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Abstract. I have chosen to respond to the comments by Hébert and Lovejoy by adding five appen-

dices in the revised manuscript, which includes three more figures and one table. Fig. 1 below is Fig.

4 in the main manuscript. It is given here for easy comparison with Fig. 4.

Appendix A: Response to step forcing for one-box model

The linearised one-box model has the form5

C1
dT1
dt

=− T1
Seq

+F. (A1)

Here T1 is the perturbation of the mixed-layer temperature from an imagined equilibrium and F is

the forcing relative to that equilibrium. C1 is the heat capacity per square meter of the mixed layer,

and the term T1/Seq is the linearised expression for the intensity of the outgoing long-wave radiation

(OLR). It is determined by the (linearised) Stefan-Boltzmann (SB) law and the effective emissivity

of the atmosphere, which also contains the effects of fast feedbacks. The nonlinear version and the

linearisation procduure is described in Appendix ??. If a new equilibrium is attained with the forcing

F we have

Seq =
T1
F
,

which makes it natural to name Seq the equilibrium climate sensitivity. It is determined from the SB

constant and the effective atmospheric emissivity, i.e., it is totally determined by the atmosphere.

The response function (Greensfunction: the response to F = δ(t)) for the one-box model is

G(t) =
1

C1
e−t/τ1H(t), where τ1 = C1Seq,

and H(t) is the Heaviside unit step function. The response to a step-function forcing F (t) =H(t)

is,

T1(t) =

t∫
−∞

G(t− t′)dt′ = Seq(1− e−t/τ1). (A2)
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Appendix B: Response to step forcing for two-box model10

The recent work by ? shows that a two-exponentials response can be fitted very well to a number

of 150 yr AOGCM runs with step-function forcing. This raises the question whether the power-

law LRM-response representation is really only an inaccurate expression of a a response with two

exponential time scales, or vice versa. There is also an issue of whether the AOGCMs really capture

the true scaling properties of the observed response. The two-box model couples the mixed layer to15

the deep ocean temperature T2 through a simple heat conduction term

C1
dT1
dt

= − 1

Seq
T1−κ(T1−T2) +F (B1)

C2
dT2
dt

= κ(T1−T2).

where C2 is the heat capacity of the deep ocean and κ is a heat conductivity. In the limit C2� C1,

the Greens-function for T1(t) correct to lowest order in the small parameter C1/C2, is very simple20

and transparent;

G(t) =

(
Str
τtr

e−t/τtr +
Seq −Str

τeq
e−t/τeq

)
H(t), (B2)

The reponse to a step-function forcing; F =H(t) then becomes

T1(t) = Str(1− e−t/τtr ) + (Seq −Str)(1− e−t/τeq ), (B3)

where we have introduced some new parameters,

Str =
Seq

1 +κSeq
, τtr = C1Str, τeq =

C2Seq
1−Str/Seq

. (B4)

These parameters replace the heat capacities C1,2 and the heat coupling constant κ, whose physical

meaning is easy to grasp, but hard to measure directly. The meaning of the new parameters is ap-25

parent if we consider the response to a step-function forcing. Since C1/C2� 1 we have τtr� τeq ,

and for t� τeq the response is completely dominated by the first term in equation (??), and hence

relaxes exponentially with the transient time constant τtr to the new quasi-equilibrium Str, which

is denoted the transient climate sensitivity. However, when t approaches τeq the second term comes

into play, and there is a new delayed response with time constant τeq giving relaxation to the full30

radiative equilibrium Seq .

From comparing the terms−T1/Seq and−κ(T1−T2) in Eq. (??) we observe that κSeq measures

the ratio between the heat flux into the deep ocean and the OLR at the early stage of the response,

i.e., when T2 is still close to zero. From Eq. (??) we have that the part of the sensitivity caused by

the slow response from interaction with the deep ocean is

Seq −Str = (κSeq)Str.
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Hence, it appears that κSeq is an important parameter. If κSeq� 1 the inclusion of the deep ocean

has little effect on the relaxation to equilibrium. If κSeq ' 1 or larger the slow response leads to a

significant rise of the temperature after the transient equilibrium has been attained. The fast and the

slow time constants are always well separated if C1� C2 since

τtr
τeq

=
C1

C2

κSeq
(1 + kSeq)2

≤ C1

4C2
.

