
Manuscript prepared for Earth Syst. Dynam.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class coperni-
cus.cls.
Date: 17 April 2016

Reply to the Lovejoy and Varotsos comment entitled
“Trained eye deceived by fractal clustering”

K. Rypdal1 and M. Rypdal1
1Department of Mathematics and Statistics, UiT The Arctic University of Norway, Norway

Correspondence to: Kristoffer Rypdal (kristoffer.rypdal@uit.no)

Abstract. This comment from L&V contains no substantiated arguments which invalidate anything in our com-
ment article or in our first reply. It is a lengthy collection of unsubstantiated and erroneous claims which obscures
the real issue, which is:

Have L&V presented valid tests which prove that the temperature response in the climate models is
inconsistent with a linear response model?

L&V are in denial about the most obvious facts. One of these is that adding a noise to a intermittent signal
will reduce the intermittency. The claim of theirs that is most relevant to the linearity issue is that the statistical
uncertainties are so large that they overshadow the intermittency-reducing effect of curved structure-function
plots and internal variability. This assertion is unsubstantiated, false, and bizarre. If statistical errors were this
important they would invalidate all L&V’s results from their original paper, and we would have used it against
them. Moreover, in our previous reply, a code was made available for L&V to check this for themselves, so they
have no reason for making such a claim.

In the discussion of how to define multifractality in stochastic processes L&V confuse the concept of a Lévy
process with that of a Lévy flight, and disregard the definition coined by Mandelbrot, Calvet and Fisher (MCV) in
1997. MCV define a multifractal time series as one with power-law structure functions, which implies temporal
dependence in the data. L&V associate multifractality with fractal properties of the image set {X(t)|t= 1,2, . . .}
of the time series, with the result that temporal dependence (clustering in time) will not be necessary property
of a multifractal. For instance, with the L&V definition, random shuffling of a time series will not change the
multifractal properties. The trace moments used by L&V to estimate multifractal intermittency do change with
shuffling, hence trace moments measure something else than multifractality.

All these paradoxes are resolved by defining a multifractal time series as one with power-law structure func-
tions. With this definition one has to accept that Lévy processes (non-Gaussian white noise) are not multifractals,
and that moment-based estimators yield curved scaling functions whose curvature depends on a subjectively cho-
sen scale range for fitting a straight line to curved trace moments (spurious multifractality).

L&V claim that we “misunderstand” multifractality and trace moment analysis. We respond by elaborating on
our understanding of multifractality in an appendix. In the context of linearity testing, however, our understand-
ing of the more arcane aspects is largely irrelevant. We know how the trace moment routine works and we can
test the effect various properties in the data have on the intermittency estimates. Since trace moments is the only
intermittency estimator applied by L&V our conclusions are valid even if we treat it as a “black box.”

Below, we respond to L&V’s reply in a chronological manner, to make sure that everything is addressed.
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1 Reply to “Summary”

L&V: “. . . we quantified something - we thought - quite
straightforward, the fact that the response of the atmosphere
to volcanic forcing is nonlinear.”

5

R&R: In our attached Figure 1a we show the Gao volcanic
forcing and the global temperature responses in the NorESM
model. It is not at all clear that strong volcanic forcing
spikes give weaker responses than weak forcing spikes as
claimed by L&V. The instantaneous responses seem quite10

proportional to the strength of the forcing.

L&V: “The basic fact that a linear transfer function (Green’s
function can only make a linear modification to the structure
function exponent ξ(q) has been known for some time and is15

even not contested by R&R.”

