
Responses to reviewers

We thank the reviewers for a careful reading of our manuscript. In this text,
we present the answers to the reviewers comments. Also, we are including
below the revised version of the manuscript (modifications in red).

Response to Reviewer 1

We thank the reviewer for a careful reading of our manuscript and for listing
the mistakes/typos in figure captions etc., which have been corrected in the
revised version.

Regarding the additional comments on the scientific part, the reviewer says

“-  Relationship  in  Eq.  (1)  is  a  very  particular  one.  The  authors  identify
deviations  from  it  as  ‘nonlinearity’.  Please  note  that  standard  linear
relationships  such  as  y(t)=integral_0ˆt  g(t-t’)  x(t’)  dt  are  also  linear  but
different  from  (1).  The  authors  should  comment  or  state  that  they  are
looking at linear relationships involving only the present time and one past
time, instead of a more general linear relationship involving a distribution of
delays.”

Authors’  response:  we  agree  with  the  reviewer  and  in  the  revised
manuscript we have included the following sentence: We note that more
generic  relations  such  as  y(t)=integral_0ˆt  g(t-t’)  x(t’)  dt  are  also  linear,
however,  here  we  only  consider  linear  relationships  involving  only  the
present and only one past time.

The reviewer says
“- The authors do not state with precision their discretization procedure to
define the entropy measure. And the precise form of the discretization is
determinant for the entropy values. It is puzzling to read the statement that
the  presence  of  outliers  ‘decreases  entropy’.  This  is  exactly  the  effect
contrary to what one should expect from outliers, since the outliers broaden
the distribution. Perhaps the authors are adapting the range of values of
SATA to the changing range of extreme values at different positions? Only in
this way one could expect some entropy decrease with outliers,  but this
procedure  completely  destroys  any  possibility  of  inter-site  comparison.
Since there is no statement of neither the range of discretization nor of bin
size (only number of bins is stated) there is no way to check the origin of
the reported increase of entropy. For fixed bin size and range across the
different  locations,  appearance  of  extreme  values  can  only  increase
entropy.”

Authors’  response:  We disagree  with  the  reviewer  that  “this  procedure
completely  destroys  any  possibility  of  inter-site  comparison”,  on  the
contrary, we show that in this way the entropy analysis uncovers coherent



spatial  structures  and  identifies  localized  regions  where  extreme  values
(likely to be artefacts) are present in the time-series.

These local extreme fluctuations cannot be detected if a fixed bin size and
range are used, to compute the entropy, across all datasets. As we say in
the manuscript, each time series is first normalized to zero mean and unit
variance,  and  some  fluctuations  are  extreme  with  respect  to  the  local
statistical distribution of SAT (or SATA) fluctuations.

The reviewer says
- Page 3: ‘this gives approximately the same number of data points per bin’:
this should apply not to each bin, but to some average value, right?”

Authors’  response:  We  agree  with  the  reviewer  and  in  the  revised
manuscript we have replaced approximately by average.

The reviewer says
- The authors attribute the difference in behavior of the tropical zones to the
use  of  solar  radiation  in  evaporation  instead  of  heating.  This  sounds
reasonable. But one can imagine other possible explanations contributing to
this, as for example the smaller amplitude of the variation in solar forcing,
or the fact that between the tropics the annual cycle has two oscillations in
solar intensity instead of only one. The authors should comment on that. In
general,  the  identification  of  the  physical  phenomena  that  could  be
responsible for the observations reported in the paper are rather superficial.

Authors’ response: We agree that it may additionally have to do with the
fact that these are regions with a small amplitude of the seasonal cycle. On
the  other  hand,  the  insolation  we  are  using  to  compare  with  the  SAT
response has the semi-annual cycle included and if the response were linear
the SAT would also have two peaks and the distance would be small.

In  the  revised  version  we  have  also  improved  the  discussion  about  the
physics responsible for the nonlinear response.

The reviewer says
-  I  found  difficult  to  recognize  that  the  different  time  series  in  fig  3
correspond to  the  different  locations  inside  the stated  coordinate  range.
Perhaps this should be explicitly stated.

