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The	paper	presents	a	novel	bias	correction	technique	for	use	in	climate	change	impact	
assessment	studies.	The	technique	is	claimed	to	preserve	the	physics	as	well	as	
multivariate	dependence	structures.	Benefits	of	the	proposed	technique	in	comparison	
to	the	existing	methods	are	categorically	brought	out	and	an	end-to-end	application	is	
also	illustrated	using	an	impact-assessment	study.	The	paper	is	overall	very	well	written	
and	will	be	of	interest	to	a	wide	range	of	researchers.	Therefore,	I	would	favor	its	
publication.		
We	thank	the	reviewer	for	the	encouraging	feedback.	
	
However,	I	have	a	few	comments/suggestions	as	I	detail	below	and	would	like	to	see	the	
authors’	responses	to	them.	Since	the	proposed	bias	correction	methods	leads	to	a	
decrease	in	effective	ensemble	size,	large	ensembles	such	as	the	weather@home	
experiment	is	necessary	for	its	application.	In	my	opinion,	this	is	a	strong	limitation	of	
the	method	as	such	large	experiments	are	rare,	particularly	for	developing	regions.	Is	
the	proposed	technique	also	effective	on	GCM	simulations	directly?	
We	agree	with	the	reviewer,	this	issue	is	an	important	consideration	for	the	applicability	
of	our	method.	
The	methodology’s	applicability	depends	on	a	few	factors	(see	also	discussion	in	the	
paper):	

1. (ensemble)	sample	size	and	the	anticipated	application	
2. structure	of	the	bias	in	the	model	(if	the	model	produces	unrealistic	simulations	

in	all	ensemble	members,	then	our	bias	correction	cannot	improve	the	
simulations).	

	
Regarding	(1):	As	demonstrated	in	the	paper,	large	ensembles	are	quite	useful	(but	are	
increasingly	available	also	for	many	parts	of	the	world,	see	e.g.	
http://www.climateprediction.net/weatherathome).		
However,	also	smaller	of	5-10	member	ensembles	could	be	used	for	this	type	of	bias	
correction,	if	one	assumes	ergodicity	over	a	certain	number	of	years.	E.g.	assume	an	
CORDEX-RCM	simulation	with	10	members	over	each	50	years.	In	this	case,	one	could	
still	resample	from	500	ensemble	members,	hence	a	useful	sample	size	should	remain.	
In	this	context,	the	type	of	application	also	plays	a	role:	A	so-derived	ensemble	could	be	
well	interpreted	probabilistically,	but	of	course	“strict	year-to-year	continuity”	would	be	
lost.	
	
Regarding	(2):	In	addition	to	(1),	of	course	the	“magnitude”	of	the	biases	is	important.	
Consider	e.g.	Fig.	2d	in	the	revised	manuscript:	No	loss	in	effective	sample	size	would	
require	that	for	each	decile	in	the	observations,	10%	of	the	original	ensemble	members	
are	available	for	resampling.	In	our	case,	for	the	“worst”	deciles	the	effective	sample	size	
is	reduced	roughly	by	50%	(Fig.	2d).	This	way,	one	could	estimate	whether	the	effective	
sample	size	after	resampling	for	a	smaller	ensemble	is	large	enough	for	the	anticipated	
application	(which	of	course	is	a	function	of	the	“severity”	of	the	bias	and	the	number	of	
ensemble	members).	
	
We	have	stressed	both	points	more	clearly	in	the	discussion	section.	
	



	
I	also	have	concerns	with	the	quantile	mapping	based	technique	for	more	general	
applications	of	the	proposed	bias	correction	method.	The	retention	of	an	ensemble	
member	depends	on	q_mod	as	given	by	the	transfer	function.	Therefore,	if	a	model	
simulated	value	does	not	correspond	to	a	quantile	of	the	observed	record,	that	value	is	
rejected,	thereby	indirectly	defining	a	prescribed	range	of	possible	values	of	the	variable	
based	on	certain	number	of	years	of	observations.	For	bias	correction	of	future	values,	
clearly,	there	is	no	way	to	ensure	that	the	actual	values	belong	to	that	range.	
We	agree	with	the	reviewer	in	that	the	choice	of	the	resampling	constraint	is	a	critical	
step	for	the	applicability	of	the	methodology.	However,	we	would	like	to	add	two	
comments:	

1) Present-day	bias	correction:	For	transient	bias	correction,	the	underlying	
assumption	is	that	the	actual	range	of	variability	in	the	observations	is	
representative,	as	correctly	pointed	out	by	the	reviewer	(but	not	fully	restricted	
to	that	as	in	quantile-quantile	mapping	or	similar	approaches,	due	to	the	kernel	
bandwidth	that	allows	some	flexibility).	However,	for	this	reason	we	argue	in	the	
paper	that	an	“aggregated”	constraint	(i.e.,	aggregated	both	in	time	(JJA)	and	in	
space	(Central	Europe))	is	more	useful	than	constraints	define	on	short	periods	
or	single	grid	cells,	because	the	resampling	would	then	be	very	sensitive	to	the	
observed	variability.	We	have	tried	to	discuss	this	point	more	clearly	in	the	
manuscript.	