R&R: Wrong! We do contest that assertion, because it is only
valid under conditions I-III in our comment. L&V fail to state
the conditions of validity. We proved in Sect. 2.4 in our com-20

ment that it is true only under these conditions which have
been spelled out very clearly in our original comment and in
our first reply, but L&V continue to ignore them. We repeat:
the statement holds only if
(I): The Green’s function is a power-law G(t)∼∆tβ/2−1 on25

all interesting scales.
(II) The exponent ξ(q) exist, i.e., if the structure functions
actually are power laws on all interesting scales.
(III) The “response signal” does not contain a component
from internal noise which will influence the intermittency es-30

timates.
Condition II and III are the most important here. In our at-

tached Figure 2 and 3 we demonstrate that deviations from
power-law scaling in the structure function (condition II)
makes the intermittency estimates depend on the particular35

scale range used for fitting a straight line to a curved graph.
These figures are taken from a recent paper in ESD which
was revived by Shaun Lovejoy. The breakdown of condition
III is clearly illustrated in attached Figure 1. Figure 1b is
a signal composed of two components. One is the volcanic40

forcing signal (red in Figure 1a) normalised such that the
magnitude of the large volcanic spikes roughly match those
of the volcanic response signal in NorESM (grey in Figure
1a). This signal can be thought of as the instantaneous re-
sponse to the stochastic forcing. The other component is the45

internal variability represented by a control run. This com-
posite signal represents a trivial linear transformation (multi-
plication by a normalization factor) plus a signal representa-
tive for the internal variability. Figure 1c,d shows the struc-
ture functions (SFs) and the scaling function for the Gao vol-50

canic forcing computed from straight lines fitted to the SFs
in the range displayed in Figure 1c. According to the asser-
tion of L&V (who believe condition III is irrelevant), the in-
termittency shown by the curvature of the scaling function

in Figure 1d should be preserved in the scaling function for55

the composite signal shown in Figure 1g, but it is not. The
latter signal is almost non-intermittent due to the “contami-
nation” from the internal noise. This contamination explains
the reduced intermittency observed in the the response to the
volcano forcing shown in Figure 1e,d. This proves that:60

nonlinearity in the response is not required to ex-
plain the difference in intermittency between forc-
ing and response.

L&V: The key limitation of the analysis was the existence
of a single time series for each, and these were over finite65

ranges of time scales. . . These are the true limitations of our
analysis and conclusions. R&R’s hypotheses I-III are thus
irrelevant as indicated in our response.

R&R: In Figure 1 we showed that condition III alone is suf-70

ficient to explain the entire difference in intermittency be-
tween forcing and observed response. The same was shown
in our linear oscillator example in our comment article. In
their efforts to escape from this conclusion, the authors now
claim that the errors due to finite sample size are so large that75

they overshadow this intermittency-reducing effect of inter-
nal variability, and render this effect irrelevant. But if these
errors were this large they necessarily would make the ob-
served difference in intermittency statistically insignificant.
A code has been made available for L&V to check that the80

statistical uncertainty is small. Hence,

the finite-sample error argument L&V is false and,
if it were true, would invalidate their own conclu-
sions.

2 Response to “The untrained eye works well”85

We stressed in our previous reply that the “trained eye” of
course isn’t a substitute for data analysis. But it is a funda-
mental principle in data analysis to perform a careful inspec-
tion of the data. For instance, the inspection of the signals of
volcanic forcing and response put together in attached Figure90

1a provides important information about the linearity in the
instantaneous response to volcanic spikes that is not so easily
quantified by analysis.

In the second paragraph on page 2, L&V suggest that we
interpret “clustering” as synonymous with “fractal” (non-95

integer fractal dimension). This is a misunderstanding. We
never expressed that idea. The discussion on pages 3 and 4,
and Figs. 2-5, is based on two fundamental misconceptions:

1. L&V do not distinguish between a Lévy process and
a Lévy flight. They write: “Recall that Levy processes100

have long power law tails on their probability distri-
butions.” This is incorrect. Lévy processes is a broad
class of processes with independent increments. The
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Figure 1. Analysis of global temperature responses in the NorESM
model. (a): the Gao volcanic forcing (red) normalized such that the
larges spikes are approximately equal to the spikes of the response
signal (black). (b): the red curve in (a)+the control-run temperature
signal. (c): structure functions (of cumulative sum) of volcano forc-
ing. (d): scaling function derived from (c). (e): structure functions
of the volcanic response. (f) scaling functions derived from (e). (g):
structure functions of the signal in (b). (h): scaling function derived
from (g). The red line arise from fitting straight lines in the entire
scale range plotted, 4-128 yr. The blue line is from fitting only in the
scale range 16-128 yr. It shows weak intermittency in both cases, but
also that estimated intermittency depends on the scale range chosen
for fitting. The difference in curvature (reduction of intermittency)
between (b) and (h) is exclusively caused by the addition of the in-
ternal noise represented by the control run.