Authors’ response: We have improved the caption of this figure to clarify the
panels.



Response to Reviewer 2

The reviewer says
“An ad-hoc measure for nonlinear relationships between time series is used,
ignoring  well  established  measures  that  are  readily  available  in  the
literature. The present results should be compared to those obtained from
well-established measures such as mutual information.”

Authors’ response: The measure we use is a known distance between two
time-series and in the revised version we have included a sentence about
this  point  including  references.  In  the  Supplementary  Information  we
compare with another distance measure and we obtain similar results (Fig. 2
of the SI). The mutual information is not appropriate because the insolation
is a fully deterministic periodic signal.

The reviewer says
“The motivation and aim of the study is not clear: the paper sets of in the
introduction with discussing climate networks in the first paragraph. But the
rest of the paper does not have anything to do with climate networks.”

Authors’ response: We have rewritten the introduction to better motivate
this study.

The reviewer says
“The relations-ships between the ad-hoc measure for nonlinear relationships
and  entropy  are  discussed  only  vaguely  without  supporting  statistical
analysis. Scatter plots between both quantities would help to support the
claims made in the text. Further analysis should follow to substantiate them.
What has improved to some degree in my opinion is the discussion of the
physical mechanisms possibly underlying the observed patterns.”

Authors’  response: In  the revised manuscript  we include and discuss the
scatter plots. We are pleased that the reviewer considers that the discussion
has improved with respect to previous version and we hope that the revised
version  will  convince  the  reviewer  that  the  analysis  performed  here
uncovered meaningful information about our climate.



Response to Reviewer 3

The reviewer says:
“This manuscripts could be helpful for researchers to decide whether to use
linear or nonlinear measures when constructing climate networks.”

Authors’  response:  We  are  pleased  that  the  reviewer  appreciates  the
connection  and  believes  that  our  work  could  be  helpful  for  research  in
climate networks.

The reviewer says:
“While the material seems to be suitable to the scope of the journal, there
are a number of points that I would like to see addressed before the paper is
accepted.
I am unclear why they choose di as their measure of nonlinearity. They have
not referenced where it has been used before, but I get the impression that
it is not being introduced here.”

Authors’ response: We use a common measure of distance between time-
series, and in the revised version we have included a sentence and relevant
references. 

The reviewer says:
“There are also a large number of techniques for measuring nonlinearity, so
a comparison with established methods would also be helpful.”

Authors’ response: We agree with the reviewer and we remark that in the
Supplementary Information we compare with an alternative measure and we
obtain similar results (Fig. 2 in the SI).

The reviewer says:
“Additionally, nonlinearity in the atmosphere has been extensively studied,
so a review of the pertinent material should be included in the introduction.”

Authors’  response:  In  the  revised  manuscript  we  have  re-written  the
introduction and include a discussion of previous studies of nonlinearity in
the atmosphere.

The reviewer says:
“I’m unsure why they believe the large time lag over the Amazon rainforest
is due to the summer monsoon, and I would like them to more fully explain
their reasoning.”

Authors’ response: As we say in the revised manuscript, the large lag in the
Amazon rainforest does not have a straightforward explanation and we only
speculate that a possible reason is due to the summer monsoon. We have
modified  the  manuscript  to  explain  why  we  consider  this  is  a  possible
reason.

The reviewer says:
“The strong peak and low entropy values discussed are most likely a result
of  the  binning  procedure  used,  and  a  more  thorough discussion  of  it  is
required.”



Authors’  response:  We  agree  with  the  reviewer  and  in  the  revised
manuscript  we  clarify  this  point.  We  have  included  this  sentence:  By
normalizing each time series to zero mean and unit variance, we effectively
adapt the range of values of SAT/SATA to the changing range of extreme
values  at  different  positions.  While  this  might  seem  contradictory  with
performing "inter-site comparisons", this allows focusing the analysis in local
extreme  values  (in  other  words,  values  that  are  extreme  for  the  local
SAT/SATA distribution).