Appendix C: Response to step forcing in LRM model and GCMs

The LRM-scaling response function GT (t) = αT t
βT /2−1 yields a response T ∼ tβT /2 to a step in

the forcing at time t= 0, while a linearly growing forcing yields a response T ∼ tβT /2+1. Since

the forcing is logarithmic in the CO2 concentration the latter corresponds to exponentially growing35

concentration. Climate-model runs with linearly growing forcing are of course more realistic than

step-function runs, but both have been conducted as part of the CMIP5 project. Examples are 150 yr

long simulations of the GISS-E2-H model with a sudden quadrupling of the CO2-concentration

(Fig. ??a) and a 1% per yr increase in the CO2-concentration (Fig. ??b). A fit of the LRM-scaling

response T ∼ tβT /2 to the GISS-model result in Fig. ??a yields βT ≈ 0.32, and the solution is shown40

as the red curve in the figure. The solution of the form T ∼ tβT /2+1 is shown as the red curve in

Fig. ??b. The fit to the tail of the step-function response looks good up to the 150 yr duration of the

simulation, but the divergence of the solution as t→∞ indicates that the power-law tail with βT > 0

is unrealistic for sufficiently large times. There exist few AOGCM simulations that investigate the

response to such idealised forcing on millennium time scale. In ? some figures with results of such45

runs are given. Fig. ??c is an adaptation of Fig. 3 in ?, which shows a 2000 yr long run of the GISS

ModelE-R, and Fig. ??d shows a plot of the function ctβT /2+1 with β = 0.32. It demonstrates that at

least this particular AOGCM exhibits the power-law tail in the temperature response on time scales

up to two millennia.

Note that the βT ≈ 0.32 obtained for the LRM-model on long time scales is smaller than the50

βT ≈ 0.75 estimated from the spectra of the residual of the instrumental data after the response to

the deterministic forcing has been subtracted (?). If we produce such residuals by subtracting the red

curves from the GISS-model curves in Fig. ??a,b the result looks like a fractional Gaussian noise

(fGn) with spectral exponent β ≈ 0.65. As mentioned in Sect. 2.1 an fGn xβ(t) characterised by

the spectral exponent β is produced by the convolution integral Eq. (2) in the main manuscript if55

the response kernel is G(t)∼ tβ/2−1 and the forcing function F (t) is a white Gaussian noise x0(t)

(white noise is an fGn with β = 0). In other words we have,

xβ(t) =

∞∫
−∞

t′β/2−1H(t− t′)x0(t′)dt′, (C1)

where H(t) is the unit step function. By using the convolution theorem for the Fourier transform it

is easily shown (?) that if F (t) is an fGn with spectral exponent βF , and the response function has60
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exponent βT , then the convolution will produce an fGn with β = βT +βF ;

xβ(t) =

∞∫
−∞

t′βT /2−1H(t− t′)xβF
(t′)dt′. (C2)

In ? it was suggested that the discrepancy between the spectral exponent β of residuals in observed

and simulated GMST records could be explained by assuming some long-range memory (βF > 0)

in the stochastic forcing. It was pointed out there that this LRM could even be present in the CO2-65

forcing, since some recent studies indicate strong spatiotemporal heterogeneity in the atmospheric

CO2 concentration which might give rise to a fluctuating global component of the global CO2-

forcing with long-memory properties.

Appendix D: Two-box vs. LRM fitting to GCM results

? have fitted the two-box model to 16 runs of 150 yr length to step-function forcing. There are four70

fitting parameters, and the fits are generally good. There is, however, a wide scatter in the fitting

parameters between the different models, which may be an indication of overfitting. In Fig. ?? the

surface tempeature solution to the two-box model

T1(t) = [Str(1− exp(−t/τtr)) + (Seq −Str)(1− exp(−t/τeq))]F4×CO2 , (D1)

and to the LRM model75

T1(t) = ctβT /2F4×CO2
, (D2)

have been fitted to simulation results for the GMST of climate models with step-forcing, F (t) =

F4×CO2
H(t). Here F4×CO2

≈ 8.61 Wm−2 is the forcing associated with a quadrupling of the atmo-

spheric CO2 concentration. The fitting parameters obtained are given in Table 1.