theory of Lévy processes was developed in the 1920s
and 1930s, and we advice L&V to take a look at the105

excellent review of Appelbaum (2004). L&V are think-
ing of Lévy flights, which is just a small subclass of the
Lévy processes where the PDF is so heavy-tailed that
the variance is infinite. There is no reason to assume
that any of the processes under discussion here are that110

heavy-tailed.

2. Their discussion revolves around clustering in the im-
age set of the random variable; {X(t)}| t=,1,2 . . .} for
a Lévy flight, while we are discussing the clustering of

spikes in time of spikes created by a Lévy noise (which115

is the increments of a Lévy process). The image set con-
tains no information of the timing of the fluctuations, so
shuffling of the data in time makes no change in the im-
age set.

If the image set {X(t)}| t=,1,2 . . .} is what defines mul-120

tifractality we face disturbing implications. One is that de-
pendence in the data will be irrelevant. Such dependence
(clustering of spikes in time) is the most prominent feature
of a multiplicative cascade construction (e.g., a β-model). If
we generate such a multifractal, and then perform a random125

shuffling of the data in time, we convert the data into reali-
sations of a Lévy process. As we understand L&V, they con-
sider the shuffled time series to be realisations of the same
multifractal as obtained from the β-model. But we could
also construct realisations of this Lévy process by drawing130

random numbers from the same non-Gaussian PDF (a Lévy-
noise construction). Hence, if L&V are right the time series
generated from the two very different constructions should
possess the same multifractal intermittency. This is discussed
in detail in the appendices of Rypdal and Rypdal (2016),1135

where Lovejoy was a very active referee. We find it strange
that L&V do not refer to this paper and the associated dis-
cussion. There, we proved analytically that shuffling creates
curved structure functions in a log-log plot, and in attached
Figure 3 we demonstrate this by performing the construc-140

tions numerically. From this figure we observe that the struc-
ture functions and trace moments are different in two con-
structions which according to L&V represent the same mul-
tifractal. Hence, we have to conclude that the trace moment
analysis does not detect correctly the multifractality.145

The root of this paradox his the association of multifrac-
tality with the image set. The abstract geometric definition
of multifractals is useful for theoretical purposes, but for es-
timation from data we have to resort to the moment-based
approaches (the link between the two is the Legendre trans-150

form, but is subtle when we deal with finite data sets. We
discuss this in some detail in in the appendix). This moment-
based approach is applied by Mandelbrot, Fischer, and Calvet
(1997)2, where a multifractal is defined as one with power-
law structure functions (a more correct term for the structure-155

function estimates is empirical moments4). This is a reason-
able definition, because the scaling function and the inter-
mittency parameters can only be estimated in a unique way
when the structure function are straight lines in a log-log plot.

1M. Rypdal and K. Rypdal, Late Quaternary temperature vari-
ability described as abrupt transitions on a 1/f noise background,
Earth Syst. Dynam., 7, 281-293, 2016, doi: 10.5294/esd-7-281-
2016. http://www.earth-syst-dynam.net/7/281/2016/esd-7-281-
2016.pdf

2B. Mandelbrot, A. Fischer, and L. Calvet,
A Multifractal Model of Asset Returns, Cowles Foundation Discus-
sion Paper # 1164, September 15, 1997,
http://users.math.yale.edu/ bbm3/web_pdfs/Cowles1164.pdf
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If they are curved these estimates will depend on the chosen160

fitting range. With this definition it can be proven that multi-
fractal intermittency is associated with temporal dependence
in the data.1 Loosely speaking, multifractality implies that
spikes are not randomly distributed in time, but are clustered
in groups along the time axis.165

Attached Figures 2 and 3b demonstrate that estimates from
structure functions and trace moments yield considerable in-
termittency for non-Gaussian Lévy processes. According to
the definition of Mandelbrot et al., these processes are not
multifractals. This is the justification of our statement; “trace170

moment analysis only detects non-Gaussianity, not multi-
fractal clustering.” This answers L&V’s "Minor comments,
point 3."