The reviewer says:
“On  L:10,11  They  define  yi(t)  to  be  the  SAT,  and  xi(t)  to  be  the  solar
insolation.  However,  Eq.1 and their  choice of  lags suggest that  they are
searching for the effect of the SAT on the solar insolation at a later time?
This does not seem reasonable, and I believe they have included the lag in
the wrong term in Eq.1.”

Authors’  response:  We  agree  with  the  reviewer  and  in  the  revised
manuscript we corrected this mistake.

The reviewer says:
“As mentioned by other referees, the figures are improperly labelled and
captioned, disagreeing with the text at some points. Isolation is frequently
mistakenly used where insolation is meant.”

Authors’ response: We agree with the reviewer, we have carefully revised
the manuscript and corrected these and other mistakes.
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Abstract. By comparing time-series of surface air temperature (SAT, monthly reanalysis data from NCEP CDAS1 and ERA

Interim) with respect to the top-of-atmosphere incoming solar radiation (the insolation), we perform a detailed analysis of the2

SAT response to solar forcing. By computing the entropy of SAT time-series, we also quantify the degree of stochasticity. We

find spatial coherent structures which are characterized by high stochasticity and nearly linear response to solar forcing (the4

shape of SAT time-series closely follows that of the insolation), or vice versa. The entropy analysis also allows to identify

geographical regions in which there are significant differences between the NCEP CDAS1 and ERA Interim datasets, which6

are due to the presence of extreme values in one dataset but not in the other. Therefore, entropy maps are a valuable tool for

anomaly detection and model inter-comparisons.8

1 Introduction

The complex behavior of the atmosphere has attracted large interest in the last decades, as improving our understanding of its10

nature is important for advancing long term forecasts (e.g., Sugihara et al., 1999). Atmospheric nonlinearity has been studied

using simplified models (Lorenz, 1963; Kondrashov et al., 2011), analyzing dynamical fields using statistical modal decom-12

position (Branstator and Berner, 2005) and Lyapunov exponents (e.g,. Selten, 1993). Studies have shown that tropical and

extratropical regions behave very differently as they respond to insolation in disparate manners. In the extratropics hydrody-14

namical instabilities dominate and the atmospheric behavior is highly nonlinear. For example, baroclinic instability is thought to

be responsible for the development of cyclones, anticyclones and fronts, that is, the elements of day-to-day weather (Charney,16

1947; Trenberth, 1991). These phenomena are very efficient in transporting heat from the tropics to the poles thus decreasing

the equator-to-pole temperature gradient. Averaging over time scales longer than synoptic, it is thus expected for stochasticity18

to be large in the extratropics. In the tropics the excess of heat is transported to the extratropics through a thermally direct cell,

the Hadley circulation. Moreover, on synoptic time scales, while tropical small scale and short-living phenomena are inherently20

nonlinear, such as convection and the development of mesoscale complexes, the large scale atmospheric variability is primarily

linear in terms of waves that result from sea and land-surface forcing (Matsuno, 1966; Gill, 1980, 1982).22

On the other hand, coupling between the different components of the climate system is strong in the tropical regions. Two

well known examples are the monsoons and the ocean cold tongue dynamics. The monsoons are the result of the movement of24
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tropical convection due to seasonal changes in the land-sea temperature contrast and thus do not depend on the local insolation.

These are regions where the large scale circulation, soil moisture and surface temperature interact strongly generating large2

climate variations. For example, monsoons have been shown to present nonlinear behavior on intraseasonal time scales (e.g.,

Chattopadhyay et al., 2008) as well as large interannual variability (e.g., Walker et al., 2015). Similarly, in the equatorial4

oceans, dynamical air-sea interactions are strong and have been shown to modify the sea surface temperature response to solar

forcing. For example, while in the eastern equatorial Pacific the insolation presents two maxima as the sun crosses the Equator6

twice a year, the seasonal cycle of sea surface temperature has only one peak. Several authors have demonstrated that complex

coupled atmosphere-ocean processes are responsible (e.g., Mitchell and Wallace, 1992; Chang and Philander, 1994). This has8

also consequences for the latitudinal movement of the Intertropical Convergence Zone: while over land the ITCZ tends to

follow the sun, over the eastern basins the ITCZ are located almost year round to the north of the equator. Thus, these are all10

regions where a simple response to the direct solar forcing will not expected to be found.

