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Abstract

We show how factorial regression can be used to analyse numerical model experiments, testing the effect of different model  

settings.  We  analysed  results  from  a  coupled  atmosphere-ocean  model  to  explore  how  the  different  choices  in  the 

experimental set-up influence the seasonal predictions. These choices included a representation of the sea-ice and the choice  

of top of the atmosphere, and the results suggested that the simulated monthly mean temperatures poleward of the mid-

latitudes were highly sensitivity to the specification of the top of the atmosphere, interpreted as the presence or absence of a  

stratosphere. The seasonal forecasts for the mid-to-high latitudes were also sensitive to whether the model set-up included a 

dynamic or non-dynamics sea-ice representation,  although this effect  was somewhat  less important  than the role of the  

stratosphere. The temperature in the tropics was insensitive to these choices. 

1 Introduction

The question of whether seasonal forecasting has useful skill is getting increasingly relevant with the progress in climate  

modelling. Another question is how we can learn more about such skills, and one strategy is to examine the models used in  

seasonal forecasting. These include state-of-the-art coupled atmosphere-ocean-land-surface models, built on our knowledge 

of physical processes and formulated in terms of computer code (Palmer and Anderson, 1994; Stockdale et al., 1998; Palmer,  

2004; George and Sutton, 2006). They can be used for seasonal forecasting if a correct initial state is provided, and from  

which the subsequent evolution can be simulated. Their skill depends on several factors, such as the quality of the initial  

states, the representation of all relevant processes, and whether the seasons ahead truly are predictable in the presence of  

non-linear chaos (Palmer, 1996). Thus, in order to address the initial question of useful skill for seasonal predictions, we 

need to understand what is important and what is irrelevant for the outcome of the predictions which includes choices about 

the model set-up. We know that the atmosphere in the high latitudes is subject to nonlinear dynamics, and that the effect of  
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different factors may interfere and amplify or dampen each other (Charney,  1947; Gill, 1982; Lindzen, 1990; Held,  1993;  

Feldstein,  2003).

1.1 Background

It is well-known that numerical weather prediction (NWP) has a limited forecast horizon because small initial errors 

will grow over time in a nonlinear fashion (Lorenz, 1963). The case for seasonal forecasting is somewhat different, as it  

relies  on  slow changes  in  the  ocean  and  cryosphere,  which  act  as  persistent  boundary  conditions.  NWP and seasonal  

forecasting represent two types of predictability referred to as ‘type 1’ and ‘type 2’ (Palmer, 1996). Whereas NWP is more  

an initial value problem (‘type 1’), the seasonal forecasts embeds a degree of the boundary value problem  aspect (‘type 2’).  

Furthermore, seasonal forecasts tend to present the statistics of the weather over a given interval, rather than the exact state at 

any instant. In other words, seasonal forecasts can be compared with predicting a change in the statistics of a sample of 

measurements, whereas weather forecasting is more like predicting the details about one specific data point in that sample.

Models used for seasonal forecasting have traditionally involved a model for the atmosphere coupled to an ocean 

component, and were originally developed for the tropical region and the El Niño Southern Oscillation (Anderson,  1995; 

Stockdale,  et al., 1998; Palmer and Anderson, 1994). Aspects, such as sea-ice, the troposphere, and snow cover, were not  

emphasised as they were not believed to play an important role for the seasonal weather evolution.  More recent studies have 

looked at the potential influence from sea-ice (Balmaseda et al., 2010;  Petoukhov and Semenov, 2010; Overland and Wang, 

2010; Francis et al. 2009; Deser et al, 2004; Magnusdottir et al., 2004; Seierstad and Bader, 2008; Benestad, et al. 2010;  

Orsolini et al. 2012), especially after the recent dramatic downward trends in the sea-ice extent (Kumar et al. 2010; Boé, et  

al., 2010; Holland et al., 2008; Wilson, 2009; Kauker et al., 2009; Stroeve et al., 2007, 2008). Other studies have involved  

the effect of snow-cover on the atmospheric circulation (Cohen and Entekhabi, 1999; Ge and Gong, 2009; Ueda et al., 2003; 

