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Abstract. Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic,

and solar plus volcanic, forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus vol-

canic forcing in the GISS-E2-R model. By a simple wavelet filtering technique they conclude that

the responses in the ZC model combine subadditively on time scales from 50 to 1000 yr. Nonlinear

response on shorter time scales is claimed by analysis of intermittencies in the forcing and the tem-5

perature signal for both models. The analysis of additivity in the ZC model suffers from a confusing

presentation of results based on an invalid approximation, and from ignoring the effect of internal

variability. We present tests without this approximation which are not able to detect nonlinearity

in the response, even without accounting for internal variability. We also demonstrate that internal

variability will appear as subadditivity if it is not accounted for. L&V’s analysis of intermittencies is10

based on a mathematical result stating that the intermittencies of forcing and response is the same if

the response is linear. We argue that there are at least three different factors that may invalidate the

application of this result for these data. It is valid only for a power-law response function, it assumes

power-law scaling of structure functions of forcing as well as temperature signal, and the internal

variability, which is strong at least on the short time scales, will exert an influence on temperature15

intermittence which is independent of the forcing. We demonstrate by a synthetic example that the

differences in intermittencies observed by L&V easily can be accounted for by these effects under

the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not

present valid evidence for a detectable nonlinear response in the global temperature in these climate

models.20

1 Introduction

The issue of linearity in the global temperature responses of modern General Circulation Models

(GCMs) and Earth System Models (ESMs) is important because the prospect of predicting global

aspects of the climate under different forcing scenarios is considerably brighter if the response is

reasonably linear. Linear response models with two characteristic response times or a long-memory25
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power-law response have had considerable success in describing global temperature response in

GCM data, instrumental data and in multiproxy reconstructions (Held et al., 2010; MacMynowski et

al., 2011; Geoffroy et al., 2013; Caldeira and Myhrvold, 2013; Rypdal and Rypdal, 2014; Østvand

et al., 2014; Rypdal et al., 2015; Lovejoy et al., 2015; Fredriksen and Rypdal, 2016). The credibility

of these results depends crucially on the validity of the linear approximation in the global response.30

Particularly relevant is Geoffroy et al. (2013), who estimate the parameters of a linear two-box energy

balance model by data from runs of a large number of CMIP5 ESMs with step-function forcing and

linearly increasing forcing, respectively. Very good fits to the simulated global temperature are found

in this study, with the same values of the two-box model parameters for the two different forcing

scenarios. This is a very clear demonstration of the approximate linearity of the global temperature35

response in the CMIP5 ensemble. The issue of additivity of the temperature response in GCMs

has been extensively studied over the last two decades, and the majority of studies find only weak

nonlinearities in the global response, although nonlinearites are often found in regional responses in

some models (Ramaswamy and Chen, 1997; Meehl et al., 2004; Kirkevåg, 2008; Shiogama et al.,

2013).40

The paper by Lovejoy and Varotsos (2016) (in the following denoted L&V) is a research paper,

but has the character of a review of earlier papers of Shaun Lovejoy and coworkers. The review

style has the unfortunate effect of masking the substance of the new results presented, which is

an analysis of the responses in two different climate models to solar and volcanic forcing, and to

combinations of these forcings. The actual analysis is made in Section 3.4 of the L&V paper, where45

the authors test the additivity of responses to solar and volcanic forcing in the Zebiak-Cane (ZC)

model, and in Section 4.2, where they study the intermittency of forcing and response and conclude

that difference in their intermittency implies nonlinearity of the response. In Sect. 2 of this comment

we present a critical examination of the methods L&V invoke to conclude that combined solar and

volcanic forcing leads to a weaker response than the sum of the solar and volcanic responses in50

the ZC model. Sect. 3 examines the intermittency analysis and demonstrates that L&V’s results for

the ZC model can be reproduced in the response of a simple linear response model. In Sect. 4 we

discuss some aspects of the physics that may give rise to a nonlinear response and summarise our

main conclusions.

2 Linearity and response additivity55

2.1 The logic of hypothesis testing

According to a widely accepted principle in the philosophy of science (Popper, 1959), a well-posed

scientific hypothesis has to be falsifiable by experiment or observation. There is an infinity of ways

the temperature response can be nonlinear. This pertains to both details of the nonlinear interactions

and to their magnitude. No test is infinitely accurate, so there will always be a possibility that a weak60
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nonlinearity goes undetected. Hence, is not logically possible to formulate a falsifiable hypothe-

sis stating that the response is nonlinear. The well-posed hypothesis is that the response is linear.

From this hypothesis one can design tests by which the hypothesis can be rejected by conceivable

outcomes of experiments or observations. If such a test fails to reject the linearity hypothesis, we

cannot conclude that the response is linear, but if a series of increasingly sharper tests still fail to65

reject the linearity hypothesis will stand stronger. This is the principle of induction. On the other

hand, if a test turns out to reject linearity, then we have detected a nonlinearity. So, even though

nonlinearity cannot be falsified, it can in fact be verified. This is because nonlinearity is the negation

of the falsifiable linearity hypothesis; if a statement A is false then the statement not A is true.

Based on this logic, the only reasonable approach is to formulate a test that may, or may not,70

reject the hypothesis that the response is linear. The hypothesis, however, must be formulated with

some care. The issue in the L&V paper is nonlinearity in the response of hydrodynamic flow models

like the ZC and GCMs, which are known to be inherently nonlinear. It is not difficult to devise

tests that will detect nonlinearities in these models. The question at hand, however, is not whether

nonlinearities are present, but whether these nonlinearities are detectable in the global temperature75

response.

In GCM-type models “unforced” control simulations are of course driven by the constant solar

energy flux, and this results in a turbulent, nonlinear cascade that forms the “internal variability” of

the model. In a linear model for the global response this internal variability is represented as a noise

process ε(t) in a global variable T (t). Forcing F (t) in the model means a variation of the global80

energy flux around the flux that drives such a turbulent equilibrium state.