2) Bias-correction	of	future	simulations:	For	future	simulations,	clearly	a	direct	
application	of	the	bias	correction	based	on	resampling	a	range	of	absolute	values	
is	not	meaningful	(as	correctly	stated	by	the	reviewer).	However,	if	one	assumes	
that	the	structure	of	the	biases	relative	to	the	observations	holds	in	the	future	
(i.e.	not	in	absolute	values,	but	in	the	percentiles	of	model	simulations	relative	to	
percentiles	in	the	observations,	see	e.g.	Fig.	2b	in	the	revised	manuscript),	the	
bias	correction	is	still	applicable,	as	the	transfer	function	is	defined	as	a	mapping	
between	the	percentiles	and	calibrated	on	the	present	(e.g.	Fig.	2b,	see	also	our	
response	to	Referee	#1).	Of	course	this	is	a	rigorous	assumption,	and	we	are	not	
arguing	that	this	should	be	assumed,	but	this	kind	of	“stationarity	assumption	of	
the	bias	structure”	underlies	implicitly	all	bias	correction	approaches	for	future	
simulations.		

	
Further,	selection	of	Gaussian	kernels	seem	somewhat	arbitrary.	It	is	a	subjective	choice,	
and	so	is	the	choice	of	Cubic	Hermite	splines.	
This	is	of	course	correct.		
The	choice	of	the	Gaussian	kernel	is	motivated	by	the	choice	of	the	resampling	metric	
and	the	Central	limit	theorem:	Since	the	constraint	is	quite	highly	aggregated	(JJA	means	
over	a	relatively	large	region,	Central	Europe),	we	believe	that	the	choice	for	a	Gaussian	
kernel	seems	somewhat	“natural”.	
Cubic	Hermite	splines	for	interpolation	are	clearly	an	arbitrary	choice,	but	the	form	of	
the	transfer	function	is	almost	entirely	determined	by	the	two	kernels	over	observations	
and	the	model	ensemble	(because	both	kernels	allow	resampling	of	an	arbitrarily	large	
number	of	random	variables).	
	
	
Additionally,	in	my	opinion,	more	clarity	is	solicited	in	the	description	of	the	proposed	
bias	correction	methodology.		



We	thank	the	reviewer	for	highlighting	the	need	for	a	“cleaner”	methodological	
description.		
We	have	redrawn	the	figures	for	the	methodological	illustration	(Fig.	2b	and	2c).	We	
hope	that	these	now	better	reflect	the	procedure	how	the	transfer	function	is	obtained	
as	a	mapping	between	percentiles	in	the	observations	and	model	ensemble?	
Additional	changes	to	the	methodological	description	are	highlighted	below	as	a	
response	to	the	reviewer’s	comments.	
	
For	example,	do	the	authors	simply	concatenate	observed	data	listed	in	Table	1?	How	do	
they	fit	the	kernel	density	‘over	the	observed	meteorological	constraint	in	various	
observational	datasets’	(blue	cdf	in	Figure	2(a)?		How	are	the	800	ensemble	members	
merged	to	obtain	the	red	cdf	of	Figure	2(a)?	The	authors	also	mention	that	they	derive	a	
bias-corrected	sample	by	‘randomly	resampling	n	times	from	f_obs’:	what	is	the	length	
of	the	sample?	
Further,	q_mod_X	and	q_obs_X	represent	a	given	quantile	in	the	model	ensemble	and	
observation,	respectively.	Does	this	then	imply	that	bias	correction	is	carried	out	
individually	for	each	quantile?	
	
One	dataset	is	used	at	a	time.	Concatenation	or	another	form	of	combination	of	different	
observational	datasets	would	be	an	option,	but	could	result	in	somewhat	“strange”	
distributions	(e.g.	if	one	dataset	is	simply	offset	relative	to	another	one	would	yield	a	
bimodal	distribution).	Therefore,	figures	4	and	5	contain	several	lines	in	the	return	time	
plots,	one	for	the	correction	with	each	observational	dataset	separately.	Since	the	
different	observational	datasets	were	very	similar	to	each	other	for	the	aggregated	
temperature	constraint	(Fig.	4a,	b),	only	the	ERA-Interim	constraint	was	used	for	the	
LPJmL	simulations.	This	has	been	clarified	in	the	manuscript.	
The	Gaussian	kernel	density	fit	uses	a	bandwidth	estimation	procedure	following	
Sheather	and	Jones	(1991).	Subsequently,	resampling	is	done	by	1)	sampling	n	times	
with	replacement	from	the	respective	observations	(e.g.	x_i),	and	2)	sampling	from	a	
Gaussian	distribution	with	mean	x_i	and	the	bandwidth	h	as	the	standard	deviation	
(definition	of	the	Gaussian	kernel).	The	Gaussian	kernel	fit	is	identically	applied	to	he	
observations	and	the	model	ensemble	(i.e.	the	temperature	constraint	is	obtained	from	
each	ensemble	member	and	each	year	and	the	Gaussian	kernel	is	fitted	over	all	of	them).	
The	length	of	the	sample	is	n=800	for	the	illustrative	application	and	probabilistic	
interpretation	in	the	manuscript.	
Bias	correction	is	done	by	resampling	percentiles	from	the	observations	and	retaining	
the	ensemble	member	that	corresponds	as	given	by	the	transfer	function	(in	that	sense,	
bias	correction	is	applied	individually	to	each	resampled	(random)	percentile).	
	