Hawkins et al., 2002; Watanabe and Nitta, 1998; Orsolini et al, 2013) or the influence of stratospheric conditions on the  

lower troposphere (Baldwin et al., 2001, 2003; Thompson et al. 2002). Few of these studies, however, have looked at how 

these  different  factors  in  combination  may  interfere  with  each  other.  Nor  has  there  been  many  sensitivity  tests  for 

investigating how the model set-up with different combinations of the components representing these different aspects affect  

the results. One question we would like to address is whether the response to these different factors add linearly or if the  

response is a nonlinear function of these factors. Furthermore, it is interesting to find out which of these factors are more 

dominant than others. Moreover, our objective was to try to understand which processes simulated by the model are more 

important, rather than what real signals there are in nature. In this sense, this was a so-called perfect model study (Day et al., 

2014). We present the combination of an experimental design (Williams, 1970; Kleijnen and Standridge, 1988; Kleijnen,  

2015) and analytical techniques that can address this question. The results were taken from a ‘synthesis’ experiment with a  
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moderately high-resolution earth system model. Hence, these numerical experiments constitute a kind of sensitivity study 

(Bürger et al., 2013).

2 Method & Data

2.1 Model simulations

The model used in this study was the EC-Earth version 2.1 state-of-the-art earth system model (Hazeleger et. al, 2010), 

which  had  been  developed  by  a  consortium  of  meteorological  Institutes/Universities  across  Europe.  The  atmospheric 

component of the EC-Earth model was based on ECMWF’s  Integrated Forecasting System (IFS)  cycle 31R1  with a new 

convection scheme and a new land surface scheme.  The ocean component was based on version 2  of the NEMO model 

(Madec, 2008),  with a horizontal resolution of nominally 1x1  degrees and 42  vertical levels.  The sea-ice model was the 

LIM2 model (Fichefet and Maqueda, 1997).  The ocean/ice model was coupled to the atmosphere/land model through the 

OASIS 3 coupler (Valcke, 2006).

The synthesis experiments consisted of a set of 12 coupled model simulations. Six of these simulations used the L62 vertical 

resolution for the atmospheric component which extended up to 5 hPa, while the other six used the higher resolution L91 

version, which extended up to 0.01 hPa. These two sets of experiments were designed to determine the sensitivity of model 

results to a better representation of the stratosphere. Further to evaluate the role of sensitivity to the representation of sea-ice, 

the LIM2 sea-ice model was implemented as a standard thermodynamic-dynamic model (DyIce)  and as a thermodynamic 

only model (NoDyIce). Finally, sensitivity to initial conditions was tested by introducing perturbations to initial conditions 

corresponding to positive/negative NAO SST anomaly patterns over the North Atlantic (Melsom, 2010). All simulations 

started on 1 Jan 1990 and lasted 90 days. The initial conditions used in this experiment came bundled with the earlier (test)  

versions of EC-Earth (upto V2.1) and were based on ERA-Interim. An overview of the model simulations is listed in Table  

1.

2.2 The analysis

Here the experiments and analysis used an approach known as ‘factorial design’ (Yates and Mather, 1963; Fisher, 1926; Hill  

and Lewicki, 2005; Wilkinson and Rogers, 1973; Benestad et al., 2010), where a factorial regression was used to assess  

which influence each of the choices in the model set-up has on the forecasts. It is a technique that can analyse sets of factors  

which are considered to have potential effects on the outcome in experiments, where an analysis of variance (ANOVA; 

Wilks, 1995) provides estimates for error bars and the level of statistical significance. Hence, factorial regression offers an 

alternative  to  traditional  ways  for  estimating statistical  significance  used in  meteorology and  climate sciences,  such  as 

difference tests between two ensembles. Factorial regression can be applied to data that is generated by a process which 
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involves two or more factors (set-up options or categories) and are difficult to quantify due to their discrete nature (e.g. some  

factors  may either  present  or  absent).  It  has  been  used  to  analyse  the  effect  of  introducing  different  crop  varieties  in  

agriculture (e.g. Baril et al. 1995; Vargas et al. 1999; Vargas et al. 2006; Voltas et al. 2005). It is based on the concept  

“factorial experiment”, or “factorial design”, in statistics which involves two or more factors each of which can be assigned a 

category or a discrete value. This kind of analysis takes into account all possible combinations of levels over all such factors  

including their interactions.

