2894 into the ocean. *Science.* 2015;347:768-71.

2895 [276] Law KL, Morét-Ferguson SE, Goodwin DS, Zettler ER, DeForce E, Kukulka T, et al. Distribution of surface
2896 plastic debris in the eastern Pacific Ocean from an 11-year data set. *Environmental science & technology.*
2897 2014;48:4732-8.

2898 [277] Cázar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, et al. Plastic debris in
2899 the open ocean. *Proceedings of the National Academy of Sciences.* 2014;111:10239-44.

2900 [278] van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, van Franeker JA, et al. A global inventory
2901 of small floating plastic debris. *Environmental Research Letters.* 2015;10:124006.

2902 [279] Bykova E, Dubrovinsky L, Dubrovinskaia N, Bykov M, McCammon C, Ovsyannikov S, et al. Structural
2903 complexity of simple Fe₂O₃ at high pressures and temperatures. *Nature communications.* 2016;7.

2904 [280] Bruland K. A review of the chemistries of redox sensitive elements within suboxic zones of oxygen minimum
2905 regions. *Gayana (Concepc).* 2006;70:6-13.

2906 [281] Rahmstorf S, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ. Exceptional twentieth-
2907 century slowdown in Atlantic Ocean overturning circulation. *Nature climate change.* 2015;5:475-80.

2908 [282] Bintanja R, Van Oldenborgh G, Drijfhout S, Wouters B, Katsman C. Important role for ocean warming and
2909 increased ice-shelf melt in Antarctic sea-ice expansion. *Nature Geoscience.* 2013;6:376-9.

2910 [283] Rahmstorf S. Thermohaline Ocean Circulation. *Encyclopedia of Quaternary Sciences.* Postdam Institute for
2911 Climate Impact Research. 2006;5.

2912 [284] Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, et al. Antarctic Bottom Water
2913 production by intense sea-ice formation in the Cape Darnley polynya. *Nature Geoscience.* 2013;6:235-40.

2914 [285] Hauck J, Köhler P, Wolf-Gladrow D, Völker C. Iron fertilisation and century-scale effects of open ocean
2915 dissolution of olivine in a simulated CO₂ removal experiment. *Environmental Research Letters.* 2016;11:024007.

2916 [286] Wallmann K, Aloisi G, Haeckel M, Tishchenko P, Pavlova G, Greinert J, et al. Silicate weathering in anoxic
2917 marine sediments. *Geochimica et Cosmochimica Acta.* 2008;72:2895-918.

2918 [287] Ohman L-O, Nordin A, Sede IF, Sjöberg S. Equilibrium and Structural Studies of Silicon (IV) and
2919 Aluminium (III) in Aqueous Solution. 28. Formation of Soluble Silicic Acid-Ligand Complexes as Studied by
2920 Potentiometric and Solubility Measurements. *Acta chemica Scandinavica.* 1991;45:335-41.

2921 [288] Swanson KA. The effect of dissolved catechol on the dissolution of amorphous silica in seawater:
2922 Pennsylvania State University.; 1988.

2923 [289] Roden E, Edmonds J. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe (III) oxide
2924 reduction versus iron-sulfide formation. *Archiv für Hydrobiologie.* 1997;139:347-78.

2925 [290] Slomp CP, Mort HP, Jilbert T, Reed DC, Gustafsson BG, Wolthers M. Coupled dynamics of iron and
2926 phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. 2013.

2927 [291] Vorhies JS, Gaines RR. Microbial dissolution of clay minerals as a source of iron and silica in marine
2928 sediments. *Nature Geoscience.* 2009;2.

2929 [292] Demadis KD, Mavredaki E, Somara M. Additive-Driven Dissolution Enhancement of Colloidal Silica. 2.
2930 Environmentally Friendly Additives and Natural Products. *Industrial & Engineering Chemistry Research.*
2931 2011;50:13866-76.

2932 [293] Jorgensen SS. Dissolution kinetics of silicate minerals in aqueous catechol solutions. *Journal of Soil
2933 Science.* 1976;27:183-95.

2934 [294] Belton DJ, Deschaume O, Patwardhan SV, Perry CC. A solution study of silica condensation and speciation
2935 with relevance to in vitro investigations of biosilicification. *The Journal of Physical Chemistry B.* 2010;114:9947-
2936 55.

2937 [295] Kastner M. Oceanic minerals: Their origin, nature of their environment, and significance. *Proceedings of the*
2938 *National Academy of Sciences*. 1999;96:3380-7.

2939 [296] Wu Y-H, Liao L, Wang C-S, Ma W-L, Meng F-X, Wu M, et al. A comparison of microbial communities in
2940 deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean. *Deep Sea Research Part I:*
2941 *Oceanographic Research Papers*. 2013;79:40-9.

2942 [297] Nayak B, Das SK, Bhattacharyya KK. Detrital and authigenic (?) baddeleyite (ZrO_2) in ferromanganese
2943 nodules of Central Indian Ocean Basin. *Geoscience Frontiers*. 2011;2:571-6.

2944 [298] Straub KL, Kappler A, Schink B. Enrichment and isolation of ferric-iron and humic-acid-reducing
2945 bacteria. *Methods in enzymology*. 2005;397:58-77.

2946 [299] Kappler A, Benz M, Schink B, Brune A. Electron shuttling via humic acids in microbial iron (III) reduction in a
2947 freshwater sediment. *FEMS Microbiology Ecology*. 2004;47:85-92.

2948 [300] Piepenbrock A, Behrens S, Kappler A. Comparison of humic substance-and Fe (III)-reducing microbial
2949 communities in anoxic aquifers. *Geomicrobiology Journal*. 2014;31:917-28.

2950 [301] Bond DR, Lovley DR. Reduction of Fe (III) oxide by methanogens in the presence and absence of
2951 extracellular quinones. *Environmental Microbiology*. 2002;4:115-24.

2952 [302] Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR. Recovery of humic-reducing bacteria
2953 from a diversity of environments. *Applied and Environmental Microbiology*. 1998;64:1504-9.

2954 [303] Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL. Humics as an electron donor for anaerobic respiration.
2955 *Environmental Microbiology*. 1999;1:89-98.

2956 [304] Lovley DR, Blunt-Harris EL. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe (III)
2957 reduction. *Applied and environmental microbiology*. 1999;65:4252-4.

