

1 The editor has a few minor comments. I ask the authors to carefully address them.

2

3 **Response:** *We are grateful to the editor for providing important suggestions, which are*
4 *incorporated in the revised manuscript.*

5

6 1. page 4, lines 27-28: I suggest the author elaborate their anthropogenic run since the paper's
7 conclusion is that anthropogenic forcings are responsible for the decline in rainfall over India.
8 What are the exact forcings? What is the source for the greenhouse gas changes, land cover
9 change, aerosols? It would be good to include a reference for each forcing.

10 **Response:** *As suggested, we have provided references for individual anthropogenic forcing*
11 *elements in the revised manuscript (Page 5, Lines 16-30)*

12

13 2. The conclusions are drawn from a single modeling study here and they are not in
14 agreement with other modeling studies. It is a standard practice now to look at several models
15 and look for robustness in the results. Against this background, I suggest the authors to
16 discuss this issue (single model study) as a major limitation of this work in the abstract,
17 introduction and conclusions.

18 **Response:** *Thank you. We agree that the single realization in our study is a limitation. As*
19 *suggested, we have mentioned, in the abstract, main text and conclusions, that there is a*
20 *need to have multiple realizations to establish the robustness of the results. (Page 1, Line 24;*
21 *Page 5, Line 2;Page 15, Line 7).*

22

23 3. Figure 10, top panel: The results seem to depend a lot on the soil moisture simulation. It is
24 well known that SM has a long time scale and it could take centuries to bring it to
25 equilibrium. The regional decline in this quantity over India is likely a model simulated long
26 term drift. Have the authors explored that there is very little drift in this quantity in their
27 control simulation? I suggest the authors to investigate the drift in this quantity in their
28 control and discuss the likelihood of that drift influencing their result.

29 **Response:** *As suggested, we examined the time series of JJAS mean soil moisture from the*
30 *NAT experiment (control) for the period of 1951-2000 (please see Fig. E1 below). The time*
31 *series shows significant interannual variations, but there is no drift in the simulated soil*
32 *moisture variations. This point is mentioned in the revised manuscript (Page 13, Line 13)*

Figure E1. The time series of JJAS mean total soil moisture averaged over the region 70° - 90° E; 10° - 28° N during 1950-2000. Thick line shows the 5 year smoothed time series. Note that the soil-moisture time series exhibits interannual variations, but there is no long-term trend or drift as such.

1
 2 4. In figure S3, units are missing for mean, std, trends and for the x and y axes.
 3 **Response:** Thanks again. We have now included the units (mean, std, trends) for the x and y
 4 axes in the revised version.
 5

1 **Abstract**

2
3 Recent studies have drawn attention to a significant weakening trend of the South Asian
4 monsoon circulation and an associated decrease in regional rainfall during the last few
5 decades. While surface temperatures over the region have steadily risen during this period,
6 most of the CMIP (Coupled Model Intercomparison Project) global climate models have
7 difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our
8 understanding of the regional land surface response to monsoonal changes. This problem is
9 investigated by performing two long-term simulation experiments, with and without
10 anthropogenic forcing, using a variable resolution global climate model having high-
11 resolution zooming over the South Asian region. The present results indicate that
12 anthropogenic effects have considerably influenced the recent weakening of the monsoon
13 circulation and decline of precipitation. It is seen that the simulated increase of surface
14 temperature over the Indian region during the post-1950s is accompanied by a significant
15 decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the
16 land surface response to decrease of soil moisture is associated with significant reduction in
17 evapotranspiration over the Indian land region. A future projection, based on the
18 representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental panel
19 on Climate Change (IPCC), using the same high-resolution model indicates the possibility for
20 detecting the summer-time soil drying signal over the Indian region during the 21st century, in
21 response to climate change. Given that these monsoon hydrological changes have profound
22 socio-economic implications, the present findings provide deeper insights and enhances our
23 understanding of the regional land surface response to the changing South Asian monsoon.
24 While this study is based on a single model realization, it is highly desirable to have multiple
25 realizations to establish the robustness of the results.

26

27 **1 Introduction**

28 The South Asian monsoon, also known as the Indian Summer Monsoon (ISM), brings
29 approximately 70-80% of the annual rainfall of the region during the season June-September
30 (JJAS) and is the major source for water needs of the densely populated country. Any
31 changes in the South Asian monsoon rainfall (a component of the larger-scale Asian
32 monsoon system) due to climate change will have serious impacts on the socio-economic
33 conditions of the country. Understanding the monsoon hydroclimatic response to climate

Deleted: While

Deleted: robustness of the high-resolution simulations provides

1 change is also of great scientific interest. Several recent studies have reported significant
2 negative trends in the observed seasonal monsoon precipitation on regional and sub-regional
3 scales over South Asia since 1950s (e.g. Guhathakurta and Rajeevan 2006; Chung and
4 Ramanathan, 2006; Bollasina et al., 2011; Krishnan et al., 2013; Rajendran et al., 2012; Saha
5 et al., 2014; Singh et al., 2014 and others). Various studies have also noted a weakening trend
6 of the large-scale summer monsoon circulation during recent decades (e.g. Tanaka et al.
7 2004; Abish et al., 2013; Fan et al., 2010; Krishnan et al., 2013). Few modelling studies have
8 attributed the climate forcing by aerosols as the major driver for the decreasing precipitation
9 trend over the Indian region (see Chung and Ramanathan, 2006; Bollasina et al., 2011).
10 There is also a view that rapid increase of moisture in a global warming environment can
11 increase the atmospheric stability and weaken the tropical and monsoon circulations (e.g.
12 Kitoh et al., 1997; Douville et al., 2000; Veechi et al., 2006; Ueda et al., 2006). High
13 resolution model simulations reveal that a weakening of the southwesterly monsoon winds
14 can in turn reduce orographic precipitation over the Western Ghat mountains (see Krishnan et
15 al., 2013; Rajendran et al., 2012).

16 The satellite derived soil moisture data from the Tropical Rainfall Measuring Mission
17 (TRMM) during 1998-2008 indicates significant decreasing trends in soil moisture and
18 evapotranspiration over many places globally and also over the Indian region (Jung et al.,
19 2010). An increasing trend in the intensity and percent area affected by moderate droughts
20 over India is noted by Kumar et al. (2013) during recent decades using a drought monitoring
21 index viz., Standardized Precipitation Evapotranspiration Index (SPEI) which is based on
22 climatic water balance. However, an understanding of whether these changes in soil moisture
23 and evapotranspiration over India are responding to the anthropogenic forcing is lacking.
24 This is in spite of the importance of these regional water balance components from scientific
25 and societal perspectives, given their implications on climate, agriculture and other human
26 activities (Seneviratne et al., 2006). One of the earliest investigations on the temporal and
27 spatial variations of soil moisture response to global warming was conducted by Wetherald
28 and Manabe (1999) using long-term integrations of a coupled atmosphere ocean global
29 circulation model. Their results suggested that soil dryness due to global warming was
30 prominently detectable over the mid-continental regions of middle and high latitudes by the
31 first half of the 21st century. Over the Indian subcontinent, they noted an increase of soil
32 moisture during the summer season due to increase of precipitation. However, these results
33 were based on coarse resolution model simulations. Furthermore, models tend to exaggerate

1 summer drying through overestimation of evaporation particularly in regions where soil
2 moisture and energy are not limited (Seneviratne et al., 2002). Proper understanding of land-
3 surface response over the Indian region to climate change is lacking due to poor simulation of
4 regional water balance in many coupled model intercomparison project (CMIP) models
5 (Hasson et al., 2013). For example, Jourdain et al. (2013) reported a large spread in the
6 simulated seasonal mean Indian summer monsoon rainfall as well as the seasonality of
7 rainfall among the state-of-the-art CMIP5 coupled models used for the fifth Assessment
8 Report of the Intergovernmental panel on Climate Change (IPCC). Also a majority of CMIP
9 models do not adequately capture the historical trend of decreasing precipitation over Indian
10 monsoon region (e.g. Saha et al., 2014), with large uncertainties in future projections in the
11 magnitude of monsoon precipitation over the region (Chaturvedi et al., 2012).

