

Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era

A. Gonsamo¹, J. M. Chen¹, D.T. Shindell², and G.P. Asner³

5 ¹Department of Geography and Planning, University of Toronto, Toronto, ON, Canada

²Nicholas School of the Environment, Duke University, Durham, USA

³Department of Global Ecology, Carnegie Institution for Science, Stanford, USA

Correspondence to: A. Gonsamo (gonsamoa@geog.utoronto.ca)

Abstract. A lack of long-term measurements across Earth's biological and physical systems has made observation-based

10 detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using three decades (1980–2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO₂ amplitude is mostly impacted by temperature-mediated effects

15 of El Niño/Southern Oscillation (ENSO) and Pacific/ North American Pattern (PNA), whereas CO₂ concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO₂ emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO₂ release may outweigh increased CO₂ uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the

20 interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.

1 Introduction

25 The Intergovernmental Panel on Climate Change (IPCC) attributed many recently observed changes in Earth's physical and biological systems to climate change (IPCC, 2014a, b). Several modelling and observation-based studies show that contemporary climate change has already affected plant phenology (Angert et al., 2005, Parmesan and Yohe, 2003; Walther et al., 2002; Parmesan, 2006), range and distribution of species (Kelly and Goulden, 2008; Parmesan and Yohe, 2003; Walther et al., 2002; Parmesan, 2006; Post et al., 2009), species extinction (Parmesan, 2006), phytoplankton (Montes-Hugo et al., 2009), ocean variability (Santer et al., 1995; Pierce et al., 2012), forest disturbances (Harmon et al., 2009, Kurz et al.,

2008, Westerling et al., 2006), and sea ice (Stroeve et al., 2012; Post et al., 2013). These studies (e.g., Kelly and Goulden, 2008; Parmesan and Yohe, 2003; Walther et al., 2002; Parmesan, 2006; Post et al., 2009; Montes-Hugo et al., 2009; Stroeve et al., 2012; Post et al., 2013; Pierce et al., 2012; Santer et al., 1995) provide compelling scientific evidence for a pronounced impact of recent climate change; however, studies quantitatively attributing the observed impacts in natural systems to 5 relative contributions of anthropogenic forcing and natural variability are rare (e.g., Stone et al., 2013), and differences between models and observations have been well understood but not resolved (Fyfe et al., 2013). These differences, caused by a combination of modelling errors in expected differences in internal variability between models and the stochastic climate system with limited knowledge on processes and mechanisms involved in external forcing and climate model response, make disentangling the relative roles of natural variability and anthropogenic forcing challenging (e.g., Fyfe et al., 10 2013; Hegerl and Zwiers, 2011).

Observation-based causal attribution analysis of recent biosphere responses to climate change (e.g., Parmesan and Yohe, 2003; Parmesan, 2006; Walther et al., 2002; Kelly and Goulden, 2008; Post et al., 2013; Wu et al., 2011; Menzel et al., 2006; Montes-Hugo et al., 2009) is further complicated because of a lack of long-term observational data across life 15 supporting natural systems to attribute the detected climate change impacts to natural variability and anthropogenic forcing. Although the attribution of climatic conditions and detection of the anthropogenic signal is now a mature discipline going back several decades (e.g., National Research Council, 1983; Wigley and Barnett, 1990; IPCC, 2007, 2014b), detection and attribution of climate change impacts on human and natural systems started only recently (e.g., attribution of physical and biological impacts to warming, Rosenzweig et al., 2008; methodological framework for climate change impact attribution in 20 conservation and ecological research, Parmesan et al., 2013; conceptual framework to detect and attribute effects of climate change, Stone et al., 2013; climate change impacts on marine life, Poloczanska et al., 2013). For detection and attribution of climate change impact assessments to work, understanding of numerous drivers, which may not often have additive interactions, are required along with observational data across a broader range of Earth's systems (Stone et al., 2013; Parmesan et al., 2013). Previous studies on change detection and attribution of both climatic condition and its impact on 25 physical and biological systems often focused on a single or few climatic (e.g., National Research Council, 1983; Wigley and Barnett, 1990; IPCC, 2007, 2014b) or response indicator variables (e.g., Rosenzweig et al., 2008; Parmesan et al., 2013; Stone et al., 2013; Poloczanska et al., 2013) with the analysis of mechanisms. However, the test for a coherent detection and attribution of impacts of climate change requires observations of consistent patterns across natural systems, including the need to synthesise information from a much broader range of disciplines. Therefore, with accumulation of satellite 30 observations over the last three decades, we here synthesize datasets across several physical and biological systems to test the relative roles of natural variability and anthropogenic forcing on impacts of recent climate change. Our aim is not to explain the entire observed variances, but rather to study the relative contribution of each of the examined driving variables on interannual changes and long-term trends of physical and biological systems. Furthermore, we study the auto-association among the response and driving variables in a way that best explains the observed variances. Unexplained variances remain, and may be attributed to missing drivers, errors in data, or methodological difficulties in capturing feedbacks and short-term

adaptations in Earth's natural systems. Due to a lack of high quality observational time series, the key missing drivers in our analysis include volcanism and aerosol.

Variations in incoming solar radiation have the potential to influence global climate trends (Rind, 2002; Hameed and Gong, 1994). The rates of incoming solar radiation changes due to different solar cycles and apparently produce corresponding changes in weather and climate on the Earth's surface (Lamb, 1972; Burroughs, 1992). The changes in the amount of incoming solar radiation affects climate, both directly through changes in the rate of solar heating of the Earth and atmosphere, and indirectly, by changing cloud formation (Udelhofen et al., 1999) and ozone patterns since changes in solar cycle affect the solar ultraviolet radiation the most (Hood, 1997). But the extent of responses of climatic, biological, and physical systems to solar variability remains largely untested due to a lack of long time series measurements. It has been suggested that cosmic rays induce low level cloud formation through atmospheric ionization and during periods of low solar activity, more cosmic rays enter the Earth's atmosphere affecting the Earth's climate system (Svensmark and FriisChristensen, 1997; Svensmark, 1998; Carslaw et al., 2002). Solar and cosmic ray activities have now been monitored for the past three decades, and those datasets can be tested for associations with climatic dynamics and biosphere responses.

Here we present the relationships of land, cryosphere and ocean indicators to recent changes in surface temperature, greenhouse gases, internal climatic variability, solar radiation, sunspots, and cosmic rays. While longer-term analyses (e.g. century scale) can sometimes yield better statistics, we focus on the satellite era when data quality far exceeds that of earlier years. The satellite era begins in year 1980, the starting year for continuous full global coverage observations of atmosphere, and land and ocean surfaces. All satellite datasets are spatially averaged time series to partially diminish the effects of stochastic noise. We have selected several indicators for which high-quality, long time series satellite observations, with high retrieval accuracy, covering most or all of the Northern Hemisphere are available, and relate to temperature. This is because temperature fulfils the key assumption of detection and attribution studies where the response to external forcing is a deterministic change and to first order, and signals and noise superimpose linearly (Meehl et al., 2003). We also analyse the relative roles of natural and anthropogenic driving variables on the changes of response variables with and without temperature mediation. The term "temperature mediation" refers to the impacts of natural and anthropogenic driving variables on the response variables primarily through changes in temperature (as opposed to changes in precipitation, radiation and associated variables such as cloudiness and humidity).

2 Observations

We use several observational satellite and field data throughout the Northern Hemisphere including temperature, cryosphere indicators, land indicators, ocean indicators, external anthropogenic forcing indicators, external natural forcing indicators, and internal climatic variability indicators (Table 1). In total we use 13 driving (external anthropogenic forcing indicators, external natural forcing indicators, and internal climatic variability indicators) and 9 response (temperature, cryosphere indicators, land indicators, and ocean indicators) variables (Table 1). The key land indicators include, satellite-measured

spring thaw (ST) (Barichivich et al., 2013) and start of growing season (SOS) (Barichivich et al., 2013) of the Northern Hemisphere ($>45^{\circ}\text{N}$), the Point Barrow station atmospheric CO₂ concentration peak-to-trough amplitude (AMP), and field-measured first flower bloom (FFB) day of Canada (Gonsamo et al., 2013). The cryosphere indicators include, satellite-measured sea ice concentration (SIC) and extent (SIE) of the Northern Hemisphere ($>31^{\circ}\text{N}$), and snow cover (SC) of the 5 Northern Hemisphere (0°N –90°N). Satellite-measured sea level (SL) of the Northern Hemisphere (0°N –90°N) was also included as ocean indicator to assess the response of open water bodies to climate change.

The forcing and natural variability indicators include: Point Barrow station atmospheric CO₂ concentration (PPM); sunspot number (SP), satellite-measured solar irradiance (RAD); cosmic ray (CR) counts at Kiel station; and eight leading 10 National Oceanic and Atmospheric Administration (NOAA) Northern Hemisphere teleconnection indices: the North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern (PNA), East 15 Atlantic/West Russia Pattern (WR), Scandinavia Pattern (SCA), Polar/Eurasia Pattern (POL), and El Niño/Southern Oscillation (ENSO)-Niño 3.4 index (NINO). We have also included sets of well-mixed global greenhouse gases (WMGHG), GISS global stratospheric aerosol optical thickness at 550nm, Atlantic Multidecadal Oscillation (AMO), and total solar irradiance to identify the relative roles of large-scale and long-term forcing and decadal internal climate variability during the 15 satellite era. For surface temperature, we use the Goddard Institute for Space Studies (GISS) analysis of Northern Hemisphere (0°N –90°N) (Hansen et al., 2010). Details and summary of each variable are given below and in Table 1, respectively.

Spring thaw

The spring thaw (ST) day of year was estimated from the daily combined freeze-thaw dynamics as the first day when at least 20 12 out of 15 consecutive days were classified as non-frozen (am and pm thawed) between January and June (Barichivich et al., 2013; Kim et al., 2012; Xu et al., 2013) based on global microwave observations from morning (am) and afternoon (pm) equatorial crossings of the Special Sensor Microwave Imager (SSM/I). The ST dataset is for Northern Hemisphere ($>45^{\circ}\text{N}$) for the period of 1988–2007.

Start of growing season

25 The start of season (SOS) day of year is calculated from the biweekly 8 km third generation (NDVI3g) Normalized Difference Vegetation Index (NDVI) data set produced from Advanced Very High Resolution Radiometer (AVHRR) observations by the Global Inventory Modeling and Mapping Studies (GIMMS) group at NASA Goddard Space Flight Center to characterize the photosynthetic growing season of the Northern Hemisphere ($>45^{\circ}\text{N}$) for 1982–2011 (Xu et al., 2013). SOS was calculated from maximum rate (inflection point) of green-up as determined by the first derivative of the 30 seasonal curve of smoothed NDVI data (Barichivich et al., 2013).

First flower bloom day of Canada

The first flower bloom (FFB) day of Canada is obtained from phenology records of PlantWatch Canada Citizen Science network. FFB is defined as a plant stage at which the first flower buds have opened in an observed tree or shrub or in a patch of smaller plants. We have selected only the FFB day records observed by at least five observers at a minimum of five different locations in order to remove observer bias for 19 Canadian plant species recorded by several observers across 5 Canada between years 2001 and 2012 totalling 1,784 unique site-year data points (Gonsamo et al., 2013) .