2958 [305] Benz M, Schink B, Brune A. Humic acid reduction by *Propionibacterium freudenreichii* and other fermenting
2959 bacteria. *Applied and environmental microbiology*. 1998;64:4507-12.

2960 [306] van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, et al. Complete nitrification
2961 by a single microorganism. *Nature*. 2015.

2962 [307] Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by *Nitrospira*
2963 bacteria. *Nature*. 2015;528:504-9.

2964 [308] Charpentier D, Buatier M, Jacquot E, Gaudin A, Wheat C. Conditions and mechanism for the formation of
2965 iron-rich Montmorillonite in deep sea sediments (Costa Rica margin): Coupling high resolution mineralogical
2966 characterization and geochemical modeling. *Geochimica et Cosmochimica Acta*. 2011;75:1397-410.

2967 [309] Gaudin A, Buatier M, Beaufort D, Petit S, Grauby O, Decarreau A. Characterization and origin of Fe^{3+} -
2968 montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin). *Clays and Clay
2969 Minerals*. 2005;53:452-65.

2970 [310] Pufahl P, Hiatt E. Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical
2971 sedimentologic responses. *Marine and Petroleum Geology*. 2012;32:1-20.

2972 [311] Zijlstra H. Early diagenesis of chalk, in: *The sedimentology of chalk*. Springer; 1995.

2973 [312] Polgári M, Hein J, Németh T, Pál-Molnár E, Vigh T. Celadonite and smectite formation in the Úrkút Mn-
2974 carbonate ore deposit (Hungary). *Sedimentary Geology*. 2013;294:157-63.

2975 [313] Bjorlykke K. *Petroleum geoscience: From sedimentary environments to rock physics*: Springer Science &
2976 Business Media; 2010.

2977 [314] Konhauser KO, Urrutia MM. Bacterial clay authigenesis: a common biogeochemical process. *Chemical
2978 Geology*. 1999;161:399-413.

2979 [315] Kostka JE, Stucki LJW, Nealson KH, Wu J. Reduction of structural Fe (III) in smectite by a pure culture of
2980 the Fe-reducing bacterium *Shewanella putrifaciens* strain MR-1. *Clays and Clay Minerals*: Citeseer; 1996.

2981 [316] Lam PJ, Bishop JK. The continental margin is a key source of iron to the HNLC North Pacific Ocean.
2982 *Geophysical Research Letters*. 2008;35.

2983 [317] Coggon RM, Teagle D, Harris M, John C, Smith-Duque C, Alt J. Why Does Calcium Carbonate Precipitate
2984 in the Ocean Crust? *AGU Fall Meeting Abstracts* 2012. p. 0545.

2985 [318] Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes
2986 up. *Proceedings of the National Academy of Sciences*. 2015;112:E3997-E4006.

2987 [319] Schrenk MO, Brazelton WJ, Lang SQ. Serpentinization, carbon, and deep life. *Rev Mineral Geochem*.
2988 2013;75:575-606.

2989 [320] Janecky D, Seyfried W. Hydrothermal serpentinization of peridotite within the oceanic crust: experimental
2990 investigations of mineralogy and major element chemistry. *Geochimica et Cosmochimica Acta*. 1986;50:1357-78.

2991 [321] Müntener O. Serpentine and serpentinization: A link between planet formation and life. *Geology*.
2992 2010;38:959-60.

2993 [322] Evans BW. Control of the products of serpentinization by the Fe^{2+} - Mg -1 exchange potential of olivine and
2994 orthopyroxene. *Journal of Petrology*. 2008;49:1873-87.

2995 [323] Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer M. A review of mineral carbonation technologies
2996 to sequester CO_2 . *Chemical Society Reviews*. 2014;43:8049-80.

2997 [324] Oelkers EH, Gislason SR, Matter J. Mineral carbonation of CO_2 . *Elements*. 2008;4:333-7.

2998 [325] Sissmann O, Brunet F, Martinez I, Guyot Fo, Verlaguet A, Pinquier Y, et al. Enhanced olivine carbonation
2999 within a basalt as compared to single-phase experiments: reevaluating the potential of CO_2 mineral
3000 sequestration. *Environmental science & technology*. 2014;48:5512-9.

3001 [326] Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J. Rates and mechanisms of mineral
3002 carbonation in peridotite: natural processes and recipes for enhanced, in situ CO_2 capture and storage. *Annual
3003 Review of Earth and Planetary Sciences*. 2011;39:545-76.

3004 [327] Ivarsson M, Bengtson S, Neubeck A. The igneous oceanic crust–Earth's largest fungal habitat? *Fungal*
3005 *Ecology*. 2016;20:249-55.

3006 [328] Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted
3007 ecosystem: the Lost City hydrothermal field. *Science*. 2005;307:1428-34.

3008 [329] Rast W, Calcagno A, Williams WD. The Watershed: Water from the Mountains into the Sea. *Streams And*
3009 *Rivers: Water Flowing Over the Land Surface*. In: Programme UUNe, editor. *Lakes and Reservoirs* vol 22001. p.
3010 36.

3011 [330] Righi-Cavallaro KO, Roche KF, Froehlich O, Cavallaro MR. Structure of macroinvertebrate communities in
3012 riffles of a Neotropical karst stream in the wet and dry seasons. *Acta Limnologica Brasiliensia*. 2010;22:306-16.

3013 [331] Li Q, Sun H, Wang J. Hydrochemical response of Epikarst Spring to rainfall: implications of nutrition element
3014 loss and groundwater pollution. *Polish Journal of Environmental Studies*. 2010;19:441-8.

3015 [332] Raeisi E, Karami G. Hydrochemographs of Berghan karst spring as indicators of aquifer characteristics.
3016 *Journal of Cave and Karst Studies*. 1997;59:112-8.

3017 [333] Kelemen PB, Matter J. In situ carbonation of peridotite for CO₂ storage. *Proceedings of the National*
3018 *Academy of Sciences*. 2008;105:17295-300.

3019 [334] Wang X, Ouyang Z, Zhuo S, Zhang M, Zheng G, Wang Y. Serpentinization, abiogenic organic compounds,
3020 and deep life. *Science China Earth Sciences*. 2014;57:878-87.

