
Trained eye deceived by fractal clustering 
 

Reply to the reply 
 

S. Lovejoy1 and C. Varotsos2 

 

1Physics, McGill University, 3600 University St., Montreal, Quebec, Canada 
2University of Athens, University Campus Bldg. Phys. V, 15784 Athens, Greece 

 

 

 

 

Summary 

 

Our original paper [Lovejoy and Varotsos, 2016] (hereafter L+V) quantified 

something rather straightforward and – we thought – uncontroversial, the fact that 

the response of the atmosphere to volcanic forcings is nonlinear.  The basic fact that 

a linear transfer function (Green’s function) can only make a linear modification to 

the structure function exponent ξ(q) has been known for some time and is not even 

contested by [Rypdal and Rypdal, 2016] (henceforth R+R).     

In order to demonstrate that a transfer function is nonlinear, it therefore 

suffices to compare the exponent ξv(q) of the forcing and the ξr(q)  of the response, 

and check if the difference is linear in q.  Within the limitations of the available data, 

this was done in L+V.  The quantification of the intermittency was done via 

estimates of the parameters C1, α of both the forcing and the response.  The key 

limitation of the analysis was the existence of a single time series for each, and these 

were over finite ranges of time scales.  In contrast, the mathematics applies to an 

ensemble average with the exponents ξ(q) estimated over a wide range of scales.    

The two key assumptions required to apply the method are therefore a) that the 

samples analyzed are indeed representative of the underlying processes and b) that 

the range of scales over which the exponents were estimated is adequate for the 

purpose.  These are the true limitations of our analysis and conclusions.  R+R’s 

hypotheses I-III (re-iterated in this comment, R+Rr, “r” for “response” [Earth Syst. 

Dynam. Discuss., doi:10.5194/esd-2016-10-AC1, 2016]), are thus irrelevant as 

indicated in our response (L+Vr, [Earth Syst. Dynam. Discuss., doi:10.5194/esd-

2016-10-SC1, 2016]).  

The conclusions of L+V therefore stand without modification.  However, the 

new comments of R+R clarify some of their misunderstandings about clustering, 

shuffling, multifractality and trace moments so that this provides a useful occasion 

for discussing a few additional points.   We hope that these clarifications will be of 

interest to the broader community. 
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The untrained eye works well 

 

The key misunderstanding comes out quite clearly in R+Rr when they boast 

that their trained eye can distinguish multifractal clustering from a purported Levy 

lack of clustering:  “But the multifractal intermittency is clustered, which the Lévy 

process is not.  If you’re training your eye, it is usually easy to distinguish a Lévy 

process from a multiplicative cascade. If you believe there is no essential difference, 

you probably will not see it” (R+Rr, p1).   This echoes the comment in R+R: “If the 

original signal were a multifractal, the result should be quite different after shuffling.” 

Before proceeding, we therefore need a word about the meaning of 

“clustering” in a scaling context.   Although it is a little vague, scaling clustering is 

essentially the same thing as “sparseness” and the sparseness of a set of points is 

most fundamentally characterized by its fractal codimension (there are 

subexponential factors that refine the characterization – most famously the 

“lacunarity” – but these are second order corrections to the dominant power laws 

determined by the codimension).  The codimension c is the difference between the 

dimension of the embedding space and the (fractal) dimension of the set.  For any 

given resolution l, the fraction of the space occupied by the set is ≈ l-c  (note that for 

any set, c≥0).   Any set of points with a nonzero codimension will thus be sparse and 

will appear to be clustered.  The problem of clustering is a purely fractal set problem, 

not a multifractal (measure density/field) problem.  From the above quote, one can 

surmise that the authors believe that Levy processes do not involve sparse fractal 

sets whereas multifractal processes do.  We investigate this below. 
 

 
Fig. 1: A realization of a volcanic eruption model based on a Levy distribution of statistically 

indepedent eruption amplitudes (vertical, time runs from left to right).   At time step an independent 

random Levy variable is chosen, those below a small threshold are set to zero corresponding to small 

undetected volcanic eruptions. Here a Levy distribution with exponent qD =1.5 was used, the 

resulting process above is multifractal with (for large γ) codimension function c(γ) ≈ γqD.  Even the 

untrained eye can see the clustering that appears without any externally caused correlations.   