Figure 2. (a): The increments of a jump-diffusion process shown
in (b). This is a non-Gaussian independent noise process. (b): A
realisation of a jump-diffusion process, and the cumulative sum of
the signal in (a). This process is the sum of a Brownian motion
and a Poisson jump process as described in Appendix B of Ryp-
dal and Rypdal (2016).1 The jump distribution is Gaussian with a
standard deviation that is ten times greater than the standard de-
viation of the increments of the Brownian motion. (c): Sq(∆t for
q = 1,2,3 for the jump-diffusion process as computed from a large
ensemble of realisations of the process. (d): Scaling function ζ(q)
estimated from structure functions like those in (c). The red line is
estimated by computing the slope of the structure-function curves
on the longest time scale (∆t= 500). The blue curve is estimated
from the slopes at the shortest time scale (∆t= 1). The black curve
by estimating the slope of the straight line drawn between the end
points of the structure-function curves. This demonstrates that for
processes with structure functions that are not power laws, and ac-
cording to the MFC definition are not multifractals, the estimated
intermittency depends on the scaling regime chosen for fitting.

Figure 3. (a): realisation of a multiplicative cascade process. (b):
the same process after random shuffling of the data. These two time
series have the same image set, and according to L&V they have
the same multifractal properties. (c) and (e): structure functions and
trace moments of the realisation in (a). (d) and (f): the same for the
realisation in (b). Note the curvature of the plots in (d) and (f) for
q 6= 2. The straight plot for q = 2 is a consequence of the indepen-
dence in the time series in (b). The curvature of the plots influences
the intermittency estimates and creates “spurious multifractality.”

Figure 5 in the reply of Lovejoy and Varotsos show that
estimated scaling is similar for a Lévy process and a multi-175

fractal process. This is well known. See for instance the work
of Neumann (2010)3 or Heyde and Sly (2008).4 This is called
spurious multifractality; standard estimators may lead the
scientist to conclude that a process has the characteristic of a
multifractal, when in fact it does not.180

Although the definition of multifractality is inter-
esting to some, and important in some contexts in
Earth system dynamics, it is largely irrelevant to
the conclusions in the paper by L&V. All conclu-

3Neumann S.: Apparent/spurious multifractality of data sam-
pled from fractional Brownian/ Lévy motions, Hydrol. Process., 24,
2056-2067, 2010.

4Heyde, C., and Sly, A.: A cautionary note on modeling with
fractional Lévy flights, Earth. Physica A., 387, 5024-5032, 2014.
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sions on intermittency there are drawn from the185

trace moment analysis, and what’s important is
which properties of the signal this analysis mea-
sures, and not how we define multifractality.

3 Reply to “minor comments”

3.1 The statistical test argument190

The arguments and analogies L&V present here are so
bizarre that we will not try to argue against them. We shall
just state our point of view, which we believe is mainstream
in the philosophy of science.5

We agree with L&V that “it is impossible in principle to195

prove linearity from data or from numerics.” In fact, it is
commonly accepted that no falsifiable statement about na-
ture can be proven or verified, since there is always a chance
that a new observation or a new test may prove it false. On
the other hand, only one single observation or test may be200

sufficient to falsify a well-posed hypothesis. Hence, we can-
not prove linearity, but we can falsify it, because from the
linearity assumption we can make predictions that can be
tested against observation. If we can falsify that the response
is linear, i.e., if we can demonstrate that observation is in-205

consistent with a linear response, then we have proven that
the response his nonlinear. We can do this because nonlin-
earity is a negation of a falsifiable statement. For the same
reason it is impossible to falsify nonlinearity. The strongest
conclusion we can draw is that the observations and tests at210

hand so far have failed to reject the linearity hypothesis. It
should also be said, however, that if a broad range of tests
fail to falsify linearity, then we will gain strong confidence
in the hypothesis that the response is linear (in the sense that
nonlinearity is so weak that it cannot be detected). This is the215

law of induction.