3021 [335] Malvoisin B, Chopin C, Brunet F, Galvez ME. Low-temperature wollastonite formed by carbonate reduction:
3022 a marker of serpentinite redox conditions. *Journal of Petrology*. 2012;53:159-76.

3023 [336] Holm NG, Oze C, Mousis O, Waite J, Guillet-Lepoutre A. Serpentinization and the formation of H₂ and
3024 CH₄ on celestial bodies (planets, moons, comets). *Astrobiology*. 2015;15:587-600.

3025 [337] Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, et al. Graphite formation by
3026 carbonate reduction during subduction. *Nature Geoscience*. 2013;6:473-7.

3027 [338] Rumble D. Hydrothermal graphitic carbon. *Elements*. 2014;10:427-33.

3028 [339] Köhler P, Hartmann J, Wolf-Gladrow DA. Geoengineering potential of artificially enhanced silicate
3029 weathering of olivine. *Proceedings of the National Academy of Sciences*. 2010;107:20228-33.

3030 [340] Köhler P, Abrams JF, Völker C, Hauck J, Wolf-Gladrow DA. Geoengineering impact of open ocean
3031 dissolution of olivine on atmospheric CO₂, surface ocean pH and marine biology. *Environmental Research*
3032 Letters. 2013;8:014009.

3033 [341] Haas S, Weber N, Berry A, Erich E. Limestone powder carbon dioxide scrubber
3034 as the technology for Carbon Capture and Usage. *Cement International*. 2014;3:34-45.

3035 [342] Lyubetskaya T, Korenaga J. Chemical composition of Earth's primitive mantle and its variance: 1. Method
3036 and results. *Journal of Geophysical Research: Solid Earth*. 2007;112.

3037 [343] Insua TL, Spivack AJ, Graham D, D'Hondt S, Moran K. Reconstruction of Pacific Ocean bottom water
3038 salinity during the Last Glacial Maximum. *Geophysical Research Letters*. 2014;41:2914-20.

3039 [344] Hovland M, Rueslätten H, Johnsen HK. Buried Hydrothermal Systems: The Potential Role of Supercritical
3040 Water," ScriW", in Various Geological Processes and Occurrences in the Sub-Surface. *American Journal of*
3041 *Analytical Chemistry*. 2014;5:128.

3042 [345] Hovland M, Rueslätten H, Johnsen H, Kvamme B, Kuznetsova T. Salt formation associated with sub-
3043 surface boiling and supercritical water. *Marine and Petroleum Geology*. 2006;23:855-69.

3044 [346] Hovland M, Kuznetsova T, Rueslätten H, Kvamme B, Johnsen HK, Fladmark GE, et al. Sub-surface
3045 precipitation of salts in supercritical seawater. *Basin Research*. 2006;18:221-30.

3046 [347] Schrag DP, Higgins JA, Macdonald FA, Johnston DT. Authigenic carbonate and the history of the global
3047 carbon cycle. *Science*. 2013;339:540-3.

3048 [348] Sun X, Turchyn AV. Significant contribution of authigenic carbonate to marine carbon burial. *Nature*
3049 *Geoscience*. 2014;7:201-4.

3050 [349] Zhao M-Y, Zheng Y-F, Zhao Y-Y. Seeking a geochemical identifier for authigenic carbonate. *Nature*
3051 *communications*. 2016;7.

3052 [350] Solomon EA, Spivack AJ, Kastner M, Torres ME, Robertson G. Gas hydrate distribution and carbon
3053 sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna–Godavari basin,
3054 offshore India. *Marine and Petroleum Geology*. 2014;58:233-53.

3055 [351] Meister P, Gutjahr M, Frank M, Bernasconi SM, Vasconcelos C, McKenzie JA. Dolomite formation within the
3056 methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. *Geology*. 2011;39:563-6.

3057 [352] Roberts JA, Bennett PC, González LA, Macpherson G, Milliken KL. Microbial precipitation of dolomite in
3058 methanogenic groundwater. *Geology*. 2004;32:277-80.

3059 [353] Merinero R, Lunar R, Martínez-Frías J, Somoza L, Díaz-del-Río V. Iron oxyhydroxide and sulphide
3060 mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula).
3061 *Marine and Petroleum Geology*. 2008;25:706-13.

3062 [354] Dewangan P, Basavaiah N, Badesab F, Usapkar A, Mazumdar A, Joshi R, et al. Diagenesis of magnetic
3063 minerals in a gas hydrate/cold seep environment off the Krishna–Godavari basin, Bay of Bengal. *Marine Geology*.
3064 2013;340:57-70.

3065 [355] Tribouillard N, Du Châtelet EA, Gay A, Barbicot F, Sansjofre P, Potdevin J-L. Geochemistry of cold
3066 seepage-impacted sediments: Per-ascensum or per-descensum trace metal enrichment? *Chemical Geology*.
3067 2013;340:1-12.

3068 [356] Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO. Pyrite formation linked with hydrogen
3069 evolution under anaerobic conditions. *Nature*. 1990;346:742-4.

3070 [357] Rickard D, Luther GW. Kinetics of pyrite formation by the H₂ S oxidation of iron (II) monosulfide in aqueous
3071 solutions between 25 and 125 C: The mechanism. *Geochimica et Cosmochimica Acta*. 1997;61:135-47.

3072 [358] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in
 3073 methanogenic soils and sediments. *FEMS Microbiology Ecology*. 1999;28:193-202.

3074 [359] Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, et al. A possible prebiotic formation of
 3075 ammonia from dinitrogen on iron sulfide surfaces. *Angewandte Chemie International Edition*. 2003;42:1540-3.

3076 [360] Krause S, Liebetrau V, Gorb S, Sánchez-Román M, McKenzie JA, Treude T. Microbial nucleation of Mg-rich
 3077 dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma.
 3078 *Geology*. 2012;40:587-90.

3079 [361] Raiswell R, Fisher Q. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP
 3080 sediments: implications for the formation of concretions. *Chemical Geology*. 2004;211:71-85.

3081 [362] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas
 3082 hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances.
 3083 *Geochimica et Cosmochimica Acta*. 2003;67:3403-21.

3084 [363] Berner RA, Scott MR, Thomlinson C. Carbonate alkalinity in the pore waters of anoxic sediments. *Limnology*
 3085 and *Oceanography*. 1970;15:544-9.