The model response to different initial conditions or different model set-up with different options for three configurations 

(SST perturbation,  model top,  and sea-ice model)  was investigated,  and a comparison was made between the different 

experiments in terms of vertical and horizontal cross sections of temperature anomalies. If the final response ∆T is a linear 

function of sea-ice, SST, and stratospheric effects, then it can be expressed as a sum of these different contributions ∆T = x1 

C(sea-ice) + x2 C(SST) + x3 C(stratosphere), where C(.) signifies the difference in outcome due to different choices in terms 

of one option setting.  The factorial regression provided an estimate of the coefficients xi and their error estimates.  In a 

nonlinear case, this linear expression is unlikely to provide a good description, and the regression analysis will yield large 

errors and low statistical significance.

We did not know the relative strength of the different factors in terms of an input,  however,  the factorial regression 

quantified the differences between output from different combinations of subsets. It was also used to estimate the probability 

that the response in the different combinations of these subsets would be due to chance.  The results from the factorial 

regression were subsequently used to explore the combined effect of several factors.

The Walker test was used to assess the false discovery rate of the p-values found in the factorial regression (Wilks, 2006). 

The test involved comparing the minimum p-value pn from the local tests with pW= 1 - (1 -  α)1/K for K locations and the 

statistical significance level α.  If  pn <  pW then the expected fraction of local null hypothesis with incorrect rejections is 

smaller than the number of statistically significant local p-values.

3 Results

Figures 1 shows the difference in the forecasts associated stratosphere, more specifically between the low (L62) and high  

(L91) top versions of the atmosphere for month 3, It presents horizontal transects at 200 hPa level and shows the monthly  

mean temperature starting with a 2-month lead time. The left panels show results with no initial perturbation (neutral NAO 

conditions), the middle panels show results from model simulation with initial conditions set at a positive phase of NAO, and 

the right panels results for which the initial conditions were the negative phase of the NAO. All the panels show that there  

were differences between the low and high top results, and the difference between the low and high-top model simulation 

was  most  pronounced  at  negative  and  positive  NAO-type  initial  conditions  (not  shown).  Hence,  the  forecasted  air  

temperature  was  sensitive  to  the  inclusion  of  the  upper  part  of  the  atmosphere,  and  the  effect  can  be  seen  extending  

throughout the entire vertical extent of the atmosphere (not shown). The differences between the upper and lower rows show 
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the effect of dynamic versus non-dynamic sea-ice representation. With a non-dynamic sea-ice, the inclusion of a stratosphere  

resulted in stronger vertical dipole patterns at certain longitudes and for positive NAO initial conditions. For the negative  

NAO initial conditions, the dynamical  sea-ice representation amplified the differences between the L91 and L62 model  

simulations.  

Figure 1 suggests that the effect of including the stratosphere and the representation of sea-ice matter for the mid-latitude to  

the polar regions, and the choice of the vertical levels had less impact in the tropics. The response suggests mid-latitude  

wave-like structures in the 200 hPa temperatures, albeit with a tendency of a coherent anomaly over the North Pole. The  

choice of the sea-ice representation had a visible impact on the simulation of the monthly mean temperature after 3 months,  

seen as the difference between upper and lower panels. The horizontal picture at 200 hPa (Figure 1) suggests radically 

different wave structure for the negative NAO phase, however, whereas the ‘positive’ and ‘neutral’ NAO states differences  

were more in the details and magnitude. The exact geographical structure in these maps are not the important point here, as 

the longitude of action will depend on the initial condition. The important information here is the pronounced response in the 

mid-to-high latitudes.

In summary, it is apparent from Figure 1 that the effect of different model aspects such as the choice of model top and sea-

ice  representation  influenced  the  model  forecasts.  Furthermore,  we  see  that  the  influence  varied  with  the  initial  SST  

conditions, and that different sea-ice representation introduced changes in the forecast of similar magnitude as the influence 

of the model top. It is difficult to compare these effects with that of the initial conditions merely from Figure 1, however, we  

compared the effect from these different aspects through the means of a factorial regression. The analysis of variance for the 

factorial regression yielded a set of coefficients β describing the association between the temperature and the model set-up 

choice, as well as the associated error bars ε  and p-values p.   