L&V may not be aware of it, but the two tests they
have employed in their paper are exactly of this
type. Our criticism is not of the logic of this test,
but of the way it was done, and how the results were220

presented.

3.2 Reply to “Linear oscillators”

In our comment we demonstrate that the trace moments of
a particular linear response to volcanic + stochastic forcing
(using the Green’s function of a damped harmonic oscillator)225

is very similar to those of the Zebiak Cane model, demon-
strating that a linear response plus internal variability can
give a low-intermittency output from a high-intermittency
input. What L&V insinuate is that we have selected a real-
isation that looks like ZC-output and in this way obtained230

trace moments that accidentally are similar to that of the ZC-
output. Maybe this is L&V’s way of doing science, but it is

5Bird, A., Philosphy of Science, Routledge, 1998.

not ours. The oscillator model output and the trace moment
output are very similar in different realisations, and the en-
semble mean of the trace moments will be smoother but have235

the same structure and give very similar intermittency param-
eters. In our previous reply we gave a URL where L&V can
download a Mathematica notebook with the necessary rou-
tines to check this for themselves.

The point with our demonstration, however, was not240

to produce a response that imitates the ZC-model, but to
demonstrate that a linear model with a reasonable level of
internal variability can provide a strong reduction of the out-
put intermittency, contrary to the claims of L&V. Another
demonstration of this is shown in attached Figure 1b,d,f as245

discussed previously in this reply. Here the linear filter was
simply multiplication by a normalization factor, and the re-
duction of intermittency was exclusively caused by the inter-
nal variability component (condition III).

The acrobatics L&V perform to escape from the conclu-250

sion that follows from these examples are similar to, and
equally ungraceful, as their finite-sample error argument in
“Summary.” And it is again a boomerang on themselves. If
the ensemble uncertainty of the trace moments is so large
that the reduction of intermittency we observe is accidental it255

could be so also in the the actual ZC-data.

3.3 Reply to “Misunderstanding the trace moment
analysis”

This point has been responded to in section 2 of this reply.

3.4 Reply to “point 4”260

It is hard to take L&V’s complaint about our notation seri-
ously. In this cross-disciplinary field there is absolutely no
standard notation. Much of he notation used in Lovejoy’s
writing is quite alien to us, and is closely connected to his
own methodology. Often we have reservations against these265

methods, so why should we adopt his particular notation? It
is part of our profession to accept other notations, as long as
they are properly defined, as it was in our case.

Then to the particular points: In turbulence the fluctuations
of the velocity field is growing with spatial scale. Translated270

to time series this corresponds to motions (H > 0). This is
why structure functions in turbulence are computed directly
from the increments of the velocity field itself. In geophys-
ical time series a common situation is that the signal is a
noise (H < 0). Structure functions computed directly from275

a noise provide no useful information. The standard proce-
dure is therefore to create a motion by forming a cumulative
sum, and to form the structure function on this signal. It is
not particularly logical to change the notation S2 because of
this procedure.280

The last sentence under this point reads: “In any
case. . . there is no “curved scaling function” to be “incor-
rectly interpreted by L&V” (compare Fig. 2 and 3 of L&Vr)."
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This statement demonstrates again that L&V still don’t un-
derstand how structure functions work. In L&Vr Fig. 2 the285

first and second order structure functions are computed di-
rectly from the noisy signal. These structure functions are
completely flat (constant) for any signal for which fluctua-
tions do not grow with scale. They are completely insensitive
to those properties that create the curvature in the the struc-290

ture functions of the cumulative sum. In Fig. 3 L&V plot only
the square root of the second-order Haar structure function.
The q = 2 structure function is the only structure function
that is not curved in an uncorrelated noise. This was a ma-
jor issue in the discussion with Lovejoy in ESDD associated295

with the recently published paper,1 where a rigorous proof
was given. It is also demonstrated in attached Figure 2.