3086 [364] Maekawa T, Itoh S, Sakata S, Igari S-i, Imai N. Pressure and temperature conditions for methane hydrate
 3087 dissociation in sodium chloride solutions. *Geochemical Journal*. 1995;29:325-9.

3088 [365] Neubeck A, Duc NT, Hellevang H, Oze C, Bastviken D, Bacsik Z, et al. Olivine alteration and H₂ production
 3089 in carbonate-rich, low temperature aqueous environments. *Planetary and Space Science*. 2014;96:51-61.

3090 [366] Mayhew L, Ellison E, McCollom T, Trainor T, Templeton A. Hydrogen generation from low-temperature
 3091 water-rock reactions. *Nature Geoscience*. 2013;6:478-84.

3092 [367] Bayrakci G, Minshull T, Sawyer D, Reston TJ, Klaeschen D, Papenberg C, et al. Fault-controlled hydration
 3093 of the upper mantle during continental rifting. *Nature Geoscience*. 2016;9:384-8.

3094 [368] Worman SL, Pratson LF, Karson J, Klein E. Global rate and distribution of H₂ gas produced by
 3095 serpentinization within oceanic lithosphere. *Geophysical Research Letters*. 2016.

3096 [369] Römer M, Torres M, Kasten S, Kuhn G, Graham AG, Mau S, et al. First evidence of widespread active
 3097 methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. *Earth and Planetary
 3098 Science Letters*. 2014;403:166-77.

3099 [370] Suess E, Torres M, Bohrmann G, Collier R, Greinert J, Linke P, et al. Gas hydrate destabilization: enhanced
 3100 dewaterring, benthic material turnover and large methane plumes at the Cascadia convergent margin. *Earth and
 3101 Planetary Science Letters*. 1999;170:1-15.

3102 [371] Krastel S, Bialas J, A V. Im fragilen Gleichgewicht: Deutsch-Neuseeländisches Forscherteam entdeckt
 3103 bisher unbekanntes Methanvorkommen bei der Untersuchung von instabilen untermeerischen Hängen; .
 3104 Pressemitteilung 02062014 des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und Institut für
 3105 Geowissenschaften der Christian-Albrechts-Universität zu Kiel vom 12052014. Kiel 2014.

3106 [372] Paull CK, Ussler W, Dallimore SR, Blasco SM, Lorenson TD, Melling H, et al. Origin of pingo-like features
 3107 on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. *Geophysical
 3108 Research Letters*. 2007;34.

3109 [373] Shakhova N, Semiletov I, Panteleev G. The distribution of methane on the Siberian Arctic shelves:
 3110 Implications for the marine methane cycle. *Geophysical Research Letters*. 2005;32.

3111 [374] Serov P, Portnov A, Mienert J, Semenov P, Ilatovskaya P. Methane release from pingo-like features across
 3112 the South Kara Sea shelf, an area of thawing offshore permafrost. *Journal of Geophysical Research: Earth
 3113 Surface*. 2015;120:1515-29.

3114 [375] Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V, Niemann H, et al. Methane hydrates and global
 3115 warming: Dissolution of hydrates off Svalbard caused by natural processes; . Kiel Pressemitteilung des GEOMAR
 3116 Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel; 2014.

3117 [376] Fischer D, Mogollón JM, Strasser M, Pape T, Bohrmann G, Fekete N, et al. Subduction zone earthquake as
 3118 potential trigger of submarine hydrocarbon seepage. *Nature Geoscience*. 2013;6:647-51.

3119 [377] Elvert M, Suess E, Greinert J, Whiticar MJ. Archaea mediating anaerobic methane oxidation in deep-sea
 3120 sediments at cold seeps of the eastern Aleutian subduction zone. *Organic Geochemistry*. 2000;31:1175-87.

3121 [378] Shakhova N, Semiletov I, Salyuk A, Kosmach D. Anomalies of methane in the atmosphere over the East
 3122 Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates. *Geophysical Research
 3123 Abstracts* 2008. p. A01526.

3124 [379] Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ. Iron oxides stimulate sulfate-driven anaerobic
 3125 methane oxidation in seeps. *Proceedings of the National Academy of Sciences*. 2014;111:E4139-E47.

3126 [380] Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, et al. Bacterial enzymes for dissimilatory
 3127 sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. *Environmental
 3128 microbiology*. 2011;13:1370-9.

3129 [381] Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, et al. Geochemical evidence for iron-mediated
 3130 anaerobic oxidation of methane. *Limnology and Oceanography*. 2011;56:1536-44.

3131 [382] Sivan O, Shusta S, Valentine D. Methanogens rapidly transition from methane production to iron reduction.
 3132 *Geobiology*. 2016;14:190-203.

3133 [383] Naqvi S, Bange HW, Farias L, Monteiro P, Scranton M, Zhang J. Marine hypoxia/anoxia as a source of CH₄
 3134 and N₂O. *Biogeosciences*. 2010;7:2159-90.

3135 [384] Stramma L, Schmidtko S, Levin LA, Johnson GC. Ocean oxygen minima expansions and their biological
 3136 impacts. *Deep Sea Research Part I: Oceanographic Research Papers*. 2010;57:587-95.

3137 [385] Duprat LP, Bigg GR, Wilton DJ. Enhanced Southern Ocean marine productivity due to fertilization by giant
 3138 icebergs. *Nature Geoscience*. 2016.

3139 [386] Joughin I, Smith BE, Medley B. Marine ice sheet collapse potentially under way for the Thwaites Glacier
3140 Basin, West Antarctica. *Science*. 2014;344:735-8.

3141 [387] Pope F, Braesicke P, Grainger R, Kalberer M, Watson I, Davidson P, et al. Stratospheric aerosol particles
3142 and solar-radiation management. *Nature Climate Change*. 2012;2:713-9.

3143 [388] Pérez-Sanz A, Lucena J. Synthetic iron oxides as sources of Fe in a hydroponic culture of sunflower. *Iron*
3144 nutrition in soils and plants: Springer; 1995. p. 241-6.

3145 [389] Hochmuth G. iron (Fe) nutrition in Plants; U.S. Department of Agriculture, Extension Service, University of
3146 Florida, IFAS Document SL353. Available at <http://edis.ifas.ufl.edu/pdffiles/SS/SS55500.pdf> 2011.