2.2 The linear response hypothesis

After these remarks we are ready to formulate the linear response hypothesis:

(i) For realistic strength of the global forcing the the statistics of the internal variability ε(t) is

unaffected by the forcing.85

(ii) The global temperature can be expressed as a sum of this internal variability and a linear

response to the forcing, i.e.,

T (t) = T det(t) + ε(t), T det(t) = L̂[F (t)], (1)

where T (t) is the global surface temperature, T det(t) is the deterministic, linear response to the

global forcing F (t), and L̂ is the linear response operator.90

2.3 Internal noise and response additivity

The data used from the ZC model is the temperature (more precisely; the Niño3 index) after av-

eraging over 100 simulations with the same forcing. If the internal variability is a persistent noise,

averaging over N independent runs will reduce the standard deviation by a factor N−1/2 = 0.1, but
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the correlation structure of the noise will be preserved. In the following, ε(t) is the noise that remains95

after averaging the internal noise over those N realisations.

The next step is to produce a fluctuation ∆T (t,∆t) by means of a linear low-pass filtering op-

eration. It could for example be a simple moving average over a window ∆t, or the Haar wavelet

smoothing employed by L&V. In the following we shall for notational simplicity omit the arguments

(t,∆t). The results presented hold for the temperature signal itself (∆t= 0) as well as for any degree100

∆t of filtering. Since the response operator L̂ is linear we have

∆T det
v+s = ∆T det

s + ∆T det
v , (2)

where ∆T det
s and ∆T det

v are the responses to the solar and volcanic forcings, ∆Fs and ∆Fv , respec-

tively, and ∆T det
v+s is the response to the combined forcing ∆Fs + ∆Fv . This yields

∆Ts = ∆T det
s + ∆εs, (3)105

∆Tv = ∆T det
v + ∆εv, (4)

∆Ts+v = ∆T det
s + ∆T det

v + ∆εs+v. (5)

Here ∆εs, ∆εv , and ∆εs+v are the filtered fluctuations of independent realisations of the same noise

process ε(t) (here ε(t) is the average over 100 realisations of internal variability). By subtracting

Eqs. (3) and (4) from Eq. (5), and using Eq. (2), we find110

∆Ts+v −∆Ts−∆Tv = ∆εv+s−∆εs−∆εv ≡∆ε. (6)

Here, ∆ε is the sum of three independent realisations of the same noise process ∆ε
d
= ∆εs

d
= ∆εv

d
=

∆εv+s, where d
= is identity in distribution. This imples that

∆ε
d
=
√

3∆ε. (7)

Hence, a prediction based on the linear response hypothesis is that the difference between the tem-115

perature driven by combined solar and volcanic forcing and the sum of the temperatures driven by

solar and volcanic forcing is realisation of a noise process which is
√

3 times the internal variability

process. In Sect. 2.4 we shall test this prediction on the data from the ZC model. If the prediction is

inconsistent with the data the linear response hypothesis is rejected for this model, and nonlinearity

in the response has been detected. If the prediction is confirmed by the data the linear hypothesis120

stands stronger.

2.4 Alternative test of additivity in the ZC model

Fig. 1a shows time series of the solar and volcanic forcing for the last millennium used in the simu-

lations of the ZC model. Unfortunately L&V did not have available control runs on millennial scale

from this model. This would have been very useful in establishing directly the statistical properties125

of the internal noise ε(t). The approach we will use as an alternative, is to assume the validity of
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the linear response hypothesis, which will allow us to extract the internal noise from the simulation

with solar forcing only. Then we will formulate a test by which the hypothesis could be rejected by

the data for volcanic forcing only and for volcanic plus solar forcing. Assuming the validity of the

linear hypothesis from the start may seem like circular reasoning, but it is not. Any valid hypothesis130

testing makes predictions based on the hypothesis, which are then tested against observation.

If the linear response hypothesis is true we can determine ε(t) from the solar forcing signal and

the corresponding temperature signal. The solar forcing signal in Fig. 1a has a smooth appearance,

in particular for the first 750 years of the record, for which no sunspot counts were available. As

a contrast, the corresponding temperature signal shown as the thin orange curve in Fig. 1b is noisy135

on all scales down to the annual scale. This appearance of the temperature signal under the smooth

solar forcing already lends support to the assumption that the variability up to century time scale is

internal. However, according to L&V the subadditivity is most prominent on time scales longer than

50 yr, so we have to pay special attention to the slow components of the noise spectrum. We now

write a linear response to the solar forcing in the form;140

∆T det
s (t,∆t) =−S∆Fs(t− τ,∆t). (8)

Here ∆t= 50 yr over which we have performed a moving average of the temperature and forcing.

The time lag τ of the response is estimated to be ≈ 25 yr from inspection of the filtered time series.

The climate sensitivity S is chosen to give the best least-square fit of ∆T det
s (t,∆t) (the black curve

in Fig. 1b) to the filtered temperature signal ∆Ts(t,∆t) (the orange, thick curve).145

Because of the smooth character of the solar forcing signal in the first 750 yr of the record, the

50 yr filtering of this signal has almost no effect, and we can therefore interpret the black curve

in Fig. 1b as the linear, deterministic response to the solar forcing, and the difference between the

orange, thin curve and the black curve as the internal noise, i.e.,

ε(t) = Ts(t)−∆T det
s (t,∆t). (9)150

This difference is plotted as the brown, thin curve at the bottom of Fig. 1b, and the thick brown curve

is the 50 yr moving average.

