$Table\ 2:\ Observations\ and\ LPJ-GUESS\ results\ of\ soil\ C\ changes\ during\ agriculture\ (cropland\ and/or\ pasture)\ and\ vegetation\ and\ soil\ C\ recovery\ after\ abandonment.$ | Observation
type | Biome | Observation value | Closest
simulations in
terms of LU
history | Average model value for the specific biome | Reference | |--|---------------------|---|---|---|-----------------------------| | | | soil C chan | ges during agricul | ture | | | soil C change
averaged over
different depths | global | 42 % loss for forest-
cropland conversions,
8 % gain for forest-
pasture conversions | P20, P60,
P100, C20,
C60, C100 | 7-17 % loss in forest
biomes for croplands,
2 % gain to 7 % loss
for pastures | Guo and Gifford
(2002) | | soil C change at 36 cm | tropical
forest | 25 % loss for cropland,
12 % loss for pasture/
grassland | C20, C60,
P20, P60 | 11-12 % loss for croplands, 2 % gain to 4 % loss for pastures | Don et al. (2011) | | soil C change at 29 cm | temperate
forest | new equilibrium after 23 years | C100 | C loss throughout the entire cropland duration | Poeplau et al. (2011) | | | | vegetation recovery | | | | | ag vegetation recovery time | tropical
forest | 189 years | C20 | 121 years | Saldarriaga et al. (1988) | | ag vegetation
recovery rate | tropical
forest | slowdown with time,
recovery slower for
pasture than for
cropland | P20, P60,
P100, C20,
C60, C100 | (slight) slowdown,
pasture recovery
slower only for long
durations (P100/C100) | Silver et al. (2000) | | total and
vegetation C
recovery rate | temperate
forest | linear with time | P60, P100 | (slight) slowdown | Hooker and Compton (2003) | | vegetation
recovery rate | temperate
forest | linear with time | C20, C60 | (slight) slowdown | Poulton et al. (2003) | | ag vegetation
recovery rate | tropical
forest | recovery speed
inversely related to LU
duration | P20, P60,
P100 | recovery speed
inversely related to LU
duration | Uhl et al. (1988) | | ag vegetation
recovery rate
and time | tropical
forest | 73 years, recovery speed inversely related to LU duration | C20, C60,
C100 | 121-139 years,
recovery speed
inversely related to LU
duration | Hughes et al. (1999) | | maximum tree
height recovery
rate | tropical
forest | recovery speed
inversely related to LU
duration | C20, C60,
C100 | recovery speed
inversely related to LU
duration | Randriamalala et al. (2012) | | vegetation
height recovery
rate | tropical
forest | slower for pasture than for cropland | P20, P60,
P100, C20,
C60, C100 | slower only for long
durations (C100/P100) | Moran et al. (2000) | | ag vegetation | tropical | slower for pasture than | P20, C20 | faster for P20 than for | Wandelli and | | recovery rate | forest | for cropland | | C20 | Fearnside (2015) | |------------------------------------|---------------------------------|---|--------------------------------------|--|-------------------------| | | | soil C recovery aft | er agricultural aba | andonment | | | soil C recovery
at up to 30 cm | global | large variation across
studies, tendency to
lose C in the first years
for pastures, immediate
accumulation for
croplands | P20, P60,
P100, C20,
C60, C100 | tendency to lose C in
the first years for
pastures, immediate
accumulation for
croplands | Paul et al. (2002) | | soil C recovery
at 34 cm | global | more accumulation for
croplands than for
pastures, no
accumulation in boreal
zone | P20, P60,
P100, C20,
C60, C100 | more accumulation for
croplands than for
pastures, slower
accumulation in boreal
zone | Laganiere et al. (2010) | | soil C recovery
at 28/40 cm | temperate
forest | linear accumulation, no equilibrium after 120 years | C20 | linear accumulation, no
equilibrium after 120
years | Poeplau et al. (2011) | | soil C recovery
time at 0-60 cm | grassland | 158 years | C100 | 198 years | Potter et al. (1999) | | soil C recovery
time at 0-60 cm | savanna/
temperate
forest | 230 years | C20 | 85 (savanna) / 237
(temperate forest) years | Knops and Tilman (2000) | | soil C recovery
time 0-10 cm | temperate
forest | >100 years | C20, C60,
C100 | 237-261 years | Foote and Grogan (2010) | | soil C recovery
time 0-25 cm | tropical
forest | 50-60 years | P20, P60,
P100, C20,
C60, C100 | 49-80 years | Silver et al. (2000) | Table A1: Plant Functional Types used in this study. | BNE | Boreal needleleaved evergreen tree | |-------|---| | BINE | Boreal shade-intolerant needleleaved evergreen tree | | BNS | Boreal needleleaved summergreen tree | | TeBS | Shade-tolerant temperate broadleaved summergreen tree | | IBS | Shade-intolerant broadleaved summergreen tree | | TeBE | Temperate broadleaved evergreen tree | | TrBE | Tropical broadleaved evergreen tree | | TrIBE | Tropical shade-intolerant broadleaved evergreen tree | | TrBR | Tropical broadleaved raingreen tree | | C3G | Cool C3 grass | | C4G | Warm C4 grass |