 3 

 

Consider fig. 1 that shows a realization a model of (absolute) volcanic forcings 

(V) using a Levy process.  Recall that Levy processes have long power law tails on 

their probability distributions (i.e. Pr V > s( ) ≈ s
−qD  for s>>1 where “Pr” indicates 

“probability”), in this example we used an exponent qD = α = 1.5 (note that for Levy 

processes of index α, the power law exponent qD is equal to α and is restricted to α = 

qD <2 whereas for multifractal processes, there is no such limitation, qD can take on 

any positive value).  Using the material from ch. 5 of [Lovejoy and Schertzer, 2013] 

(see eq. 5.54) it is not hard to show that the codimension function c(γ) 

characterizing the extreme part of the above Levy process has the form: c(γ) ≈ γqD.  

(Recall that c(γ) ≈ -log Pr(γ)/logλ where the singularity γ = logVλ/logλ and where Vλ 

is the amplitude of the “spikes” at the resolution l=L/λ where L is the largest scale in 

the simulation and λ≥1 is the  scale ratio). 

The codimension function thus quantifies how the larger values have larger γ’s 

and larger codimensions, it thus quantifies their sparseness, the fact that the higher 

values are more clustered than the lower values which necessarily have smaller 

codimensions (c is a convex and increasing function).  This quantifies the clustering 

of the Levy volcano model at all levels of volcanic activity. 

Since clustering is a fractal not a multifractal problem, let us reduce the 

problem to its simplest expression by considering fractal sets generated by random 

walks (“flights”) based on the above simulation.  These are the “Levy flights”, 

beautifully illustrated in [Mandelbrot, 1982].  The Levy flight based on fig. 1 is shown 

in fig. 2. Levy flights are generated by taking independent random Levy variables, 

and then using them as the basis for a two dimensional random walk (the angles 

between each step are taken as uniformly random variables).  Once again, is the 

clustering in fig. 2 real or is it just a figment of our imagination?   Do we see it only 

because our eyes are not properly trained?  

Presumably R+R’s difficulty is that they mistakenly associate clustering with 

deliberate, “externally imposed” statistical dependencies and the Levy flights have 

none, therefore, their trained eye will not see clustering in a Levy volcanic process.  

This is probably why they put so much emphasis in shuffling experiments in which 

the values are kept but their order is randomized in order to destroy any 

correlations (see their fig. 1).    For reference, fig. 2 also shows the same Levy flight 

but based on a shuffled series.  As expected, the clustering is not affected since the 

clustering is not due to statistical dependencies between successive jumps.  R+R 

failed to realize that the Levy process in fig. 1 is indeed multifractal with nontrivial 

c(γ): citing a paper by Mandelbrot does not alter this fact!  Obviously a fractal set 

with the same fractal dimension as the Levy flight – and hence with the same degree 

of clustering at all scales - could have been produced by a “beta model” cascade 

process (see section 5.1 of [Lovejoy and Schertzer, 2013]) which on the contrary 

does indeed use the long range statistical dependencies implicit in the cascade 

model to obtain the fractal set (for reference, in 2-D space, the codimension is 2-α, 

the fractal dimension is α).  The point is that the clustering is quantified by the 

codimension and does not depend on the method of generation.   
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The above clearly shows that contrary to R+R, clustering need not be a 

consequence of statistical dependencies between consecutive values of the process: 

the statistical properties depend on both the probability distribution of the 

amplitudes of the spikes and any statistical dependencies between them.   (Note: 

Levy processes have divergent autocorrelations so that the term “statistical 

dependencies” is more precise in this context than R+R’s term “correlations”). 

Now, we can examine the converse situation.  Rather than using a Levy based 

multifractal let us take a cascade - based multifractal simulation (fig. 3) with 

parameters estimated by Haar fluctuations and trace moments i.e. designed to make 

it close to the data - of the type as shown in [Lovejoy, 2014] and  reproduced in L+Vr.  

Since R+R had no trouble noticing the clustering in that cascade-based case, we 

merely note our agreement with them.  However, we can now do the converse 

experiment: we can take this cascade-based multifractal simulation and shuffle it.  

