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Abstract

Future projections on irrigation water under a changing climate are highly dependent on me-
teorological data derived from general circulation models (GCMs). Since climate projections
include biases, bias correction is widely used to adjust meteorological elements, such as the at-
mospheric temperature and precipitation, but less attention has been paid to biases in humidity.5

Hence, in many cases, uncorrected humidity data have been directly used to analyze the impact
of future climate change. In this study, we examined how the biases remaining in the humidity
data of five GCMs propagate into the estimation of irrigation water demand and consumption
from rivers using the global hydrological model (GHM) H08. First, to determine the effects
of humidity bias across GCMs, we ran H08 with GCM-based meteorological forcing data sets10

distributed by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). A state-of-
the-art bias correction method was applied to the data sets without correcting biases in humidity.
Differences in the monthly relative humidity amounted to 11.7 to 20.4 % RH (percentage rel-
ative humidity) across the GCMs and propagated into differences in the estimated irrigation
water demand, resulting in a range between 1152.6 and 1435.5 km3 yr−1 for 1971–2000. Dif-15

ferences in humidity also propagated into future projections. Second, sensitivity analysis with
hypothetical humidity biases of ±5 % RH added homogeneously worldwide revealed the large
negative sensitivity of irrigation water abstraction in India and East China, which are heavily
irrigated. Third, we performed another set of simulations with bias-corrected humidity data to
examine whether bias correction of the humidity can reduce uncertainties in irrigation water20

across the GCMs. The results showed that bias correction, even with a primitive methodol-
ogy that only adjusts the monthly climatological relative humidity, helped reduce uncertainties
across the GCMs: by using bias-corrected humidity data, the uncertainty ranges of irrigation wa-
ter demand across the five GCMs were successfully reduced from 282.9 to 167.0 km3 yr−1 for
the present period, from 381.1 to 214.8 km3 yr−1 for the future period (RCP8.5, 2070–2099).25

Although different GHMs have different sensitivities to atmospheric humidity because different
types of potential evapotranspiration formulae are implemented in them, bias correction of the
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humidity should be applied to forcing data, particularly for the evaluation of evapotranspiration
and irrigation water.

1 Introduction

Recent ongoing global warming is expected to change current hydroclimatological environ-
ments at the global scale. Since fresh water is essential for various industrial and social activities5

of human beings, its availability plays a crucial role in the sustainable development of society.
Agriculture is one of the human activities that are highly susceptible to hydroclimatological

conditions. Irrigated water is supplied to cropland to compensate the deficit in the soil water
content, which affects crop growth. Since soil water is primarily consumed through evapo-
transpiration, which is sensitive to meteorological conditions, the amount of required irrigation10

water varies with the meteorological conditions. According to Vörösmarty et al. (2005) (Ta-
bles 7.3 and 7.4), the total amount of global freshwater withdrawal was 3560 km3 yr−1 for
1995–2000, 2480 km3 yr−1 (70 % of the total withdrawal) of which was supplied for agricul-
tural use, and the consumption through evapotranspiration from irrigated cropland amounted
to 1210 km3 yr−1 (34 % of the total human withdrawal and 49 % of the total agricultural with-15

drawal). In Asia, a larger proportion of abstracted water is consumed through evapotranspira-
tion (52 % of the total human withdrawal and 59 % of the total agricultural withdrawal) than the
global average. Moreover, the volume of irrigation water is expected to increase in the future
because of an increase in evapotranspiration from cropland under warmer climates (e.g., Wada
et al., 2013) and the expansion of irrigated cropland to meet the increasing demand for food20

owing to the increase in the world population (e.g., Bruinsma, 2011; Elliott et al., 2014). Pre-
cise estimation of the amount of irrigation water abstraction is crucial for the sustainable use of
available water in the future.

To quantitatively evaluate future irrigation water, we must substantially rely on hydrologi-
cal simulation. However, there are fundamental difficulties in the estimation because there are25

many possible errors and uncertainties in the data sets (meteorological data sets, land use data,
etc.), calculation schemes (evapotranspiration, runoff, river flow, etc.) and parameters. More-
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over, there are also difficulties in incorporating irrigation schemes that are able to represent
realistic irrigation management and performance. In fact, different general circulation models
(GCMs) and global hydrological models (GHMs) give different estimates. Wisser et al. (2008)
showed that the discrepancies in the estimation stem from both meteorological and irrigated
area data. Recently, the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) set the5

estimation of uncertainties in both GCMs and GHMs through intermodel comparison as one of
its goals (Warszawski et al., 2014).