Sea ice extent and concentration

Annual means calculated from the daily sea ice extent (SIE) and concentration (SIC) observations are obtained from the Scanning Multichannel Microwave Radiometer (SMMR; 1980–August 1987) and the Special Sensor Microwave/Imager (SSM/I; July 1987 to present) onboard the Nimbus-7 satellite and Defense Meteorological Satellite Program, respectively.

10 The data are provided by the National Snow and Ice Data Center (NSIDC) (Fetterer et al., 2009). SIC is the fraction of Ocean area covered by sea ice whereas SIE is the total area covered by at least 15 percent of ice. The SIE and SIC datasets are for the Northern Hemisphere ($>31^{\circ}\text{N}$) for the period of 1980–2012.

Snow cover

Annual means calculated from the monthly mean snow cover (SC) extent (Robinson et al., 2012) are obtained from the 15 Rutgers University Global Snow Lab (Available at <http://climate.rutgers.edu/snowcover>). The SC extent is based on AVHRR satellite observations. The SC dataset is for the entire Northern Hemisphere for the period of 1980–2012.

Sea level

Annual means calculated from 10-day estimates of sea level (SL) are obtained from University of Colorado Sea Level Research Group Research Group (Available at <http://sealevel.colorado.edu>). The SL estimate was derived from the 20 TOPOgraphy EXperiment (TOPEX) and Jason series of satellite radar altimeters calibrated against a network of tide gauges (Nerem et al., 2010). The SL dataset is for entire Northern Hemisphere for the period of 1993–2012.

Surface temperature

The annual mean Northern Hemisphere surface temperature was obtained from the GISS (Hansen et al., 2010) dataset (Available at <http://data.giss.nasa.gov/gistemp>) for the period of 1980–2012. The global GISS and the 2013 reconstruction of 25 Cowtan and Way (Cowtan, 2014) HadCRUT4 hybrid UAH temperature anomalies are shown in Fig. 1b. The Cowtan and Way reconstruction of HadCRUT4 temperature data corrects for the incomplete global coverage, thereby alleviating the cool bias in recent decades (Cowtan, 2014).

Atmospheric CO₂ measurements at Point Barrow station

Monthly averaged atmospheric CO₂ concentrations at Point Barrow station (Alaska, USA, 71.3° N, 156.6° W), based on continuous *in situ* observations, are obtained from the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) (Available at <http://www.esrl.noaa.gov/gmd/dv/data>). Atmospheric CO₂ concentration measurements from *in situ* stations cover the period of 1980–2012. The peak-to-though amplitude (AMP) 5 for an individual year is calculated as a difference between maximum and minimum of monthly means to avoid influences of different curve fitting and data smoothing methods. The annual means of parts per million (PPM) of atmospheric CO₂ concentration were also used in this study.

Sunspot measurements

Annual means calculated from the international daily mean sunspot (SP) number were obtained from the SIDC (Solar 10 Influence Data Center) at World Data Center for the Sunspot Index, Royal Observatory of Belgium (Available at <http://www.sidc.be/sunspot-data>). The sunspot number data used in this study covers the period of 1980–2012 (SIDC-team, 1980-2012).

Solar irradiance

Annual means calculated from version d41_62_1302 daily averaged solar irradiance (W m⁻²) are obtained from Physikalisch- 15 Meteorologisches Observatorium Davos World Radiation Centre (PMODWRC) (Available at <ftp://ftp.pmodwrc.ch/pub/data/irradiance>). The composite algorithm, corrections for the radiometers other than VIRGO (Variability of solar IRradiance and Gravity Oscillations), and detailed methodologies are given in Frohlich and Lean (1998) and Frohlich (2000, 2003, 2006). The Active Cavity Radiometer Irradiance Monitor (ACRIM) II data are used to fill the gap during the Solar and Heliospheric Observatory (SOHO) Vacations in 1998 and early 1999. The solar irradiance (RAD) data 20 used in this study covers the period of 1980–2012. The long-term solar irradiance data shown in Fig. 1c is obtained from (Krivova et al., 2007) for the 1880–1979 period and were merged with the PMODWRC data for 1980–2012.

Cosmic ray measurements at Kiel station, Germany

The hourly pressure corrected cosmic ray (CR) neutron monitor data of Kiel neutron monitoring station (Kiel, Germany, 54.3°N, 10.2°E) is obtained from the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric 25 Administration (NOAA) (Available at ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/COSMIC_RAYS/STATION_DATA/Kiel). The annual mean of hourly CR count calculated from hourly data for the period of 1980–2007 was used in this study.

Northern Hemisphere teleconnection indices

We restricted the teleconnection indices to those that dominate the interannual variability of climatic oscillations in phase 30 and amplitude with continental to global scale implications accounting for the most spatial variance of the observed

standardized anomaly (Quadrelli and Wallace, 2004; IPCC, 2007). The eight teleconnection indices (Barnston and Livezey, 1987; Wallace and Gutzler, 1981): North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/ North American Pattern (PNA), East Atlantic/West Russia Pattern (WR), Scandinavia Pattern (SCA), Polar/ Eurasia Pattern (POL), and El Niño/Southern Oscillation (ENSO)-Niño 3.4 index (NINO), are obtained from the National Oceanic 5 and Atmospheric Administration (NOAA) National Weather Service website (Available at <http://www.cpc.ncep.noaa.gov/data/teleocnents.shtml>). We calculated teleconnection index anomalies for each year as a mean value of December of the preceding year and January, February and March of the current year. We use the common approach, where winter, defined here as December of the preceding year and January, February and March of the 10 current year, because (i) most of the leading teleconnection indices are only active during the Northern Hemisphere winter, and (ii) they are indicator of the climatic regime to come during the ensuing growing seasons (Gonsamo and Chen, 2015; Gonsamo et al., 2016). We then removed trends from the resulting winter teleconnection index by detrending the time series 15 for the 1982–2011 base period.

Decadal teleconnection index

The Atlantic Multidecadal Oscillation (AMO) index is calculated from Kaplan sea surface temperature (SST) dataset and is 15 obtained from NOAA Earth System Research Laboratory (Available at www.esrl.noaa.gov/psd/data/timeseries/AMO).

Stratospheric Aerosol Optical Thickness

Annual means calculated from monthly mean stratospheric aerosol optical thickness at 550 nm are obtained from the GISS (Sato et al., 1993) dataset (Available at <http://data.giss.nasa.gov/modelforce/strataer>) for the period of 1850–2011. Background aerosols with an optical thickness 0.0001 were added as a lower limit for aerosol amount at all times. The 20 effective radius (R) of the aerosol particles is defined as: $R = 0.20$ (in the state with small optical thickness); otherwise $R = 0.20 + \tau_{max}(\text{latitude})^{0.75} \times f(t-t_0)$ (μm) (for large volcanoes), where $f(t-t_0)$ is a function of time derived from the observed R for Pinatubo, while keeping the observed values for El Chichon and Pinatubo.

Well-mixed greenhouse gases (WMGHG)

The measurements of 5 major greenhouse gases (CO_2 , CH_4 , N_2O , CFC-12, CFC-11) and 15 minor long-lived halogenated 25 gases (CFC-113, CCl_4 , CH_3CCl_3 , HCFCs 22, 141b and 142b, HFCs 134a, 152a, 23, 143a, and 125, SF_6 , and halons 1211, 1301 and 2402) are obtained from the NOAA annual greenhouse gas index (AGGI) (Available at <http://www.esrl.noaa.gov/gmd/aggi>). The radiative forcing of the 20 well-mixed greenhouse gases (WMGHG) is calculated from a globally distributed network of air sampling sites (Hofmann et al., 2006). The total radiative forcing of the WMGHG 30 is calculated based on IPCC (2001) expressions to convert greenhouse gas changes, relative to 1750, to instantaneous radiative forcing.

Analysis

For both response and driving variables, we have included observational datasets within the Northern Hemisphere (0°N – 90°N , 180°E – 180°W) (Fig. 1a) available between 1980 and 2012. We present interannual variability analysis from detrended data to examine correlations at various timescales and minimize the risk of detecting spurious correlations. All interannual

5 variability assessments were done based on detrended time series at annual time scale using the common base period of each pair of analysis. Trend analysis based on the raw data are presented only in Figures (2) and (3), to show the long-term trends in both response and driving variables. Our interpretation of the results starts with basic correlation analysis (Table 2) comprising percent explained variance (coefficient of determination) among all variables from both raw and detrended datasets for trend and interannual covariability analyses, respectively. To investigate if the correlations are worthy of
10 interpretation and to illustrate the coherence by analysing which variables are similar (or different), we use the squared loading of the variables (Abdi and Williams, 2010) from orthogonally projected driving and response variables, using principal component analysis (PCA). The squared loading of variables used in this study is alternatively called “squared cosines”. We used a PCA algorithm with Pearson correlation coefficient as index of similarity to remove the effect of scale. Alternatively, this is called normalized PCA. The squared loading of variables can be interpreted numerically as the
15 coefficient of determination between a PCA axis and a given variable, and reveals the internal structure and auto-association among the response and driving variables in a way that best explains the total variance. We use the 95% confidence level from a two-tailed Student’s t-test to identify variables contributing significantly to each PCA axis. Generally speaking, the squared loading of the variables help interpret which variables are significantly coherent from the point of view of total variance analysis. The squared loading of variables that are small and not significant are interpreted as likely an artifact of
20 projection into a low dimensional subspace, or an indication that the observed changes in response and driving variables are not coherent. Furthermore, we use several sets of PCAs (including natural and anthropogenic drivers together and separately with or without temperature mediation) to show the relative contribution of natural variability and anthropogenic forcing, and to predict each of the indicator variables with and without temperature mediation. We follow stepwise regression with Akaike Information Criterion (AIC) using different sets of PCA coordinates as regressors to reduce the effects of
25 multicollinearity. All trend slopes in this study are calculated using a simple least squares linear regression.

3 Results and Discussion

This section starts with the northern hemisphere temperature trend analysis followed by the results and detailed interpretations of four groups of variables, i.e., spring phenology indicators, snow cover, sea level, and finally the atmospheric CO_2 dynamics in response to sea ice decline and climate variability.

3.1 Trends in the Northern Hemisphere surface temperature

The Northern Hemisphere experienced increases in surface temperature during the last three decades that are unprecedented in the anthropocene era (Fig. 1a) with climate extremes during the period 1990–2010, which included the warmest decades since the start of modern measurements around 1850 (Fig. 1c). Warming in these recent decades is larger over land than over ocean (Fig. 1a), in part because the ocean responds more slowly than the land due to the ocean's large thermal inertia (Hansen et al., 2010). Warming during the past three decades is enhanced in Eurasia and the Arctic (Fig. 1a). Warming of the ocean surface has been largest over the Arctic Ocean, and smallest and even slightly cooler over the North Pacific Ocean (Fig. 1a), partly due to the La-Niña-like cooling in the tropics affecting the extratropics (Kosaka and Xie, 2013). During the study period, the radiative effects from the increased WMGHG concentrations follow the rise in global surface temperatures (all $p < 0.1 \times 10^{-7}$), whereas the solar irradiance is not and has an overall declining trend (Fig. 1b). The timeframe covered in this study coincides with the period when the global temperature anomalies diverged from trends in solar forcing and the internal climatic oscillation indicated by AMO (Fig. 1c).