Model τ1 (months) τ2 (months) Str (Km2/W) Seq (Km2/W) c βT

GISS-E2-H 26 663 0.29 0.46 0.14 0.32

BNU-ESM 46 729 0.46 0.69 0.21 0.33

CCSM4 49 4.1× 1010 0.33 3.9× 106 0.10 0.40

CNRM_CM5 38 390 0.37 0.58 0.20 0.31

MPI-ESM-LR 34 1061 0.46 0.75 0.20 0.33
Table 1. Parameters estimated by fitting Eqs. (??) and (??) to the climate model responses to an abrupt qua-

drupling of atmospheric CO2 shown in Fig. ??. The table shows the parameters obtained by the Mathematica

routine FindFit.

The LRM-model in general gives a poorer fit on the short time scales. This is not surprising, since80

the LRM-response ctβT /2 has an infinite derivative at t= 0. However, a much better approximation
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is obtained if we fit the LRM model only in the interval (0,100) months, but then βT is raised to

approximately 0.75. If we implement a four-parameter model with one power-law (βT ≈ 0.75) up

to 100 months and another (βT ≈ 0.35) for t > 100 months, we obtain fits comparable to the two-

exponential model. There is a wide scatter in the model parameters for the two-box model. Note85

particularly the huge values for τeq and Seq for the CCSM4 model. The long time-scale tail is not

captured by a reasonable exponential, but is well approximated by a reasonable power-law. On the

other hand, the scatter in the LRM-model parameters is small. All this indicates that the two-box

model may suffer from overfitting in some cases.

When projections are limited to 2200 CE there is no practical difference between using a power-90

law response kernel (the LRM model) and the two-exponential kernel (the two-box model). This is

illustrated in Fig. ??, where we compute the response for the exponential CO2-concentration model

with τC = 33 yr and the two-box model parameters corresponding to the GISS-E2-H model and the

CNRM_CM5 models, respectively. The parameters for the two models differ significantly, but the

projections are almost identical. Morever, they are very similar to the projections in Fig. ??a, where95

the temperature response is produced by the LRM-model with τC = 33 yr and βT = 0.35. This

demonstrates that the mathematical divergence of the solution Eq. (??) for a step-function forcing

has little impact on the projection up to 2200 CE for the forcing scenarios considered here. The

advantage of the power-law kernel is that it provides a more parsimonious description (fewer fitting

parameters) which provides a more precise parameter estimation.100

Appendix E: Divergences, causality and initial conditions

IfG(t) is a power law the integral over prehistory t ∈ (−∞,0) may lead to paradoxes, such as diver-

gences of the integral. The solution to the paradox is to interpret the power-law as an approximation,

for instance to a superposition of exponential response kernels. For a white-noise forcing this cor-

responds to an aggregation of Ornstein-Uhlenbeck (OU) processes, which are known to have the105

potential to produce a process that is a very good approximation to a fractional Gaussian noise (fGn)

up to the time scale corresponding to the OU process with the greatest correlation time (?).

The scaling properties on scales of decades and longer arise from the heat transport within the

oceans. This transport exhibits a maximum response time, which will provide an upper (exponential)

cut-off of the power-law response function, but the characteristic time of this cut-off may be centuries110

or millennia. ? state in their abstract: “Scaling up to decades is demonstrated in observations and

coupled atmosphere-ocean models with complex and mixed-layer oceans. Only with the complex

ocean model the simulated power laws extend up to centuries.”
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If we don’t treat the power-law as an approximation we have to deal with the divergences of the

integral115

∆T (t) =

t∫
−∞

G(t− t′)F (t′)dt′, (E1)

where G(s) = sβT /2−1. If we consider the unit step-function forcing F (t) =H(t), and βT 6= 0, the

integral is

∆T (t) = lim
ε→0+

t∫
ε

(t− t′)βT /2−1 dt′ = lim
ε→0+

t∫
ε

sβT /2−1 ds= lim
ε→0+

2

βT
(tβT /2− εβT /2). (E2)

Clearly ∆T (t) diverges as t→∞ if βT > 0, but it also diverges if βT < 0 (as ε→ 0+). For βT = 0120

there is a logarithmic divergence in both limits.

