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1 Introduction

The linear response framework used in Rypdal(2015) offers an interesting avenue to
produce simple, observation- based surface temperature models and projections. The
use of power-law Green’s functions (transfer functions) - which we call Climate Re-
sponse Functions –(CRF), is particularly interesting since over a wide range of scales
there exists a scaling symmetry respected by both the dynamics and boundary condi-
tions, which justify its use. Power law CRF’s can be used to relate responses to forcings
from internal variability as well as externally forced variability including solar, volcanic
and anthropogenic.

However, power-law CRF’s need to be treated with care since divergence issues arise
at either high or low frequencies depending not only the scaling exponent, but also
on either the high or – the case relevant here – the low frequency properties of the
forcings. In Rypdal(2015), the author uses a power law CRF to make global warming
projections from an observation-based minimal model. The problem lies in using the
chosen exponent since a step function – or other finite increase in the forcing that
lasts for long enough – will result in a divergence of the temperature. Therefore, in
Rypdal’s treatment, if the CO2 levels were to be maintained at current levels forever,
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the temperature of the earth would diverge; this is analogous to the dreaded runaway
greenhouse effect, or in this case a runaway Green’s function effect. In this case, the
author uses forcings of finite duration that lead to only finite changes, but the exponents
used are nevertheless unphysical. While it is true that the power law can be truncated
to yield only a the finite effect, any results will depend crucially on the truncation time
scale: it is a physical, not a technical, mathematical issue. Although for a different
range of exponents divergences also arise at high frequencies, this will be dealt with
elsewhere, here we discuss the low frequency issues relevant to Rypdal(2015). To
illustrate this, we will first introduce the scaling CRF, then we will discuss low-frequency
convergence for different forcing types and finally we will discuss physical implications
of this divergence.

2 A Scaling Climate Response Function

Green’s functions provide a general method of solving inhomogeneous linear differen-
tial equations. Consider the equation:

L(T (t)) = F (t) (1)

where the function T (t) is taken to be surface temperature for the purpose of this
paper, with certain boundary conditions, L is a linear differential operator and F (t) is
the forcing. The Green’s function G(t) is the solution of:

L(G(t)) = δ(t) (2)

where δ(t) is the Dirac function and the solution G(t) is subject to the same boundary
conditions as the original equation. Therefore the solution of the original equation is:

T (t) =
∫ ∞
−∞

G(t− t′)F (t′)dt′ (3)
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Notice that the initial conditions are important: the same linear operator with different
initial conditions will lead to a different Green’s functions. Due to the scaling symmetry
respected by the dynamics, and boundary conditions, over a wide range of scales, we
take the basic Green’s function as a power law:

G(t) = gH′tH
′−1Θ(t) (4)

where gH′ is a convenient constant, H ′ is the scaling exponent and Θ(t) is the Heav-
iside function, which is 1 for a positive t and 0 otherwise; this is needed to ensure
causality of the response. Notice that for convenience we took a slightly different no-
tation in this commentary for the scaling exponent, with H ′ instead of βT ; the two are
related by βT = 2H ′.

With this, we obtain:

T (t) = gH′

∫ t

−∞
(t− t′)H′−1F (t′)dt′ (5)

This is the solution to the fractional order differential equation:

dH
′

dtH′ T (t) = gH′Γ(H ′)F (t) (6)

where Γ(H ′) is the usual Gamma function.

3 Low-Frequency Divergence

Power laws are famous for both high and low frequencies divergences; in physics, two
notable cases are infrared and ultraviolet "catastrophes". We will start by reviewing the
criterion for low-frequency convergence.
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3.1 Deterministic Forcing of a Finite Duration

We consider a step forcing F (t) which is finite in duration and magnitude such that it is
zero before t = 0 and after t = τ ; we obtain :

T (t) ∝ (tH
′ − (t− τ)H

′
) (7)

where t ≥ τ ≥ 0. If we consider the very large times such that t >> τ , we obtain:

T (t) ∝ tH′−1 (8)

It is easy to see what happens if we take t→∞ :

T (t) =
{

0 H ′ < 1
∞ H ′ > 1

(9)

Therefore, to obtain convergence under any finite forcing of finite duration, we only
need H ′ < 1, or alternatively βT < 2.