3.2 Spring phenology of vegetation and soil thaw

We quantitatively assessed the spring anomalies of the start of growing season (SOS), spring thaw (ST), and first flower bloom (FFB) days. FFB, unlike hemispheric averaged spring indices such as SOS and ST, shows the contrasting roles of NAO and SCA on North American and Eurasian part of the Northern Hemisphere (see Fig. 4). Observed trends include earlier ST (2.1 days/decade) for 1988–2007, SOS (1.07 days/decade) for 1982–2011, and FFB (6.7 days/decade) for 2001–2012 (all $p < 0.05$). Long-term trends of ST and SOS are overwhelmingly correlated with changes in annual mean surface temperature ($p < 0.001$) (Fig. 2b). ST and SOS are also significantly correlated with temperature after data detrending (Table 2) indicating both long-term and interannual covariability ($p < 0.01$). Changes in Canadian FFB are moderately explained by changes in annual mean surface temperature of the Northern Hemisphere (Fig. 2b), although there was, unsurprisingly, a stronger association with Canada's annual mean temperature ($R = -0.85$, $p < 0.001$) (Gonsamo et al., 2013). Associated with post-1998 slow down in surface temperature increase, SOS and ST advanced more slowly, even with slight delays (Fig. 2b). Although the Canadian FFB shows strong correlation with NAO and SCA (Table 2), the stepwise regression selects 9 PCAs for FFB prediction (Fig. 5g,o) and the degrees of freedom becomes zero – indicating that there is no way to affirm or reject the prediction model for FFB. The interannual changes in solar radiation, NAO, and SCA are the most covarying variables with spring phenology anomalies (Table 2 and 3).

The interannual variability of spring phenology indices are explained more by natural forcing (i.e., solar radiation) and teleconnections than greenhouse gases (GHG) (Table 4). Temperature mediation on interannual variability of spring phenology indices is only apparent with GHG, and less relevant with natural forcing (Table 4). Solar radiation and teleconnections may have non-temperature mediated effects on spring phenology through their impacts on incident solar radiation, cloudiness, precipitation and snowfall. The timing of spring events in many plant life cycles is advancing in

response to climate warming (Parmesan and Yohe, 2003; Parmesan, 2006; Walther et al., 2002; Menzel et al., 2006; Post et al., 2009; Fitter and Fitter, 2002; Barichivich et al., 2013). The observed earlier spring activities (Fig. 2b) of terrestrial ecosystem increase the length of the growing season and consequently the primary productivity of vegetation. This same condition may also increase soil and plant respiration (Piao et al., 2008) and expose plants to widespread late spring frost 5 damage (Hufkens et al., 2012), leading to carbon loss. However, the tradeoffs between increased primary productivity and enhanced ecosystem respiration and soil carbon release related to advancing spring activity remain poorly understood.

NAO and SCA are two of the most dominant teleconnections related to dynamics in terrestrial ecosystems of the Northern Hemisphere (Fig. 4 and Table 2 and 3) (Gonsamo and Chen, 2015; Gonsamo et al., 2016). NAO has strong negative relation with SCA (Table 2), affecting much of Canada and Eurasia, with SCA dominant in Midwestern Europe 10 (Fig. 4). Therefore, we only discuss the NAO results in relation to spring activity. The detrended NAO index is negatively correlated with fluctuations in snow cover ($p<0.01$), and positively correlated with changes in the FFB days ($p<0.01$) (see lower left in Table 2). A steeper atmospheric pressure gradient (the high or positive NAO index phase), indicating an intensified Icelandic low, is associated with warmer Northern Hemisphere (mostly Europe and Asia) winter temperatures. This explains the negative relationship between the detrended NAO index and snow cover observed in our analysis (Table 15 2). Under steeper atmospheric pressure gradient or positive NAO (i.e., negative SCA index) phase when the westerlies in the North Atlantic are shifted poleward, there is enhanced advection of warm air across Northern Europe and Asia, increasing vegetation productivity on this region (Gonsamo and Chen, 2015) (Fig. 4). Continental winter temperatures to the east are raised as a consequence. To the west in northern Canada and Greenland the winters are colder and drier, delaying the Canadian first flower bloom days (Table 2) and overall vegetation productivity (Fig. 4).

20 3.3 Snow cover

Although the response of snow cover (SC) to global warming is complicated, as snow formation and melt are closely related to a temperature threshold of 0°C (Brown and Mote, 2009), SC is the most predictable indicator (Fig. 5a,i) among the studied variables while teleconnections and solar radiation alone explain more than 74% of the interannual variability (Table 4). The SC decline over the Northern Hemisphere of $0.14 \times 10^6 \text{ km}^2/\text{decade}$ for 1980–2012 was not statistically significant for the 25 region ($p=0.26$), and showed less interannual variability after the 1998 global warming slowdown (Fig. 2c). Figures 5a,i and Table 4 show that SC is well explained by teleconnections and solar radiation whereas temperature mediation has only a marginal effect. The two leading Northern Hemisphere teleconnections (i.e., NAO and SCA) contribute the biggest natural climatic contributions to the interannual SC variability (see Table 2 and PCA1 column in Table 3). Temperature mediation on interannual variability of SC is only conspicuous with GHG, and less relevant with internal climatic variability (Table 4).

30 3.4 Sea level

For time scales relevant to anthropogenic warming, the rate of sea level (SL) rise is roughly proportional to the magnitude of warming above the temperatures of the pre-industrial age, with a proportionality constant of 3.4 mm/year per °C (Rahmstorf,

2007). Our analysis of simple linear trend shows that over the past twenty years, Northern Hemisphere SL has risen at a rate of 27 mm/decade for 1993–2012. Natural factors (solar radiation and teleconnections) impacting temperature explains 63% of SL interannual variability (Table 4), while the combination and interactions of all studied driving variables together with temperature explain 78% of the observed variability (Fig. 5h). Although long-term SL rise is related to temperature rise (Fig. 5 2d) (Rahmstorf, 2007), the interannual variability is mostly controlled by temperature mediated (Fig. 5h,p and Table 4) changes in PNA and WR teleconnections (Table 2). PNA and WR modulate the location and strength of jet streams and fluxes of heat, moisture and momentum and can thus directly warm and expand, or cool and contract large areas of Northern Hemisphere water. Locally, the possible link between SL and teleconnections could be through changes in the surface atmospheric pressure via the inverse barometer effect, and water balance and density changes in response to temperature. 10 Both PNA and WR are highly related to NINO (Table 2), and PNA phases are related to warm and cold Pacific episodes and sea level (Bromirski et al., 2011).

3.5 Atmospheric CO₂ variation in response to sea ice and climate variability

The concentration of Northern Hemisphere atmospheric CO₂ decreases in spring as vegetation grows, and increases in fall when vegetation senesces resulting in an annual peak-to-trough amplitude (AMP) of CO₂ concentration. The seasonal cycles 15 of the Point Barrow CO₂ concentration is mainly explained by dynamics of growing and shrinking extratropical land ecosystems (e.g., Graven et al., 2013; Barichivich et al., 2013). The monthly Point Barrow measurements show that the CO₂ AMP has increased over the last three decades at a rate of 0.96 ppm/decade ($p=1.2\times10^{-6}$) for 1980–2012. Both CO₂ AMP and concentration (PPM) increases are significantly ($p<0.001$) correlated with the long-term temperature increases (Fig. 2e) but changes in temperature do not directly explain the interannual variability (see lower left Table 2). The interannual variability 20 of CO₂ AMP is explained by large-scale teleconnections such as EA, PNA and NINO and their temperature mediation (Table 3–4), although the direct explanatory power of temperature on CO₂ AMP is negligible (Fig. 5e,m and Table 2). Our results show that there is no direct interannual link between CO₂ AMP and PPM in the Northern Hemisphere – the former is controlled by EA, PNA and NINO and their temperature mediation while the later is controlled by the influence of POL on sea ice dynamics (Table 3). Warm ENSO phases (i.e. positive NINO), coincides with lower CO₂ AMP (Table 2) indicating 25 decreased CO₂ sink capacity which is in agreement with previous finding (Miralles et al., 2013). This decrease of CO₂ sink during positive NINO phase is due to reduced CO₂ uptakes by northern biosphere and may not be linked to sea ice dynamics (Table 3). In other words, the interannual variability of seasonal dynamics of CO₂ concentration is mostly controlled by EA, PNA and NINO influence on temperature while the absolute interannual variability in PPM is controlled by the POL influence on sea ice dynamics (see details below). This is assuming the trend in anthropogenic CO₂ emission remains 30 constant, or the interannual changes in the trends are negligible.

Following a decade with nine of the lowest minima on record, sea ice concentration (SIC) and extent (SIE) have received increased attention in light of climate warming (Post et al., 2013). Over the last three decades there have been rapid declines in both SIE (0.53×10^6 km²/decade) and SIC (1.8%/decade) (both $p<0.5\times10^{-11}$) for 1980–2012. The decline rate in

SIE is much faster than that of the SIC (Fig. 2a), indicating that sea ice is diminishing more rapidly in areas with thinner ice cover. The rapid decline of SIE is highly correlated with temperature rise ($R=-0.8, p<0.2\times10^{-7}$) (Fig. 2a). Our results show that the interannual variability of SIE and SIC are less controlled by temperature (Table 4), the least predictable indicators (Fig. 5b,c,j,k), more affected by POL teleconnection, and have the biggest direct control on atmospheric CO₂ concentration 5 at Point Barrow but not globally (Table 3). The interannual changes in CO₂ concentration are negatively related to changes in sea ice extent ($p<0.01$) and concentration ($p<0.001$) (see lower left Table 2).

The rapid changes in the Arctic are a consequence of the enhanced warming that the Arctic experiences compared with the rest of the world both on land and in the ocean, caused by a complex interaction of forcing and feedbacks, known as 10 Arctic amplification. Inferring causality between correlated time series is difficult but may be supported when the sea ice response and feedback displays the expected physical understanding. There could be several explanations for the negative relationship between sea ice extent and atmospheric CO₂ concentration. First, water column stratification due to ocean 15 freshening from melting sea ice restrain nutrient availability in Arctic primary productivity (Wassmann et al., 2011). Second, sea ice decline may indirectly contribute to periodic massive pulses of terrestrial carbon release as shown by the link between ice loss and the annual extent of tundra fires in Alaska (Post et al., 2013; Hu et al., 2010). Third, sea ice algae and 20 sub-ice phytoplankton account for more than half of the total annual primary production in the Arctic Ocean (Gosselin et al., 1997), thus the decline in sea ice contributes to substantial loss of habitat for the primary producers. Forth, parallel to changes in the oceanic cryosphere, the lengthening of the growing season and a reduction in snow cover have also been 25 observed in terrestrial ecosystems across the Arctic, which may induce large releases of carbon due to permafrost thaw (Schuur et al., 2011). On the other hand, sea ice decline can also contribute to increased carbon uptake. First, large phytoplankton blooms in the Arctic, where light transmission has increased in recent decades due to the thinning ice cover 30 and proliferation of melt ponds can increase carbon uptake (Arrigo et al., 2012). Several studies show that rapid decline in sea ice related to climate warming is responsible for the increased sub-ice primary production (e.g., Post et al., 2013; Parmentier et al., 2013). Second, solubility-driven sea carbon uptake increases with increased ice-free sea surface. Third, sea ice decline is also strongly linked to longer growing season and increased vegetation productivity of the circumpolar north (>45°N) terrestrial ecosystems (Gonsamo and Chen, 2016) which indicates enhanced carbon uptake by northern plants. 35 Generally speaking, through temperature and sea ice dynamics (Fig. 2a), the ocean may have a large impact on the terrestrial greenhouse gas balance of the Northern Hemisphere: earlier snowmelt and higher land surface temperatures — leading to longer growing seasons — can potentially increase plant uptake of atmospheric CO₂, and these same conditions also increase respiration, permafrost thaw, wildfire, and droughts. Overall, our analysis strongly suggests that the increased carbon loss due to sea ice decline-related processes may outweigh the carbon uptake enhancement through the parallel and concomitant 40 processes, at least during the current climate regime.