4 Reply to “Conclusion”

In the first pararagraph of the conclusion L&V reiterate their
confusion concerning Lévy processes vs. Lévy flights. Non-300

Gaussian Lévy processes, that do not possess the extremely
heavy tails of Lévy flights, do not exhibit characteristics that
are indistinguishable from time series constructed from mul-
tiplicative cascades. This is clearly demonstrated in our Fig-
ure 3, where the structure functions and trace moments are305

changed from straight lines to curves in log-log plots. The
problem is that mindless use of these moment-based estima-
tors to construct scaling functions and estimate intermittency
parameters often give similar results. The statistics and struc-
ture functions do not “show that quite different multifrac-310

tal production mechanisms can lead to very similar statis-
tics." The statistics is different, the structure functions/trace
moments are different, it is just the intermittency estimated
from these that sometimes give similar results. Such esti-
mates from non-power law moments are not unique and have315

no real meaning.
The second paragraph seems to reiterate that L&V con-

sider statistical errors (due to finite sample size and only
one realisation available for analysis) are so large that they
render our conclusions about the effect of curved structure320

functions and internal noise invalid (statistical insignificant).
Here they admit that this argument may boomerang on their
own results, but for some unspecified reason they conclude
that “there are no compelling arguments to doubt our conclu-
sions.” The fact is that the statistical error limitation applies325

in principle to L&V’s tests, because they are limited to finite
sample size and one single realisation. But simple error es-
timates indicate that this is not a serious limitation for these
data. Our test with the linear oscillator model, however, does
not have this limitation. We can run as many realisations as330

we want, and we have of course checked that statistical er-
rors are insignificant and do not invalidate our conclusions.
If L&V still contend that we are cheaters they should run our
Mathematica routine and prove it.

Appendix A: Multifractals and Lévy processes335

A1 A definition based on the qth moments

Mandelbrot et al.2 give the following definition of a multi-
fractal stochastic process:

Definition. Let d
= denote equality in distribution. A stochas-

tic process X(t) with stationary increments is multifractal
if

X(t+ a∆t)−X(t)
d
=M(a)

(
X(t+ ∆t)−X(t)

)
,

where M(a)≥ 0 is a family of random variables satisfying340

the relation M(ab)
d
=M1(a)M2(b) with M1 and M2 being

independent realizations of M .

A self-similar processX(t) is a special case of a multifrac-
tal process withM(a) = ah being a deterministic function of
the scale a. For a multifractal process we have

〈M(ab)q〉= 〈M(a)q〉〈M(b)q〉,

which implies that 〈M(a)q〉 is a power law 〈M(a)q〉= aζ(q).
This implies the scaling relation345

Sq(∆t) = 〈|X(t+ ∆t)−X(t)|q〉
= 〈M(∆t)q〉〈|X(t+ 1)−X(t)|q〉
= cq∆t

ζ(q),

where cq = 〈|X(t+ 1)−X(t)|q〉.
The functions Sq(∆t) are called the structure functions,350

and most methods for estimating multifractality in observa-
tional data are based on structure functions, or on closely re-
lated constructions such as wavelet-based fluctuation func-
tions. We stress that from the definition of Mandelbrot et al.,
a multifractal process must have structure functions that are355

power-laws in the scale ∆t, and only if this is satisfied is the
scaling function ζ(q) defined.

Let us now recall the definition of a Lévy process.

Definition. A stochastic process X(t) is called a Lévy pro-360

cess if X(0) = 0 almost surly and

1. Increments are independent and stationary.

2. X(t) is stochastically continuous with càdlàg paths.

The second condition is a technical requirement that is not
important for the considerations here, and one should think365

of a Lévy process as a continuous time random walk where
the increments are not necessarily Gaussian. The simplest
case of a Lévy process is the Wiener process (or Brownian
motion) for which the increments X(t+ ∆t)−X(t) are
Gaussian. This process is self-similar with a self-similarity370

exponent h= 1/2, i.e. we have a linear scaling function
ζ(q) = q/2. Another class of self-similar Lévy processes
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are the so-called Lévy flights for which the increments
have α-stable (heavy-tailed) distributions. For Lévy flights
with stability parameter α < 2 we have monofractal scaling375