12 In this study, we have used a variable resolution global climate model from Laboratoire de
13 Meterologie Dynamique (LMD), France with high-resolution (grid size < 35 km) telescopic
14 zooming over South Asia and includes a state-of-the-art land-surface model, to better
15 understand the regional land surface hydrological response to monsoonal changes. The model
16 simulations also account for transient changes in land-use and land-cover, which are
17 prescribed from standard datasets used in the CMIP5 experiments (see next section). Sabin et
18 al. (2013) have assessed the South Asian monsoon simulations from the telescopically
19 zoomed LMD model. They noted that the high-resolution LMD simulations provide
20 important value additions in representing moist convective processes and organized
21 convective activity over the monsoon region; and also realistically captured the regional
22 details of precipitation characteristics and their links to monsoonal circulation. This paper is
23 organised as follows. Section 2 provides a description of the model, design of experiments
24 and observed data used for this work. Results from the historical simulations and comparison
25 with observations are discussed in Section 3. The results of land hydrological response are
26 presented in Section 4. The detectable future changes in land hydrology are described in
27 Section 5 and the conclusions are summarized in Section 6.

28

29 **2 Model, data and methods**

30 **2.1 Model and experiments**

1 The climate model used in this study is the LMD global atmospheric general circulation
2 model (AGCM) with enhanced resolution capability over a particular region of interest (see
3 Hourdin et al., 2006; Sabin et al., 2013). The high resolution zoom used in the LMDZ (where
4 Z stands for zoom) model is centred at 15°N, 80°E. The zoom domain (15°S–40°N, 30°E–
5 120°E) covers the entire South Asian monsoon region and the tropical Indian Ocean. The
6 resolution is about 35 km in the zoom domain, and it becomes gradually coarser outside.
7 Sabin et al. (2013) have evaluated different aspects of the South Asian monsoon simulation
8 from this high-resolution model with telescopic zooming. The detailed description of the
9 representation of physical processes in the version used here is given in Hourdin et al. (2006
10 and the references therein).

11 The LMDZ AGCM and the state-of-the-art land surface model Organizing Carbon and
12 Hydrology in Dynamic Ecosystems (ORCHIDEE; Krinner et al., 2005) are fully coupled with
13 two way interactions between atmosphere and land surface. The ORCHIDEE includes the
14 Schématisation des Echanges Hydriques à L'Interface Biosphère– Atmosphère surface-
15 vegetation-atmosphere transfer scheme (SECHIBA; Ducoudré et al., 1993; de Rosnay and
16 Polcher, 1998) and the Saclay Toulouse Orsay Model for the Analysis of Terrestrial
17 Ecosystems carbon module (STOMATE). SECHIBA calculates the exchange of energy and
18 water between the atmosphere and the biosphere along with the soil water budget.
19 STOMATE simulates the phenology and carbon dynamics of the terrestrial biosphere such as
20 photosynthesis, carbon allocation, litter decomposition, soil carbon dynamics, respiration etc.,
21 ORCHIDEE builds on the concept of plant functional types (PFT) to describe vegetation
22 distributions. The land surface is represented as a heterogeneous mosaic of 12 PFTs and bare
23 soil. The PFTs are defined based on ecological parameters such as plant structure (tree or
24 grass), leaves (needleleaf or broadleaf), phenology (evergreen, summergreen, or raingreen)
25 and according to the type of photosynthesis for crops and grasses (C3 or C4).

26 We have conducted long-term simulation experiments using this configuration of the LMDZ
27 GCM, with high-resolution (~ 35 km) zooming over South Asia. The first model simulation is
28 the Historical run (HIST; 1886-2005), which uses both natural (e.g. Volcanoes and solar
29 variability) and anthropogenic (e.g. green house gases (GHG), aerosols evolution estimated
30 from transport models, land use and land cover changes, etc) forcing. The second
31 experiment is Historical Natural run (NAT; 1886 – 2005), which uses only natural (e.g.
32 Volcanoes and solar variability) forcing. Another simulation, which is intended to understand
33 likely future changes (2006 - 2095), uses both natural and anthropogenic forcing based on

1 IPCC approved medium stabilization scenario Representative Concentration Pathway 4.5
2 (RCP 4.5), in which the net radiative forcing at the end of 2100 is 4.5 Wm^{-2} . Owing to the
3 high computational costs of the high-resolution zoomed simulations, the model experiments
4 in this study are based on a single realization.

5 The monthly bias adjusted sea surface temperature (SST) and sea-ice from the CMIP5
6 experiments with the coarser resolution atmosphere-ocean coupled GCM run from Institut
7 Pierre Simon Laplace (IPSL-CM5A-LR; referred as IPSL hereafter) are used as boundary
8 forcing for LMDZ experiments. Bias adjustment refers to the removal of model errors in
9 present day mean climate. The SST anomalies for HIST, NAT and RCP4.5 experiments of
10 IPSL are superposed on the observed climatological mean SST from the AMIP
11 (Atmospheric Model Intercomparison Project) dataset (<http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php>). This methodology
12 assumes the statistical stationarity hypothesis i.e., relationships inferred from historical data
13 remain valid under a changing climate (Maraun 2012). The same procedure is applied for
14 specifying sea-ice boundary conditions.
15

16 The prescribed evolution of CO_2 concentrations from 1886 to 2095 for the LMDZ
17 experiments is taken from the CMIP5 recommended dataset and is described in Dufresne et
18 al. (2013). For the historical period 1886-2005, the CO_2 concentration is derived from the
19 Law Dome ice core record, the Mauna Loa record and the National Oceanic and Atmospheric
20 Administration (NOAA) global-mean record. From 2006 onwards in the RCP4.5 scenario,
21 CO_2 emissions and concentrations are projected by a reduced-complexity carbon cycle-
22 climate model MAGICC6 (Meinshausen et al. 2011) such that the radiative forcing reaches
23 4.5 Wm^{-2} at the end of 2100 and the CO_2 concentration stabilizing at 543 ppmv in 2150. The
24 concentration of other GHGs like CH_4 , N_2O , CFC-11 and CFC-12 are directly prescribed in
25 the radiative code of the model based on the recommended CMIP5 datasets.

26 Time-varying distribution of aerosols and gaseous reactive species in the troposphere are
27 specified in the LMDZ experiments based on the Interaction with Chemistry and Aerosol
28 (INCA) model as part of the IPSL-CM5A-LR simulations (Dufresne et al. 2013). The
29 methodology to build the aerosol field as well as its evolution and realism is described in
30 more detail in Szopa et al. (2013).

31 The land use changes are prescribed using the historical crop and pasture datasets developed
32 by Hurt et al. (2011), which are also being used for the IPCC CMIP5 simulations. These

1 datasets provide information on human activities (crop land and grazed pastureland) on a 0.5°
2 $\times 0.5^{\circ}$ horizontal grid. The land-cover map used for both the historical and future period has
3 been obtained starting from an observed present-day land-cover map (Loveland et al., 2000),
4 which already includes both natural and anthropogenic vegetation types. These datasets are
5 included in LMDZ following the methodology described by Dufresne et al. (2013).