We have now distinguished the internal noise from the solar-driven temperature signal by means

of the very simplelinear-response assumption, Eq. (8). This response function is of course not accu-

rate, the delay in the response should rather be expressed as a time-dependent response function (a155

frequency-dependent transfer function) rather as a fixed delay (Rypdal and Rypdal, 2014). For the

ZC model we do not have detailed information about the response function, so we have no means

of constructing one that is known to be better than Eq. (8). But for the present purpose this is not

crucial since the solar forcing has almost no power in the high frequencies.

The orange bullets in Fig. 1d is a characterisation of this noise by means of the Haar structure160

function employed by L&V. The definition of this structure function is√
SHaar

2 (∆t) = 〈|∆T (t,∆t)|2〉1/2, (10)
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where 〈. . .〉 denotes averaging over disjoint time intervals of length ∆t. It measures the root-mean-

square fluctuation level on the scale ∆t. The flat appearance on scales above a decade indicates a

strongly persistent noise process with equally strong fluctuations on scales ∆t > 10 yr. The straight-165

line character of the log-log plot in this scale range is symptomatic of a scaling process, and the

corresponding power spectral density has the form ∼ f−β , where β ≈ 1 (sometimes denoted 1/f -

noise or pink noise). The higher fluctuations for ∆t < 10 yr is characteristic for the El Niño Southern

Oscillation (ENSO). This mode is particularly strong in the ZC model, which is designed specifically

for the study of ENSO, and the global output T (t) is the so-called Niño3 index.170

If the characterisation we have made of the internal noise is correct, and the linear hypothesis is

true, then Eq. (7) must be true. But ε in Eq. (7) must be computed from Eq. (6), which requires the

temperature signals Tv and Tu+v , in addition to Ts. The characterisation of ε only used Ts, so if the

linear hypothesis is false, it is very unlikely that the estimated ε and ε will give good agreement with

Eq. (6). This means that we should have a strong test.175

In Fig. 1c the thin, blue curve represents Ts+v(t), the thin, red curve is Ts(t)+Tv(t), and the thin,

black curve is their difference ε(t) = Ts(t)+Tv(t)−Tu+v . Note that the narrow spikes from the fast

responses to the volcanic eruptions are completely absent in the difference signal ε(t), demonstrating

that the addition of solar forcing does not exert a detectable influence on the response to the volcanic

eruptions on the short time scales up to a few years. The thick curves in Fig. 1c are the corresponding180

50 yr moving averages. The Haar structure function of the signal ε(t) is shown as the red bullets in

Fig. 1d. The brown bullets are
√

3ε(t), i.e., the orange bullets multiplied by
√

3. We observe that

the red and brown bullets are more or less on top of each other; the two curves are entangled for

∆t > 10 yr. This means that the second-order statistics of the noise processes ε(t) and
√

3εare

indistinguishable, in agreement with Eq. (7). Thus, this test is not able to reject the linear response185

hypothesis.

This test would have been stronger if we had a more direct estimate of the internal variability.

In an interactive comment, Lovejoy et al. (2016) suggest to use a different estimate of the internal

noise, namely the first 195 yr of the volcanic-driven response time series. This is justified, since

there was no volcanic forcing in this period. The drawback, however, is that an estimate of the Haar190

fluctuation from such a short time series is associated with higher estimation uncertainty (finite-

sample size errors). Unfortunately, they make no attempt to demonstrate that the estimates of the

difference |
√

3ε(t)− ε(t)| is significantly different from zero in a statistical sense. Such a test is

easy to make by creating a Monte Carlo ensemble of time series containing 195 data points with

statistical properties similar to those of the observed volcano response. The statistical scatter of the195

Haar fluctuations within this ensemble will give us information about the finite sample uncertainty

of the Haar estimate. This is done in Fig. 2, where the specifications of the Monte Carlo ensemble

are described in the caption. The figure shows that the difference between the Haar fluctuations of
√

3ε(t) and ε(t) is smaller than this uncertainty in the interesting scale range ∆t > 10 yr. This means
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that the deviation from linearity observed is statistically insignificant, and hence does not reject the200

linear response hypothesis. A similar Monte Carlo ensemble for 1000 yr long time series would

reduce the scatter in the Haar fluctuations by approximately a factor
√

195/1000≈ 0.44, which is

still large enough to conclude that the difference between the blue and brown bullets in Fig.1d is not

statistically significant.

2.5 Examination of L&V’s test of response additivity205

The L&V test of additivity shown in their paper is is simpler than described in Sec. 2.4, but ignores

internal variability. Here we shall demonstrate that their test also fails to reject the linearity hypothe-

sis, even when this variability is not taken into account. Their main conclusion concerning additivity

of responses in the ZC model is that for ∆t > 50 yr the rms-ratio,

R≡

√
〈|∆Ts + ∆Tv|2〉
〈|∆Tu+v|2〉

, (11)210

is found to be R≈ 1.5. As will be shown below, our analysis yields a number indistinguishable

from unity. But the authors also make attempts in their Figure 3 to inflate this ratio further by pre-

senting results for the numerator based on the flawed approximation of neglecting the estimate of

〈∆Ts∆Tv〉. The approximation is flawed because, even though solar and volcanic forcing are in-

dependent processes, the ensemble average 〈. . .〉 is estimated from only one realisation of each of215

these forcing processes. On the short time scales the approximation makes sense, since the ensemble

average is replaced by time averages, but as the time scales ∆t approaches the length of the time

series, the number of independent time windows to average over goes to zero. In their Figure 3b

L&V show the flawed graph of
√
〈|∆Ts + ∆Tv|2〉 based on this approximation together with the

graph of
√
〈|∆Tu+v|2〉, which appears to show that the former is larger than the latter by a factor220

≈ 2.5 for ∆t > 50 yr. In Fig. 3 we show the results that we obtain without the approximation.We

cannot find any significant difference between the two graphs (red and blue bullets) for ∆t < 300 yr;

the two curves are entangled, just as in Fig. 1d. For ∆t > 300 yr the the observed differences are

clearly not statistically significant.