According to R+R’s reasoning, if we shuffle a cascade-based multifractal, then we 

should eliminate the clustering.  However, fig. 3 shows that this is not at all the case 

(can the reader detect the original unshuffled simulation?).  An untrained eye is 

adequate to easily notice the clustering and the fact that it persists even with the 

shuffling.  For the record, we also show fig. 4 which is a walk directly generated by 

the [Gao et al., 2008] volcanic series.  

So what’s going on?  The fact is that the clustering of a set depends on the 

codimension of the set, the clustering of a multifractal process depends on the 

codimension function c(γ).   If two processes have similar codimension functions 

then they will have similar statistics including similar clustering, in this case the 

Levy multifractal and the cascade multifractal did indeed have similar c(γ)’s (see fig. 

5: the ξ(q)’s are nearly identical and consequently, so are the c(γ)’s; as mentionned 

above, we concede that there are sub-exponential “corrections” to the dominate 

power law c(γ) behaviour, but these will not alter our conclusions).   Indeed, this is 

the fundamental meaning of the thermodynamic formalism of multifractals that was 

developped in the 1980’s and 1990’s (see e.g. Box 5.1 of [Lovejoy and Schertzer, 

2013]): just as thermodynamics is a well defined theory irrespective of any 

microtheory (e.g. statistical mechanics), the same is true for multifractal processes.  

This means that if the multifractal exponents – the multifractal analogues of the 

thermodynamic potentials - are known, then the process is well defined, 

independent of any specific stochastic generating process, the exponent functions 

c(γ) or ξ(q) are sufficient. 

Note that the structure of multifractal cascade processes is indeed built up 

using a mechanism that has long range statistical dependencies so that in general, 

shuffling does make a difference (see e.g. the shuffling experiments in ch. 3 of 

[Lovejoy and Schertzer, 2013]).  However, as one moves to sets with higher and 

higher codimensions the statistical dependencies become less and less important – 

and as we see in the Levy process model – they may be totally absent.  

In conclusion, the exchange of comments with R+R has brought to the fore the 

fact that - as is often the case in stochastic processes – that different models may 

exist that have similar or even identical statistical properties.  In the present case, 

the statistics for the Levy-based multifractals and the cascade-based multifractals 



 5 

are sufficiently close that the data (the brown curve in fig. 5) that they are likely to 

be inadequate to distinguish them, i.e. to decide which is more realistic.  
 

 

 
Fig. 2:  A Levy flight with α = 1.5 using the simulation shown in fig. 1.  One of these is the 

original, the others are shuffled.  As expected, shuffling does not affect the clustering. 
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Fig. 3: Can the trained eye spot the fake cascade based multifractal simulation?  The original 

simulation is from [Lovejoy, 2014].  In order to bring out the fractal clustering, this was used as the 

basis of a “flight” (random walk) representation.   The successive volcanic spikes were used as the 

lengths of vectors and each vector was successively rotated by 45o (i.e. in a deterministic fashion so 

as not to introduce extra elements of randomness, although this is not important).  The other three 

walks/flights were produced from the same simulation by randomly shuffling (randomizing) the 

order of the amplitudes before the walk was produced (in order to destroy any correlations).  Notice 

that in spite of the shuffling, that the flights are all highly clustered.  Can the reader distinguish the 

original simulation from the shuffled fakes?   The clustering is determined by the fractal codimension 

and the construction mechanism (correlated or not) is irrelevant. 
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Fig. 4: The random walk/flight representation of the [Gao et al., 2008]  volcanic reconstruction.  

One of these is the original, the others were shuffled. 
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Fig. 5: A comparison of the ξ(q) from the multifractal cascade volcanic simulation (black; realizations 

are shown in L+V and analysed in fig. 3 above, universal multifractal parameters α = 1.5, C1 = 0.2, H = 

-0.3) and from 8 realizations of the Levy process model (purple, fig. 1 and analysed in fig. 2), with qD 

= 1.5 (note that in this case, qD is the same as the Levy α for the Levy process: in the universal 

multifractal cascade model, the Levy α refers to the generator i.e. the logarithm of the process).  The 

brown curve is the empirical ξ(q) for the [Gao et al., 2008] volcanic reconstruction.  The cascade 

based universal multifractal is a little closer to the data than the Levy based multifractal but the two 

are close.  In the Levy process model there is a first order multifractal phase transition at q = qD = 1.5 

(many, realizations will however be needed to clearly show it, for the cascade based multifractal the 

transition is at about qD =10, see section 5.3.2 of [Lovejoy and Schertzer, 2013]). 