6 **2.2 Data**

7 The model climate is compared with observational data to assess the model reliability. For
8 this purpose we have used winds, precipitation and temperature data from observationally
9 based and reanalysis estimates. The monthly circulation data at 850 hPa and 200 hPa is
10 obtained from a recent reanalysis produced by the European Centre for Medium-Range
11 Weather Forecasts (ECMWF) called ERA-Interim (ERA1; Dee and Uppala, 2009; Dee et al.,
12 2011) for the time period 1979-2005. Monthly Surface air temperature over land at the $0.5^{\circ} \times$
13 0.5° resolution from Climatic Research Unit (CRU TS3.1; Harris et al., 2014) for the period
14 1951-2005 is used. Precipitation observations over land from the Asian Precipitation—
15 Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources
16 (APHRODITE) gridded ($0.5^{\circ} \times 0.5^{\circ}$) daily rainfall dataset (Yatagai et al. 2009) and from the
17 India Meteorological Department (IMD) gridded ($0.25^{\circ} \times 0.25^{\circ}$) daily rainfall dataset (Pai et
18 al. 2014) for the period 1951-2005 are used. In order to compare the model simulated
19 precipitation over ocean regions, the observational based monthly gridded ($2.5^{\circ} \times 2.5^{\circ}$)
20 precipitation data obtained from Climate Prediction Centre Merged Analysis of Precipitation
21 (CMAP; Xie and Arkin, 1997) is also used. The model simulated monthly land surface
22 hydrological components are compared with the corresponding multi-model mean computed
23 from the multiple off-line land model simulations of Global Land Data Assimilation System
24 (GLDAS; Rodell et al. 2004) available at $1^{\circ} \times 1^{\circ}$ resolution.

25 **2.3 Methodology**

26 The long term mean summer monsoon climate simulated by the IPSL and LMDZ models are
27 evaluated by comparing the spatial pattern of the wind circulation from their HIST
28 simulations with the ERAI reanalysis. The spatial patterns of the simulated 2m temperature,
29 precipitation and evapotranspiration for these model runs are also compared with the
30 observational based gridded estimates. The pattern correlations for these model simulated
31 fields are computed by regridding them on the corresponding reference data grid points to

1 assess the ability of the IPSL and LMDZ models in capturing the large scale features of mean
2 climate. Further the annual water balance in land region over India simulated in both the
3 models is compared with the GLDAS estimates. The spatial patterns of the linear trends
4 simulated by the IPSL and LMDZ models over India during the summer monsoon season for
5 temperature and precipitation are evaluated by comparing with the CRU and APHRODITE
6 gridded observational estimates respectively. The statistical significance of trends are tested
7 using the Student t test. The LMDZ model simulated anthropogenic influence on the summer
8 monsoon climate is assessed by comparing the area averaged linear trends of temperature and
9 precipitation over Indian land region in the HIST with the NAT simulation of this model. The
10 response of the land surface hydrology to anthropogenic forcing is brought out by computing
11 the linear trends for total soil moisture and evapotranspiration for the historical as well as for
12 a future climate change scenario. The detectability of soil moisture changes in response to the
13 anthropogenic forcing is assessed following Wetherald and Manabe (1999), by comparing the
14 magnitudes of soil moisture changes against the standard deviation of the natural soil
15 moisture variability in the NAT integration. The soil moisture changes are computed with
16 respect to the long term mean of NAT integration, and the changes are considered to be
17 detectable when they exceed standard deviation of the natural variability.

18 **3 Model simulation of mean climate**

19 **3.1 Mean summer monsoon features**

20 In this section, the simulations of the mean summer monsoon in the LMDZ model and the
21 driving IPSL model are discussed and validated by comparison with reanalysis products and
22 gridded observational estimates. Figure 1 shows the JJAS mean climatology of the lower
23 (850 hPa) and upper (200 hPa) tropospheric wind circulation. The large-scale low level
24 circulation features viz., the cross equatorial monsoon flow across the Indian Ocean, the
25 Somali jet over the Arabian Sea and the monsoon trough over the Indian subcontinent can be
26 noted in ERAI, the IPSL and LMDZ simulations (Figs. 1a-c). The wind climatology along
27 the monsoon trough and head Bay of Bengal simulated by LMDZ is relatively closer to
28 ERAI, as compared to the IPSL simulation. The pattern correlation between the simulated
29 and observed low level wind climatology over the domain (20°S-35°N, 40°E-120°E) is 0.93
30 for LMDZ and 0.85 for the IPSL model. The major summer-time upper tropospheric wind
31 circulation features such as the Tropical Easterly Jet over the Indian subcontinent, the Tibetan

1 anticyclone and the subtropical westerly to the north of the subcontinent can be noted in
2 ERAI and are captured in the IPSL and LMDZ simulations (Figs. 1d-f).

3 Figure 2 shows the spatial distributions of JJAS mean climatology of 2m air temperature,
4 precipitation and evapotranspiration (ET). The region of high temperatures with east-west
5 orientation over northwest India and Pakistan (Fig. 2a) coincides with the monsoon trough
6 and is better captured in the high-resolution LMDZ simulation (Fig. 2c) as compared to the
7 IPSL coarse resolution model (Fig. 2b). The near surface air temperatures are underestimated
8 both in LMDZ and IPSL simulations over central and peninsular India. The pattern
9 correlations of the simulated and observed (CRU) mean surface air temperature over the land
10 region (70°-90°E, 10°-28°N) are found to be 0.95 and 0.81 for the LMDZ and IPSL models
11 respectively.

12 We also compared the simulated mean precipitation from the LMDZ and IPSL models with
13 the CMAP and APHRODITE precipitation datasets over the Indian monsoon region. The
14 CMAP is a merged precipitation gridded product obtained by combining satellite and rain
15 gauge observations and is available both over land and oceanic regions on a $2.5^\circ \times 2.5^\circ$ grid
16 (Xie and Arkin, 1997). The APHRODITE is a high resolution $0.5^\circ \times 0.5^\circ$ gridded rainfall
17 dataset constructed from raingauge observations (Yatagai et al., 2012). The summer monsoon
18 precipitation over central India and along the Indo Gangetic plains seen in the long term
19 observed climatology from CMAP (Fig. 2d) are simulated relatively better in the LMDZ (Fig.
20 2f) model than the driving IPSL model (Fig. 2e), even though their magnitudes over these
21 parts of India are lesser than the observed estimate. It is noted that LMDZ model is able to
22 capture the rainfall peak over the Bay of Bengal (Fig. S1) and the area averaged rainfall over
23 the region 80° - 98° E; 8° - 22° N covering Bay of Bengal is found to be 10.54 mm d^{-1} and 8.48 mm d^{-1}
24 for CMAP and LMDZ respectively. It is also found that the high resolution LMDZ
25 model simulated rainfall maxima along the west coast, foot hills of Himalayas and northeast
26 India are closer to high resolution rain gauge based observed climatology from APHRODITE
27 (see supplementary Fig. S2a). The pattern correlations of the simulated and observed
28 (APHRODITE) mean precipitation over the Indian land region (70° - 90° E, 10° - 28° N) are
29 found to be 0.47 and 0.20 for the LMDZ and IPSL models respectively. Previous studies have
30 shown that there is considerable spread among the different observed precipitation datasets
31 over India (Collins et al. 2013; Kim et al. 2015). Our analysis using the $0.25^\circ \times 0.25^\circ$ high-
32 resolution rainfall dataset from IMD (Pai et al. 2014; Fig. S2b) shows that the area-averaged

1 summer monsoon rainfall over India is comparable with the APHRODITE (Fig. S3).