An alternative, and very simple, estimate for this ratio can be obtained from the data for the red225

and blue, thick curves in Fig. 1c, by computing ∆T ’s as 50 yr moving averages rather than Haar

fluctuations. The standard deviation of ∆Ts + ∆Tv is 0.072 K, and of ∆Ts+v it is 0.060 K, which

yields R≈ 1.20. This ratio is slightly greater than unity due to the higher fluctuations in the red

graph compared to the blue graph in Fig. 3 for ∆t > 300 yr. Since this difference on the longest time

scales appears to be a statistical error due to limited sample size,R= 1 is within the error bars of the230

estimated R (on these time scales there are only a few independent samples available for estimation

of the variance). If such an error test were crucial, we could have computed the uncertainty range

via a Monte Carlo ensemble of the 1/f noise process, like we did in Fig. 2. However, since the two

curves are entangled for ∆t > 10 yr, even very small finite sample size uncertainty will not allow
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us to decide that one signal has more power than the other. Moreover, as will be shown in Sect. 2.6,235

internal variability gives an additional positive contribution to R which exceeds the error that is

required to explain the estimate R≈ 1.2 under the linear response hypothesis.

2.6 The effect of internal variability on the L&V test

The ratioR defined in Eq. (11) only measures the ratio of responses if the internal noise is negligible.

Hence, even if R were significantly (in statistical sense) greater than unity, this increase might be240

caused by the internal variability in a model whose response to forcing is perfectly linear. By using

Eq. (6), which is valid for a linear response model, Eq. (11) can be written as

R=

√
1 +

〈|∆ε|2〉
〈|∆Ts+v|2〉

. (12)

This shows that internal noise can increase the rms-ratio computed by L&V even if the response

is linear. From the data for the thick, brown curve in Fig. 1b we have that the standard deviation245

for the internal noise ∆ε is 0.03, and hence for ∆ε a factor
√

3 larger. The standard deviation of

∆Ts+v can be estimated from the data for the thick, blue curve in Fig. 1c and is 0.06. This yields

〈|∆ε|2〉/〈|∆Ts+v|2〉 ≈ 0.75, and hence R≈ 1.32 is the estimate of the rms-ratio based on the linear

response hypothesis.

2.7 L&V’s arguments against high internal variability250

In the first and second drafts of the L&V discussion paper internal variability was not mentioned.

After this problem was raised by us in the interactive discussion, L&V have in the final paper pre-

sented two arguments against the presence of sufficiently high internal fluctuations on the centennial

time scales to explain the raised rms-ratio R.

The first argument uses the internal variability of the GISS model as an estimate of the centennial255

scale internal variability of the ZC model, and concludes that this estimate is less than 20% of the

total variability in the ZC model. The authors overlook the fact that the output of the ZC model

is the Niño3 index (temperature anomalies in the tropical pacific), while the GISS model output is

the average over the northern hemisphere land. One should also keep in mind that the ZC model

was never intended to get the statistics of variability correct, and so there is no basis for assuming260

anything about the magnitude of it relative to GISS. In Figure 4 of the L&V paper, fluctuation levels

versus scale for ZC and GISS are plotted in the same panel. For ∆t > 10 yr they almost overlap.

However, the ZC model data are averaged over 100 model runs, so the actual fluctuation level for

the stochastic component is ten times greater than for the output from GISS control simulations.

The second argument assumes that the internal noise must have a scaling exponent β ≈ 0.6, which265

would yield a negative slope H = (β−1)/2≈−0.2 of the structure-function plot (see Fig. 1d). The

actual plot of the structure function of the solar residual (the yellow circles in Fig. 1d) has a weakly

positive slope, and hence the authors conclude that the latter is dominated by forced fluctuations on
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the centennial to millennium scale. The weakness of this argument is that it takes as assumption what

the authors want to prove, namely that internal fluctuations on long time scales are small. It seems270

that only long control runs of the ZC model can settle this issue.

2.8 Additivity in NorESM data

There are at least three drawbacks with the ZC data. The model is not representative for the global

temperature response, the data analysed has been averaged over 100 realisations, and L&V had no

control runs available to assess the magnitude of internal variability. They also analysed data from275

the NASA GISS-E2-R model, but here they lacked the full suite of simulations with solar-only,

volcanic only, and solar+volcanic forcing, and hence they could not perform the test of the additivity

of responses on a full-blown GCM. We have acquired a full suite of millennium-long simulations

for the NorESM Earth System Model, which is part of the CMIP5 ensemble. More specifically, we

have analysed solar-only, volcanic only, solar+volcanic+anthropogenic, and control runs for the 900280

yr period 935-1834 CE. We have omitted the period after 1835 CE to minimize the anthropogenic

forcing in the full forcing simulation, and treat this as a solar+volcanic simulation. It is remarkable

that all Haar fluctuation curves of all these signals are almost flat, corresponding to H ≈ 0 or β ≈ 1,

i.e., to a so called 1/f -noise.

In Fig. 4 we have plotted the Haar fluctuations for the solar+volcanic (total) forcing (red), for the285

summed responses to solar and volcanic forcing (blue), and for the control run (magenta). Observe

that the responses to solar and volcanic forcing add up to the response of the combined forcing. The

subadditivity claimed by L&V is completely absent. We also observe that the internal variability

represented by the control run is quite strong. The standard deviation of the internal variability is 2/3

of the variability of the signal with solar+volcanic forcing. Moreover, the internal fluctuations are290

almost equally strong on long-time scales as on short time scales, contrary to what has been claimed

by L&V.

3 Linearity and intermittencies

The essence of Section 4 in the L&V paper is a mathematical result claiming that linearity in the

response implies that the intermittency (the curvature of the scaling function) is the same for forcing295

and response. We have a number of reservations against the application of this result to the data and

the climate models studied in this paper.