Figure 2 represents the coefficients and the error estimates from the factorial regression. The top panel shows the mean air 

temperature for the model forecasts with a model set-up of dynamical sea-ice component, no perturbation in the SST, and 62  

vertical levels (low top). Panels b-e show difference in the forecasts due to different choices in the model set-up in terms of 

the regression coefficients β, and panels f-i show error estimates for these coefficients. Regions with large values estimated 

for the coefficients and large errors suggest a high sensitivity but also that the response cannot readily be attributed to the  

given factor. In other words, the level of both the signal and the noise is high. The magnitude of the error was mainly below  

3K except for around 100ºE near the 100hPa level, and generally smaller than the influence of the variable.  The results  

suggested that the results were sensitive to both the representation of the sea-ice and the inclusion of the stratosphere, as well  

as the initial conditions. The analysis also suggested that the magnitude of the effect of the sea-ice representation and the  

model top was similar to those of the different SST perturbation near 60ºN. Furthermore, the error estimates associated with 

the three factors (SST-perturbation, sea-ice representation and atmosphere top) exhibited similar magnitudes and spatial  
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structure. A comparison between the different panels in Figure 2 suggested that the different choices for model set-up had 

similar magnitude on the predicted outcome for all these factors.

The previous results have indicated a sensitivity to the various choices in the model set-up, however, we need to examine the  

relationship between the regression coefficients and error estimates in order to infer whether any has a systematic effect on 

the model predictions. Figure 3 shows the ratio response to error for sea-ice (upper), positive NAO SST perturbation (second 

from the top), negative NAO SST perturbation (third), and the stratosphere L91 (bottom). Only a small region had a response 

that was greater in magnitude than the error estimate for the sea-ice, whereas for the SST perturbations and the stratosphere,  

the regions where the  response-to-error  ratio  had a magnitude greater  to unity were more extensive.  Note,  both large  

negative and positive values indicate that the signal is stronger than the noise |β/ε|>1 as β may be both positive and negative 

whereas ε is positive.

The factorial regression gave highest number of low p-values for the stratosphere (L91), followed by the SST-perturbation 

(not shown). For most of the 60ºN vertical transect, the sea-ice representation did not yield a large response compared to the  

error term. Furthermore, for a global statistical significance level of α=0.05 and K=3840, the threshold value for the Walker 

test was pW=1.3 ·10-5. The minimum p-value for sea-ice was 0.01, for SST-perturbation pn= 9.2·10-4  and the stratosphere pn 

=1.6·10-4.  In  other  words,  the 12-member experiment  was not sufficient  to  resolve the response in  the air  temperature  

forecast at 60ºN for month 3 to the different set-up options, however, they did suggest that the model top had the greatest  

impact on the forecast. The lack of a clear dependency between the sea-ice representation and the forecast was also found for 

the summer in Benestad et al. (2010), and the obscure links between the factors and the response may be explained by the 

presence  of  strong  nonlinear  dynamics,  where  one  given  factor  may  result  in  different  forecasts  depending  on  other 

influences.  

The question of degree of nonlinearity can be addressed by comparing the sum of the influence from the different factors  

with simulations with and without a set of factors combined. i.e, we check for the equivalency:

DyIce pNAO L91 - NoDyIce nNAO L62  (≍ DyIce - NoDyIce) nNAO L62 +     …..... (1)

NoDyIce (pNAO - nNAO) L62 + NoDyIce nNAO (L91 - L62)

Here,  the LHS of equation 1 (Figure 4a)  shows the difference between the simulation with high top, dynamic sea-ice,  

positive NAO perturbation (DyIce pNAO L91) and that with low top, non-dynamic sea-ice, negative NAO (NoDyIce nNAO 

L62). We compared Figure 4a with sum of the differences from individual factors  (RHS of equation 1, Figure 4b), and the 

comparison showed that the nonlinear model response was mainly confined to the mid- to high-latitudes especially in the 

northern Hemisphere (Figure 4c), e.g., along the 60ºN transect presented in Figure 3.  
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4 Discussion

The set of sensitivity experiments shows that seasonal forecasts at mid-to-high latitudes are sensitive to a number of factors  

concerning the model set-up, and that the choice of subjective and subtle options can have as strong effect on the monthly  

mean temperature poleward of the mid-latitudes as the initial conditions. A factorial design experiment allows us to assess  

the relative magnitudes of different model height with that of different sea-ice or different SST perturbations. We can also  

test the response in the model to see if they are close to being a linear superposition of the different single factors, or if the  

model response is highly nonlinear. The statistical significance is estimated based on the factorial regression. The magnitude  

of the effect of the sea-ice, SST perturbations and the model top height were roughly similar, although the response to the 

sea-ice was somewhat weaker than the others. The lower ratio of estimate-to-error also reflected the degree of nonlinearity,  

and the lower p-values associated with the sea-ice may be due to a greater degree of nonlinearity in the response to the sea-

ice  representation.  The  experiment  nevertheless  suggested  that  stratospheric  conditions  are  important  for  mid-to-high-

latitude seasonal forecasting. This experiment was only carried out for the northern hemisphere winter, and may change with 

season. The stratosphere decouples in the summer, and there was a hint of a weaker influence from the model top in the 

southern hemisphere where there was summer.