2 The simulated evapotranspiration (ET), which is a major component of hydrological cycle, is
3 compared with the GLDAS gridded dataset (Rodell et al., 2004). Observational uncertainties
4 of surface hydrologic variables are large (Bindoff et al., 2013). The GLDAS dataset integrates
5 observation based data to drive multiple off-line land surface models to generate flux
6 parameters and land surface state (e.g. soil moisture, evapotranspiration, runoff, sensible heat
7 flux, etc). Since the GLDAS off-line land surface models are driven by observations and bias-
8 corrected reanalysis fields, the multi-model estimates from GLDAS serve as physically
9 consistent reference datasets for model validation of land surface fluxes and state
10 (Seneviratne et al., 2010). The JJAS mean evapotranspiration from GLDAS, the IPSL and
11 LMDZ model simulations are shown in Figs. 2(g-i) Note that the spatial distribution of the
12 JJAS mean evapotranspiration from GLDAS (Fig. 2g) has resemblance with the pattern of
13 observed monsoon precipitation (Fig. 2d). The regions of high evapotranspiration over
14 central, west coast of India and along foot hills of Himalayas are better simulated in the high
15 resolution LMDZ as compared to the IPSL model (Figs. 2h-i). It is noted that the pattern
16 correlations of ET between the simulated and GLDAS dataset over the Indian land region
17 (70° - 90° E, 10° - 28° N) is 0.81 for LMDZ and 0.58 for the coarse resolution IPSL model. The
18 better ET distribution in the high resolution LMDZ simulation, as compared to the IPSL
19 coarse resolution model, is consistent with simulated precipitation in the two models. Note
20 that the orographic precipitation along the west coast of India and foot hills of Himalayas are
21 better captured in LMDZ, whereas the IPSL model significantly underestimates rainfall over
22 the Indian region resulting in low ET.

23 Here, we examine the annual water balance components at surface in terms of precipitation,
24 evapotranspiration and runoff from the LMDZ and IPSL simulations and compare with the
25 GLDAS dataset (Fig. 3). The Taylor diagram (Fig. 4; Taylor 2001) shows the skill of the
26 models in simulating the annual spatial climatology and variability of precipitation, ET and
27 runoff over the Indian land region with GLDAS as the reference dataset. The LMDZ model
28 simulates the spatial pattern of precipitation relatively better than the IPSL model when
29 compared to the GLDAS forcing (Fig. 4a). Although the LMDZ model overestimates the
30 spatial variability in comparison with the coarser resolution GLDAS precipitation forcing and
31 the CMAP observations, the magnitude is comparable with the high resolution gridded
32 observational datasets (IMD and APHRODITE). The LMDZ model simulated spatial pattern

1 and variability of evapotranspiration are closer to the estimates from the GLDAS multi-model
2 mean as well as to each member models than that for the IPSL model (Fig. 4b). The total
3 runoff simulated by the LMDZ model shows relatively better spatial pattern than the IPSL
4 model in comparison with the GLDAS estimates (Fig. 4c). However this high resolution
5 model overestimates the spatial variability relative to the coarser resolution GLDAS
6 estimates. Additionally, it is important to ensure model simulations properly capture surface
7 water balances on regional scales. Hasson et al. (2013) noted that biases in simulating annual
8 surface water balances on regional scale often introduce considerable uncertainty in
9 assessment of surface hydrological response to climate change. Keeping this in view, we
10 examined the difference of annual precipitation minus evapotranspiration (P-ET) and the
11 annual runoff averaged over the Indian land region (70.0°E - 90.0°E ; 10.0°N - 28.0°N) from the
12 GLDAS dataset and the two model simulations. The area-averaged values are shown in
13 Table. 1. It can be noticed that the annual (P-ET) and runoff in GLDAS are in close balance
14 (Table. 1). A reasonably good balance between (P-ET) and runoff can also be noted in the
15 LMDZ simulation, whereas the annual runoff in the IPSL model far exceeds the (P-ET). The
16 fairly consistent balance between the annual (P-ET) and runoff in the LMDZ model averaged
17 over the Indian region provides confidence in interpreting the land surface hydrological
18 variations as compared to the IPSL coarse resolution model.

19 **3.2 Simulation of climate trends over the monsoon region**

20 A climate model's credibility is increased if the model is able to simulate past variations in
21 climate such as the trends over the twentieth century, when given realistic forcings (Flato et
22 al., 2013). The long-term drying trends (significant at $> 95\%$ level) in the summer monsoon
23 precipitation over parts of central India, along the Indo Gangetic plains and the narrow
24 western ghat region during the past half century from APHRODITE (Fig. 5a) are captured
25 with higher magnitudes in the HIST simulation of LMDZ (Fig. 5c) model. While the driving
26 IPSL model (Fig. 5b), shows significant increasing trends in precipitation over most parts of
27 India. The observed (CRU) significant warming trends over most parts of India (Fig. 6a) are
28 captured by both simulations, with relatively larger magnitude in LMDZ (Fig. 6c) than IPSL
29 (Fig. 6b) model. Further detailed analysis based on the LMDZ model experiment with only
30 natural forcing (NAT) brings out the role of anthropogenic forcing on these drying and
31 warming trends over India. The observed (APHRODITE) rainfall shows a significant drying
32 trend (-0.33 mm d^{-1} (55 yr^{-1})) in summer monsoon precipitation over the Indian land region
33 during 1951-2005 and the HIST simulations also shows a statistically significant trend of -0.8

1 mm d^{-1} (55 yr^{-1}) (Fig. S4b). The observed (CRU) seasonal warming trend for the same
2 period ($0.5\text{ }^{\circ}\text{C } (55\text{yr})^{-1}$) is significant over Indian land region and the HIST simulation of
3 LMDZ model also captured a significant warming trend of $1.1\text{ }^{\circ}\text{C } (55\text{yr})^{-1}$ (Fig. S4a). The
4 surface air temperature and precipitation trends simulated in response to natural forcings only
5 (NAT) are generally close to zero, and inconsistent with observed trends over Indian land
6 region. These findings are further supported by the simulated weaker summer monsoon
7 circulation and reduced precipitation over Indian subcontinent in the HIST experiment of
8 LMDZ model compared to the NAT experiment (Fig. S5). The finding that the observed
9 changes are consistent with the LMDZ simulation that include human influence (HIST), and
10 are inconsistent with that do not (NAT) would be sufficient for attribution studies as they
11 typically assume that models simulate the large-scale spatial and temporal patterns of the
12 response to external forcing correctly, but do not assume that models simulate the magnitude
13 of the response correctly (Bindoff et al., 2013). Hence this high-resolution HIST simulation
14 of LMDZ atmospheric model will be an important value addition for understanding the
15 regional land surface hydrological responses that may be influenced by the anthropogenic
16 forced changes in summer monsoon over the Indian subcontinent.