The goal of this study is to perform a systematic study of nonlinearity and stochasticity in the atmosphere, which, to the12

best of our knowledge has not yet been done. We aim to answer the following questions: where are the global regions in

which the response to solar forcing is strongly distorted due to local or nonlocal nonlinear processes and, which are the regions14

with largest stochasticity? Is there a relationship between these two quantities? To do so we will compare the local insolation

with a measure of atmospheric response. We will analyze monthly mean surface air temperature (SAT) because it provides an16

integrated picture of the Earth system’s reponse to insolation as it strongly depends not only on the direct solar forcing but also

on the transport of heat due to atmospheric processes.18

Besides providing a more complete picture of the nature of the atmospheric response to insolation, results may have con-

secuences for the construction of climate networks. Climate networks, which are defined over a regular grid of geographical20

locations (nodes) covering the Earth surface, have proven to be a valuable analysis tool for understanding climate phenomena

(Tsonis et al., 2006; Tsonis and Swanson, 2008; Yamasaki et al., 2008; Donges et al., 2009; Barreiro et al., 2011). In climate22

networks, a link between two nodes is defined in terms of a bivariate statistical similarity analysis of time-series of a climate

variable (e.g., SAT) recorded at each node. However, similar response to solar forcing and/or similar stochastic properties of24

climate variability can lead to the identification of spurious links which do not represent actual interactions.

Finally, several studies have shown that the annual cycle of surface temperature has changed over the past 60 years toward26

earlier seasonal phasing and smaller amplitude over most land regions, but a delay in the phase over the ocean (Thomson, 1995;

Mann and Park, 1996; Wallace and Osborn, 2002; Qian and Zhang, 2015). Mechanisms to explain these changes include loss of28

sea ice (Dwyer, 2012), large scale decreases in soil moisture which decrease the lag time between insolation and temperature by

lowering the thermal inertia of the surface (Seager et al., 2007; Stine et al., 2009) and changes in shortwave optical properties30

that also alter the temperature lag behind insolation (Wallace and Osborn, 2002). Recently, Stine et al. (2012) proposed that

changes in the northern extratropics can be related to variations in well known atmospheric circulation patterns. Thus, the

separation between stochastic regions and those that respond nonlinearly to solar radiation may help in identifying areas that2

will be sensitive to antropogenic forcing given their complex response to insolation.
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2 Datasets4

We consider monthly mean SAT data from two reanalysis data sets: NCEP CDAS1 (Kalnay et al., 1996) and ERA Interim

(ERA Interim, 2000). The spatial resolution is 2.5o/1.5o and cover the time-period [1949-2011]/[1979-2013] respectively. The6

NCEP CDAS1 reanalysis has N = 10224 SAT time-series of length L= 756 while in ERA Interim, N = 28562 of L= 408.

The insolation at the top of the atmosphere is calculated following Berger (1978), as a function of day of year and latitude.8

Then, monthly averaged values for every latitude are calculated.

3 Methods of time-series analysis10

To investigate the local response to solar forcing we compare SAT time-series in each grid point, yi(t), with the top-of-

atmosphere incoming solar radiation (the insolation), in the same location, xi(t), assuming an adhoc, heuristic approach that12

there is a functional relation between them, yi = F (xi). We are interesting in assessing the similarity of the shape of xi(t) and

yi(t) time-series, which captures the nonlinear nature of the functional relation between them. Therefore, after normalizing14

the two time-series to have zero mean and unit variance, we calculate the difference between them using a rectilinear distance,

which is known as taxicab metric and has been used for example for analyzing urban problems and to assess differences in16

discrete frequency distributions (Krause, 1975; Lim et al., 2011),

di =

L∑
t=1

|xi(t)− yi(t+ τi)|. (1)18

Here τi is a shift that takes into account that there can be a lag-time between the two time-series, due, for example, to inertia

and/or memory effects. This lag is expected to be important in the oceans in comparison with land masses, because of the20

larger heat capacity of water. Thus, at each location, i, the lag-time τi is calculated such as to minimize di. We search the

minimum considering τi values in the interval [0,4] months because of the lack of physical mechanisms that could result in22

more than four months delay in SAT response with respect to the insolation forcing. Sensitivity to maximum lags is shown in