3147 [390] Morrissey J, Guerinot ML. Iron uptake and transport in plants: the good, the bad, and the ionome. *Chemical*
3148 reviews. 2009;109:4553-67.

3149 [391] Becker M, Asch F. Iron toxicity in rice—conditions and management concepts. *Journal of Plant Nutrition and*
3150 *Soil Science*. 2005;168:558-73.

3151 [392] Forieri I, Hell R. Micronutrient use efficiency—cell biology of iron and its metabolic interactions in plants.
3152 Nutrient use efficiency in plants: Springer; 2014. p. 133-52.

3153 [393] Philpott CC. Iron uptake in fungi: a system for every source. *Biochimica et Biophysica Acta (bba)-molecular*
3154 *cell research*. 2006;1763:636-45.

3155 [394] Kraemer SM. Iron oxide dissolution and solubility in the presence of siderophores. *Aquatic sciences*.
3156 2004;66:3-18.

3157 [395] Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, et al. Towards a
3158 knowledge-based correction of iron chlorosis. *Plant Physiology and Biochemistry*. 2011;49:471-82.

3159 [396] Basar H, Gürel S, Ataç T, Çelik H. Effect of foliar iron applications on contents of iron forms and mineral
3160 composition of sweet cherry (*Prunus avium* L.). *Indo-American Journal of Agriculture and Veterinary Science*.
3161 2014;2:1-11.

3162 [397] El-Jendoubi H, Vázquez S, Calatayud Á, Vavpetič P, Vogel-Mikuš K, Pelicon P, et al. The effects of foliar
3163 fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (*Prunus*
3164 *persica* L. Batsch) grown in the field and sugar beet (*Beta vulgaris* L.) grown in hydroponics. *Frontiers in plant*
3165 *science*. 2014;5:2.

3166 [398] Rombolà AD, Tagliavini M. Iron nutrition of fruit tree crops. *Iron nutrition in plants and rhizospheric*
3167 *microorganisms*: Springer; 2006. p. 61-83.

3168 [399] Fernández V, Sotropoulos T, Brown PH. Foliar Fertilization: Scientific Principles and Field Practices:
3169 International fertilizer industry association; 2013.

3170 [400] Goos RJ, Johnson BE. A comparison of three methods for reducing iron-deficiency chlorosis in soybean.
3171 *Agronomy Journal*. 2000;92:1135-9.

3172 [401] Yu H, Chin M, Yuan T, Bian H, Remer LA, Prospero JM, et al. The fertilizing role of African dust in the
3173 Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder
3174 Satellite Observations. *Geophysical Research Letters*. 2015;42:1984-91.

3175 [402] Yu H, Chin M, Bian H, Yuan T, Prospero JM, Omar AH, et al. Quantification of trans-Atlantic dust transport
3176 from seven-year (2007–2013) record of CALIPSO lidar measurements. *Remote Sensing of Environment*.
3177 2015;159:232-49.

3178 [403] Gläser G, Wernli H, Kerkweg A, Teubler F. The transatlantic dust transport from North Africa to the
3179 Americas—Its characteristics and source regions. *Journal of Geophysical Research: Atmospheres*. 2015;120.

3180 [404] Köhler L, Tobón C, Frumau KA, Bruijnzeel LS. Biomass and water storage dynamics of epiphytes in old-
3181 growth and secondary montane cloud forest stands in Costa Rica. *Plant Ecology*. 2007;193:171-84.

3182 [405] Rizzolo JA, Barbosa CGG, Borillo GC, al. e. Mineral nutrients in Saharan dust and their potential impact on
3183 Amazonian rainforest ecology. *Atmospheric Chemistry and Physics (under review)* DOI: 105194/acp-2016-557.
3184 2016.

3185 [406] Ertel JR, Hedges JI, Devol AH, Richey JE, Ribeiro MdNG. Dissolved humic substances of the Amazon River
3186 system. *Limnology and Oceanography*. 1986;31:739-54.

3187 [407] Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. *Journal of*
3188 *Research in Medical Sciences*. 2014;19.

3189 [408] WHO. Micronutrient deficiencies: iron deficiency anemia. Geneva: WHO. Available at
3190 www.who.int/nutrition/topics/ida/en/. See also
3191 www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf. 2013.

3192 [409] Avni T, Leibovici L, Gafter-Gvili A. Iron supplementation for the treatment of chronic heart failure and iron
3193 deficiency: systematic review and meta-analysis. *European journal of heart failure*. 2012;14:423-9.

3194 [410] Cohen-Solal A, Leclercq C, Deray G, Lasocki S, Zambrowski J-J, Mebazaa A, et al. Iron deficiency: an
3195 emerging therapeutic target in heart failure. *Heart*. 2014;heartjnl-2014-305669.

3196 [411] Beckett AC, Piazuelo MB, Noto JM, Peek RM, Washington MK, Algood HMS, et al. Dietary composition
3197 influences incidence of *Helicobacter pylori*-induced iron deficiency anemia and gastric ulceration. *Infection and*
3198 *Immunity*. 2016;84:3338-49.

3199 [412] Medeiros DM. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review.
3200 *Experimental Biology and Medicine*. 2016;1535370216648805.

3201 [413] Ünüşan N. The Importance of Iron on Preschool Children and Effect on Cognitive Development. 2013.

3202 [414] Lukowski AF, Koss M, Burden MJ, Jonides J, Nelson CA, Kaciroti N, et al. Iron deficiency in infancy and
3203 neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition
3204 memory. *Nutritional neuroscience*. 2013.

3205 [415] Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. Long-lasting cognitive, physiological and hematological
 3206 effects in rehabilitated, early dietary iron-deficiency adult rats, and improvement by treatment with a mixture of
 3207 essential fatty acids. *Nutritional neuroscience*. 2013.

3208 [416] Saini RK, Nile SH, Keum Y-S. Food science and technology for management of iron deficiency in humans:
 3209 A review. *Trends in Food Science & Technology*. 2016;53:13-22.

3210 [417] Allen LH. Guidelines on food fortification with micronutrients. WHO, FAO. *Guidelines on food fortification*
 3211 with micronutrients: World Health Organization. Dept. of Nutrition for Health and Development; 2006.