3.1 The essence of our critique

There are at least three possible sources of different intermittencies of the forcing and temperatures

that are missed in the L&V paper:300

9



(I) The mentioned mathematical result depends on a power-law form of the linear response func-

tion. On time scales less than a few years, GCM responses appear to be exponential rather than

power-law, as shown for the GISS-ER-2 model in in Fig. 5. On the long time scales this assumption

is in direct contradiction to L&V’s own claim that GCMs do not reproduce low-frequency (multi-

centennial) variability (see also MacMynowski et al. (2011); Lovejoy et al. (2013); Geoffroy et al.305

(2013); Fredriksen and Rypdal (2016)).

(II) It depends on the perfect power-law scaling of the structure functions of forcing and response,

i.e., that these processes belong to the multifractal class (Mandelbrot et al., 2008; Rypdal and Rypdal,

2016a). This is not true for e.g., the volcanic forcing (see Fig. 6c) nor for GCM responses (see Fig. 8).

(III) The analysis does not account for the internal variabiliy. The authors have argued that internal310

variability may be negligible compared to forced variability on the longest time scales. In Sect. 2.6

we demonstrated that this is not the case for GCMs. One should also keep in mind that for analysis

of intermittency, the emphasis is on the smallest time scales. The intermittency of the temperature

signal will be strongly influenced by, or even dominated by, the internal noise, and hence there is no

reason there should be a strong similarity between intermittencies of forcing and temperature in a315

linear response model.

3.2 Effect of imperfect power laws on intermittencies

Here we present some theoretical considerations which demonstrate that imperfect scaling (power

laws) of the response kernel and the structure functions can lead to different intermittency of forcing

and response in a linear response model. In Sect. 3.3 we demonstrate this by an example, so the320

present subsection can be skipped by readers who are only interested in such a demonstration. The

general, linear response model Eq. (1) can be written as a convolution of the forcing F (t) with a

response kernel G(t);

L̂[F (t)] =

∞∫
−∞

G(t− t′)F (t′)dt′. (13)

For a general analysis of moments it is convenient to formulate the moments in the frequency domain325

rather than the time domain. Thus, we Fourier transform Eq. (13) to write

T (f) = G(f)F(f), (14)

where T (f), F(f), and G(f), are the Fourier transforms of T (t), F (t), and G(t), respectively. By

defining structure functions in frequency domain, STq (f)≡ 〈|T (f)|q〉, SFq (f)≡ 〈|F(f)|q〉, we have

the general, linear response model formulated as a linear relation between forcing and response330

structure functions of order q in the frequency domain, with the ensemble average of the q’th power

of the transfer function |G(f)| as a constant of proportionality;

STq (f) = 〈|G(f)]q〉SFq (f). (15)
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L&V assume a power-law, linear response. This corresponds to a response function of the form

G(t) = ξ(t/µ)H−1/2 θ(t), (16)335

where ξ = 1 Km2J−1, µ is a constant in units of time which characterises the strength of the response,

H is the scaling exponent for the response used by L&V, and θ(t) is the unit step function. The

Fourier transform of this response function yields (see Rypdal and Rypdal (2014))

|G(f)|=
(
f

f0

)−(H+1/2)

, (17)

where340

f0 =
[ξµΓ(H + 1/2)]

1
H+1/2

2πµ
,

and Γ(x) is the Euler Gamma function. Hence the L&V special case of Eq. (15) is

STq (f) =

(
f

f0

)−q(H+1/2)

SFq (f). (18)

The next assumption made by L&V is that both forcing and response exhibit multifractal scaling. If

we write the structure functions as (dropping the superscripts);345

Sq(f) = Cq(f)f−η(q), (19)

the multifractal scaling assumption is that the multiplicative factor Cq(f) is independent of the

frequency f , such that the structure functions are perfect power laws in f (Mandelbrot et al., 2008).

This is a very restrictive assumption that is not satisfied by any of the data in this study. If Eq. (19)

holds true a plot of logSq(f) vs. logf is linear with slope −η(q). The essence of the L&V approach350

(although some technicalities differ) corresponds to fitting the logSq(f) vs. logf curves with straight

lines at the highest frequencies, or in other words, to draw tangent lines to the curves at the Nyquist

frequency fN . The negative slopes of these lines are interpreted as the scaling functions η(q). This

corresponds to defining the scaling functions by

η(q) =

[
dSq(f)

d(logf)

]
f=fN

, (20)355

and from Eq. (19) we then find the f -dependence of Cq(f) which represents the deviation from

multifractal scaling. The L&V approach includes normalizing the signals T (t) and F (t) such that

they have the same power at the lowest frequency f = 1, i.e., ST2 (1) = SF2 (1). IfH 6=−1/2 Eq. (18)

then implies that f0 = 1, and putting f = 1 in Eqs. (18) and (19) we find,

STq (1) = SFq (1) = CTq (1) = CFq (1) (21)360

for all all q. From the logarithm of Eqs. (18) and (19) we find for f > 1,

ηF (q)− ηT (q) + q(H + 1/2) =
log [CFq (f))/CTq (f)]

logf
. (22)
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If T (t) and F (t) exhibit perfect multifractal scaling we have Cq(f) = Cq(1), and from Eq. (21) the

right hand side of Eq. (22) vanishes. Hence, for this case we have the L&V results that the curves

ηT (q) and ηF (q) have the same curvature, i.e., the response and forcing exhibit the same multifractal365

intermittency. However, the term q(H + 1/2) on the left hand side arises from the particular power-

law form of the linear response function shown in Eq. (17). With another form of the linear response

kernel this term might not be linear in q, and this could introduce different curvature of ηT (q) and

ηF (q). Different curvature is also introduced if the structure functions are not perfect power laws.