ζ(q) = q/α for q < α, and the scaling function is not defined
for q > α due to the heavy tails. However, the self-similarity
relation X(at) = ahX(t) is valid with h= 1/α. It is well
known that if one attempts to estimate the scaling function
for a Lévy flight using structure functions, then spurious380

multifractality is observed (Heyde and Sly, 2008). The ex-
treme tails in the increment distribution of a Lévy flight are
often unrealistic models of real world observations, and it is
usually sufficient to consider non-Gaussian distributions for
which all the moments exist. One can for instance use trun-385

cated Lévy flights6, or any other non-Gaussian Lévy process.

Proposition. A Lévy process with finite moments is not a
multifractal stochastic process in the sense of Mandelbrot et
al., unless it is the Wiener process.390

The proof is simply to show that Lévy processes that
are non-Gaussian have structure function that are not power
laws. This is done in the appendies of Rypdal and Rypdal
(2016)1. For the purpose of modelling volcano forcing as a395

stochastic process (for instance as the increments of a mul-
tifractal process or as the increments of a Lévy process) we
can draw the following conclusion:

If the statistical properties of the volcano forcing
signal are invariant under shuffling, then it is not400

consistent with a multifractal stochastic process in
the sense of Mandelbrot et al.

A2 A definition based on the singularity spectrum

An alternative way of defining what is meant by a multifrac-
tal stochastic process is via the so-called singularity spec-
trum. For a realization of the stochastic process X(t) one
can define the local Hölder exponents as

γ(t) = liminf
s→t

s6=t

log |X(s)−X(t)|
log |s− t|

,

with the convention that log0 =−∞. The definition ensures
that γ(t) exists for any realization of X(t) for all t, and if we
have asymptotic scaling

|X(t+ ∆t)−X(t)| ∼ |∆t|γ
′

as ∆t→ 0,

then γ(t) = γ′. For some stochastic processes there is essen-
tially only one Hölder exponent γ. For instance, a realisation405

of a Wiener process has with probability one γ(t) = 1/2 for
all time instances t.

6 Terdik, G., Woyczynski, W. A., and Piryatinska, A.:
Fractional- and integer-ordered moments, and multiscaling of
smoothly truncated Lévy flights. Phys. Lett. A, 348, 94-109, 2006.

The singularity spectrum for a realisation of a stochastic
process is a function f(γ) that specifies the fractal dimen-
sions of the level sets of the function γ(t):

f(γ) = dimHKγ ,

where Kγ = {t ∈ R : γ(t) = γ}. Here dimH(·) denotes the
Hausdorff dimension, and the convention is that the dimen-
sion of the empty set ∅ is−∞. For a Wiener process we have
K1/2 = R andKγ = ∅ for γ 6= 1/2, and hence the singularity
spectrum is

f(γ) =

{
1 γ = 1/2

−∞ else
.

Since f(γ) has a positive value for only one particular Hölder
exponent, the Wiener process is often termed monofractal.

If a process is a multifractal in the sense of Mandelbrot410

et al., so that its scaling function ζ(q) is defined, then one
can in some cases express the relationship between the scal-
ing function and the singularity spectrum via the Legendre
transform:

f(γ) = inf
q
{qγ− ζ(q) + 1}. (A1)415

If this relation holds, then a monofractal singularity spectrum
corresponds to a linear scaling function, and hence to a self-
similar process. And if the scaling function ζ(q) is strictly
concave, then this corresponds to a non-trivial singularity
spectrum where there is a range of γ-values for which the420

level sets Kγ have positive Hausdorff dimensions. In other
cases, such as for α-stable Lévy processes (so-called Lévy
flights), the relation in Eq. (A1) does not hold since ζ(q) is
not defined for q > α. However, it has been shown by Heyde
and Sly (2008) that the estimated (using standard methods)425

scaling function of a Lévy flight is

ζ̂(q) =

{
q/α q < α

1 q > α
, (A2)

and it has been shown by Jaffard (1999)7 that the singularity
spectrum has the form

f(γ) =

{
αγ q ∈ [0,1/α]