 

 

 

Minor comments 
 

1) The statistical test argument.  R+R complain that we did not properly reply to 

this argument, but it has two flaws.   The first is that since linear behaviour is a 

special case of the more general nonlinear behaviour, it is impossible in principle to 

prove linearity from data or from numerics!  At best one can bound the degree of 

nonlinearity and show that it is smaller than some limit.   This is analogous to the 

problem of photon mass: the statement that a photon is exactly massless is a purely 

theoretical statement, experiments can only put a lower bound on its value.   

Similarly, the statement that a process is exactly monofractal i.e. scaling but not 

multifractal is also a purely theoretical statement.  Empirically, one can only puts 
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bounds on the nonlinear part of the exponent functions, put bounds on the degree of 

multifractality.  In many of their papers, R+R do not seem to appreciate this, 

essentially equating scaling with the monofractal special case. 

The second problem is that R+R’s statistical test involves a classical error of 

logic.  The failed logic is perhaps most clear if we transpose the problem.  Let us 

paraphrase the debate that would have ensued if L+V had proposed that the speed 

of light is finite whereas R+R had argued that it is on the contrary infinite (in the 

following it is only the logic that is important!).  

The transposed paraphrase would be: 

 

The statement that a photon has a finite velocity in itself is a negation.  

The main proposition in the paper by Lovejoy and Varotsos (L&V) is that 

the speed of light is finite, not infinite.  Thus, the only valid way of testing 

this statement against the data is to demonstrate that the infinite speed 

hypothesis is rejected by the data.  In section 2.4 (Fig. 2) and section 3.3 

(Fig. 4) of our comment (R&R-C) we demonstrate that an infinite speed is 

consistent with the data. 

 

From this, R+R would have had no trouble accepting the hypothesis that the 

speed of light is indeed infinite, and claiming that their method has established it as 

fact.   

In the present case, R+R’s test failed to reject linearity, so that they effectively 

argue that we must accept it.  This is a classical error in the logic of statistical 

hypothesis testing.  It particularly bizarre since there is a body of evidence from 

numerous scientists showing that the atmospheric responses to volcanic eruptions 

are indeed nonlinear.     

 

(For reference, the above paraphrase can be compared with the original from 

R+Rr: 

 “The statement that a response is nonlinear in itself is a negation.  The 

main proposition in the paper by Lovejoy and Varotsos (L&V) is that the 

response is not linear.  Thus, the only valid way of testing this statement 

against the data is to demonstrate that the linearity hypothesis is rejected 

by the data. In section 2.4 (Fig. 2) and section 3.3 (Fig. 4) of our comment 

(R&R-C) we demonstrate that a linear response is consistent with the 

data.”) 

 

2) Linear oscillators:  We also failed to pay much attention to R+R’s reproduction of 

the (low intermittency) volcanic response using a linear oscillator.    R+Rr bring this 

up again, but we are mystified: our claim was simply that the model transfer 

function (i.e. the part of the model that transforms volcanic forcings into 

atmospheric responses) cannot be linear.  It has nothing to do with whether or not it 

would be possible to model the GCM output series in some totally different way 

using a linear model.   The irrelevance of this can be appreciated by considering that 

a single realization of a process – a single series -  can trivially be generated by an 

appropriate Fourier filter of a realization of white noise  (just take the ratio of the 
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Fourier Transforms as the filter!), hence for single series, one can always find a 

“linear model” (in this case a filter).   

What we claim is something different: that a reasonable physical model of the 

forcing process and response process – i.e. of an ensemble whose typical realizations 

are embodied in the forcing and response time series –cannot be connected by a 

linear filter.   
 