17 **4 Response of land surface hydrology to the changing monsoon**

18 We further assess the long-term changes in the surface hydrologic variables such as soil
19 moisture (SM) and ET in the HIST simulation of LMDZ. In association with the reduction of
20 summer monsoon precipitation, the HIST simulation of LMDZ model also indicate
21 significant soil moisture (SM) drying trends over most parts of India (Fig. 7a). This accounts
22 to about $14\text{ mm } (55\text{ yr})^{-1}$ reduction in soil moisture (5%) when area averaged over the Indian
23 land region. The comparison of the seasonal trends at each grid point over the Indian land
24 region indicates a dominant control of precipitation on SM (Fig. S6). The SM is a source of
25 water for the atmosphere through processes leading to ET from land, which include mainly
26 plant transpiration and bare soil evaporation. The HIST simulation of LMDZ model show
27 significant decrease of summer season mean ET over most parts of the Indian land region
28 (Fig. 7b). The Indian land region area averaged reduction in ET accounts for about $0.23\text{ mm } d^{-1} (55\text{yr})^{-1}$ (9.5%). The simulated regions of ET reduction mostly coincide with that of drier
30 soil moisture.

31 The global hydrological cycle is generally expected to intensify in a warming world, leading
32 to increase in ET (Huntington, 2006). On the other hand, station observations of pan

1 evaporation over India indicate a significant decreasing trend in recent decades
2 (Padmakumari et al., 2013). Long-term trends in ET are basically driven by limiting factors
3 such as soil moisture or radiation both on regional (Teuling et al., 2009) and global (Jung et
4 al., 2010) scales. A comparison of the simulated seasonal ET trends at each grid point over
5 Indian land region with the corresponding SM trends shows significant correlation between
6 ET reduction and SM drying (Fig. 8a). This relationship is also noticed under conditions of
7 increasing and decreasing surface incident solar radiation trends (Fig. 8b-c), implying that
8 SM drying plays a dominant role in ET reduction over the Indian monsoon region, with
9 minor contributions from changes in solar radiation reaching at surface. In fact, it can be
10 noticed from Fig. 8b that decrease of ET is mostly accompanied by decrease of SM over a
11 majority of grid-points over the Indian region, whereas increases in ET and global radiation
12 are seen over fewer grid-points. The above analysis suggests that the SM drying trends,
13 caused by local precipitation variations, largely drive ET reduction over the region.

14 **5 Future changes in surface hydrology**

15 The spatial distributions of the projected future trends in temperature, precipitation, soil
16 moisture and evapotranspiration for the period 2006-2095 under RCP 4.5 scenario are shown
17 in Fig. 9. The significant increase of temperature over the entire Indian land region is
18 consistent with the increasing radiative effects of the rising CO₂ concentration in the future
19 (Fig. 9a). The magnitude of this warming is larger (1.5 - 2 °C) at northern regions including
20 Indo Gangetic planes and smaller along the western regions and the southern most parts of
21 India. The projected future trends in precipitation show regions of significant increase over
22 western and south eastern parts and decrease over Central India (Fig. 9b). Note that the
23 spatial pattern of trends in SM mostly follows the pattern of precipitation trends and is
24 dominated by drying of SM (Fig. 9c). It is also interesting to note that the spatial pattern of
25 projected trends in ET resembles the pattern of trends in SM (Fig. 9d).

26 The detectability of soil moisture changes to anthropogenic forcing is computed following the
27 approach of Wetherald and Manabe (1999). The magnitudes of soil moisture changes with
28 respect to the long term mean (1886-2005) of NAT integration are compared against the
29 standard deviation of the natural soil moisture variability in the NAT integration. The changes
30 are considered to be detectable when they exceed the standard deviation of the natural
31 variability. For this analysis, we sequentially arrange variables for the HIST time period
32 (1886-2005) and RCP4.5 scenario (2006-2095) as a continuous time-series, which will be

1 henceforth referred to as ALL. Figure 10a shows the smoothed time-series of 20 year
2 running-mean values of summer-monsoon soil moisture anomalies during 1886-2095 based
3 on the high-resolution (LMDZ) and coarse-resolution (IPSL) simulations over the Central
4 Indian region (74.5° - 86.5° E; 16.5° - 26.5° N; see box in Fig. 9a). The standard deviation of soil
5 moisture in Fig. 10a is calculated from the corresponding natural (NAT) integrations. The
6 appearance of a detectable change of soil moisture (exceeding one standard deviation of
7 NAT) can be noted in the LMDZ simulation as early as 2010 and then the change is not
8 prominent until 2050s and thereafter remains detectable till the end of 21st century. From Fig.
9 10, one can note coherent evolution of the soil moisture and precipitation variations. In
10 addition, we also see more persistence in detectability of soil moisture as compared to that of
11 precipitation. This is consistent with the result that the soil moisture spectra is dominated by
12 lower frequency variations as opposed to the precipitation spectra (see Delworth and Manabe,
13 1988). We also verified that there is no drift in soil moisture in the NAT integration of LMDZ
14 model (figure not shown), which suggests that the decreasing trend of soil moisture in the
15 HIST experiment is related to anthropogenic forcing. On the other hand, the SM variations in
16 the IPSL simulation show decadal-scale variations with slight decrease during latter part of
17 the 21st century. Here, it is important to note that the surface warming trend during (1886-
18 2005) is clearly borne out in both the IPSL and LMDZ models (Fig. 10b), with the magnitude
19 of warming trend being more pronounced in the LMDZ simulation (0.21 K decade $^{-1}$) as
20 compared to the IPSL model (0.15 K decade $^{-1}$). The appearance of a detectable change of soil
21 moisture lags behind that of surface air temperature by several decades. This is due to the
22 relatively smaller signal-to-noise ratio for soil moisture variability as compared to that of the
23 surface air temperature (see Delworth and Manabe, 1989). Furthermore, the smaller signal-
24 to-noise ratio of soil moisture over the Indian region indicates relatively large natural
25 interannual variability of summer monsoon precipitation (Fig. 10c). The IPSL model
26 projection shows enhancement of monsoon precipitation and increase of soil moisture by the
27 end of the 21st century (Figs. 10a, c). The decrease in monsoon precipitation over central
28 India in the high-resolution LMDZ simulation is noticeable by early 21st century. It is also
29 interesting to see that the high resolution simulation indicates decrease of soil moisture from
30 middle to the end of 21st century over central India, despite a gradual revival of the projected
31 monsoon precipitation by the mid 21st century. From the above discussion, it is seen that the
32 high-resolution LMDZ simulations provide important value additions in terms of regional
33 land surface response to changes in the South Asian monsoon.

1 **6 Conclusions**

2 We have used a state-of-the-art global climate model (LMDZ), with high-resolution
3 telescopic zooming over South Asia, to investigate the regional land-surface response to
4 changing climate and declining summer monsoon rains observed during the last few decades.
5 This high-resolution climate model captures well the distribution of the mean monsoon
6 rainfall and circulation features (Sabin et al., 2013). It is also noted that the high-resolution
7 LMDZ model, which is coupled to a sophisticated land-surface parameterization scheme,
8 displays a consistent surface water balance over the South Asian region - which is essential
9 for making reliable assessments of the regional hydrological response to monsoonal changes.
10 In the present work, we have performed two long-term simulation experiments, with and
11 without anthropogenic forcing, for the historical period 1886-2005; and one future projection
12 following the RCP4.5 scenario.

13 The results from our study suggest that the declining trend of monsoon precipitation over
14 South Asia and weakening of large-scale summer monsoon circulation during the post-1950s
15 are largely influenced by the anthropogenic forcing. It is found that the model simulated
16 response to anthropogenic forcing shows an increase of surface temperature over the India
17 region at a rate of $1.1 \text{ }^{\circ}\text{C (55yr)}^{-1}$, a decline of summer monsoon precipitation at a rate of $0.8 \text{ mm d}^{-1} (55\text{yr})^{-1}$ and a corresponding reduction of soil moisture at a rate of $14 \text{ mm (55yr)}^{-1}$.
18 The simulated decrease of mean monsoon precipitation over the Indian region during the
19 post-1950s is accompanied by a weakening of large-scale monsoon circulation and is
20 consistent with observations (Krishnan et al. 2013). The results of a future climate projection
21 using medium scenario (RCP 4.5) shows likely continuation of the drying trend in monsoon
22 rainfall and noticeable decrease of soil moisture till the end of the 21st century. The present
23 high-resolution simulations are scientifically interesting, particularly given that only some of
24 the CMIP5 models driven with same scenario generally show a decrease in mean
25 precipitation over the Indian region, associated with large uncertainties (Chaturvedi et al.,
26 2012).