3212 [418] WHO, FAO, UNICEF. Recommendations on wheat and maize flour fortification meeting report: Interim
 3213 consensus statement. Interim Consensus Statement. Genova. Available at
 3214 www.who.int/nutrition/publications/micro-nutrients/wheat_maize_fort.pdf. 2009.

3215 [419] Zuo Y, Zhang F. Soil and crop management strategies to prevent iron deficiency in crops. *Plant and Soil*.
 3216 2011;339:83-95.

3217 [420] Jeong J, Guerinot ML. Biofortified and bioavailable: the gold standard for plant-based diets. *Proceedings of*
 3218 *the National Academy of Sciences*. 2008;105:1777-8.

3219 [421] Zhang Y, Shi R, Rezaul KM, Zhang F, Zou C. Iron and zinc concentrations in grain and flour of winter wheat
 3220 as affected by foliar application. *Journal of agricultural and food chemistry*. 2010;58:12268-74.

3221 [422] Wei Y, Shohag M, Yang X, Yibin Z. Effects of foliar iron application on iron concentration in polished rice
 3222 grain and its bioavailability. *Journal of agricultural and food chemistry*. 2012;60:11433-9.

3223 [423] Lipson DA, Jha M, Raab TK, Oechel WC. Reduction of iron (III) and humic substances plays a major role in
 3224 anaerobic respiration in an Arctic peat soil. *Journal of Geophysical Research: Biogeosciences*. 2010;115.

3225 [424] Miller KE, Lai C-T, Friedman ES, Angenent LT, Lipson DA. Methane suppression by iron and humic acids in
 3226 soils of the Arctic Coastal Plain. *Soil Biology and Biochemistry*. 2015;83:176-83.

3227 [425] Lipson D, Miller K, Lai C. Methane Suppression: The Impacts of Fe (III) and Humic Acids on Net Methane
 3228 Flux from Arctic Tundra Wetlands in Alaska and Finland. *AGU Fall Meeting Abstracts* 2013. p. 02.

3229 [426] Zhang L, Keller J, Yuan Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer
 3230 biofilms by ferric iron dosing. *Water Research*. 2009;43:4123-32.

3231 [427] Zhang L, Derlon N, Keller J, Yuan Z. Dynamic response of sulfate-reducing and methanogenic activities of
 3232 anaerobic sewer biofilms to ferric dosing. *Journal of Environmental Engineering*. 2012;138:510-7.

3233 [428] Ali MA, Lee CH, Kim PJ. Effect of silicate fertilizer on reducing methane emission during rice cultivation.
 3234 *Biology and Fertility of Soils*. 2008;44:597-604.

3235 [429] Liu S, Zhang L, Liu Q, Zou J. Fe (III) fertilization mitigating net global warming potential and greenhouse gas
 3236 intensity in paddy rice-wheat rotation systems in China. *Environmental pollution*. 2012;164:73-80.

3237 [430] Liu D, Dong H, Agrawal A, Singh R, Zhang J, Wang H. Inhibitory effect of clay mineral on methanogenesis
 3238 by *Methanosaerica mazae* and *Methanothermobacter thermotrophicus*. *Applied Clay Science*. 2016;126:25-32.

3239 [431] Wang W, Lai DY, Li S, Kim PJ, Zeng C, Li P, et al. Steel slag amendment reduces methane emission and
 3240 increases rice productivity in subtropical paddy fields in China. *Wetlands Ecology and Management*. 2014;22:683-
 3241 91.

3242 [432] Amos R, Bekins B, Cozzarelli I, Voytek M, Kirshtein J, Jones E, et al. Evidence for iron□mediated anaerobic
 3243 methane oxidation in a crude oil□contaminated aquifer. *Geobiology*. 2012;10:506-17.

3244 [433] Zhou S, Xu J, Yang G, Zhuang L. Methanogenesis affected by the co-occurrence of iron (III) oxides and
 3245 humic substances. *FEMS microbiology ecology*. 2014;88:107-20.

3246 [434] Van Bodegom PM, Scholten JC, Stams AJ. Direct inhibition of methanogenesis by ferric iron. *FEMS
 3247 Microbiology Ecology*. 2004;49:261-8.

3248 [435] Teh YA, Dubinsky EA, Silver WL, Carlson CM. Suppression of methanogenesis by dissimilatory Fe
 3249 (III)□reducing bacteria in tropical rain forest soils: Implications for ecosystem methane flux. *Global Change
 3250 Biology*. 2008;14:413-22.

3251 [436] Roden EE, Wetzel RG. Organic carbon oxidation and suppression of methane production by microbial Fe
 3252 (III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. *Limnology and Oceanography*.
 3253 1996;41:1733-48.

3254 [437] Tagliabue A, Dutkiewicz S. Iron Model Intercomparison Project (FeMIP). Working Group proposal submitted
 3255 to SCOR April 2016. Available at: <http://www.scor-int.org/Annual%20Meetings/2016GM/FeMIP.pdf>. 2016.

3256 [438] Lim M, Chiang K, Amal R. Photochemical synthesis of chlorine gas from iron (III) and chloride solution.
 3257 *Journal of Photochemistry and Photobiology A: Chemistry*. 2006;183:126-32.

3258 [439] Meyer-Oeste F-D. Method for Cooling the Troposphere. Int. Patent CA 2748680 A1. (Remark: [Wittmer,
 3259 2015] focus only to the side variant of claim 8). 2010.

3260 [440] Platt U, Allan W, Lowe D. Hemispheric average Cl atom concentration from 13 C/12 C ratios in atmospheric
 3261 methane. *Atmospheric Chemistry and Physics*. 2004;4:2393-9.

3262 [441] Keene W, Khalil MAK, Erickson D, McCulloch A, Graedel TE, Lobert JM, et al. Composite global emissions
 3263 of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory. *Journal of*
 3264 *Geophysical Research: Atmospheres*. 1999;104:8429-40.

3265 [442] McCulloch A, Aucott ML, Benkovitz CM, Graedel TE, Kleiman G, Midgley PM, et al. Global emissions of
 3266 hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive
 3267 Chlorine Emissions Inventory. *Journal of Geophysical Research: Atmospheres*. 1999;104:8391-403.