For physically meaningful results the βT > 0 case requires some sort of cut-off (e.g., an exponen-

tial tail) for sufficiently large t, and the βT < 0 case requires an elimination of the strong singularity

of G(s) at s= 0. A shown in Appendix ??, AOGCMs in the CMIP5 ensemble with step function

forcing indicate a power-law response for large s at least up to 150 yr (and the GISS-E2-R model125

up to 2000 yr) with βT ≈ 0.35, so βT > 0 is the case of interest for the global temperature response.

The AOGCMs are also well approximated by an exponential response in the limit s→ 0 (for s up to

a few years), so an exponential truncation in this high-frequency limit is also appropriate.

The truncation of the power-law kernels is a physical, and not a technical mathematical issue. It

is an approximation to a hierarchy of exponential responses. With this interpretation the divergences130

evaporate. Below is a more detailed outline of this philosophy in an energy-balance context. Let

us take as a starting point the simple zero-dimensional EBM before linearisation of the Stefan-

Boltzmann law;

C
dT

dt
=−εσST 4 + I(t), (E3)

where T is surface temperature in Kelvin, C is an effective heat capacity per area of the Earth’s sur-135

face, σS is the Stefan-Boltzmann constant, ε is an effective emissivity of the atmosphere, and I(t) is

the incoming radiative flux density at the top of the atmosphere. Let I0 = I(0) be the initial incom-

ing flux, F (t) = I(t)−I0 is the radiative forcing, Teq = (I0/εσS)1/4 is the equilibrium temperature

at t= 0, ∆T (t) = T (t)−Teq is the temperature anomaly measured relative to the initial equilibrium

temperature, and ∆T0 = ∆T (0) is this anomaly at t= 0. Note that F here is the perturbation of the140

radiative flux with respect to the initial flux I0 and not with respect to the flux εσST 4
0 that would

be in equilibrium with the initial temperature T0. The linearised EBM for the temperature change

relative to the temperature T0 (the one-box model) is

d∆T

dt
=−ν∆T +F(t), ∆T (0) = ∆T0, (E4)
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where ν = 4εσST
3
0 /C, F(t) = F (t)/C. By definition F(0) = [I(0)− I0]/C = 0. This is Eq. (??)145

and Eq. (??) with slightly different notation. The solution the initial value problem (i.v.p.) Eq. (??),

with the initial condition ∆T (0) = ∆T0, takes the form

∆Ti.v.p. =

t∫
0

G(t− t′)F(t′)dt′+ ∆T0e
−νt, (E5)

where G(s) = exp(−νs). The generalisation to a linear, causal response model, where G(s) is

not necessarily exponential, involves extending the integration domain in Eq. (??) to the interval150

(−∞, t);

∆Tr.m.(t) =

t∫
−∞

G(t− t′)F(t′)dt′. (E6)

From the initial condition ∆T (0)r.m. = ∆T0 Eq. (??) yields,

∆T0 =

0∫
−∞

G(−t′)F(t′)dt′. (E7)

For exponential response G(s) = exp(−νs) it is easy to verify that ∆Ti.v.p.(t) = ∆Tr.m.(t), and155

Eq. (??) yields the following relation between the initial temperature anomaly and the forcing F(t)

for t ∈ (t,0);

∆T0 =

0∫
−∞

eνt
′
F(t′)dt′. (E8)

For the exponential response there is no “divergence issue” in Eq. (??). Neither is there such an

issue for the two-exponential solution to the two-box model (?). An “N -box model” exhibits a160

response function for the temperature in each box which is a superposition of exponentials; G(s) =∑N
i=1 ai exp(−νis). For the surface (mixed layer) box the temperature anomaly takes the form

∆r.m.(t) =

N∑
i=1

aie
−νit

t∫
−∞

eνit
′
F(t′)dt′. (E9)

On the other hand, the N -box initial value problem has solution of the form

∆Ti.v.p.(t) =

N∑
i=1

aie
−νit

t∫
0

eνit
′
F(t′)dt′+

N∑
i=1

bie
−νit, (E10)165

where the coefficients bi are linearly related to the initial temperatures of each box; bi =
∑N
j=1MijT0j .