There is previous work where model sensitivity and uncertainty have been assessed (e.g. Rinke et al 2000; Wu, et al. 2005;

Pope  and  Stratton,  2002;  Jacob  and  Podzun  1997;  Knutti  et  al.  2002;  Dethloff  et  al.  2001),  however,  most  of  these 

assessments have been carried out for climate simulations as opposed to seasonal forecasts. In seasonal forecasting, the  

emphasis has been more on multi-model forecasts and their spread (Weisheimer et al. 2009), rather than the configuration of 

single models. However, Jung et al. (2012) discussed the effect of the spatial resolution on seasonal forecast based on an  

experimental  design with a  single  model.  The use  of  factorial  regression  was  also discussed by Rinke et  al  (2000)  in 

conjunction with climate simulations, and Benestad et al. (2010) used it in a study of seasonal predictability and the effect of 

boundary conditions associated with sea-ice and initial conditions. This study applied factorial regression to a new set of 

model configuration options, including the model top, the representation of sea-ice, and initial conditions. In this case, we 

emphasised the individual factors rather than their interaction because of the limited sample of model runs.

5 Conclusions

A set of sensitivity tests revealed that seasonal predictability of the temperature at the mid-to-high latitudes was as sensitive  

to subjective choices regarding the model set-up as the initial SST conditions. Hence, these results illustrate the difficulties  

associated with seasonal forecasting at the higher latitudes with an effect of the forecast skill. The tropical temperatures were  

insensitive to these choices,  and the sea-ice representation and the stratosphere  do not have  a visible effect  on ENSO 

forecasts.
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Table 1

Experiment Description

1. DyIce neutNAO 
L62

EC-Earth with L62  vertical resolution and no perturbations to initial 
conditions and  a thermodynamic-dynamic LIM2 sea-ice model

2.  NoDyIce 
neutNAO L62

Same as above but  with thermodynamic only sea-ice model

3. DyIce neutNAO 
L91

Same as 1. above but with L91 vertical resolution

4.  NoDyIce 
neutNAO L91

Same as 2. above but with L91 vertical resolution

5.  DyIce pNAO 
L62

Same as 1.  above but with perturbation to initial condition 
corresponding to a positive NAO SST anomaly pattern over the North 
Atlantic

6.  NoDyIce pNAO 
L62

Same as 5. above but  with thermodynamic only sea-ice model

7.  DyIce pNAO 
L91

Same as 5. above but with L91 vertical resolution

8. NoDyIce pNAO 
L91

Same as 6. above but with L91 vertical resolution

9.  DyIce nNAO 
L62

Same as 5.  above but  with perturbation to initial condition 
corresponding to a negative NAO SST anomaly pattern over the North 
Atlantic

10.  NoDyIce 
nNAO L62

Same as 9. above but  with thermodynamic only sea-ice model

11.  DyIce nNAO 
L91

Same as 9. above but with L91 vertical resolution
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12.  NoDyIce 
nNAO L91

Same as 10. above but with L91 vertical resolution

Figure captions.

Figure 1: Map of monthly mean air temperature difference at 200 hPa between the high-top and low-top experiments for the  

third month.

Figure 2: Coefficients and error estimates from the factorial regression of air temperature at 60ºN. These results describe the  

systematic differences associated between the different choices in the model set-up.

Figure 3:  The  ratio  of  the  factorial  regression  coefficients  to  the  error  estimate  for  different  factors:  (a)  sea-ice 

representation,  (b)  positive  NAO  SST  perturbation,  (c)  negative  NAO  SST  perturbation   and  (d)  the  model  top 

L91/stratosphere (bottom).  

Figure 4: Monthly mean air temperaure at 60ºN. (a) Difference between DyIce pNAO L91 and NoDyIce nNAO L62 (b) Sum 

of the differences:  NoDyIce (pNAO -  nNAO)  L62,  (DyIce -  NoDyIce)  nNAO L62  and  NoDyIce nNAO (L91 -  L62) (c) 

Difference (a) - (b).
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Figure 1: The logo of Copernicus Publications.
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