Supplementary Information, Fig. S1.24

Because we focus on the mean response to solar forcing, τi is calculated to minimize the distance between the insolation and

the climatology (the averaged monthly SAT); similar results were found when considering the raw SAT time-series instead.26

We note that, if the response is perfectly linear, after normalizing and computing the lag, we have yi(t+ τi)∼ xi(t) and

thus, di ∼ 0. Therefore, by measuring how different in shape the two time-series are, di quantifies the distortion in the output28

response (SAT time-series) with respect to the input signal (the solar forcing represented by the insolation). It is worth to

mention that, in Eq. (1), if instead of using |xi(t)− yi(t+ τi)| we use (xi(t)− yi(t+ τi))2, then di is equal to 2(1−ρi) where30

ρi is the cross-correlation coefficient between xi(t) and yi(t+ τi) (see Fig. S2). We note that more generic relations such as

y(t) =
∫ t

0
g(t− t′)x(t′)dt are also linear, however, here we only consider linear relationships involving only the present and2

only one past time.
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To quantify the stochasticity of the SAT time-series, we calculate the classical Shannon entropy, defined as4

Hi =−
∑
n

pn logpn/Hmax (2)

where pi = {pn} with n= 1 . . .M and
∑

n pn = 1 is the probability distribution associated to the SAT time-series xi(t),6

and M is the number of bins. The entropy is normalized to the maximum value corresponding to the uniform distribution,

Hmax = logM . M is the same for all time-series within a reanalysis database, but is adjusted in each database to take into8

account different length of the time-series: we consider 20 bins for ERA Interim and 40 bins for NCEP CDAS1. This gives an

average of the same number of data points per bin (∼ 20). By normalizing each time series to zero mean and unit variance, we10

effectively adapt the range of values of SAT/SATA to the changing range of extreme values at different positions. While this

might seem contradictory with performing "inter-site comparisons", this allows focusing the analysis in local extreme values12

(in other words, values that are extreme for the local SAT/SATA distribution).

4 Results14

Figure 1 presents the results of the forcing-response analysis. Figure 1(a) displays the map of di values computed without

shifting the insolation and SAT time-series, Fig. 1(b) displays the same but after shifting them a value τi ∈ [0,4], and Fig. 1(c)16

displays the map of τi values. These maps were obtained from the analysis of the ERA Interim dataset; similar results were

obtained from the NCEP CDAS1 dataset (see Fig. S3).18

In Fig. 1(a) we observe large nonlinear responses in the tropics with coherent spatial structures over the oceans, with large

di values mainly in the cold tongues and areas associated with easterly trades and upwelling processes. Over the continents di20

values are considerably smaller revealing a more linear insolation-SAT relation. There are exceptions, as in the Amazon and

the African rainforest, which show high di values.22

When the time-series are shifted, Fig. 1(b), the largest di values appear over the tropical rainforests of Africa and South

America. These are the regions dominated by monsoons and can be expected because during the summer rainy season, when24

the insolation has its highest values, the solar energy is used for evaporation instead of for heating. Moreover, as mentioned in

the introduction, the development of the monsoon depends on the land-sea contrast and not only on the local insolation.26

In the oceans, also in the tropics, there are coherent spatial structures, with high di values on the equator, which tend to

coincide with regions of deep convection in the Atlantic, Pacific and Indian oceans, including the Intertropical Convergence28