The Polar/Eurasia Pattern (POL), which enhances the strength of the circumpolar vortex during its positive phase, is related to gradients in total mass of the atmosphere between polar and continental regions. The ice-albedo feedback due to declining sea ice results in warmer Arctic sea surface temperature, which increases ocean heat content and evaporation in

polar region, further decreasing the temperature gradient of polar and continental regions. This may, in turn, result in strong negative POL phase events that lead to a weaker circumpolar vortex, and the resulting cold air spill will delay the spring vegetation activity of continental areas, reducing the CO₂ sequestration by terrestrial ecosystem. The negative phase of POL is strongly linked to decreased vegetation productivity of the circumpolar north (>45°N) terrestrial ecosystems (Gonsamo and Chen, 2016). With disproportionately accelerating warming of the polar region, the negative phase of POL will be prevalent resulting in less sea ice extent, and colder winters in continental areas. Currently, our results suggest that the sea ice loss is linked to net increase in atmospheric CO₂ concentration (Table 2). Given the above explanations, the anticipated sea ice decline in the future may lead to increased atmospheric CO₂ concentration, further strengthening the vicious circle of Arctic amplification.

10 4 Summary and concluding remarks

Prior to data detrending, our results reveal strong long-term relationships between temperature and several land, ocean and cryosphere indicators (Figures 2 and 3). From Fig. 1, it seems that the atmospheric CO₂ forcing time series has less interannual variability but shows strong long-term relationships with rising temperature. When both the response and driving variables are detrended, the relationship between the long-term trend of temperature and land, ocean and cryosphere, and 15 CO₂ forcing on temperature is partially removed. Consequently, the effects of the rapidly adjusting interannual variability of solar output and teleconnections become evident on several indicator variables. Unlike a single climatic variable such as temperature or precipitation, teleconnections control the entirety of heat, moisture and momentum fluxes, and incidence radiation through their effects on cloudiness (IPCC, 2007). This makes solar output and teleconnections the main drivers of the interannual variability of land, cryosphere and ocean indicators. However, new evidence is emerging regarding external 20 forcing precursors on teleconnections (Fowler et al., 2012; Risbey et al., 2014; Collins, 2005), which may intensify in the midst of long-term climate changes. There is no relationship between solar irradiance and sunspot numbers with key land, cryosphere and ocean indicators (Fig. 3) if the trends are not removed from the datasets. This suggests that the recent trend in solar output has no discernible influence on the trends of the physical and biological systems indicators studied in the current work.

25 We found several coherent interannual patterns among related detrended response and driving variables. There are three sets of statistically strong auto-associations of driving and response variables which have at least 30-years of observations in the Northern Hemisphere (Table 3): (i) start of season, snow cover, Sun outputs, global well-mixed greenhouse gases (WMGHG), North Atlantic Oscillation (NAO), and Scandinavia Pattern (SCA); (ii) temperature, peak-to-trough CO₂ amplitude, East Atlantic Pattern (EA), Pacific/North American Pattern (PNA), and ENSO; and (iii) sea ice extent 30 and concentration; CO₂ concentration (PPM), and Polar/Eurasia Pattern (POL). Overall, our results show that key land, cryosphere and ocean indicators are behaving as expected if they are responding to rising annual mean surface temperature

and atmospheric CO₂ concentration in the Northern Hemisphere, and global well-mixed greenhouse gases (WMGHG), over the last three decades (Fig. 1b and Fig. 2).

The long-term trend analysis indicates that changes in surface temperature in the last three decades are strongly correlated ($p<0.05$) with sea ice and sea level, spring phenology and thaw, and atmospheric CO₂ concentration (Fig. 2).

5 Globally, rising temperature is also on a par with increasing radiative forcing of WMGHG (Fig. 1b). Recent changes in the Sun's output, decadal climatic oscillations, sunspot number, and cosmic ray counts have little or no relationship with long-term trends of Northern Hemisphere warming and its effect on land, cryosphere or ocean indicators (Fig. 1 and 2). During the last three decades, the Sun's energy output followed its historical 11-year cycle, with a slight overall decrease (Fig. 1b), temperature anomalies diverged from solar forcing, stratospheric Aerosol, and internal climatic oscillation indicated by the
10 10 Atlantic Multidecadal Oscillation (Fig. 1c), and the two major volcanic eruptions of the last three decades have had only short cooling effects on climate (Gillett et al., 2012). Therefore, the combination of solar and volcanic activity should actually have led to a slight cooling if they were the primary drivers of long-term trends (Gillett et al., 2012). The recent multidecadal warming of Northern Hemisphere surface temperature cannot be explained by natural variability, or by any known mode of internal variability (Santer et al., 2013a; Santer et al., 2013b) (Fig. 1c). Slow changes in the Earth's tilt and
15 15 orbit around the Sun are only relevant in time scales of several thousands of years and cannot explain the recent rapid warming. Therefore, the observed rapid climate warming and its impacts on land, cryosphere, and ocean may best be attributed to anthropogenic factors, largely the radiative effects from increased concentrations of WMGHG (Fig. 1b). Despite the apparently slower rate of post-1998 global warming, a coherent pattern of changes across multiple life supporting natural systems is very likely to continue with increasing greenhouse gases.

20 How robust are our results? Although most of the variables were spatially averaged and multicollinearity was removed, the uncertainties from residual atmospheric effects and calibration errors in satellite data, missing drivers, errors in ground measurements, and methodological difficulty in capturing interactive effects of drivers and short-term feedbacks, are data source specific, difficult to quantify and cannot be ruled out. This work; however, contributes not only to observation-based detection and attribution of changes in climate index (i.e., here temperature), but also to the detection and attribution
25 25 of impacts of climate changes on physical and biological systems following the 2014 Working Group II IPCC report (IPCC, 2014a) and other recent works (e.g., Rosenzweig et al., 2008; Parmesan et al., 2013; Stone et al., 2013; Poloczanska et al., 2013).

Abbreviations

Temperature = T, snow cover = SC, sea ice extent = SIE, sea ice concentration = SIC, spring thaw = ST, start of growing
30 30 season = SOS, first flower bloom day = FFB, sea level = SL, peak-to-trough amplitude of CO₂ = AMP, CO₂ concentration = PPM, well-mixed greenhouse gases= WMGHG, sunspot number = SP, solar irradiance = RAD, cosmic ray count = CR, North Atlantic Oscillation = NAO, East Atlantic Pattern= EA, West Pacific Pattern= WP, Pacific/ North American Pattern=

PNA, East Atlantic/West Russia Pattern= WR, Scandinavia Pattern= SCA, Polar/ Eurasia Pattern= POL, ENSO-Niño 3.4 index= NINO.

Acknowledgements

We thank NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, NOAA National Geophysical Data Center (NGDC), NOAA Earth System Research Laboratory, NOAA Climate Prediction Center, NASA Goddard Institute for Space Studies, NASA Goddard Space Flight Center, University of Colorado Sea Level Research Group, National Center for Atmospheric Research, Germany Cosmic Ray Monitor, VIRGO Experiment on the ESA/NASA Mission SoHO – version 5 d41_62_1302 data from Physikalisch-Meteorologisches Observatorium Davos und Weltstrahlungszentrum/World Meteorological Organisation, Solar Influences Data Analysis Center, WDC-SILSO Royal Observatory of Belgium, National Space Studies, NASA Goddard Space Flight Center, University of Colorado Sea Level Research Group, National Center for Atmospheric Research, Germany Cosmic Ray Monitor, VIRGO Experiment on the ESA/NASA Mission SoHO – version 10 d41_62_1302 data from Physikalisch-Meteorologisches Observatorium Davos und Weltstrahlungszentrum/World Meteorological Organisation, Solar Influences Data Analysis Center, WDC-SILSO Royal Observatory of Belgium, National Snow and Ice Data Center, Joint Institute for the Study of the Atmosphere and Ocean, Rutgers University Global Snow Lab, Compton J. Tucker and the Global Inventory Modeling and Mapping Studies team, and Jonathan Barichivich for making their data available. We thank Eric Post for his constructive comments on an earlier version of the manuscript.

References

Abdi, H., and Williams, L. J.: Principal component analysis, *Wiley Interdiscip. Comput. Stat.*, 2, 433-459, 2010.

15 Angert, A., Biraud, S., Bonfils, C., Henning, C.C., Buermann, W., Pinzon, J., Tucker, C.J., and Fung, I.: Drier summers cancel out the CO₂ uptake enhancement induced by warmer springs, *Proc. Natl. Acad. Sci. USA*, 102, 10823-10827, 2005.

Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., Van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., and Bates, N.R.: Massive Phytoplankton Blooms Under Arctic Sea Ice. *Science*, 336, 1408-20 1408, 2012.

Barnston, A.G., and Ropelewski, C. F.: Prediction of ENSO episodes using canonical correlation analysis. *J. Climate*, 5, 1316-1345, 1992.

Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M., Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO₂ at high northern latitudes from 1950 25 to 2011, *Glob. Chang. Biol.*, 19, 3167-3183, 2013.

Barnston, A. G., and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, *Mon. Weather Rev.*, 115, 1083-1126, 1987.

Bromirski, P. D., Miller, A. J., Flick, R. E., and Auad, G.: Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration, *J. Geophys. Res.*, 116, C07005, 2011.

Brown, R. D., and Mote, P. W.: The Response of Northern Hemisphere Snow Cover to a Changing Climate, *J. Clim.*, 22, 2124-2145, 2009.

Burroughs, W. J.: *Weather Cycles, Real or Imaginary?*, 203 pp., Cambridge Univ. Press, New York, 1992.

Carslaw, K. S., Harrison, R. G., and Kirkby, J.: Cosmic rays, clouds, and climate, *Science*, 298, 1732-1737, 2002.

5 Collins, M.: El Niño-or La Niña-like climate change? *Clim. Dyn.*, 24, 89-104, 2005.

National Research Council: *Changing Climate: Report of the Carbon Dioxide Assessment Committee*, The National Academies Press, Washington, DC, 1983.

Cowtan, K., Robert G.: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends, *Q. J. R. Meteorol. Soc.*, 140, 1935-1944, 2014.