The condition T̃i.v.p.(t) = T̃r.m.(t) now yields the relations between the initial temperatures and the

prehistory of the forcing;

N∑
j=1

Mij∆T0j = ai

0∫
−∞

eνit
′
F(t′)dt′ for i= 1, . . . ,N. (E11)
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With a white-noise forcing F(t) the Eq. (??) is the Itô stochastic differential equation (in physics170

often called the Langevin equation). The solution is the Ornstein-Uhlenbeck (OU) stochastic process,

which in discrete time corresponds to the first-order autoregressive (AR(1)) process. The power

spectral density of this process is essentially a Lorentzian, which means that the high-frequency

(f � ν) part of the spectrum has the form ∼ f−2, and the low-frequency part ∼ f0. This means

that if the climate response were well described by a one-box EBM we could use a power-law175

response model with βT ≈ 2 on time scales much shorter than the correlation time τc = ν−1. On

these time scales the stochastic process exhibits the characteristics of a Brownian motion (Wiener

process), which is a self-similar process with spectral index β = 2. This process is non-stationary,

and hence suffers from the divergences that we are worried about. But even though the Brownian

motion diverges, the OU-process does not, because of the flattening of the spectrum for f � ν.180

Both observation data and AOGCMs indicate that the one-box EBM is inadequate, but the con-

siderations above are equally valid for an N -box model, for which the white-noise forcing gives

rise to an aggregation of OU-processes with different νi. Such an aggregation is known to be able

to produce a process with approximate power-law spectrum with 0< β < 2 on time scales τ < ν−1min

(?).185

? specifically argue that volcanic forcing may have a scaling exponent βF ≈ 0.4, and hence the

convergence criterion β = βT +βf < 1 then requires βT < 0.6. One remark to this is that the above

discussion shows that the β < 1 criterion is not necessary on time scales shorter than τ < ν−1min.

However, observation indicates that β < 1, so this does not invalidate their argument. More important

is that in recent papers the response to volcanic forcing has been subtracted from both instrumental190

and multiproxy reconstruction data ? and from millennium-long AOGCM simulations (?), and the

residuals have been analysed for β without finding a detectable influence of the volcanic forcing

on β. The same is seen by comparing control runs of the AOGCMs with those driven by volcanic

forcing (?).

Appendix F: Non-stationarity of the CO2 response195

In Sect. 2.2 we found (by comparing Figs. ??b and ??c that the LRM CO2 response with βC = 1.6

gives approximately the same evolution of CO2 concentration up to 2200 CE as a response where

50% of the emitted CO2 is absorbed by the surface almost immediately and the remainder decays ex-

ponentially with a time constant τC = 300 yr. This is analogous to the situation with the temperature

response, where where an LRM response gives very similar results to a two-exponential response200

with appropriate fitting of model parameters (see Appendix ??. The most important difference is

that the βC-parameter is larger than unity. A step-function emission rate R(t) =H(t) will give rise

to a CO2 concentration that grows like (2αT /βC)tβC/2. This non-stationarity (divergence) of the

response as t→∞ is reasonable, since the surface will not be able to absorb a sufficient fraction of
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the constantly emitted CO2 to establish a new equilibrium. The exponential response kernel Eq. (??),205

on the other hand yields the response r[1− exp(−t/τC)] to the step forcing. This implies establish-

ment of a new equilibrium CO2-concentration after t� τC . This has little consequence as long as

we consider projection only up to 2200 CE (and τC ≈ 300 yr). On millennium time scale we have

the positive ice-age feedback, by which warming may lead to net release of CO2 to the atmosphere,

and hence lead to continuing growth of CO2 concentration. It is assumed to be important in the trig-210

gering of glacial-interglacial transitions, although it is not very well understood. On time scales of

hundreds of kyr we have the negative Carbon weathering-cycle feedback that will eventually lead to

a Carbon cycle equilibrium. The most interesting feature of this feedback in the present context is

that it suggests that the anthropogenic global warming event may last for such a long time in absence

of effective Carbon sequestration measures (?).215

A more problematic non-stationarity of the Carbon-cycle response arises from stochastic forcing.