Zone (ITCZ). In these regions the SAT and rainfall are strongly coupled so that relatively small changes in SAT gradients

modulate and shift the ITCZ. In particular, air-sea coupling in the eastern basins induce oceanic cold tongues which together30

with the continental geometry maintain warm waters and the ITCZ to the north of the equator (Philander et al., 1996) thus

introducing a nonlinearity in the SAT reponse. Outside the 10◦S-10◦N band, the higher di values over the eastern subtropical32

north Pacific, as compared to the western basin, can be due to the influence of the semi-permanent anticyclone and associated

stratus clouds. These clouds shield solar radiation and cool the sea surface, which in turn increases the static stability of2

the atmosphere producing more stratus decks. This positive stratus-surface temperature feedback thus results in a nonlinear

4
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Figure 1. (a) Map of distances di calculated from Eq. (1) when the forcing (insolation) and the response (SAT) are not shifted (τi = 0), (b)

Map of distances, when the forcing and the response are shifted τi, with τi ∈ [0,4]. (c) Map of τi values. We exclude regions from Congo

and Amazon rainforest (dark grey colored) where an increase of insolation is not necessarely an increase in SAT (see text). Data from ERA

Interim reanalysis.

response to the insolation. High latitude oceans (southern Ocean, Labrador sea, Greenland sea) also show relatively large di4

values, which can be interpreted as due to the existence of seasonal sea ice in the regions.

The map of τi values, which is shown in Fig. 1(c), uncovers a rather symmetric behavior between both hemispheres. Overall,6

extratropical land masses have a lag of about 1 month, while extratropical oceans present a lag of 2 months, in agreement with

McKinnon et al. (2013). In tropical oceanic areas τi displays values in the [0-4] range, with values close to 0 and 1 in the ITCZ8

region and τi = 3 in the eastern basins dominated by stratus clouds.

There are two continental regions, in the African tropical rainforest and in the Amazon rainforest that behave rather dif-

ferently. In these regions, the annual maximum of precipitation occurs during the summer monsoon, that is, precipitation is2

maximum at the time of maximum insolation.
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Figure 2. Map of Shannon entropy of SAT time-series (a) and of SAT anomalies (b) calculated from ERA Interim reanalysis. The spatial

structures in panel (a) are similar to those observed in Fig. 1 (b). (c) Entropy of SAT anomalies calculated from NCEP CDAS1 reanalysis.

Comparing panels (b) and (c), we note a well-defined region in the western Pacific where the two data sets display significant differences.

However, as solar energy is used for evaporation instead of heating of the surface, the SAT maximum is in spring at the4

beginning of the monsoon season. Also, SAT variance is maximum in September because the beginning of the monsoon

changes from year to year. Thus, here a lag does not suggest a warming of the region due to the increased solar insolation, but6

the fact that SAT becomes colder in the summer compared to the spring because of intense rainfall.

Figure 2 presents the analysis of the stochasticity of SAT variability. Figures 2(a) and 2(b) display the entropy,Hi, computed8

from SAT time-series and SAT anomalies (i.e., removing the mean annual cycle from the time series) respectively, using ERA

Interim reanalysis.10

The spatial patterns emerging in the ERA Interim SAT entropy map, Fig. 2(a), is in good agreement with the map of di

values displayed in Fig. 1(b), computed from the same reanalysis after shifting the SAT time-series. We note however overall2

that the values are opposite: regions with high Hi have low di, and vice versa. To quantify and better visualize the relationship
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Figure 3. Entropy-distance map. The tropics (15◦S-15◦N) and extratropics (90◦S-15◦S, 15◦N-90◦N) are represented in orange (squares)

and black (circles), respectively. In addition, the blue crosses represent the respective medians with their correspondent interquartile ranges

(blue lines).

between the entropy and the distance, in Fig. 3 there is a scatter plot of both quantities. The linear correlation between them4

is −0.45. Tropical and extratropical regions have different characteristics in the d-H plane; as the interquartile range (IQR)

shows, tropics have larger d and smaller H , while extratropics have larger H and smaller d. Note that the distance used in this6

study allows for a clear separation between the two regions that is not as well captured by the entropy.

