
Table S1. Data and sources for Figure 1: energy capture in the biosphere and society (EJ yr-1) 

Revolution Date Marine Terrestrial Biosphere 
total 

Biomass Fossil Anthropo-
sphere 
total 

Anoxygenic 

photosynthesis 

(R1) 

3 Ga 80 a 1 b 81 0 0 0 

Oxygenic 

photosynthesis 

(R2) 

1.5 Ga 1260 c 60 d 1320 0 0 0 

Eukaryotic 

photosynthesis 

(R3) 

350 Ma 1800 e 2500 f 4300 0 0 0 

Paleolithic fire 

use (R4) 

10,000 BC 1800 2000 3800 0.2 0 0.2 j 

Neolithic 

revolution (R5) 

1850 AD 1800 2000 g 3800 60 0 60 k 

 

Industrial 

revolution (R6) 

2000 AD 1800 h 2100 i 3900 222 396 618 l 

Notes:  

All carbon to energy conversions assume 37 MJ kgC-1. 

a Estimate for Fe-recycling biosphere based on corresponding carbon flux of 1.7 x1014 molC yr-1 (1). 

b Maximum productivity considering that terrestrial anoxygenic photosynthesis would be competing with 

marine anoxygenic photosynthesis for gaseous electron donors such as H2. 

c COPSE model  (2) gives ~0.7 of present [PO4] and marine productivity during Proterozoic. 

d From estimate for the net primary productivity of cyanobacterial desert crust today 11.7 gC m-2 yr-1 (3) 

multiplied by global land area, giving ~1.5 PgC yr-1.  

e COPSE model (4) gives 0.7-1.4 of present [PO4] and marine productivity over Phanerozoic time so opting 

for present value as best estimate.  

f COPSE model (4) gives 1-1.4 of present terrestrial NPP since establishment of vascular plants 350 Ma so 

taking 1.2 of present as best estimate. 

g Based on subtracting current terrestrial net carbon sink of ~2.7 PgC yr-1 from 2000AD estimate. 

h From satellite-based global marine NPP estimate of 48.5 PgC yr-1 (5) which is very close to mean of global 

models of 50.7 PgC yr-1 (6). 

i From satellite-based global terrestrial NPP estimate of 56.4 PgC yr-1 (5), which is fairly central in the range 

from models of 44.4-66.3 PgC yr-1 (7).   

j Based on (8)  

k Own calculation based on (8, 9) and Clio Infra (2015) (data retrieved March 1, 2015, clio-infra.eu) 

l Based on (10) 
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