3.2 Deterministic Forcing of Infinite Duration

Now we consider a step forcing of infinite duration, i.e. we take τ → ∞ in equation 7,
and we obtain :

T (t) ∝ tH′
(10)

The condition for convergence is now restrained to H ′ < 0, or βT < 0. As pointed out
by the author, the positive βT exponent for the Greens function is synonymous with a
divergence of the surface temperature even when the carbon dioxide concentration is
stabilized, i.e. a runaway greenhouse effect.
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3.3 Stochastic Forcing

Now we consider for the forcing Gaussian white noise that is a square integrable func-
tion γ(t) with mean zero such that:

F (t) = γ(t) (11)

〈γ(t)〉 = 0 (12)

〈γ(t)γ(t′)〉 = δ(t− t′) (13)

where "〈〉" indicates an ensemble average. This is appropriate for forcing due to internal
variability of the climate system. In this case, since 〈F (t)〉 = 〈γ(t)〉 = 0, the low
frequency constraint on H ′ for finite T (t) is H ′ < 1. However, to avoid divergences, the
variance should remain finite such that we have:

〈T (t)2〉 ∝
∫ t

−∞
(t− t′)2H′−2dt′ <∞ (14)

which implies H ′ < 1
2 , or βT < 1. We now introduce the more convenient scaling

exponent H which is defined from the scaling of the first order moment such that
βT = 1 + 2H − K(2), where K(2) is the multifractal "intermittency" correction to the
second order moment(K(q) is the moment scaling function). In this we can have a
situation where the absolute mean fluctuation diverges (depending on the first moment
exponent, H) while the second moment (depending on beta) on the contrary converges.
This is relevant for strongly strongly intermittent processes such as volcanism for which
K(2) ≈ 0.2− 0.3. On the other hand, it is not important for solar forcing which has low
intermittency and thus K(2) ≈ 0. A Gaussian process T (t) with −1 < H < 0 and
K(2) = 0, and thus −1/2 < H ′ < 1/2 or equivalently −1 < βT < 1, is a fractional
Gaussian noise, fGn. When H > 0, the process 〈T (t)2〉 diverges because of the
low frequencies (the stochastic runaway Green’s function effect), however differences
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∆T (∆t) = T (t) − T (t − ∆t) have convergent variances: 〈∆T (∆t)2〉 ∝ ∆t2H , this is
fractional Brownian motion, fBm. We note that when H < 0, 〈T (t)2〉 diverges at the
high frequencies. However, if we truncate the Green’s function at small scale τ , or
if we use the smoothed Tτ (t), that is averaged over a scale τ , then 〈Tτ (t)2〉 ≈ τ2H

(−1 < H < 0), which is finite.

Now consider a fractional noise of order Hf :

γHf
(t) = IHf

γ(t) (15)

where IHf
denotes a fractional integration of order Hf and γ(t) is again a Gaussian

white noise. The power-law CRF amounts to performing a second fractional integration
and since IH1(IH2) = IH1+H2 , the criterion for finite variance changes because now:

〈T (t)2〉 ∝
∫ t

−∞
(t− t′)2(H′+H′

f )−2dt′ <∞ (16)

and the criterion for convergence thus becomes H ′ < 1
2 − H ′f or, equivalently,

βT < 1 − βf where βf = 2H ′f . This is relevant since if we take volcanic forcing, for
example, which was found to have a scaling exponent Hf ≈ −0.2 with K(2) ≈ 0.2,
yielding βf ≈ 0.4 and H ′f ≈ 0.2, in Lovejoy et al.(2013), then its associated response
under a power-law CRF will converge only if βT < 0.6. In Rypdal(2015), the exponents
considered as upper and lower bounds are βT = 0.35 and βT = 0.75, adding it is likely
to be closer to the higher value; this means that that under this treatment volcanic forc-
ing would be enough to make the variance diverge for the higher βT value proposed.
In contrast, using the first order moment criterion, we find the more restrictive conver-
gence criterion: H +Hf < 0 so that H < 0.2. A more complete review of these issues
is found in Lovejoy et al.(2015) and Lovejoy et al.(2013).

3.4 Summary of Criteria for Low-Frequency Convergence

• For a deterministic forcing function over a finite interval : H ′ < 1, H < 1
2 or βT < 2
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• For a deterministic forcing function over an infinite interval : H ′ < 0, H < −1
2 or

βT < 0

• For a square integrable white noise forcing function with zero mean over an infi-
nite interval : H ′ < 1

2 , H < 0 or βT < 1

• For a square integrable fractional noise forcing function or order Hf with zero
mean over an infinite interval : H ′ < 1

2 −H
′
f , H < −Hf or βT < 1− 2βf

When intermittency is important, then the first and second order criteria (i.e. using H
and βT respectively) are no longer equivalent.