In addition, contrary to Fig. 2(a), in the entropy map of SAT anomalies displayed in Fig. 2(b) also for ERA Interim reanalysis,8

the main spatial patterns of the tropics seen in Fig. 2(a) disappear, and only those associated with sea ice remain. The latter

regions show a strong seasonality in their variance (that is not removed with the mean seasonal cycle) because while during10

summer the ocean heat fluxes control SAT, in winter the temperature can decrease considerably as the ice caps insulate the

atmosphere from the ocean. As result, the probability density functions show a long tail in low temperature values and entropy12

becomes small.

To check whether this is a robust result, we computed the entropy of SAT anomalies using NCEP CDAS 1 reanalysis (see14

also Fig. S4). The resulting map is presented in Fig. 2(c): it is very similar to that obtained from ERA Interim except in the

western tropical Pacific where NCEP data shows minimum entropy. An inspection of SAT time-series in this region reveals the

existence of extreme values (outliers) which render the associated probability distribution to be peaked in a narrow interval,2

which in turn results in low entropy values. In ERA Interim there are also outliers, but, because they cover a very small area,
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Figure 4. SAT anomaly time-series displaying extreme values in ERA Interim (left) and in NCEP CDAS1 reanalysis (right). The left (right)

panel shows the time evolution of the 3 (21) grid points within the indicated domain.

their low entropy values cannot be seen in the entropy map shown in Fig. 2(b). Typical time-series of SAT anomalies in these4

regions, displaying extreme values, are presented in Fig. 4.

5 Conclusions6

In this work we have investigated the stochastic properties of a climatological field (the surface air temperature, SAT) and its

response to the solar annual forcing. We have characterized SAT stochasticity using Shannon entropy, and we have analyzed8

the response to solar forcing, by quantifying the similarity in the shape of the time-series of the top-of-atmosphere incoming

solar radiation (the insolation) and the SAT, both having been previously normalized to have zero-mean and unit variance. The10

lag-time between the two time-series was taken into account by lagging the output response (SAT). Two reanalysis datasets

were investigated, ERA Interim and NCEP CDAS1.12

We found that the τi map in the extratropics is characterized by 1 month lag over the continental areas and 2 months lag

over oceanic regions. In the tropical eastern ocean basins the lag increases to 3 months probably due to the presence of stratus14

clouds. The ITCZ region, on the other hand is mainly dominated by lags between 0 and 1 month. SAT over most tropical land

areas show no lag with respect to the local insolation. There are, however, two particular regions in the Amazon and Congo16

basins that behave opposite from the rest of the world. These regions are characterized by strong monsoons and convection in

which the SAT tends to cool in summer because the energy is used for evaporation instead of for surface heating. As result,18

maximum temperature is in spring, before the beginning of the monsoon.

After taking into consideration the lag, we found that the tropics show considerable nonlinear response to solar insolation.

There are well-defined structures in the oceans, over the Intertropical Convergence Zones, and over some continental areas,2

especially in regions largely dominated by monsoons, such as the tropical rainforest in Africa and South America, as well as

8



over India. These regions do not respond to local insolation, but are characterized by strong air-sea coupling or land-atmosphere4

interaction which involve non-local processes.

In the entropy maps we found very similar spatial structures, but with oposite values meaning that the geographical regions6

with high di values correspond, in general, to regions with low entropy values, and vice versa. When the entropy was calculated

from the SAT anomalies, the tropical spatial patterns disappeared but those in the high latitudes remained. This was interpreted8

as due to the fact that in high latitudes, mainly because of the presence of sea ice, there is a strong seasonality in variance that

remains even when the annual cycle is removed.10

The entropy analysis also allowed to identify, in a well-defined region of the tropical western Pacific, a remarkable difference

between the ERA Interim and the NCEP CDAS1 data sets: in this region the datasets display extreme values, which cause the12

pdf to be peaked in a narrow interval, resulting in low entropy values. Therefore, entropy maps can be used for anomaly

detection and model inter-comparisons.14

Our results suggest that SAT over the tropical oceanic and continental regions (as well as those with sea ice) may be the

most sensitive to antropogenic forcing because their evolution depend on a delicate coupling involving air-sea-land processes.16

As future work, this could be addressed performing a similar analysis using the CMIP5 database to determine how the global

patterns identified here may change under an scenario of climate change.
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