3268 [443] Sanhueza E. Hydrochloric acid from chlorocarbons: a significant global source of background rain acidity.
 3269 *Tellus B*. 2001;53.

3270 [444] Lobert JM, Keene WC, Logan JA, Yevich R. Global chlorine emissions from biomass burning: Reactive
 3271 chlorine emissions inventory. *Journal of Geophysical Research: Atmospheres*. 1999;104:8373-89.

3272 [445] Jaenicke R. Atmospheric aerosols and global climate. *Journal of Aerosol science*. 1980;11:577-88.

3273 [446] Penner JE, Andreae M, Anegarn H, Barrie L, Feichter J, Hegg D, et al. Aerosols, their direct and indirect
 3274 effects. *Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment*
 3275 Report of the Intergovernmental Panel on Climate Change: Cambridge University Press; 2001. p. 289-348.

3276 [447] Kumar P, Robins A, Vardoulakis S, Britter R. A review of the characteristics of nanoparticles in the urban
 3277 atmosphere and the prospects for developing regulatory controls. *Atmospheric Environment*. 2010;44:5035-52.

3278 [448] Gupta D, Kim H, Park G, Li X, Eom H-J, Ro C-U. Hygroscopic properties of NaCl and NaNO₃ mixture
 3279 particles as reacted inorganic sea-salt aerosol surrogates. *Atmospheric Chemistry and Physics*. 2015;15:3379-93.

3280 [449] Biskos G, Malinowski A, Russell L, Buseck P, Martin S. Nanosize effect on the deliquescence and the
 3281 efflorescence of sodium chloride particles. *Aerosol Science and Technology*. 2006;40:97-106.

3282 [450] Oeste FD. Controlling concentration of active materials necessary for life; air pollution control. US Patents
 3283 08/534535; 2009.

3284 [451] Ito T, Nenes A, Johnson M, Meskhidze N, Deutsch C. Acceleration of oxygen decline in the tropical Pacific
 3285 over the past decades by aerosol pollutants. *Nature Geoscience*. 2016.

3286 [452] Sullivan RC, Guazzotti SA, Sodeman DA, Tang Y, Carmichael GR, Prather KA. Mineral dust is a sink for
 3287 chlorine in the marine boundary layer. *Atmospheric Environment*. 2007;41:7166-79.

3288 [453] Hoshyaripour G, Hort M, Langmann B. Ash iron mobilization through physicochemical processing in
 3289 volcanic eruption plumes: a numerical modeling approach. *Atmospheric Chemistry and Physics*. 2015;15:9361-
 3290 79.

3291 [454] Martin R, Wheeler J, Ilyinskaya E, Braban C, Oppenheimer C. The uptake of halogen (HF, HCl, HBr and HI)
 3292 and nitric (HNO₃) acids into acidic sulphate particles in quiescent volcanic plumes. *Chemical Geology*.
 3293 2012;296:19-25.

3294 [455] Ayris PM, Delmelle P, Cimarelli C, Maters EC, Suzuki YJ, Dingwell DB. HCl uptake by volcanic ash in the
 3295 high temperature eruption plume: Mechanistic insights. *Geochimica et Cosmochimica Acta*. 2014;144:188-201.

3296 [456] Myriokefalitakis S, Mihalopoulos N, Baker A, Kanakidou M. The anthropogenic influence on Iron deposition
 3297 over the oceans: a 3-D global modeling. EGU General Assembly Abstracts2014. p. 8310.

3298 [457] Keeling RF, Shertz SR. Seasonal and interannual variations in atmospheric oxygen and implications for the
 3299 global carbon cycle. *Nature*. 1992;358:723-7.

3300 [458] Manning AC, Keeling RF. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen
 3301 flask sampling network. *Tellus B*. 2006;58:95-116.

3302 [459] Oeste FD. The ISA method (IM). *Climate Engineering Research Symposium 2015, Current State and*
 3303 *Future Perspectives*. Berlin2015.

3304 [460] Oeste FD, Ries E. IOA, the CO₂- and methane-carbon capturing process: Effective and secure carbon
 3305 sequestration from troposphere into ocean sediment by flue gas conditioning of coal power plants. . 2nd ICEPE
 3306 2011 International Conference on Energy Process Engineering, Frankfurt am Main, Book of Extended Abstracts:
 3307 Efficient carbon capture for coal power plants Frankfurt DECHEMA Gesellschaft für Chemische Technik &
 3308 Biotechnologie e.V., Frankfurt am Main; 2011. p. 207-9.

3309 [461] Kammler HK, Mädler L, Pratsinis SE. Flame synthesis of nanoparticles. *Chemical engineering & technology*.
 3310 2001;24:583-96.

3311 [462] Buyukhatipoglu K, Clyne AM. Controlled flame synthesis of α Fe₂O₃ and Fe₃O₄ nanoparticles: effect of
 3312 flame configuration, flame temperature, and additive loading. *Journal of Nanoparticle Research*. 2010;12:1495-
 3313 508.

3314 [463] Kim D, Song K, Kaushik R. Fuel Additives for Particulate Matter/Dust Reduction. *Asian Journal of*
 3315 *Chemistry*. 2008;20:5797.

3316 [464] Madhu S, Nagaraju J, Sridhar P. Evaluation of four stroke diesel engine performance with ferrocene as fuel
 3317 additive. *International Journal & Magazine of Engineering, Technology, Management and Research*.
 3318 2015;2:2199-204.

3319 [465] Rubasinghege G, Lentz RW, Scherer MM, Grassian VH. Simulated atmospheric processing of iron
 3320 oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. *Proceedings of the*
 3321 *National Academy of Sciences*. 2010;107:6628-33.

3322 [466] Rustad D, Gregory N. Photoreduction of gaseous iron (III) chloride with sunlight and other light sources.
 3323 *Inorganic and Nuclear Chemistry Letters*. 1980;16:521-4.

3324 [467] Ming T. *Solar Chimney Power Plant Generating Technology*: Academic Press, 246p. ISBN: 978-0-12-
 3325 805370-6. ; 2016.

3326 [468] Michaud L, Renno N. the sky's the limit. *Mechanical Engineering*. 2011;133:42.

3327 [469] Davidson P, Burgoyne C, Hunt H, Causier M. Lifting options for stratospheric aerosol geoengineering:
 3328 advantages of tethered balloon systems. *Philosophical Transactions of the Royal Society of London A:*
 3329 *Mathematical, Physical and Engineering Sciences*. 2012;370:4263-300.