Then the term on the right of Eq. (22) will in general not vanish, and it may have a non-zero second370

derivative. This may give rise to different curvatures of ηT (q) and ηF (q) even if the response is

linear with the power-law response kernel given by Eq. (17).

3.3 Response to volcanic forcing

An important point in L&V is that intermittency in volcanic forcing and the corresponding tem-

perature response are different, and that this is a signature of nonlinearity in the response. In this375

subsection we shall first demonstrate that the intermittency in the volcanic forcing is not multifrac-

tal, i.e., all the structure functions are not power laws. This is a symptom of the lack of correlations

between bursts that characterises a multiplicative cascade. Next, we shall show by using L&V’s

trace moment analysis on a simple, linear response model, that we can reproduce the intermittency

observed in the response to volcanic forcing in the ZC model. This linear response exhibits a sim-380

ilar power spectrum, similar trace moments, and almost identical intermittency parameters as the

ZC response. And more important; these features are considerably different in the forcing and the

response, even though the response model is linear. It demonstrates that these results obtained from

the ZC model is not a signature of nonlinearity in the response.

Let us first build some intuition on the nature of the volcanic forcing. In Fig. 6a we have zoomed385

in on the volcanic forcing signal used in the ZC model. Each volcanic eruption is represented by

2-3 data points (years) different from zero (some large eruptions are represented by a few more

points). If the eruptions are distributed randomly in time (Poisson distributed) the autocorrelation

function (ACF) will vanish after a time lag of a few years. This is exactly what we observe in

Fig. 6b. The spectral structure functions used in Sect. 3.2 are convenient for theoretical studies, but390

not for estimation based on short and spiky time series. Here it is better to use the standard structure

functions which are computed from the empirical moments;

Ŝq(∆t) = (N −∆t)−1
N−∆t∑
t=1

|Y (t+ ∆t)−Y (t)|q (23)

where Y (t) =
∑t
t′=0F (t′) is the cumulative sum of the forcing time series. This is a standard es-

timator commonly used in analysis of stationary time series. It is much more transparent than the395

trace moments employed by L&V, and contains no hidden assumptions about power-law structure

functions or the existence of an “outer scale” for these power-laws (see discussion in Sect. ??). The
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empirical moments of the volcanig forcing signal are shown in Fig. 6c. The steeper slopes (slope

≈ q) for ∆t≤ 4 is due to the smoothness of the forcing signal on these short time scales, signified

by the ACF in Fig. 6b. For q = 2 the structure function looks quite straight and with slope close to 1400

in the log-log plot for the scale range 4-100 yr. For smaller q the plots become more curved. This is

symptomatic for a stationary, uncorrelated process (Lévy process) which is non-Gaussian on short

time scales, although the central limit theorem requires that it converges to a Gaussian on the longer

scales. According to Mandelbrot et al. (2008), such a process is not multifractal (see also Sect. 2.5

and appendixes in Rypdal and Rypdal (2016a)). In practice, L&V’s approach corresponds to as-405

suming that the moments can be written in the power-law form Ŝq(∆t)∼∆tζ(q), where the scaling

function ζ(q) is estimated by fitting straight lines to the structure functions in the log-log plot in the

range 4-100 yr. This has been done in Fig. 6d. The curved scaling function is interpreted by L&V as

a signature of multifractality, but this interpretation is correct only if all structure functions are power

laws (straight lines in log-log plots). It is easily demonstrated that very similar results are obtained410

by random shuffling of the onset times of the volcanic spikes, which would convert a multifractal

signal into a realisation of a Lévy process. If the original signal were a multifractal, the result should

be quite different after shuffling. For a deeper discussion of these disagreements see the interactive

discussion and in particular our author comment AC3 (Rypdal and Rypdal, 2016b).

Our main focus here, however, is not on the incorrect multifractal interpretation of the scaling415

analysis, but on the incorrect conclusions drawn from this analysis when it comes to nonlinearity in

the response. As a means to investigate this point we construct a linear response model that mimics

the ZC response to the volcanic forcing. The ZC response is shown by the blue curve in Fig. 7a. We

observe that every volcanic spike seems to be succeeded by a damped oscillation. Thus, we construct

a linear, damped harmonic oscillator response model and select the parameters to produce a response420

signal that looks similar to that of the ZC response to the volcanic forcing when we drive the model

with stochastic forcing in addition to the volcanic forcing. We make no attempts to fine-tune the

model parameters, since this extremely simple model obviously is not an accurate substitute for the

ZC model. The purpose of devising this model is only to demonstrate that a linear model can produce

a response with intermittency parameters very different from those of the forcing. These are results425

which L&V contend can only arise from nonlinearity of the response.

The response according to the linear model is shown by the red curve in Fig. 7a, and we compute

the trace moments and intermittency coefficients for this linear response signal. We have used the

Mathematica routines downloaded from Shaun Lovejoy’s web page for these computations to make

sure that the results are comparable to those presented by L&V. Fig. 7b is a reproduction of Fig-430

ure 6a, top right, in L&V for the volcanic forcing. L&V interpret the wide spread in slopes of the

trace-moment curves as signature of multifractal intermittency, and they compute the intermittency

coefficients C1 = 0.48 and α= 0.31 (their Table 1). The results depend on the exact fitting range

chosen, so we cannot expect to get exactly the same results for these parameters. We find C1 = 0.52
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and α= 0.13 (which makes us wonder if α= 0.31 in L&V is a misprint). In Fig. 7c we have com-435

puted the trace moments for an arbitrary realisation of the linear response model. This figure is very

similar to their Figure 6a, bottom right, for the ZC response. The intermittency parameters com-

puted by L&V for this case are C1 = 0.054 and α= 2.0, while our results for the linear model are