In this case the power-law response function will give rise to a fractional Brownian motion (fBm)

with power-spectral index βC ≈ 1.6. This is a non-stationary stochastic process in the sense that the

variance increases with time as tβC−1, which is not physically reasonable for sufficiently large t.

Here we may be saved by an exponential cut-off of the power-law tail, but this requires some sort220

of negative Carbon-cycle feedback. It is difficult to assess the magnitude of the natural stochastic

component of the CO2 emission rate. If it small the weathering-cycle feedback may be sufficient.
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Figure 1. This is Fig. 5 in the main manuscript. (a): The evolution of the GMST for the CO2 concentration

scenarios shown in Fig. 4a and Fig. 4c in the main manuscript. (a): τC = 33 yr and βT = 0.35. (b): βC = 1.6

and βT = 0.35. (c): τC = 33 yr and βT = 0.75. (d): βC = 1.6 and βT = 0.75.
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13424 J. Hansen et al.: Earth’s energy imbalance and implications

4 Climate response function

Climate response to human and natural forcings can be sim-
ulated with complex global climate models, and, using such
models, it has been shown that warming of the ocean in re-
cent decades can be reproduced well (Barnett et al., 2005;
Hansen et al., 2005; Pierce et al., 2006). Here we seek a sim-
ple general framework to examine and compare models and
the real world in terms of fundamental quantities that eluci-
date the significance of the planet’s energy imbalance.
Global surface temperature does not respond quickly to a

climate forcing, the response being slowed by the thermal
inertia of the climate system. The ocean provides most of
the heat storage capacity, because approximately its upper
100m is rapidly mixed by wind stress and convection (mix-
ing is deepest in winter at high latitudes, where mixing occa-
sionally extends into the deep ocean). Thermal inertia of the
ocean mixed layer, by itself, would lead to a surface temper-
ature response time of about a decade, but exchange of water
between the mixed layer and deeper ocean increases the sur-
face temperature response time by an amount that depends
on the rate of mixing and climate sensitivity (Hansen et al.,
1985).
The lag of the climate response can be characterized by

a climate response function, which is defined as the fraction
of the fast-feedback equilibrium response to a climate forc-
ing. This response function is obtained from the temporal re-
sponse of surface temperature to an instantaneously applied
forcing, for example a doubling of atmospheric CO2. The
response function for GISS modelE-R, i.e., the GISS atmo-
spheric model (Schmidt et al., 2006) coupled to the Russell
ocean model (Russell et al., 1995), is shown in Fig. 3. The
Russell ocean model conserves water and salt mass, has a
free surface with divergent flow, uses linear upstream scheme
for advection, allows flow in and out of 12 subresolution
straits, and is used here with 13 layers at 4� ⇥ 5� resolution.
The coupled modelE-R has been characterized in detail via
its response to many forcings (Hansen et al., 2005b, 2007).
About 40 percent of the equilibrium response is obtained

within five years. This quick response is due to the small
effective inertia of continents, but warming over continents
is limited by exchange of continental and marine air masses.
Only 60 percent of the equilibrium response is achieved in a
century. Nearly full response requires a millennium.
Below we argue that the real world response function is

faster than that of modelE-R. We also suggest that most
global climate models are similarly too sluggish in their re-
sponse to a climate forcing and that this lethargy has impor-
tant implications for predicted climate change. It would be
useful if response functions as in Fig. 3 were computed for all
climate models to aid climate analysis and intercomparisons.
Also, as shown in the next section, the response function can
be used for a large range of climate studies.
Held et al. (2010) show global temperature change ob-