10 Fetterer, F., Knowles, K., Meier, W., and Savoie, M.: Sea Ice Index of Northern Hemisphere, National Snow and Ice Data Center, Boulder, Colorado USA, 2009.

Fitter, A. H., and Fitter, R. S. R.: Rapid changes in flowering time in British plants, *Science*, 296, 1689-1691, 2002.

Fowler, A. M., Boswijk, G., Lorrey, A. M., Gergis, J., Pirie, M., McCloskey, S. P. J., Palmer, J. G., and Wunder, J.: Multi-centennial tree-ring record of ENSO-related activity in New Zealand, *Nature Clim. Change*, 2, 172-176, 2012.

15 Frohlich, C., and Lean, J.: The Sun's total irradiance: Cycles, trends and related climate change uncertainties since 1976, *Geophys. Res. Lett.*, 25, 4377-4380, 1998.

Frohlich, C.: Observations of irradiance variations, *Space Sci. Rev.*, 94, 15-24 2000.

Frohlich, C.: Long-term behaviour of space radiometers, *Metrologia*, 40, S60-S65, 2003.

Frohlich, C.: Solar irradiance variability since 1978 - Revision of the PMOD composite during solar cycle 21, *Space Sci. Rev.*, 125, 53-65, 2006.

20 Fyfe, J. C., Gillett, N. P., and Zwiers, F. W.: Overestimated global warming over the past 20 years, *Nature Clim. Change*, 3, 767-769, 2013.

Gillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F., and von Salzen, K.: Improved constraints on 21st-century warming derived using 160 years of temperature observations, *Geophys. Res. Lett.*, 39, 2012.

25 Gonsamo, A., and Chen, J. M.: Winter teleconnections can predict the ensuing summer European crop productivity, *Proc. Natl. Acad. Sci. USA*, 112, E2265-E2266, 2015.

Gonsamo, A., and Chen, J. M.: Circumpolar vegetation dynamics product for global change study. *Remote Sens. Environ.*, 182, 13-26, 2016.

30 Gonsamo, A., Chen, J. M., and Lombardozzi, D.: Global vegetation productivity response to climatic oscillations during the satellite era. *Glob. Change Biol.*, doi:10.1111/gcb.13258, 2016.

Gonsamo, A., Chen, J. M., and Wu, C.: Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability, *Sci. Rep.*, 3, 2239, 2013.

Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A., and Booth, B. C.: New measurements of phytoplankton and ice algal production in the Arctic Ocean, *Deep-Sea Res. II*, 44, 1623-1644, 1997.

Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., Welp, L. R., Sweeney, C., Tans, P. P., Kelley, J. J., Daube, B. C., Kort, E. A., Santoni, G. W., Bent, J. D., and Chicago: Enhanced seasonal exchange of CO₂ by northern ecosystems since 1960, *Science*, 341, 1085-1089, 2013.

Hameed, S., and Gong, G. F.: Variation of spring climate in lower-middle yangtze-river valley and its relation with solar-
5 cycle length, *Geophys. Res. Lett.*, 21, 2693-2696, 1994.

Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, *Rev. Geophys.*, 48, 2010.

Hegerl, G., and Zwiers, F.: Use of models in detection and attribution of climate change, *Wiley Interdiscip. Rev. Clim. Change*, 2, 570-591 2011.

Hofmann, D. J., Butler, J. H., Dlugokencky, E. J., Elkins, J. W., Masarie, K. A., Montzka, S. A., and Tans, P. P.: The role of
10 carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index, *Tellus B Chem. Phys. Meteorol.*, 58, 614-619, 2006.

Hood, L. L.: The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere. *J. Geophys. Res.*, 102, 1355-1370, 1997.

Hu, F. S., Higuera, P. E., Walsh, J. E., Chapman, W. L., Duffy, P. A., Brubaker, L. B., and Chipman, M. L.: Tundra burning
15 in Alaska: linkages to climatic change and sea ice retreat, *J. Geophys. Res.*, 115, G04002, 2010.

Hufkens, K., Friedl, M. A., Keenan, T. F., Sonnentag, O., Bailey, A., O'Keefe, J., and Richardson, A. D.: Ecological impacts
of a widespread frost event following early spring leaf-out, *Glob. Chang. Biol.*, 18, 2365-2377, 2012.

IPCC: Climate Change 2001: Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA., 2001.

20 IPCC: Climate Change 2007, Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA., 2007.

IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA., 2014a.

25 IPCC: Climate Change 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA., 2014b.

Kelly, A. E., and Goulden, M. L.: Rapid shifts in plant distribution with recent climate change, *Proc. Natl. Acad. Sci. USA*,
105, 11823-11826, 2008.

30 Kim, Y., Kimball, J. S., Zhang, K., and McDonald, K. C.: Satellite detection of increasing Northern Hemisphere non-frozen
seasons from 1979 to 2008: Implications for regional vegetation growth, *Remote Sens. Environ.*, 121, 472-487, 2012.

Kosaka, Y., and Xie, S.-P.: Recent global-warming hiatus tied to equatorial Pacific surface cooling, *Nature*, 501, 403-407,
2013.

Krivova, N. A., Balmaceda, L., and Solanki, S. K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, *Astron. Astrophys.*, 467, 335–346, 2007.

Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change. *Nature*, 452, 987-990.

5 Lamb, H. H.: *Climate: Present, Past and Future*, vol. 1, pp. 440–464, Methuen, New York, 1972.

Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M., and Dai, A.: Solar and greenhouse gas forcing and climate response in the twentieth century, *J. Clim.*, 16, 426-444, 2003.

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kuebler, K., Bissolli, P., Braslavská, O. g., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatcza, K., 10 Mage, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and Zust, A.: European phenological response to climate change matches the warming pattern, *Glob. Chang. Biol.*, 12, 1969-1976, 2006.

Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A., Beck, H. E., Holmes, T. R., Jiménez, C., Verhoest, N. E., and Dorigo, W. A.: El Niño–La Niña cycle and recent trends in continental evaporation, *Nature Clim. Change*, 4, 122–126, 2013.

15 Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., and Schofield, O.: Recent changes in phytoplankton communities associated with rapid regional climate change along the western antarctic peninsula, *Science*, 323, 1470-1473, 2009.

Nerem, R. S., Chambers, D. P., Choe, C., and Mitchum, G. T.: Estimating mean sea level change from the TOPEX and Jason 20 Altimeter Missions, *Mar. Geod.*, 33, 435-446, 2010.

Parmentier, F.-J. W., Christensen, T. R., Sorensen, L. L., Rysgaard, S., McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower sea-ice extent on Arctic greenhouse-gas exchange, *Nature Clim. Change*, 3, 195-202, 2013.

Parmesan, C., and Yohe, G.: A globally coherent fingerprint of climate change impacts across natural systems, *Nature*, 421, 37-42, 2003.

25 Parmesan, C.: Ecological and evolutionary responses to recent climate change, *Annu. Rev. Ecol. Evol. Syst.*, 37, 637-669, 2006.

Parmesan, C., Burrows, M. T., Duarte, C. M., Poloczanska, E. S., Richardson, A. J., Schoeman, D. S., and Singer, M. C.: Beyond climate change attribution in conservation and ecological research, *Ecol. Lett.*, 16, 58-71, 2013.

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., 30 Grelle, A., Hollinger, D. Y., Laurila, T., Lindroth, A., Richardson, A. D., and Vesala, T.: Net carbon dioxide losses of northern ecosystems in response to autumn warming, *Nature*, 451, 49-53, 2008.

Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D., and Durack, P. J.: The fingerprint of human-induced changes in the ocean's salinity and temperature fields, *Geophys. Res. Lett.*, 39, 2012.

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., and Richardson, A. J.: Global imprint of climate change on marine life, *Nature Clim. Change*, 3, 919-925, 2013.

5 Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., and Høye, T. T.: Ecological dynamics across the Arctic associated with recent climate change, *Science*, 325, 1355-1358, 2009.

Post, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., Hebblewhite, M., Kerby, J., Kutz, S. J., Stirling, I., and Walker, D. A.: Ecological Consequences of Sea-Ice Decline, *Science*, 341, 519-524, 2013.

10 Quadrelli, R., and Wallace, J. M.: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability, *J. Clim.*, 17, 3728-3744, 2004.

Rahmstorf, S.: A semi-empirical approach to projecting future sea-level rise, *Science*, 315, 368-370, 2007.

Rind, D.: Climatology - The sun's role in climate variations, *Science*, 296, 673-677, 2002.

Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O'Kane, T. J., and Oreskes, N.: Well-estimated global 15 surface warming in climate projections selected for ENSO phase, *Nature Clim. Change*, 4, 835-840, 2014.

Robinson, D. A., Estilow, T. W., and NOAA CDR Program: NOAA Climate Date Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. NOAA National Climatic Data Center. doi:10.7289/V5N014G9, 2012.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S., and Imeson, A.: Attributing physical and biological impacts to 20 anthropogenic climate change, *Nature*, 453, 353-357, 2008.

Santer, B. D., Mikolajewicz, U., Bruggemann, W., Cubasch, U., Hasselmann, K., Hock, H., Maierreimer, E., and Wigley, T. M. L.: Ocean variability and its influence on the detectability of greenhouse warming signals, *J. Geophys. Res.*, 100, 10693-10725, 1995.

25 Santer, B. D., Painter, J. F., Bonfils, C., Mears, C. A., Solomon, S., Wigley, T. M. L., Gleckler, P. J., Schmidt, G. A., Doutriaux, C., Gillett, N. P., Taylor, K. E., Thorne, P. W., and Wentz, F. J.: Human and natural influences on the changing thermal structure of the atmosphere, *Proc. Natl. Acad. Sci. USA*, 110, 17235-17240, 2013a.

Santer, B. D., Painter, J. F., Mears, C. A., Doutriaux, C., Caldwell, P., Arblaster, J. M., Cameron-Smith, P. J., Gillett, N. P., Gleckler, P. J., Lanzante, J., Perlitz, J., Solomon, S., Stott, P. A., Taylor, K. E., Terray, L., Thorne, P. W., Wehner, M. F., Wentz, F. J., Wigley, T. M. L., Wilcox, L. J., and Zou, C.-Z.: Identifying human influences on atmospheric 30 temperature, *Proc. Natl. Acad. Sci. USA*, 110, 26-33, 2013b.

Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric aerosol optical depths, 1850-1990, *J. Geophys. Res.*, 98, 22987-22994, 1993.

Schuur, E. A. G., Abbott, B., and Permafrost Carbon, N.: High risk of permafrost thaw, *Nature*, 480, 32-33, 2011.

SIDC-team: The International Sunspot Number, in: Monthly report on the international sunspot number, online catalogue, Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium, 1980-2012.

Steigies, C., Thomann, M., Rother, O., Wimmer-Schweingruber, R., and Heber, B.: Real-time database for high resolution neutron monitor measurements, in: Proc. 30th ICRC, vol. 1, pp. 303–306, 2008.

5 Stone, D., Auffhammer, M., Carey, M., Hansen, G., Huggel, C., Cramer, W., Lobell, D., Molau, U., Solow, A., Tibig, L., and Yohe, G.: The challenge to detect and attribute effects of climate change on human and natural systems, *Clim. Change*, 121, 381-395, 2013.

Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research synthesis, *Clim.c Change*, 110, 1005-1027, 2012.

10 Svensmark, H., and FriisChristensen, E.: Variation of cosmic ray flux and global cloud coverage - A missing link in solar-climate relationships, *J. Atmos. Terr. Phys.*, 59, 1225-1232, 1997.

Svensmark, H.: Influence of cosmic rays on Earth's climate, *Phys. Rev. Lett.*, 81, 5027-5030, 1998.

Udelhofen, P. M., Gies, P., Roy, C., and Randel, W. J.: Surface UV radiation over Australia, 1979–1992: Effects of ozone and cloud cover changes on variations of UV radiation. *J. Geophys. Res.* 104, D16, 19135, 1999.

15 van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Ful, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., and Veblen, T. T.: Widespread increase of tree mortality rates in the western United States. *Science*, 323, 521-542, 2009.

Wallace, J. M., and Gutzler, D. S.: Teleconnections in the geopotential height field during the Northern Hemisphere winter, *Mon. Weather Rev.*, 109, 784-812, 1981.

20 Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological responses to recent climate change, *Nature*, 416, 389-395, 2002.

Wassmann, P., Duarte, C. M., Agusti, S., and Sejr, M. K.: Footprints of climate change in the Arctic marine ecosystem, *Glob. Chang. Biol.*, 17, 1235-1249, 2011.

25 Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase western U.S. forest wildfire activity. *Science*, 313, 940-943, 2006.

Wigley, T. M. L., and Barnett, T. P.: Detection of the greenhouse effect in the observations, in: *Climate change. The IPCC scientific assessment*, Cambridge, UK, 241–255, 1990.

Wu, Z., Dijkstra, P., Koch, G. W., Penuelas, J., and Hungate, B. A.: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation, *Glob. Chang. Biol.*, 17, 927-942, 2011.

30 Xu, L., Myneni, R. B., Chapin, F. S., III, Callaghan, T. V., Pinzon, J. E., Tucker, C. J., Zhu, Z., Bi, J., Ciais, P., Tommervik, H., Euskirchen, E. S., Forbes, B. C., Piao, S. L., Anderson, B. T., Ganguly, S., Nemani, R. R., Goetz, S. J., Beck, P. S. A., Bunn, A. G., Cao, C., and Stroeve, J. C.: Temperature and vegetation seasonality diminishment over northern lands, *Nature Clim. Change*, 3, 581-586, 2013.

Table 1. Summary of key variables used in the current study.

Category	Variables (Abbreviation)	Temporal coverage	Spatial coverage	Data references
Temperature	Temperature (T)	1980–2012	Northern Hemisphere (0°N–90°N)	Hansen et al. (2010)
Cryosphere indicators	Snow cover (SC)	1980–2012	Northern Hemisphere (0°N–90°N)	Robinson et al. (2012)
	Sea ice extent (SIE)	1980–2012	Northern Hemisphere (>31°N)	Fetterer et al. (2009)
	Sea ice concentration (SIC)	1980–2012	Northern Hemisphere (>31°N)	Fetterer et al. (2009)
Land indicators	Spring thaw (ST)	1988–2007	Northern Hemisphere (>45°N)	Barchivich et al. (2013)
	Start of growing season (SOS)	1982–2011	Northern Hemisphere (>45°N)	Barchivich et al. (2013)
	First flower bloom (FFB)	2001–2012	Canada (point data)	Gonsamo et al. (2013)
	Atmospheric CO ₂ peak-to-trough amplitude (AMP)	1980–2012	Station data (Alaska, USA, 71.3° N, 156.6° W)	This study
Ocean indicators	Sea level (SL)	1993–2012	Northern Hemisphere (0°N–90°N)	Nerem et al. (2010)
External anthropogenic forcing indicators	Atmospheric CO ₂ concentration (PPM)	1980–2012	Station data (Alaska, USA, 71.3° N, 156.6° W)	www.esrl.noaa.gov/gmd/dv/data
	Well-mixed greenhouse gases (WMGHG)	1980–2012	Global (point data)	Hofmann et al. (2006)
External natural forcing indicators	Sunspot number (SP)	1980–2012	Global (point data)	SIDC-team (1980–2012)
	Solar irradiance (RAD)	1980–2012	Point data (satellite based observation)	Frohlich and Lean (1998) and Frohlich (2000, 2003, 2006)
	Cosmic ray counts (CR)	1980–2007	Station data (Kiel, Germany, 54.3°N, 10.2°E)	Steigies et al. (2008)
Internal climatic variability indicators	North Atlantic Oscillation (NAO)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	East Atlantic Pattern (EA)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	West Pacific Pattern (WP)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	Pacific/North American Pattern (PNA)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	East Atlantic/West Russia Pattern (WR)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	Scandinavia Pattern (SCA)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	Polar/Eurasia Pattern (POL)	1980–2012	Northern Hemisphere (>20°N)	Barnston and Livezey (1987), and Wallace and Gutzler (1981)
	El Niño/Southern Oscillation (NINO)	1980–2012	El Niño 3.4 region (5°N–5°S, 120°–170°W)	Barnston and Ropelewski (1992)

Table 2. Percent interannual (lower left) and long-term (upper right) variances in indicator A explained by indicator B or vice versa for 1982–2011.

		Category		Temperature		Cryosphere indicators			Land indicators			Ocean indicators			External anthropogenic forcing indicators			External natural forcing indicators			Internal climatic variability indicators				
		A \ B		T	SC	SIE	SIC	ST	SOS	FFB	AMP	SL	PPM	WMGHG	SP	RAD	CR	NAO	EA	WP	PNA	WR	SCA	POL	NINO
Temperature	T			-64	-72	-61	-39	-39	27	61	77	79												-20	
Cryosphere indicators	SC					88	44		-25	-76	-78	-74	18	24				-19		26				13	
	SIE					53	46	21	-36	-77	-89	-85	14	19											
Land indicators	ST	-40	21				44				-36	-36												27	
	SOS	-28					61				-19	-23						-26							
	FFB	-41								-41								47						-51	
	AMP									23	46	45												-17	
Ocean indicators	SL										96	96													
External anthropogenic forcing indicators	PPM		-21	-30							99		-14												
	WMGHG			-22			-18						-18	-20											
External natural forcing indicators	SP		-17				-20				26		92	-76										-18	
	RAD			13			-22				18		90	-71										-18	
	CR									-39			-76	-70											
Internal climatic variability indicators	NAO																								-55
	EA																								16
	WP																								
	PNA																								41
	WR																								14
	SCA																								19
	POL	-19																							14
	NINO	23																							16
																									41
																									19

The numbers indicate the statistically significant ($p<0.05$) coefficient of determination (%), - sign is for negative correlation)

5 from a two tailed Student's t-test. Values in the lower left are the interannual coefficient of determinations after data detrending while values in the upper right are the long-term coefficient of determinations calculated before data detrending.

For interannual correlation analysis, each pair of variables were detrended separately using the common data record period.

The italic bold font represents a pair of correlations for which both long-term and interannual covariability show statistically significant relationship.

Temperature = T, snow cover = SC, sea ice extent = SIE, sea ice concentration = SIC, spring thaw = ST, start of growing season = SOS, first flower bloom day = FFB, sea level = SL, peak-to-trough amplitude of

5 CO₂ = AMP, CO₂ concentration = PPM, WMGHG = well-mixed greenhouse gases, sunspot number = SP, solar irradiance = RAD, and cosmic ray count = CR, NAO = North Atlantic Oscillation, EA = East Atlantic Pattern, WP = West Pacific Pattern, PNA = Pacific/ North American Pattern, WR = East Atlantic/West Russia Pattern, SCA = Scandinavia Pattern, POL = Polar/ Eurasia Pattern, and NINO = ENSO-Niño 3.4 index. The discrepancies in the amount correlations between Table 2, and Figures 2 and 3 are due to different time period lengths used in both analyses, the former is based on the most common

10 data record period (i.e., 1982–2011) while the latter are based on the entire data record period of each variable.

Table 3. Squared loading of variables for 1982–2011.

Category	Variables	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6
Temperature	T	0.26	0.40				
Cryosphere indicators	SC	0.40		0.19			0.12
	SIE			0.44			
	SIC			0.59	0.18		
Land indicators	SOS	0.47				0.18	
	AMP		0.44		0.17		
External anthropogenic forcing indicators	PPM			0.50		0.19	
	WMGHG	0.41					
External natural forcing indicators	SP	0.68					0.13
	RAD	0.67					
Internal climatic variability indicators	NAO	0.31			0.24		0.23
	EA	0.22	0.31				
	WP				0.35	0.30	
	PNA		0.58				
	WR			0.22	0.14		0.24
	SCA	0.47			0.14		
	POL			0.31	0.25	0.14	
	NINO		0.68				
Eigenvalue	4.21	3.04	2.54	1.70	1.38	1.12	
Variability %	23.38	16.87	14.10	9.44	7.64	6.20	
Cumulative %	23.38	40.24	54.34	63.78	71.42	77.62	

Squared loading of the variables. Only variables with at least 30-years of measurements were included in this analysis.

Values in bold correspond for each variable to the factor for which the squared loading is the largest. This Table presents the statistically significant ($p<0.05$, two tailed Student's t-test) principal component analysis (PCA) squared loading

