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Intermittency and volcanism

Although this was originally motivated as a response to Rypdal and Rypdal
2016 (R+R below) we well this as an opportunity to clarify some important points
about intermittency in general and volcanic intermittency in particular.  Since
intermittency is not well known outside the turbulence community, these
clarifications could be of wide interest to the community. The response to the first
part of R+R will be given in a separate comment.

The nonlinearity of the atmospheric response to strong, “spikey”, intermittent
forcings such as volcanism was noticed over twenty years ago by [Clement et al.,
1996] who found that in numerical climate models, there is a high sensitivity to
small forcings and a low sensitivity to large forcings. Nonlinearity response to
volcanism was also claimed by [Mann et al., 2005], indeed, it was a main purpose of
his simulations of the interaction between El Nino and volcanism that were analysed
in [Lovejoy and Varotsos, 2016] (henceforth L+V). Therefore, the primary
contribution of the corresponding section 4 in L+V is to quantify this. The L+V
method is straightforward, it simply exploits the known fact that linear
transformations of a time series can only make linear changes to the exponent
scaling function §(q), they cannot affect the nonlinear part that is associated with
the intermittency (see e.g. ch. 5 of [Lovejoy and Schertzer, 2013]).

This simple and fundamental result has been known since at least the 1980’s
and was explained in the original L+V text; it is correct. Although R+R complain that
L+V paper had long-winded and unnecessary reviews of theory, they would be
advised to look more carefully at the discussion of the trace moment analysis that
quantified the intermittency in section 4 of L+V - or better still - to consult chapters
3-5 of [Lovejoy and Schertzer, 2013]. Trace moment analysis was originally
developed thirty years ago as a sensitive way to quantify multifractal intermittency
in turbulence. The very first step in the analysis is precisely a nonlinear
transformation of the series so as to obtain an estimate of the underlying driving
fluxes: the absolute values of the first or second differences are commonly used as
flux estimates. The reason that trace moment analysis is so effective is that it
removes the linear gH term in the structure function exponent so that the nonlinear
K(q) part can be studied directly. Had R+R noticed this fact, they would not have
bothered to develop the linear analysis (eqs. 13 to 22) which is irrelevant to the
trace moment analyses presented in L+V and to its conclusions.

But even if the trace moment analysis had been a linear one, the R+R analysis
would still be of little interest since it makes unnecessarily restrictive assumptions
(and incorrectly imputes them to L+V)! For example R+R’s affirmation II, that an
assumption of multifractality is needed: “i.e., that these processes belong to the
multifractal class” is not true. It is enough to recall that for a scaling process it is
enough that the dominant statistics vary as power laws with scale, and that this is
usually accompanied by all kinds of sub-exponential corrections and these are



missing in eqs. 15- 22.

Interestingly - although hardly surprisingly - volcanism is an excellent
example of a strongly intermittent multifractal process. This fact was first pointed
out in [Lovejoy and Schertzer, 2012] and [Lovejoy, 2014] used the estimated
multifractal exponents to produce the highly realistic multifractal simulations
reproduced fig. 1a which includes one real series. Can the reader spot the fakes?

R+R complain that because the volcanic forcing series may be approximated
by a distribution of Levy type (power law) spikes, (each more or less uniformly
distributed along the time axis) that this somehow contradicts the multifractality of
the process. This is a misunderstanding. Although cascade processes are the
generic multifractal process, there are many, many ways of generating a multifractal
process and their proposal to distribute Levy eruptions uniformly along the time
axis is indeed one such a proposal (note that for more generality, these could be
distributed over a fractal set). No matter which model is closer to reality - the Levy
spikes - or a cascade process, they are both strongly intermittent, multifractal and
the L+V conclusions hold. In any case, fig. 1a shows that cascades can approximate
volcanic processes quite well. And the L+V theorem that linear filters can only
make linear changes in structure function exponents - and hence cannot change the
intermittency - remains valid.

Just to complete the picture - to demonstrate without using trace moments -
the strong differences in multifractal intermittency between the volcanic forcings
and the responses, we have added fig. 1b which shows the ratio of the first order
moment to the RMS moment of the Haar fluctuations. A nonintermittent, quasi-
Gaussian process would be completely flat; nonzero slopes are consequences of
intermittency. The reference slopes quantify the intermittency (for log-normal
multifractals, the slope is the codimension of the mean, C; but at least for the
volcanic forcings, this is a poor approximation). The values indicated (0.05, 0.30)
are very different: the former is roughly the typical value of the intermittency of
wind in atmospheric turbulence whereas the latter value corresponds to
precipitation (see Box 4.1 “Overview of the horizontal scaling properties of
atmospheric fields” in [Lovejoy and Schertzer, 2013]).