−∞ else
,430

which is the Legendre transform of the expression in
Eq. (A2). In this sense, one might say that the mulitfrac-
tal formalism works for α-stable Lévy processes. On the
other hand, there are heavy-tailed Lévy processes that have
monofractal singularity spectra, even though the estimated435

scaling functions are concave. Hence, one should be care-
ful to interpret a signal as multifractal based on the es-
timated scaling function alone. In the next subsection we
will list some results that show that a reasonable Lévy-
process description of the volcanic forcing signal must have440

a monofractal singularity spectrum.
7Jaffard, S.: The multifractal nature of Lévy processes. Proba-

bility Theory and Related Fields ,114, 207-227, 1999.
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A3 The singularity spectra of Lévy processes

A Lévy process X(t) is conveniently characterized by the
characteristic functions of the variables X(t). These are de-
fined as φX(t)(u) = 〈eiuX(t)〉. A consequence of the inde-445

pendence of increments is that the characteristic functions
are of the form φX(t)(u) = etψ(u), where the function ψ(u)
is called the Lévy exponent. In order for Lévy processes to
be well defined in continuous time the variablesX(t) need to
to be infinitely divisible, and a consequence of this condition450

is that the Lévy exponent is on the form

ψ(u) = µui− σ2u2

2
+

∫
|x|≥1

(eiux− 1)dν(x)

+

∫
|x|<1

(eiux− 1− iux)dν(x),

where ν is a measure on R \ {0} satisfying the condition∫
min{1,x2}dν(x)<∞. (A3)455

The measure ν is called the Lévy measure, and if it is zero,
then X(t) is a Brownian motion with scale parameter σ and
drift µt. If we assume that 〈|X(1)|〉<∞, then∫
|x|<1

xdν(x)<∞

so that one can write460

ψ(u) = (µ−µ′)ui− σ2u2

2
+

∫
R\{0}

(eiux− 1)dν(x),

where µ′ =
∫
|x|<1

xdν(x). Moreover, if the measure ν is fi-
nite, then one can define a probability measure dPJ(x) =
λ−1dν(x), where

λ=

∫
R\{0}

dν(x).465

This gives

ψ(u) = (µ−µ′)ui− σ2u2

2
+λ

∫
(eiux− 1)dPJ(x),

and the corresponding process is called a jump-diffusion. If
we have no Brownian component and no drift, i.e., if

ψ(u) = λ

∫
(eiux− 1)dPJ(x),470

then the X(t) is called a Poisson jump process. The num-
ber λ is the jump rate, and PJ(x) is the probability density
function for the jump-size.

The increments of a Poisson jump process is a better model
for the volcano forcing signal than the increments of a Lévy475

flight (for which λ is infinite). The reason for this is that the
existence of a finite rate λ is equivalent to the assumption
that there are only a finite number of volcanic eruptions in
any finite time interval. The probability density PJ(x) for
the jumps may well be heavy-tailed, and this does not affect480

the singularity spectrum as long as the rate λ is finite. In fact,
any such process has the following monofractal singularity
spectrum (Jaffard, 1999):

f(γ) =

{
0 γ = 0

−∞ else

The results summarized in this subsection leads us to the485

following conclusion.

If the volcanic forcing signal is modeled as the in-
crements of a Lévy process X(t), then since there
are only a finite number of volcanic eruptions in
any finite time interval, the process X(t) has a490

monofractal singularity spectrum.

The discussion of wether a Lévy flight should be consid-
ered as multifractal or monofractal is hence irrelevant for the
purpose of describing volcanic forcing.

495

Remark. Since most estimators of multifractality are based
on structure functions (or similar constructions based on qth
moments) it is our opinion that the definition of Mandelbrot
et al. is the most useful. However we have to respect that
other authors may use the term in different ways, and this500

should not be problematic as long as it is clear what is meant.
In this discussion, however, we are not sure what Lovejoy
and Varotsos mean by a multifractal stochastic process, and
we therefore ask them to be precise on this point.