4 The Runaway Green’s Function Effect

Therefore, the condition for convergence depends on the type of forcing considered
and the scaling exponent. In the paper, the author argues for a positive βT for a de-
terministic forcing based on a previous estimation. The scenarios shown all started
with a business as usual scenario, i.e. a projection of the recent exponential trend in
emissions, followed by a slow or rapid decline in emissions, 1% per year or 5% per
year respectively, starting in 2030, 2070 or 2110. The Representative Concentration
Pathways(RCP) scenarios involve a stabilization of the forcing at a given level, which,
under this model, eventually lead to a divergence of surface temperature; this is the
runaway greenhouse effect, or in this case, the runaway Green’s function effect. In
their extensive review on the matter, Goldblatt and Watson find that, although it cannot
be completely ruled out, it is unlikely to be possible that such a phenomenon could
be induced by addition of carbon dioxide to the atmosphere. It would be useful that
the author puts his model into this contexts and specify the limits of this model upon
stabilization of carbon dioxide concentration; otherwise, his result implies that we must
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eventually return to pre-industrial carbon dioxide concentration to prevent the earth
from eventually becoming another Venus.

In a previous publication(Rypdal and Rypal 2014), the author argued that non-linear
effects could produce a low-frequency truncation in the power law climate response
function model which would prevent such divergence, but ruled out any truncation τL
less than 100 years from comparison with millennial reconstructions, thus arguing the
question is quasi-irrelevant for projections up to 2100. Here the projections are made
up to 2200, are we to assume now that the truncation is likely to be larger than 200
years? Following a step-wise increase in carbon dioxide radiative forcing, the equi-
librium temperature response under this power law climate response function will be
proportional to τHL ; the resulting equilibrium change in temperature depends entirely
on the choice of outer cutoff. If the cutoff is shown to be larger than the duration of the
forcing, its exact value will not be affect the final result since the finite length of the forc-
ing will act as an outer cutoff. If we take the year 1850 as the beginning of significant
carbon dioxide forcing, to make projections to 2100 and 2200, τL needs to be at least
250 and 350 years respectively to be neglected.

5 Conclusion

We discussed the different criteria for convergence of responses to power-law CRF
based on the scaling exponent, and the type of forcing. A Green’s function scaling
exponent βT < 1 is appropriate for white noise, but not for sustained anthropogenic ra-
diative forcing, the model presented by the author thus leads to divergence. Although
the model is simple, it is important to make sure it is physically sound and well de-
fined. In the context of the transfer function from emissions to concentration, it could
be argued that sustained high emissions beyond a removal threshold would lead to
a diverging concentration, but nothing indicates that it is the case for the temperature
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response to concentration. A physically based low-frequency cutoff should be formally
introduced and justified in the model if a positive exponent is to be used for the temper-
ature response to deterministic forcings. We agree that detrended temperature series
have properties of not too far from fGn, although to some limit of the order of centuries,
but there is no reason that the same scaling exponent should be used to produce the
fGn from Gaussian white noise forcing and the long-term projections from deterministic
forcing, especially since the properties of the response are so dependent on the prop-
erties of the forcing. Finally, we pointed out that when intermittency is important - as in
the case of volcanic forcing - that first and second order convergence criterion are not
the same, and that the first order criterion should be used since it is more stringent.

References

Goldblatt, C. and Watson, A. J.: The Runaway Greenhouse: implications for future climate
change, geoengineering and planetary atmospheres, Philosophical Trans-actions of the
Royal Society A: Mathematical, Physical and Engineering Sciences370 (1974), 4197-4216.

Lovejoy, S., Schertzer, D., and Varon, D.: Do GCMs predict the climate ... or macroweather?,
Earth Syst. Dynam., 4, 439-454, doi:10.5194/esd-4-439-2013, 2013.

Lovejoy, S., del Rio Amador, L. and Hébert,R.: The Scaling LInear Macroweather model (SLIM):
using scaling to forecast global scale macroweather from months to decades, Earth Syst.
Dynam. Discuss., 6, 489-545, doi:10.5194/esdd-6-489-2015, 2015.

Rypdal, K.: Global warming projections derived from an observation-based minimal model,
Earth Syst. Dynam. Discuss., 6, 1789-1813, doi:10.5194/esdd-6-1789-2015, 2015.

Rypdal, M. and Rypdal, K.: Long-memory effects in linear-response models of Earth’s tempera-
ture and implications for future global warming, J. Climate, 27, 5240–5258, doi:10.1175/JCLI-
D-13-00296.1, 2014. 1794, 17951807

C953

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/6/C944/2015/esdd-6-C944-2015-print.pdf
http://www.earth-syst-dynam-discuss.net/6/1789/2015/esdd-6-1789-2015-discussion.html
http://www.earth-syst-dynam-discuss.net/6/1789/2015/esdd-6-1789-2015.pdf
http://creativecommons.org/licenses/by/3.0/

	Introduction
	A Scaling Climate Response Function
	Low-Frequency Divergence
	Deterministic Forcing of a Finite Duration
	Deterministic Forcing of Infinite Duration
	Stochastic Forcing
	Summary of Criteria for Low-Frequency Convergence

	The Runaway Green's Function Effect
	Conclusion