27 The declining monsoonal rains and the associated hydro-climatic changes can have profound
28 implications for crop production and socio-economic activities in the region. Our findings
29 from the high-resolution LMDZ simulations suggest that persistent decrease of monsoon
30 rainfall and soil moisture over the Indian region has significant impact on the regional land
31 surface hydrology. The simulations show that a decrease of soil moisture over the Indian

1 land region by 5% during 1951-2005 is accompanied by a decrease of ET by 9.5%. It is
2 noticed that the ET reduction and SM drying, over the Indian land points, are significantly
3 correlated even under conditions of increasing surface incident short wave radiation trends,
4 implying that SM drying plays a dominant role in ET reduction in the region. While this
5 study is based on a single realization, the realism of the high resolution simulation enhances
6 our confidence in interpreting the land-surface hydrological response to climate change and
7 declining monsoons. We also realize that ~~uncertainty quantification in land surface~~
8 hydrological response to monsoonal changes at sub-regional scales, ~~requires~~ ensembles of
9 high-resolution simulations. ~~This is a topic of future research and beyond the scope of the~~
10 present study.

Deleted: robust attributions and

Deleted: a suite of high resolution coupled model ensemble simulations will be required for attribution and quantifying uncertainties in the land surface hydrological response to monsoonal changes.

11 **Acknowledgements**

12 Authors thank Director IITM for extending all support for this research work. IITM is
13 supported by Ministry of Earth Sciences, Government of India, New Delhi. The figures are
14 prepared using GrADS. M. V. S. Ramarao is financially supported by the Indian Institute for
15 Human Settlements (IIHS) through the Adaptation at Scale in Semi-Arid Regions (ASSAR)
16 consortia of the Collaborative Adaptation Research initiative in Africa and Asia
17 (CARIAA). This work is partially supported under the NORINDIA Project 216576/e10. We
18 acknowledge the World Climate Research Programme's Working Group on Coupled
19 Modeling, which is responsible for CMIP, and we thank the IPSL climate modeling group for
20 producing and making available their model output.

21

22

23

24

25

26

27

28

1 **References**

2 Abish, B., Joseph, P. V. and Johannessen, O. M.: Weakening trend of the tropical easterly jet
3 stream of the boreal summer monsoon season 1950-2009, *J. Clim.*, 26, 9408–9414,
4 doi:10.1175/JCLI-D-13-00440.1, 2013.

5 Bindoff, N.L., Stott, P., AchutaRao, K., Allen, M., Gillett, N., Gutzler, D., Hansingo, K.,
6 Hegerl, G., Hu, Y., Jain, S., Mokhov, I., Overland, J., Perlitz, J., Sebbari, R., and Zhang, X.:
7 Detection and Attribution of Climate Change: from Global to Regional, In: *Climate Change*
8 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
9 Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner,
10 G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley,
11 P.M. (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY,
12 USA, 867–952, 2013.

13 Bollasina, M. A., Ming, Y. and Ramaswamy, V.: Anthropogenic Aerosols and the
14 Weakening of the South Asian Summer Monsoon, *Science.*, 334(6055), 502–505,
15 doi:10.1126/science.1204994, 2011.

16 Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G. and Ravindranath, N. H.: Multi-model
17 climate change projections for India under representative concentration pathways, *Curr. Sci.*,
18 103, 791–802, 2012.

19 Chung, C. E. and Ramanathan, V.: Weakening of north Indian SST gradients and the
20 monsoon rainfall in India and the Sahel, *J. Clim.*, 19(2003), 2036–2045,
21 doi:10.1175/JCLI3820.1, 2006.

22 Collins, M., AchutaRao, K., Ashok, K., Bhandari, S., Mitra, A. K., Prakash, S., Srivasatva,
23 R. and Turner, A.: Observational challenges in evaluating climate models, *Nat. Clim.
24 Change*, 3, 940–941, doi: 10.1038/nclimate2012, 2013.

25 Dee, D. P. and Uppala, S.: Variational bias correction of satellite radiance data in the ERA-
26 Interim reanalysis, *Q. J. R. Meteorol. Soc.*, 135, 1830–1841, doi:10.1002/qj.493, 2009.

27 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
28 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
29 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,

1 Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi,
2 M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay,
3 P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and
4 performance of the data assimilation system, *Q. J. R. Meteorol. Soc.*, 137: 553–597. doi:
5 10.1002/qj.828, 2011.

6 Delworth, T. L. and Manabe, S.: The influence of potential evaporation on the variabilities of
7 simulated soil wetness and climate, *J. Clim.*, 1, 523–547, 1988.

8 Delworth, T. L. and Manabe, S.: The Influence of soil wetness on near-surface atmospheric
9 variability, *J. Clim.*, 2, 1447–1462, 1989.

10 De Rosnay, P. and Polcher, J.: Modelling root water uptake in a complex land surface scheme
11 coupled to a GCM, *Hydrol. Earth Syst. Sci.*, 2, 239–255, doi:10.5194/hess-2-239-1998, 1998.

12 Ducoudré, N. I., Laval, K. and Perrier, A.: SECHIBA, a New Set of Parameterizations of the
13 Hydrologic Exchanges at the Land-Atmosphere Interface within the LMD Atmospheric
14 General Circulation Model, *J. Clim.*, 6, 248–273, doi:10.1175/1520-
15 0442(1993)006<0248:SANSOP>2.0.CO;2, 1993.

16 Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
17 Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot,
18 P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de
19 Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein,
20 P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
21 Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
22 Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip,
23 M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
24 Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P.,
25 Viovy, N. and Vuichard, N. : Climate change projections using the IPSL-CM5 Earth System
26 Model: from CMIP3 to CMIP5, *Climate Dynam.*, 40, 2123–2165, doi:10.1007/s00382-012-
27 1636-1, 2013.

28 Douville, H., Royer, J-F., Polcher, J., Cox, P., Gedney, N., Stephenson, D.B. and Valdes,
29 P.J.: Impact of doubling CO₂ on the Asian summer monsoon: robust versus model-dependent
30 responses, *J. Meteorol. Soc. Jap.*, 78, 421–439, 2000.

1 Fan, F., Mann, M. E., Lee, S. and Evans, J. L.: Observed and modeled changes in the South
2 Asian summer monsoon over the historical period, *J. Clim.*, 23, 5193–5205,
3 doi:10.1175/2010JCLI3374.1, 2010.

4 Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P.,
5 Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov,
6 V., Reason C., and Rummukainen, M. : Evaluation of Climate Models. In: Climate Change
7 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
8 Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner,
9 G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley,
10 P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
11 USA, 741–866, doi:10.1017/CBO9781107415324.020, 2013.

12 Guhathakurta, P., Rajeevan, M.: Trends in the rainfall pattern over India, National climate
13 Centre (NCC) Research Report No.2, 1–23, India. Met. Department., Pune, 2006.