3) Misunderstanding trace moment analysis:  R+R make the extraordinary claim 

that “trace moment analysis only detects non-Gaussianity, not multifractal clustering”.   

This statement is remarkable in its pretensions: the authors think that their trivial 

numerical shuffling experiment has overturned (over!) thirty years of developments 

in multifractals and multifractal analysis!  Their misunderstanding is related to the 

fundamental misunderstanding discussed above, it is based on the erroneous idea 

that only cascade-based multifractals show clustering whereas Levy-based 

multifractals do not.  The point is that clustering is determined by codimensions and 

codimensions are determined by the trace moments (after Legendre transformation, 

see e.g. ch. 5 of [Lovejoy and Schertzer, 2013]; note that trace moments themselves 

are essentially stochastic generalizations of the partition function method applied to 

the deterministic multifractals that appear in the phase spaces of deterministic 

chaotic systems).  The subtle interplay between probability distributions and 

statistical interdependencies are indeed well captured by trace moment analysis, 

explaining why it is a powerful technique.  In this case, fig. 5 shows that the statistics 

of the two models are indeed very close and that both are close to the data (and 

could presumably be made much closer if the parameters were appropriately 

adjusted for this purpose).  

In any case, returning to the use of trace moments in L+V they determine the 

essential nonlinear part – and hence intermittent part - of the ξ(q) function.   That is 

the way that it was used in L+V and it is sufficient for the claim in L+V that there is a 

nonlinear volcanic response.    

 

4) In R+Rr, it is pointed out that the qth order structure Sq(∆t) and its exponent 

ξ(q) that R+R (plotted in fig. 3 of R+R) are not in actual fact the fluctuations of the 

actual series themselves but rather refer to the fluctuations in the integral (running 

sum) of the series.  This led L+Vr to point out that there was an error.   R+R would 

have avoided misinterpretations by abstaining from using the turbulence notation 

Sq and ξ(q) in a nonstandard manner.  Alternatively, since R+R’s integration 

increases the H exponent of the series by unity, they could have provided the 

relation between their notation and the turbulence notation: Sq(∆t) = ∆t-q(Sq(∆t))R+R  

and ξ (q) = ξ (q) R+R –q (the subscript R+R indicates R+R’s functions).   The notation 

Sq and ξ(q) come from turbulence theory and should not be altered without at least 

informing the reader of the nonstandard usage. 

In any case, as it is clear from L+Vr (and R+Rr show no doubt on  this) there is 

no "curved scaling function" to be "incorrectly interpreted by L&V" (compare R+R 

line 322 and Figs. 2 and 3 of L+Vr).  
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Conclusion 

 

The statistical structure of multifractals is the result of a subtle interplay 

between probability distributions and statistical dependencies.  On the basis of a 

numerical randomization experiment, that destroys the statistical dependencies, 

R+R argue that thirty years of developments on multifractal processes and analysis 

is wrong, pointing to the example of a Levy process.   Yet, the Levy process example 

is simply an extreme case where the multifractality is only due to the probability 

distributions and it does nothing to discredit multifractal theory and analysis.  On 

the contrary, we show that the very similar cascade based multifractal volcanism 

model has very similar statistics and very similar properties under shuffling – that 

the statistical dependencies are quite weak especially for the stronger events.  By 

showing that quite different multifractal production mechanisms can lead to very 

similar statistics, R+R’s example nicely vindicates the thermodynamic multifractal 

formalism: mulitfractal processes are well defined irrespective of any detailed 

underlying model. 

But this digression into multifractal theory has taken us very far from the 

issues raised in L+V that R+R purport to criticize.  We therefore reiterate that the 

key limitations of L+V’s conclusions are the twin assumptions: a) that the finite 

range of scales over which exponents are estimated is adequate and b) that the 

single available realizations of the forcing and response processes are 

representative of the ensemble process.  We admit that without more data and 

simulations that our conclusions are thereby circumscribed, yet these reasons are 

quite different from those claimed by R+R, and there are no compelling arguments 

to doubt our conclusions about the nonlinear response of atmospheric models to 

volcanic forcings.  In future, numerical climate simulations using theoretically 

generated forcings could in principle overcome this limitation and give a more 

definitive conclusion. 
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