Finally, the fact that adding a white noise to the ZC volcanic response can lead
to an apparently low intermittency multifractal process (R+R’s fig. 4c) only shows
that when the intermittency is low and the range of scales is not so large, care must
be taken in interpreting the results (they could see a useful discussion of this in
appendix 4A in [Lovejoy and Schertzer, 2013], or the curved quasi-Gaussian
envelopes in fig. 6¢). In any case there is a huge difference in the intermittency
between R+R’s fig. 4b and 4c (the volcanic forcing and response), just look at the
range of the fluctuations at the large scale ratios (the small resolutions) at the right
of the diagrammes (a factor of about 30)!

Erronneous Structure functions analyses:

It is unfortunate that the R+R comment was marred not only by an
inappropriately harsh tone, but also by some real difficulties with the data analysis.
We would not dwell on it except that it demonstrates some of the pitfalls of scaling
analyses, and it may therefore be of general interest.



Consider R+R’s treatment of the volcanic forcings, their Auto Correlation
Function (ACF) and structure function analyses (fig. 3c, d). First, the decrease of the
ACF with scale (fig. 3b) proves little. However, if the ACF decreases, then - at least
for stationary processes (and their structure function analysis eq. 23 assumes this),
the structure functions must simply asymptote to a maximum value: in obvious

notation: <AF(At);ﬂ> = 2(<F(t)2>—<F(t)F(t— At)>) . From this standard equation, it
is obvious that the decrease of the ACP ({F(¢)F(r—At))) at large At leads the

difference structure function (<AF (At)iﬂ> to asymptote to the series variance

(<F(t)2>) which (in this case) is determined by the high frequency details of the

series. That this is indeed the relevant explanation is shown in the (correct)
difference based structure function analysis in fig. 2a below. Somehow, R+R must
have made an error since their fig. 3c shows an impossibly increasing difference
structure function. Indeed - as pointed out in the recapitulative part of L+V - when
H<0, one needs to define the fluctuations differently, Haar fluctuations being a
convenient method (see the details in L+V). Fig. 2b below compares the Haar
fluctuations with the appropriately modified DFA method, both of which confirm the
analysis of L+V and contradict R+R’s fig. 3¢, d. Just to make things perfectly clear,
we have added a spectral analysis (fig. 2b) that again confirms that the second order
structure function exponent §(2) = -0.90 (spectral exponent f = 1+§& (2)=0.1) which
is quite contrary to R+R who claim §(2) = 1 and hence =2, (they even suggest that
this Brownian motion value has fundamental significance!). In all analyses, the R+R
exponent is very far from the observations.

Although over thirty years ago, multifractal intermittency was a fundamental
breakthrough in turbulence theory, its understanding and importance are not
sufficiently appreciated outside the turbulence community. We would therefore like
to thank R+R for giving us this opportunity to clarify this important question for the
benefit of climate scientists.
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Fig. 1a: This figure is reproduced from [Lovejoy, 2014]. It shows three “fake” volcanic
reconstructions produced by highly intermittent multifractal simulations as well based on
the [Gao et al., 2008] volcanic reconstruction. The fakes are normalized as to have the
same mean forcing (the absolute forcings are shown). To find which is the real series, the

reader may consult the original paper.
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Fig. 1b: This shows the ratios R of the first order (q=1) fluctuations with respect to the
root mean square (RMS) fluctuations for a series F(¢). Top is for F' = the ZC temperature
response to the volcanic response, the bottom is for F = the volcanic forcing. A
nonintermittent, quasi-Gaussian process would be completely flat, nonzero slopes are
consequences of intermittency.
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Fig. 2a: The first and second order structure functions for all intervals showing
that they do roughly indeed asymptote to a constant as expected since H<0.
Compare this to R+R’s fig. 3c.
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Fig. 2b: RMS Haar fluctuation analysis and the DFA scale function divided by At (so as
to correspond to the series rather than its integral/ running sum) and shifted in the vertical
by a factor =70. The solid reference slope corresponding to §(2) = -0.90 is shown for
reference as well as the dashed reference corresponding to §(2)=1 (the value from fig. 3d

in R+R).
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Fig. 3: The actual volcanic forcing spectrum (blue) compared to the slope (solid reference
line) inferred from the Haar and DFA analysis (fig. 2b) as well as the inferred slope from
R+R’s structure function, their fig. 3d (dashed).
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