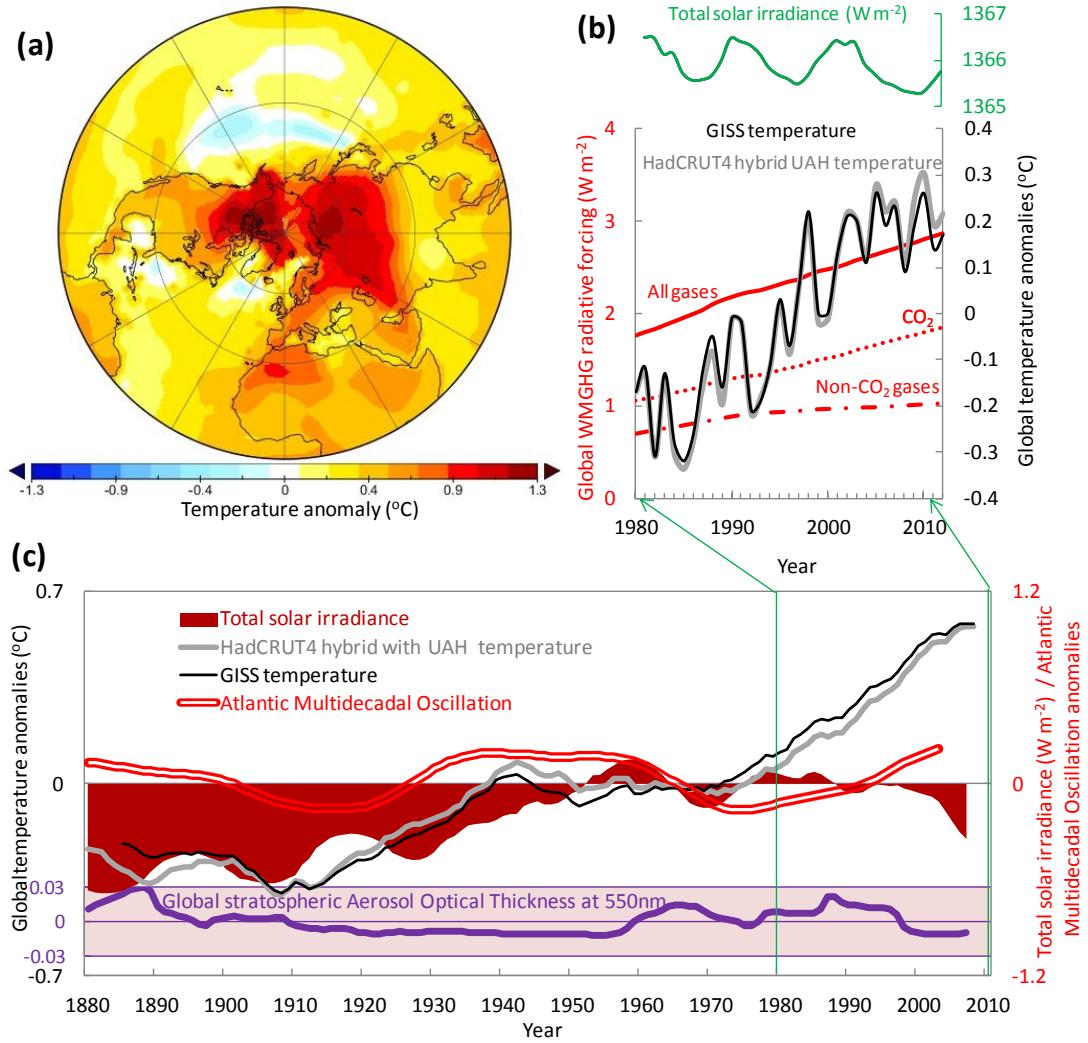
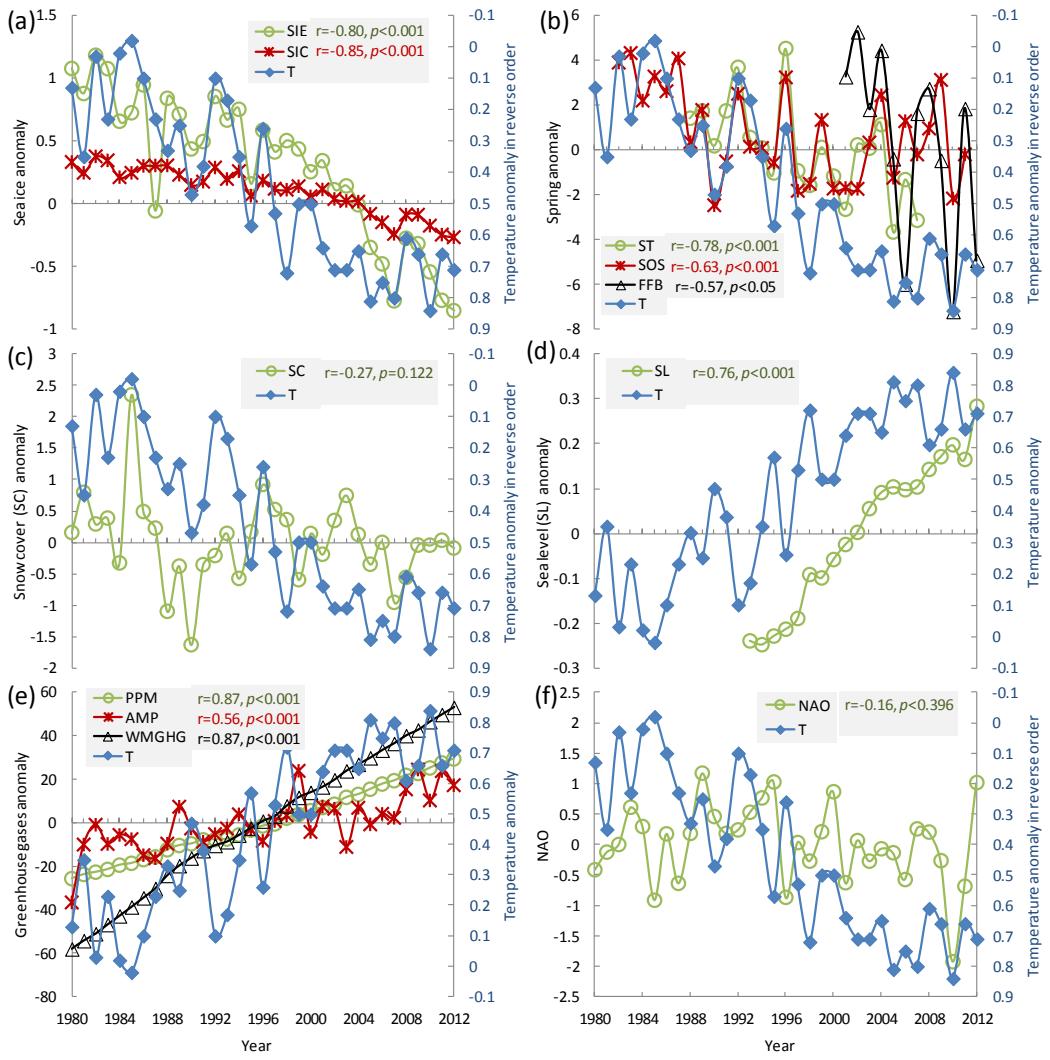

5 of variables, i.e., the percent explained variance [0–1] between each PCA axis and a variable. Temperature = T, snow cover = SC, sea ice extent = SIE, sea ice concentration = SIC, start of growing season = SOS, peak-to-trough amplitude of CO_2 = AMP, CO_2 concentration = PPM, WMGHG = well-mixed greenhouse gases, sunspot number = SP, solar irradiance = RAD, NAO = North Atlantic Oscillation, EA = East Atlantic Pattern, WP = West Pacific Pattern, PNA = Pacific/ North American Pattern, WR = East Atlantic/West Russia Pattern, SCA = Scandinavia Pattern, POL = Polar/ Eurasia Pattern, and NINO =
10 ENSO-Niño 3.4 index.

Table 4. Explained variance of land, cryosphere and ocean indicators by natural variability and anthropogenic forcing with and without temperature mediation calculated from the detrended data for 1982–2011.


Category	Variables	GHG-T	SR-TEL	SR-TEL-T
Cryosphere indicators	SC	36.6**	73.8***	74***
	SIE	23.7*	32.7*	25.3*
	SIC	35.4**	32.3*	37.9**
Land indicators	SOS	44.4***	46.3**	48.8***
	AMP	4.4	44.2**	52.4**
	ST	29.4*	32*	45.1**
	FFB	42.9*	98.8	100**
Ocean indicators	SL	9.9	51.1**	62.8*

This Table presents the percent explained variance derived from a PCA and stepwise regression analysis of land, cryosphere and ocean indicators by interannual changes in greenhouse gases and temperature (GHG-T); solar radiation and eight leading

5 teleconnections (SR-TEL); and solar radiation, eight leading teleconnections and temperature (SR-TEL-T). Temperature in GHG-T and in SR-TEL-T are included to show the temperature mediated natural variability and anthropogenic forcing. Snow cover = SC, sea ice extent = SIE, sea ice concentration = SIC, start of growing season = SOS, peak-to-trough amplitude of CO₂ = AMP, spring thaw = ST, first flower bloom day = FFB, and sea level = SL. GHG includes concentration (PPM) of atmospheric CO₂ at Point Barrow and 20 global well-mixed greenhouse gases (WMGHG) radiative forcing. SR-
10 TEL includes solar radiation, sunspot numbers and eight leading Northern Hemisphere teleconnection indices. All three sets (columns) of PCA analyses were done separately each only for the selected predicting variables. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, two tailed Student's t-test. The explained variances by combination of all drivers with and without temperature mediation are given in Fig. 5.

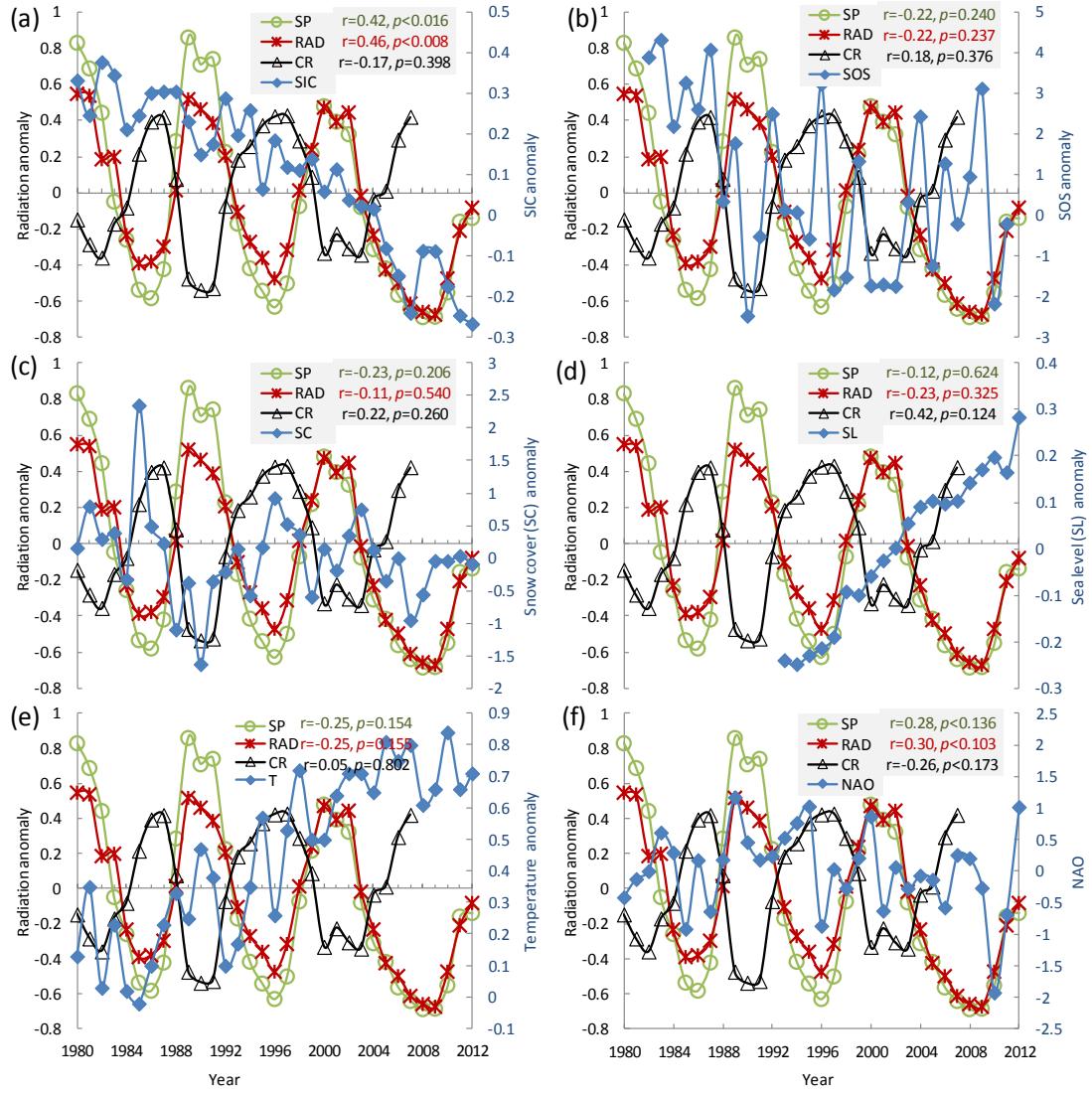
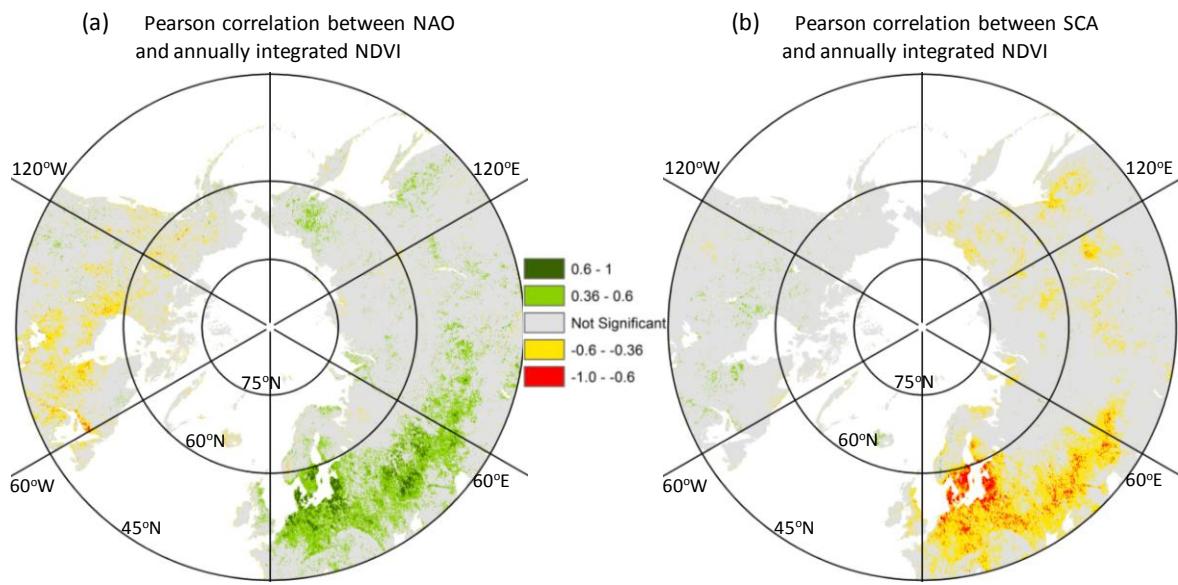