3330 [470] Kuo KA, Watson I, Hunt HE. The SPICE project: an example of geoengineering research. *Water and*
 3331 *Climate: Policy Implementation Challenges; Proceedings of the 2nd Practical Responses to Climate Change*
 3332 *Conference: Engineers Australia*; 2012. p. 479.

3333 [471] Anderson K. Duality in climate science. *Nature Geoscience*. 2016;8:898-900.

3334 [472] Jones A, Haywood J, Jones A. Climatic impacts of stratospheric geoengineering with sulfate, black carbon
 3335 and titania injection. *Atmospheric Chemistry & Physics Discussions*. 2015;15.

3336 [473] Herzog HJ. Scaling up carbon dioxide capture and storage: From megatons to gigatons. *Energy Economics*.
 3337 2011;33:597-604.

3338 [474] Betz G, Brachatzek N, Cacean S, Güssow K, Heintzenberg J, Hiller S, et al. *Gezielte Eingriffe in das*
 3339 *Klima? Eine Bestandsaufnahme der Debatte zu Climate Engineering*. ISBN: 3-89456-324-9, Kiel Earth Institute.
 3340 2011.

3341 [475] Myriokefalitakis S, Daskalakis N, Mihalopoulos N, Baker A, Nenes A, Kanakidou M. Changes in dissolved
3342 iron deposition to the oceans driven by human activity: a 3-D global modelling study. *Biogeosciences*.
3343 2015;12:3973-92.

3344 [476] Annett AL, Skiba M, Henley SF, Venables HJ, Meredith MP, Statham PJ, et al. Comparative roles of
3345 upwelling and glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula. *Marine Chemistry*.
3346 2015;176:21-33.

3347 [477] Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. Greenland meltwater as a
3348 significant and potentially bioavailable source of iron to the ocean. *Nature Geoscience*. 2013;6:274-8.

3349 [478] Raiswell R, Benning LG, Tranter M, Tulaczyk S. Bioavailable iron in the Southern Ocean: the significance of
3350 the iceberg conveyor belt. *Geochem Trans*. 2008;9:9.

3351 [479] Boyd PW. Development of geopolitically-relevant ranking criteria for geoengineering methods. DOI:
3352 10.1002/2016EF000447. *Earth's Future*. 2017.

3353 [480] Wang B, O'Brien RE, Kelly ST, Shilling JE, Moffet RC, Gilles MK, et al. Reactivity of liquid and semisolid
3354 secondary organic carbon with chloride and nitrate in atmospheric aerosols. *The Journal of Physical Chemistry A*.
3355 2014;119:4498-508.

3356 [481] Laskin A, Moffet RC, Gilles MK, Fast JD, Zaveri RA, Wang B, et al. Tropospheric chemistry of internally
3357 mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids. *Journal of Geophysical
3358 Research: Atmospheres*. 2012;117.

3359 [482] Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ, Duce RA, et al. Impacts of atmospheric nutrient
3360 deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. *Global Biogeochemical Cycles*.
3361 2011;25.

3362 [483] Zhang Z, Moore JC, Huisings D, Zhao Y. Review of geoengineering approaches to mitigating climate
3363 change. *Journal of Cleaner Production*. 2014.

3364 [484] Lackner M. *Geoengineering for Climate Stabilization*. New York: Springer; 2015.

3365 [485] Williams J, Reus Md, Krejci R, Fischer H, Ström J. Application of the variability-size relationship to
3366 atmospheric aerosol studies: estimating aerosol lifetimes and ages. *Atmospheric Chemistry and Physics*.
3367 2002;2:133-45.

3368 [486] Davidson P. Up and away! : TCE www.tctetoday.com; 2012. p. 28-32.

3369 [487] Boyd PW, Jickells T, Law C, Blain S, Boyle E, Buesseler K, et al. Mesoscale iron enrichment experiments
3370 1993-2005: Synthesis and future directions. *science*. 2007;315:612-7.

3371 [488] Harrison DP. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean.
3372 *International Journal of Global Warming*. 2013;5:231-54.

3373 [489] Aumont O, Bopp L. Globalizing results from ocean in situ iron fertilization studies. *Global Biogeochemical
3374 Cycles*. 2006;20.

3375 [490] Nedwell DB, Watson A. CH 4 production, oxidation and emission in a UK ombrotrophic peat bog: influence
3376 of SO 4 2- from acid rain. *Soil Biology and Biochemistry*. 1995;27:893-903.

3377 [491] Watson A, Nedwell DB. Methane production and emission from peat: the influence of anions (sulphate,
3378 nitrate) from acid rain. *Atmospheric Environment*. 1998;32:3239-45.

3379 [492] Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, et al. Sulfur pollution suppression of the
3380 wetland methane source in the 20th and 21st centuries. *Proceedings of the National Academy of Sciences of the
3381 United States of America*. 2004;101:12583-7.

3382 [493] Gauci V, Dise N, Fowler D. Controls on suppression of methane flux from a peat bog subjected to simulated
3383 acid rain sulfate deposition. *Global Biogeochemical Cycles*. 2002;16.

3384 [494] Gauci V, Dise N, Blake S. Long-term suppression of wetland methane flux following a pulse of simulated
3385 acid rain. *Geophysical research letters*. 2005;32.

3386 [495] Krishnamurthy A, Moore JK, Mahowald N, Luo C, Doney SC, Lindsay K, et al. Impacts of increasing
3387 anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. *Global Biogeochemical Cycles*.
3388 2009;23.

3389 [496] Moore JK, Doney SC, Lindsay K. Upper ocean ecosystem dynamics and iron cycling in a global
3390 three-dimensional model. *Global Biogeochemical Cycles*. 2004;18.

3391 [497] Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, et al. Testing the iron hypothesis
3392 in ecosystems of the equatorial Pacific Ocean. *Nature*. 1994;371:123-9.

3393 [498] Wang R, Balkanski Y, Bopp L, Aumont O, Boucher O, Caias P, et al. Influence of anthropogenic aerosol
3394 deposition on the relationship between oceanic productivity and warming. *Geophysical Research Letters*.
3395 2015;42.

3396