C1 = 0.039± 0.013 and α= 1.92± 0.03. These numbers are mean values over an ensemble of 100

realisations of the linear response model and the errors are ±2σ, where σ is the standard deviation440

over this ensemble. The important feature here is not the similarity between the intermittency pa-

rameters for the ZC model and this linear model, but rather the great difference in these parameters

between volcanic forcing and response in the linear model. L&V interpret this difference as a sig-

nature of nonlinearity, but our exercise shows that such a difference can be obtained from a simple

linear response model with internal noise.445

3.4 Intermittency in GCMs

The breakdown of condition (III) due to internal variability in GCMs is clearly illustrated in Fig. 8,

which is based on the data from the NorESM model. Fig. 8a shows the volcanic forcing signal (red),

and the model response to this signal (black). Fig. 8b shows a signal composed of two components;

one is the volcanic forcing signal normalised such that the magnitudes of the large volcanic spikes450

roughly match those of the volcanic response signal. This signal can be thought of as the instanta-

neous response to the stochastic forcing. The other component is the internal variability represented

by a control run. This composite signal represents a trivial linear transformation (multiplication by

a normalization factor) plus a signal representative for the internal variability. Figs. 8c,d show the

structure functions (SFs) and the scaling function for the volcanic forcing computed from straight455

lines fitted to the SFs in the range displayed in Fig. 8c. Figs. 8e,f show the same for the model re-

sponse signal to the volcanic forcing, and Figs. 8g,h for the the composite signal shown in Fig. 8b.

According to L&V (who believe condition III is irrelevant), the intermittency shown by the curva-

ture of the scaling function in Figs. 8d should be preserved in the scaling function for the composite

signal shown in Fig. 8h, but it is not. The latter signal is almost non-intermittent due to the “contam-460

ination” from the internal noise. The contamination explains the reduced intermittency observed in

the response to the volcano forcing shown in Figs. 8e,f. This proves that nonlinearity in the response

is not required to explain the difference in intermittency between forcing and response in GCMs.

4 Discussion and conclusions

L&V conclude from their analysis of additivity that nonlinearity in the form of subadditivity is strong465

primarily on time scales longer than 50 yr, and that there are specific physical reasons for this, like

temperature albedo feedbacks. Our comment is that we find no reason why responses should be

more linear on short than on long time scales, in particular not the response to the burst-like volcanic
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forcing. The response of local climatic variables on synoptic and seasonal scales to strong volcanic

eruptions is certainly nonlinear. But on longer time scales, the global temperature will change in470

proportion to the change in heat content in the upper ocean, which again will change in proportion

to the net radiative flux. The response in presence of feedbacks that modify the radiative flux is

not generally expected to become nonlinear. Feedbacks are typically modelled linearly, although in

some cases different feedbacks may combine nonlinearly.

The ENSO phenomenon is probably a nonlinear mode in the climate system, and is part of the475

internal variability, even though it can be influenced by external forcing. The nonlinear nature of

the oscillation makes it likely that the timing of El Niño events can be influenced by external forc-

ing such as strong volcanic eruptions. In general, the modes of internal variability of the climate

system are results of nonlinear processes, and the modes are probably responding nonlinearly to ex-

ternal forcing. But we find it less likely that the ensemble averaged, global temperature response is480

nonlinear to an extent that is detectable.

On the other hand, the intermittency analysis by L&V is designed to detect nonlinearity on short

time scales, so it appears that the nonlinearity they claim to detect by this analysis is different from

the subadditivity on long time scales. The trace moment analysis empolyed is rooted in ideas of inter-

mittency and multifractality, which have emerged from turbulence theory. It was used by Schertzer485

and Lovejoy (1987) in the context of rain and cloud fields, but more recently they have worked ex-

tensively to extend the ideas of turbulent, multiplicative cascades, not only to atmospheric dynamics

and weather, but also to climate dynamics across a vast range of scales (Lovejoy and Schertzer,

2013; Lovejoy, 2014). The validity of extending of the turbulence framework to encompass the dy-

namics of the entire climate system across the scales is not obvious and deserves to be challenged.490

The simple, linear energy-balance modelling is one example of an alternative framework. Models of

this kind can be extended to incorporate several interacting subsystems with different response times

(multi-box models), and can give rise to responses that are close to power laws over a certain range

of scales (see Fig. 5). But there are also other competing paradigms based on treating the climate

as a high-dimensional dynamical system residing in non-equilibrium stationary states, and invoking495

response theory of non-equilibrium statistical mechanics for prediction of changes in the globally

averaged surface temperature as well as its spatial patterns (see Lucarini et al. (2016) and references

therein).

Tests formulated on the basis of one particular theoretical framework runs the risk of becoming

self-fulfilling. The trace moment analysis employed by L&V explicitly assumes the existence of500

multifractal scaling up to a certain “outer scale,” and lines are fitted to the trace moments under the

constraint that they all cross at this outer scale. The slopes of these lines are used to compute the

intermittency parameters, even in cases where these lines are poor fits to the actual trace moments.

The method is automatised and contains no means to discriminate between true multifractal and non-

Gaussian uncorrelated processes (Lévy processes). The implication of failing to make this distinction505
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is that a mathematical result for multifractal processes (stating that a linear transformation preserves

intermittency) is applied by L&V to processes for which this result is not valid.

The main conclusions of this comments are the following: A correct treatment, without unjustified

approximations, of the issue of additivity in the Zebiak-Cane model gives no reason for rejection of

a linear response model (see Fig. 2). This conclusion holds even without accounting for internal510

variability, but is enforced by the inclusion of this effect. This was demonstrated in Sect. 2.6 by the

alternative test introduced in Sect. 2.4.

L&V’s analysis of intermittencies is based on a mathematical result which states that if the re-

sponse is linear the intermittency computed through trace moment analysis must be the same in

forcing and response. However, this result holds only if both forcing and response belong to the515

class of multifractals, i.e., if all structure functions are power-laws (Mandelbrot et al., 2008), and

in addition it requires that the response function is a power law in the entire scale range of interest.