Figure 1. (a) 1980–2012 surface temperature anomaly ($^{\circ}\text{C}$) of Northern Hemisphere relative to 1951–1980 base period. (b) The global mean annual surface temperature anomalies, total solar irradiance, and global well-mixed greenhouse gases (WMGHG) patterns during the satellite era. The WMGHG includes CO₂, major gases (CH₄, N₂O, CFC12 and CFC11) and a set of 15 minor long-lived halogenated gases (CFC-113, CCl₄, CH₃CCl₃, HCFCs 22, 141b and 142b, HFCs 134a, 152a, 23, 143a, and 125, SF₆, and halons 1211, 1301 and 2402). Global annual mean surface temperatures relative to 1951–1980 base period from GISS (black) and Cowtan and Way HadCRUT4 hybrid UAH reconstruction (grey), and total solar irradiance are also shown in (b). (c) 11-year moving averages of global annual mean surface temperatures from GISS and Cowtan and Way HadCRUT4 hybrid UAH reconstruction, total solar irradiance, Atlantic Multidecadal Oscillation (AMO) index, and global stratospheric aerosol optical thickness at 550nm anomalies relative to 1951–1980 base period. The zoom-in arrows in (c) show the time period covered in this study when the temperature anomalies diverged from solar forcing and internal climatic variability.


Figure 2. Relationship between land, cryosphere and ocean indicators, and recent trends in surface temperature. Surface temperature anomaly is from the Northern Hemisphere relative to 1951–1980. The r (Pearson correlation coefficient) and p (p -value) are given for long-term relationships between temperature and the plotted variables. **(a)** Sea ice concentration (SIC) 5 0 (no ice) to 10 (full ice coverage) anomaly and sea ice extent (SIE) 10^6 km^2 anomaly of circumpolar Northern Hemisphere region ($>31^\circ\text{N}$) relative to 1993–2012 normals. **(b)** Spring thaw (ST) and start of growing season (SOS) day anomalies of northern ecosystems ($>45^\circ\text{N}$) relative to 1988–2007 normals (ref. Barichivich et al., 2013, modified) and first flower bloom (FFB) day anomaly of Canada relative to 2001–2012 normals (ref. Gonsamo et al., 2013, modified). **(c)** Snow cover (SC) 10^6 km^2 anomaly of Northern Hemisphere relative to 1993–2012 normals. **(d)** Sea level (SL) 10^2 mm anomaly of Northern Hemisphere relative to 1993–2012 normals. **(e)** peak-to-trough amplitude (AMP) 10^1 and concentration (PPM) of atmospheric CO_2 at Point Barrow and 20 global well-mixed greenhouse gases (WMGHG) radiative forcing. **(f)** The North 10 Atlantic Oscillation (NAO) index.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 10470 10475 10480 10485 10490 10495 10500 10505 10510 10515 10520 10525 10530 10535 10540 10545 10550 10555 10560 10565 10570 10575 10580 10585 10590 10595 10600 10605 10610 10615 10620 10625 10630 10635 10640 10645 10650 10655 10660 10665 10670 10675 10680 10685 10690 10695 10700 10705 10710 10715 10720 10725 10730 10735 10740 10745 10750 10755 10760 10765 1

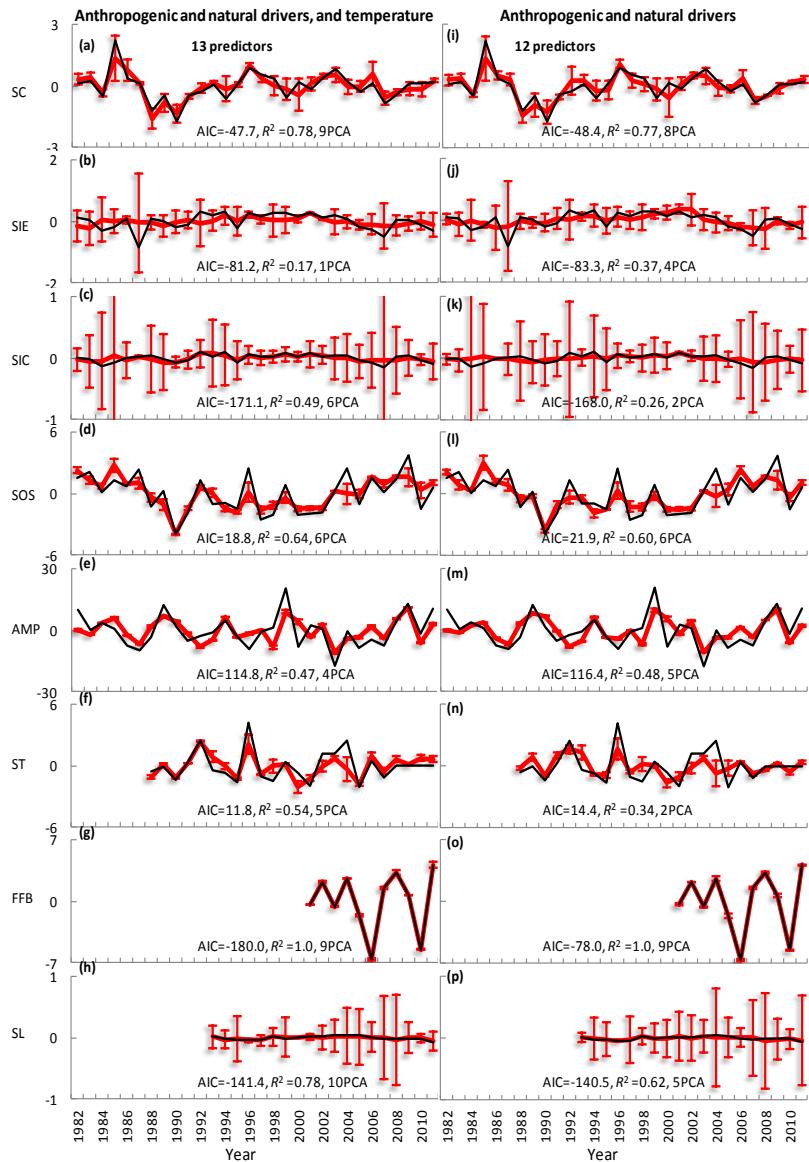


Figure 3. Relationships among temperature, land, cryosphere and ocean indicators, and recent trends in solar radiation, sunspots and cosmic rays. The relationships between anomalies of annual average of daily mean sunspot number (SP), annual average of daily mean solar irradiance (RAD, W m^{-2}), and the Kiel station annual average of hourly cosmic ray (CR) counts relative to 1980–2007 normals and,

5 (a) Sea ice concentration (SIC) 0 (no ice) to 10 (full ice coverage) anomaly of circumpolar Northern Hemisphere region ($>31^\circ\text{N}$) relative to 1993–2012 normals, (b) Start of growing season (SOS) day anomaly of northern ecosystems ($>45^\circ\text{N}$) relative to 1988–2007 normals (ref. Barichivich et al., 2013, modified), (c) Snow cover (SC) 10^6 km^2 anomaly of Northern Hemisphere relative to 1993–2012 normals, (d) Sea level (SL) 10^2 mm anomaly of Northern Hemisphere relative to 1993–2012 normals, (e) Surface temperature anomaly of Northern Hemisphere relative to 1951–1980 normals, (f) The North Atlantic Oscillation (NAO) index. The r (Pearson correlation coefficient) and p (p -value) are given for long-term relationships of SP, RAD, and CR with the plotted variable.

Figure 4. Relationships (values in Pearson correlation coefficient) between the growing season annually integrated normalized difference vegetation index (NDVI) and the North Atlantic Oscillation (NAO) (a), and the Scandinavia Pattern (b). Both teleconnection and NDVI datasets were detrended. All colour shaded values are significant at 95% confidence level from a two tailed Student's t-test.

Figure 5. Predicting powers of temperature mediated natural and anthropogenic drivers (left), and only natural and anthropogenic drivers (right). Black line is observed and red line is predicted. Error bars are uncertainty of each prediction measured by standardized error. The predictions were conducted using stepwise regression with Akaike information criterion

5 (AIC) from orthogonal variables transformed by principal component analysis (PCA) against each land, cryosphere and ocean indicator. The number of PCAs selected using the AIC criteria are shown in each panel. Predictors on left panels include the orthogonally transformed PCA variables of temperature, concentration (PPM) of atmospheric CO₂ at Point Barrow, 20 global well-mixed greenhouse gases (WMGHG) radiative forcing, solar radiation, sunspot numbers and eight leading Northern Hemisphere teleconnection indices. Panels on right include all the predictors on the left with exclusion of
10 temperature. Each PCA for the two sets (i.e. left and right panels) were conducted separately.