14 Harris, I., Jones. P. D., Osborn, T. J. and Lister, D. H.: Updated high-resolution grids of
15 monthly climatic observations – the CRU TS3.10 Dataset, *Int. J. Climatol.*, 34, 623–642, doi:
16 10.1002/joc.3711, 2014.

17 Hasson, S., Lucarini, V. and Pascale, S.: Hydrological cycle over South and Southeast Asian
18 river basins as simulated by PCMDI/CMIP3 experiments, *Earth Syst. Dyn.*, 4, 199–217,
19 doi:10.5194/esd-4-199-2013, 2013.

20 Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L., Fairhead, L.,
21 Filiberti, M. A., Friedlingstein, P., Grandpeix, J. Y., Krinner, G., LeVan, P., Li, Z. X. and
22 Lott, F.: The LMDZ4 general circulation model: Climate performance and sensitivity to
23 parametrized physics with emphasis on tropical convection, *Clim. Dyn.*, 27, 787–813,
24 doi:10.1007/s00382-006-0158-0, 2006.

25 Huntington, T. G.: Evidence for intensification of the global water cycle: Review and
26 synthesis, *J. Hydrol.*, 319, 83–95, 2006.

27 Hurtt, G., Chini, L., Frolking, S., Betts, R., Feddema, J., Fischer, G., Fisk, J., Hibbard, K.,
28 Houghton, R., Janetos, A., Jones, C., Kindermann, G., Kinoshita, T., Klein Goldewijk, K.,
29 Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren,

1 D. and Wang, Y.: Harmonization of land-use scenarios for the period 1500–2100: 600 years
2 of global gridded annual land-use transitions, wood harvest, and resulting secondary lands.
3 Climatic Change, 109, 117–161, doi:10.1007/s10584-011-0153-2, 2011.

4 Jourdain, N. C., Gupta, A. Sen, Taschetto, A. S., Ummenhofer, C. C., Moise, A. F. and
5 Ashok, K.: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis
6 data and the CMIP3/CMIP5 simulations, Clim. Dyn., 41, 3073–3102, doi:10.1007/s00382-
7 013-1676-1, 2013.

8 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan,
9 G., Cescatti, A., Chen, J., de Jeu, R., Dolman, a J., Eugster, W., Gerten, D., Gianelle, D.,
10 Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson,
11 K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
12 Weber, U., Williams, C., Wood, E., Zaehle, S. and Zhang, K.: Recent decline in the global
13 land evapotranspiration trend due to limited moisture supply., Nature, 467, 951–954,
14 doi:10.1038/nature09396, 2010.

15 Kim, J., Sanjay, J., Mattmann, C., Boustani, M., Ramarao, M. V. S., Krishnan, R. and
16 Waliser, D.: Uncertainties in estimating spatial and interannual variations in precipitation
17 climatology in the India–Tibet region from multiple gridded precipitation datasets, Int. J.
18 Climatol., doi: 10.1002/joc.4306, 2015.

19 Kitoh, A., Yukimoto, S., Noda, A. and Motoi, T.: Simulated changes in the Asian summer
20 monsoon at times of increased atmospheric CO₂, J. Met. Soc. Jap, 75, 1019–1031, 1997.

21 Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogeé, J., Polcher, J., Friedlingstein, P.,
22 Ciais, P., Sitch, S. and Prentice, C.: A dynamic global vegetation model for studies of the
23 coupled atmosphere-biosphere system, Glob. Biogeochem. cycles, 19, GB1015,
24 doi:10.1029/2003GB002199, 2005.

25 Krishnan, R., Sabin, T. P., Ayantika, D. C., Kitoh, A., Sugi, M., Murakami, H., Turner, A.
26 G., Slingo, J. M. and Rajendran, K.: Will the South Asian monsoon overturning circulation
27 stabilize any further?, Clim. Dyn., 40, 187–211, doi:10.1007/s00382-012-1317-0, 2013.

1 Kumar, K. N., Rajeevan, M., Pai, D. S., Srivastava, A. K. and Preethi, B.: On the observed
2 variability of monsoon droughts over India, *Weather Clim. Extrem.*, 1, 42–50,
3 doi:10.1016/j.wace.2013.07.006, 2013.

4 Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L. and Merchant, J.W.:
5 Development of a global land cover characteristics database and IGBP DISCover from 1 km
6 AVHRR data, *Int. J. Remote. Sens.*, 21(6–7), 1303–1330, doi:10.1080/014311600210191,
7 2000.

8 Maraun, D.: (2012) Nonstationarities of regional climate model biases in European seasonal
9 mean temperature and precipitation sums, *Geophys. Res. Lett.*, 39, L06706, 2012.

10 Meinshausen, M., Smith, S.J., Calvin, K.V., Daniel, J.S., Kainuma, J.F., Lamarque, M.
11 Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A.M., Velders, G.J.M.
12 and van Vuuren, D.: The RCP greenhouse gas concentrations and their extension from 1765
13 to 2300, *Clim. Change*, 109, 213–241, doi:10.1007/s10584-011-0156-z, 2011.

14 Padmakumari, B., Jaswal, A. K. and Goswami, B. N.: Decrease in evaporation over the
15 Indian monsoon region: Implication on regional hydrological cycle, *Clim. Change*, 121, 787–
16 799, doi:10.1007/s10584-013-0957-3, 2013.

17 Pai, D. S., Sridhar Latha, Rajeevan, M., Sreejith, O. P., Satbhai, N. S., Mukhopadhyay, B.:
18 Development of a new high spatial resolution ($0.25^\circ \times 0.25^\circ$) long period (1901–2010) daily
19 gridded rainfall data set over India and its comparison with existing data sets over the region,
20 *Mausam*, 65, 1–18, 2014.

21 Rajendran, K., Kitoh, A., Srinivasan, J., Mizuta, R. and Krishnan, R.: Monsoon circulation
22 interaction with Western Ghats orography under changing climate projection by a 20-km
23 mesh AGCM, *Theor. Appl. Climatol.*, 110, 555–571, doi: 10.1007/s00704-012-0690-2,
24 2012.

25 Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C-J., Arsenault,
26 K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D.
27 and Toll, D.: The Global Land Data Assimilation System, *Bull. Am. Meteorol. Soc.*, 85, 381–
28 394, 2004.

1 Sabin, T. P., Krishnan, R., Ghattas, J., Denvil, S., Dufresne, J. L., Hourdin, F. and Pascal, T.:
2 High resolution simulation of the South Asian monsoon using a variable resolution global
3 climate model, *Clim. Dyn.*, 41, 173–194, doi:10.1007/s00382-012-1658-8, 2013.

4 Sadourny, R. and Laval, K.: January and July performance of the LMD general circulation
5 model, In: Berger A, Nicolis C (eds) *New perspectives in climate modeling*, Elsevier,
6 Amsterdam, pp 173–197, 1984.

7 Saha, A., Ghosh, S., Sahana, A. S., and Rao, E. P.: Failure of CMIP5 climate models in
8 simulating post-1950 decreasing trend of Indian monsoon, *Geophys. Res. Lett.*, 41, 7323–
9 7330, doi:10.1002/2014GL061573, 2014.

10 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B.
11 and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A
12 review, *Earth-Science Rev.*, 99(3–4), 125–161, doi:10.1016/j.earscirev.2010.02.004, 2010.

13 Seneviratne, S. I., Lüthi, D., Litschi, M. and Schär, C.: Land-atmosphere coupling and
14 climate change in Europe., *Nature*, 443, 205–209, doi:10.1038/nature05095, 2006.

15 Seneviratne, S. I., Pal, J. S., Eltahir, E. A. B. and Schär, C.: Summer dryness in a warmer
16 climate: A process study with a regional climate model, *Clim. Dyn.*, 20, 69–85,
17 doi:10.1007/s00382-002-0258-4, 2002.