Fig. 6 demonstrates the structure functions of volcano forcing are not power laws, and Fig. 8 that

this is the case also for structure functions of global temperature in GCMs. Fig. 5 shows that the

temperature response function in GCMs is not a power-law on all available time scales.520

In Fig. 7 we illustrated by an example that the intermittencies can be very different in forcing and

response produced by a linear response model with internal variability. The rôle of internal variability

in reducing the intermittency in the linear response to an intermittent forcing was demonstrated for

GCM data in Sect. 3.4 and displayed in Fig. 8. Hence, our conclusion is that the intermittency

analysis of L&V does not constitute a valid test for rejecting the linear response hypothesis.525
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Figure 1. (a): Time series of the solar (black) and volcanic forcing (blue) for the last millennium used in

the simulations of the ZC model. (b): Responses after averaging over 100 realisations. Thin, orange curve is

response to solar forcing and the thick, orange is filtered by a 50 yr moving average. The thick, black curve is the

filtered and shifted solar forcing signal ∆T det
s (t,∆t) given by Eq. (8). The brown, thin curve is the internal noise

ε(t) defined in Eq. (9), and the thick brown is the filtered time series. (c): Thin, blue curve represents Ts+v(t),

the thin, red curve is Ts(t) +Tv(t), and the thin, black curve is their difference ε(t) = Ts(t) +Tv(t)−Tu+v .

Thick curves are the corresponding filtered series. (d): Haar structure function of ε(t) (orange bullets), of ε(t)

(red bullets), and of
√

3ε(t) (brown bullets).
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Figure 2. Brown bullets: Haar fluctuation function of
√

3ε(t), where ε(t) is the first 195 yr of the volcanic

forcing record. Red bullets are Haar-fluctuations of ε(t). These two curves look similar to the corresponding

curves in Lovejoy et al. (2016). The crucial issue is whether the difference between these two curves is statisti-

cally significant. The thin curves constitute Haar fluctuations of a 100 member ensemble of fractional Gaussian

noises (fGn’s) of 195 yr length with H =−0.1 (β = 2H + 1 = 0.8). On time scale less than 10 yr the fGn

is not a good model for the internal noise because of the ENSO dynamics, but on longer time scales the flat

Haar-fluctuation curve suggests that an fGn with β ≈ 0.8 is a crude statistical model of the internal variability.

The scatter of the Haar fluctuation in this ensemble gives an idea about the statistical uncertainty of an estimate

of internal variability based on a 195 yr long record. This uncertainty exceeds the estimate of |
√

3ε(t)− ε(t)|

(the difference between the brown and the red curves), hence this difference is not statistically significant.
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Figure 3. Haar structure functions
√
〈|∆Ts + ∆Tv|2〉 (red bullets) and 〈|∆Ts+v|2〉 (blue bullets).
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Figure 4. Haar fluctuations for NorESM data. Red curve: Haar fluctuation of the response to solar + volcanic

forcing. Blue curve: the Haar fluctuation of the summed solar and volcanic response. Magenta curve: Haar

fluctuation of the control run.

���������

0 500 1000 1500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

time (months)

te
m
pe
ra
tu
re
an
om
al
y
(K
)

Figure 5. Grey curve is the global temperature response to a sudden 4-doubling of atmospheric CO2 concentra-

tion in the GISS-E2-R model. Blue curve is a fit of superposition of two exponential responses (two-box model

solutions); the two exponential time constants being τ1 = 1.3 yr and τ2 = 176 yr. Red curve is a power-law fit,

and is a poor fit up to several years.
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q=4.0	
  
(c)	
   (d)	
  

Figure 6. (a): A zoom-in on the volcanic forcing signal shown in Fig. 1a. (b): The ACF estimated for the

volcanic forcing signal. (c): The structure functions (empirical moments) Ŝq(∆t) for the volcanic forcing signal

estimated for q = (0.2,0.4, . . . ,4.0) The red, dashed line is a linear fit to the log-log plot of Ŝ2(∆t). (d): The

scaling function ζ(q) computed from linear fits to the Ŝq(∆t)’s over the interval ∆t ∈ (4,128). The observation

that ζ(2)≈ 1 suggests that the process is uncorrelated on these time scales.
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Figure 7. (a): Blue curve is the average over 100 realisation of the response to volcanic forcing in the ZC

model, and the red curve is the response to this forcing plus a stochastic Gaussian white noise forcing in a

linear, damped harmonic oscillator model. (b): Result of trace moment analysis of the volcanic forcing signal.

It is very similar to the corresponding panel in Figure 6 of L&V. (c): Result of trace moment analysis of the

harmonic oscillator response shown by the red curve in panel (a). It is very similar to the corresponding panel

for the ZC response to volcanic forcing in Figure 6 of L&V.
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Figure 8. Analysis of global temperature responses in the NorESM model. (a): the volcanic forcing (red) nor-

malized such that the larges spikes are approximately equal to the spikes of the response signal (black). (b):

the red curve in (a)+the control-run temperature signal. (c): structure functions (of cumulative sum) of volcano

forcing. (d): scaling function derived from (c). (e): structure functions of the response to volcanic forcing. (f)

scaling functions derived from (e). (g): structure functions of the signal in (b). (h): scaling function derived

from (g). The red line arise from fitting straight lines in the entire scale range plotted, 4-128 yr. The blue line is

from fitting only in the scale range 16-128 yr. It shows weak intermittency in both cases, but also that estimated

intermittency depends on the scale range chosen for fitting. The difference in curvature (reduction of intermit-

tency) between (d) and (h) is exclusively caused by the addition of the internal noise represented by the control

run, and the similarity between (f) and( h) indicates that the internal variability is the main cause of reduced

intermittency in the response to volcanic forcing.
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