tained in 100-yr simulations after instant CO2 doubling for

 
Fig. 1.  Climate forcings employed in this paper.  Forcings through 2003 (vertical line) are the same as 
used by Hansen et al. (2007), except the tropospheric aerosol forcing after 1990 is approximated as -0.5 
times the GHG forcing.  Aerosol forcing includes all aerosol effects, including indirect effects on clouds 
and snow albedo.  GHGs include O3 and stratospheric H2O, in addition to well-mixed GHGs.These data 
are available at http://www.columbia.edu/~mhs119/EnergyImbalance/Imbalance.Fig01.txt 
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Fig. 3. Climate response function, R(t), i.e., the fraction of equi-
librium surface temperature response for GISS climate model-ER,
based on the 2000 yr control run E3 (Hansen et al., 2007). Forcing
was instant CO2 doubling with fixed ice sheets, vegetation distribu-
tion, and other long-lived GHGs.

the Geophysical Fluid Dynamics Laboratory (GFDL) cli-
mate model, a model with equilibrium sensitivity 3.4 �C for
doubled CO2. Held et al. (2010) and Winton et al. (2010)
draw attention to and analyze two distinct time scales in the
climate response, a quick partial climate response with char-
acteristic time about 5 yr and a slow warming on century time
scales, which they term the “recalcitrant” component of the
climate response because it responds so sluggishly to change
of the climate forcing. This decomposition provides useful
insights that we will return to in our later discussion. The
GISS modelE-R yields a similar response, as is more appar-
ent with the higher temporal resolution of Fig. 4a.
Climate response time depends on climate sensitivity as

well as on ocean mixing. The reason is that climate feed-
backs come into play in response to temperature change, not
in response to climate forcing. On a planet with no ocean
or only a mixed layer ocean, the climate response time is
proportional to climate sensitivity. However, with a realistic
ocean that has exchange between the mixed layer and deeper
ocean, the longer response time with higher sensitivity also
allows more of the deep ocean heat capacity to come into
play.
Hansen et al. (1985) show analytically, with ocean mix-

ing approximated as a diffusive process, that the response
time increases as the square of climate sensitivity. Thus a cli-
mate model or climate system with sensitivity 4 �C for dou-
bled CO2 requires four times longer to approach equilibrium
compared with a system having climate sensitivity 2 �C for
doubled CO2.
The response function in Fig. 3 is derived from a climate

model with sensitivity 3 �C for doubled CO2. When the re-
sponse function of other models is evaluated, it would be
most useful if the equilibrium climate sensitivity were also
specified. Note that it is not necessary to run a climate model
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Figure 2. (a): LRM response model fit c1tβT /2 (red) to the GISS-E2-H model response to an abrupt quadrupling

of atmospheric CO2 (grey). The fit yields βT = 0.32. (b): The LRM-reponse model solution c2tβT /2+1 with

βT = 0.32 (red) and the GISS-E2-H model response to a 1 % per yr increase in atmospheric CO2-concentration.

(c): The 2000 yr response to a doubling of CO2 in GISS ModelE-R as taken from Figure 3 in ?. (d) Response

to the same forcing in the LRM model with βT = 0.32.
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Figure 3. Blue curves: Fit of the two-exponential response to the climate model responses to an abrupt quadru-

pling of atmospheric CO2 concentration. Red curves: Fit of the LRM-scaling response. The expressions fitted

are found in the caption of Table 1 and the coefficients estimated are shown in this table.

���������

1900 1950 2000 2050 2100 2150 2200

0

1

2

3

4

year

te
m
pe
ra
tu
re

(K
)

GMST τC=33 yr, τtr=26 months,τeq=663 months

1900 1950 2000 2050 2100 2150 2200

0

1

2

3

4

year

te
m
pe
ra
tu
re

(K
)

GMST τC=33 yr, τtr=38 months,τeq=390 months

(a)	   (b)	  

Figure 4. (a): The evolution of the GMST according to the two-box solution Eq. (??) for the CO2 concentration

scenarios shown in Fig. 4a and Fig. 4c in the main manuscript. (a): τC = 33 yr and and the two-box parameters

for the GISS-E2-H given in Table 1. (b): τC = 33 yr and and the two-box parameters for the CNRM_CM5

model given in Table 1.
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