We	have	clarified	these	issues	in	the	Methods	section	of	the	manuscript.	
	
For	fitting	the	GEV	distribution,	though	the	length	of	all	the	observed	records	listed	in	
Table	1	is	greater,	the	authors	mention	about	a	‘relatively	small	sample	size	(1901-	
2014)’.	I	did	not	understand	why	(why	not	all	26	years?).	Also,	statistical	extreme	value	
theory	requires	certain	conditions	to	be	held	true	for	application	of	the	GEV	dis-	
tribution	to	the	block	maxima.	If	10-year	samples	are	‘randomly	concatenated’,	the	tail	
behaviour	may	change,	thereby	questioning	the	application	of	extreme	value	theory	to	
the	concatenated	datasets.	Another,	more	fundamental	issue	concerns	the	random	
nature	of	the	model	output.	The	bias	corrected	variables	are	after	all	output	of	models	



that	are	deterministic	in	nature;	therefore,	whether	they	can	be	considered	as	random	
variables	remains	a	question.	
We	agree	with	the	reviewer’s	concerns	regarding	concatenation	of	observational	
datasets.	This	might	change	the	tail	behaviour	and	could	lead	to	many	other	problems.	
Therefore	we	have	clarified	in	the	revised	manuscript	that	we	do	not	concatenate	
observational	datasets,	but	perform	the	analysis	with	each	observational	dataset	
separately.	Hence,	10-year	sample	are	concatenated	only	from	the	same	observational	
dataset	(following	the	procedure	outlined	in	the	manuscript),	thus	assuming	ergodicity.	
Regarding	10-year	samples	from	the	model	ensemble,	we	would	like	to	add	that	each	
ensemble	member	(i.e.	each	year	in	the	ensemble)	has	been	initialized	separately,	i.e.	
each	year	can	be	considered	as	a	random	realization	(therefore	we	believe	that	this	
resampling	procedure	is	appropriate).	
The	reviewer	also	addresses	a	more	fundamental	issue,	namely	the	random	nature	of	
the	model	output.	Here,	we	also	agree	with	the	reviewer,	but	would	like	to	add	another	
comment:	For	deriving	the	initial-condition	ensemble	that	is	used	in	our	study,	initial	
conditions	for	each	ensemble	member	are	perturbed	randomly	at	the	beginning	of	each	
year.	Therefore,	different	years	in	the	ensemble	(but	not	different	months...)	can	indeed	
be	regarded	as	random	realizations.	
	
Other	points:		
Abstract,	last	line:	‘uptake	of	our	methodology.	.	.for	accurately	quantify-	ing	past.	.	
.extremes’	–	how	is	bias	correction	important	for	quantifying	past	extremes	which	have	
been	already	observed?	Perhaps	the	authors	mean	‘quantifying	changes	in	past	
extremes’?	
This	is	correct.	Thanks.	
Page	2011,	first	sentence	–	this	information	is	repeating	for	the	third	time	here.	
This	sentence	has	been	removed.	
Page	2021,	Para	15:	‘Although	more	sophisticated.	.	.in	this	study’	–	perhaps	a	‘that’	
missing?	
For	readability,	sentence	has	been	rewritten.	
All	references	listed	contain	two	years	of	publication	each	–	please	correct	this.	Also,	
Coles,	2001	is	a	single-author	book.	The	reference	to	Coles,	2001	is	incorrect	in	the	list.	
Thanks	for	pointing	this	out.	It’s	corrected	in	the	revised	manuscript	version.	
Figure	3	(and	similar	figures)	and	Section	4.1	–	Figure	3	is	not	self-explanatory.	If	the	x-
axis	doesn’t	consist	of	values/units,	then	what	to	the	width	of	each	shape	represent?	
The	description	was	added	to	the	figure	caption	of	Fig.	3	and	Fig.	6:	“Both	sides	of	each	
violin	are	constructed	as	rotated,	equal-area	kernel	density	estimates,	and	a	standard	
boxplot	is	drawn	inside	each	violin.” 

 

 

	
	
	