18 Singh, D., Tsiang, M., Rajaratnam, B. and Diffenbaugh, N. S.: Observed changes in extreme
19 wet and dry spells during the South Asian summer monsoon season, *Nat. Clim. Chang.*, 4, 1–
20 6, doi:10.1038/nclimate2208, 2014.

21 Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Fortems-Cheiney, A., Turquety, S., Cozic, A., De'andreas, C., Hauglustaine, D., Idelkadi, A., Lathie`re, J., Marchand, M., Yan, N. and Dufresne, J.L.: Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100, Clim. Dyn., doi:10.1007/s00382-012-1408-y, 2013.

25 Tanaka, H.L., Ishizaki, N. and Kitoh, A.: Trend and interannual variability of Walker,
26 monsoon and Hadley circulations defined by velocity potential in the upper troposphere,
27 *Tellus*, 56A, 250–269, 2004.

1 Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram, *J.
2 Geo. Res.*, 106, 7183–7192, doi:10.1029/2000JD900719, 2001.

3 Taylor, K. E., Stouffer, R. J. and Meehl, G. a.: An overview of CMIP5 and the experiment
4 design, *Bull. Am. Meteorol. Soc.*, 93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012.

5 Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N.,
6 Ammann, C., Montagnani, L., Richardson, A. D., Wohlfahrt, G. and Seneviratne, S. I.: A
7 regional perspective on trends in continental evaporation, *Geophys. Res. Lett.*, 36, 1–5,
8 doi:10.1029/2008GL036584, 2009.

9 Ueda, H., Iwai, A., Kuwako, K. and Hori, M. E.: Impact of anthropogenic forcing on the
10 Asian summer monsoon as simulated by eight GCMs, *Geophys. Res. Lett.*, 33, L06703,
11 doi:10.1029/2005GL025336, 2006.

12 Veechi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetma, A. and Harrison, M. J.:
13 Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing, *Nature*,
14 441, 73–76, 2006.

15 Wetherald, R.T. and Manabe, S.: Detectability of summer dryness caused by greenhouse
16 warming, *Clim. Change.*, 43, 495-511, 1999.

17 Xie, P. and Arkin, P. A.: Global precipitation: A 17-year monthly analysis based on gauge
18 observations, satellite estimates, and numerical model outputs, *Bull. Am. Meteorol. Soc.*, 78,
19 2539 - 2558, 1997.

20 Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. and Kitoh, A.:
21 APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based
22 on a dense network of rain gauges, *Bull. Am. Met. Soc.*, 93, 1401- 1415,
23 doi:10.1175/BAMS-D-11-00122.1, 2012.

24

25

26

27

28

29

30

1 **Table 1.** Long term annual means in mm d^{-1} for precipitation (P), Evapotranspiration (ET),
2 runoff (R) and P-ET from GLDAS, IPSL and LMDZ models during 1979-2005 averaged
3 over the domain $70^{\circ}\text{-}90^{\circ}\text{E}; 10^{\circ}\text{-}28^{\circ}\text{N}$. The water balance is highlighted.

	GLDAS	IPSL	LMDZ
P	2.63	1.81	2.97
ET	1.99	2.25	1.92
R	0.65	0.28	1.06
P-ET	0.64	-0.44	1.05

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Figure 1. Spatial maps for JJAS mean wind fields (m s^{-1}) at (top) 850 hPa and (bottom) 200 hPa for (a,d) ERAI (1979-2005), (b,e) IPSL (1951-2005) and (c,f) LMDZ (1951-2005) simulations. Shading denotes wind magnitude.

1
2
3
4
5
6
7
8

Figure 2. Spatial distributions of JJAS mean (top) 2m air temperature (T2M; $^{\circ}\text{C}$), (middle) precipitation (PR; mm d^{-1}) and (bottom) evapotranspiration (ET; mm d^{-1}) from (a,d,g) observations/multi model data, from HIST simulations of (b,e,h) IPSL and (c,f,i) LMDZ models . The period of analysis for CMAP and GLDAS is 1979-2005 and for CRU, model simulations the time period is 1951-2005.

1
2
3
4
5
6
7
8

Figure 3. Spatial maps for annual mean (top) precipitation, (middle) evapotranspiration and (bottom) runoff from (a,d,g)GLDAS, (b,e,h)IPSL and (c,f,i)LMDZ simulations during 1979-2005. Units are mm d^{-1} .

Figure 4. Taylor diagram for the annual-mean (a) precipitation, (b) evapotranspiration and (c) total runoff climatology (1979-2005) from the IPSL and LMDZ model simulations averaged over land grid points in India (70°E - 90°E ; 10°N - 28°N). The radial coordinate shows the standard deviation of the spatial pattern, normalized by the observed standard deviation. The azimuthal variable shows the correlation of the modelled spatial pattern with the observed spatial pattern. The distance between the reference dataset (GLDAS) and individual points corresponds to root mean square error (RMSE).

Figure 5. Spatial maps of linear trends in JJAS rainfall based on (a) APHRODITE, (b) IPSL and (c) LMDZ HIST simulation. Units are mm d^{-1} change over the period 1951–2005. Trend values exceeding the 95% level of statistical significance based on Students t test are hatched.

Figure 6. Spatial maps of linear trends in 2m air temperature for JJAS season based on (a) CRU, (b) IPSL and (c) LMDZ HIST simulation. Units are $^{\circ}\text{C}$ change over the period 1951–2005. Trend values exceeding the 95% level of statistical significance based on Students t test are hatched.

1
2

Figure 7. Spatial distribution of linear trends in JJAS mean (a) total soil moisture (SM) and evapotranspiration (ET) from HIST simulation of LMDZ. Units are mm and mm d^{-1} change over the period 1951–2005 for SM and ET respectively. Trend values exceeding the 95% level of statistical significance based on Students t test are hatched.

1

2

3

Figure 8. (a) Scatter plot of linear trends in JJAS mean evapotranspiration(ET) during the 55-year (1951-2005) period as a function of the linear trends of total soil moisture(SM) for all the grid points over the region 70°E-90°E; 10°N-28°N. (b and c) same as (a) expect for the grid points with trends in surface downward short wave radiation (b) increasing and (c)decreasing.

Figure 9. Spatial distribution of linear trends in (a) 2m air temperature ($^{\circ}\text{C}$), (b) precipitation (mm d^{-1}), (c) soil moisture (mm) and (d) evapotranspiration (mm d^{-1}) from RCP simulation of LMDZ. Trends are expressed as change over the period 2006–2095. Trend values exceeding the 95% level of statistical significance based on Students t test are hatched. The box indicates central India ($74.5^{\circ}\text{--}86.5^{\circ}\text{E}$; $16.5^{\circ}\text{--}26.5^{\circ}\text{N}$) region.

1

2

Figure 10. Time series of area-averaged anomalies of (a) soil moisture (SM; mm), (b) 2m air temperature (T2M; $^{\circ}\text{C}$) and (c) Precipitation (P; mm d^{-1}) from ALL (HIST and RCP) experiments of (grey) IPSL and (black) LMDZ for the region 74.5° - 86.5°E ; 16.5° - 26.5°N . The yearly JJAS anomalies are computed as the difference from the corresponding long-term mean (1886-2005) of NAT integration. Each time series has been smoothed by a 20 year running mean. The two horizontal dashed lines denote one standard deviation limits from the NAT integration computed from the yearly JJAS averages for LMDZ and dotted lines correspond to IPSL.