GCM biases are one of the substantial sources of uncertainty in future climate projections.
For over a decade, we have made considerable effort to remove GCM biases from the tem-
perature and precipitation data because these meteorological elements are crucial for analyzing10

the impact of climate change. However, hydrological simulations require other meteorological
elements in addition to these elements. Solving water and heat budgets at the ground surface ba-
sically requires seven meteorological elements (atmospheric temperature, precipitation, short-
and longwave downward radiation, wind velocity, pressure and humidity). Less attention has
been paid to GCM biases of meteorological elements other than temperature and precipitation.15

Haddeland et al. (2012) intensively examined the compound effects of the bias correction of ra-
diation, wind and humidity, and showed that bias correction has an impact on absolute values of
evapotranspiration but less impact on relative changes. Moreover, global humidity observation
data sets contain uncertainties originating from the accuracy of measurements, grid sampling
(Willett et al., 2013) and the spatial variability within land cells. Knowing the sensitivity of20

irrigation water to humidity conditions at different locations would help clarify the maximum
expected uncertainty ranges in the estimation of irrigation water and their geographical suscep-
tibility.

In the framework of the recent research project on climate change impact assessment, the
ISI-MIP has provided GCM-generated meteorological data sets that were adjusted by a so-25

phisticated bias correction method developed by Hempel et al. (2013). Although most of the
meteorological elements used in GHMs have been corrected by this method, the relative hu-
midity remains uncorrected. It is important to quantitatively evaluate the size of the humidity
biases existing in the original GCM data and the extent to which they affect the estimation of
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irrigation water. In this study, we examine possible uncertainty sources in estimating irrigation
water consumption via evapotranspiration by focusing on the propagation of uncertainties in
humidity data. We also examine whether uncertainties in irrigation water consumption across
GCMs can be reduced if bias correction is applied to the humidity.

The data and analysis methods are described in Sect. 2 and the results and discussion are5

given in Sects. 3 and 4, respectively.

2 Data and Methods

2.1 Bias-corrected meteorological data

We used bias-corrected meteorological data sets distributed by the ISI-MIP for driving GHM
H08 (details of the model are given in Sect. 2.2). Five GCMs based on the Coupled Model10

Intercomparison Project Phase 5 (CMIP5) were used: GFDL-ESM2M (NOAA Geophysical
Fluid Dynamics Laboratory), HadGEM2-ES (Met Office Hadley Centre with contribution by
Instituto Nacional de Pesquisas Espaciais), IPSL-CM5A-LR (Institut Pierre-Simon Laplace),
MIROC-ESM-CHEM (Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo) and National Institute for Environ-15

mental Studies) and NorESM1-M (Norwegian Climate Centre). Hereafter, we abbreviate these
GCMs to GFDL, HadGEM, IPSL, MIROC and NorESM, respectively. Bias correction was ap-
plied to the meteorological elements listed in Table 1 using the method of Hempel et al. (2013)
with observation-based WATCH meteorological data sets (Weedon et al., 2011) for 1960–1999.
The bias in relative humidity in the GCMs has remained uncorrected because of difficulties20

in preserving physical consistency between humidity-related variables (relative/specific humid-
ity, vapor pressure), the atmospheric temperature and the pressure after bias correction (ISI-
MIP, 2012). The geographical resolution of all meteorological data was commonly adjusted
to 0.5◦× 0.5◦. Future projections were made under four representative concentration pathways
(RCPs 2.6, 4.5, 6.0 and 8.5) (Moss et al., 2010; van Vuuren et al., 2011).25
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2.2 Hydrological model

The hydrological model used in this study was H08 (Hanasaki et al., 2008a, b). The model
solves both the water and energy balances at a time step of one day with global coverage
at a resolution of 0.5◦× 0.5◦. The model consists of six submodels (land surface hydrology,
river routing, crop growth, water abstraction, reservoir operation and environmental flow re-5

quirement), but only the first four submodels were employed in this study. The land surface
hydrology submodel solves the water and energy balances. The submodel solves the water bal-
ance using simple and basic physical hydrological processes that are suitable for global-scale
simulation. A 1 m leaky bucket is assumed in the model: the soil moisture in each land cell is
expressed as water stored in this bucket, and the water slowly drains from the bucket to express10

the subsurface runoff. The crop growth submodel is a process-based model that is used to es-
timate the crop growing season globally. The water abstraction submodel estimates the human
impacts of irrigational, municipal and industrial water abstraction from rivers for consumptive
use. The consumptive use of irrigation water was estimated from the deficit in the soil water
content compared with a target level in irrigated cropland during the growing season. Details15

are described in the second half of this section. The water is abstracted from rivers as the first
choice if the riverine water is available, the rest of the required water is limitlessly supplied
from non-renewable and non-local blue water resources (e.g., groundwater or long-distance
transported water, see Rost et al., 2008; Hanasaki et al., 2010). Values for the consumptive
use of municipal and industrial water were taken from country-based AQUASTAT data (FAO,20

2015). Municipal and industrial water consumption at each land cell were weighted by the pop-
ulation using the Gridded Population of the World, Version 3 (GPWv3) (CIESIN and CIAT,
2005). Socio-economic conditions (e.g., the population and irrigated area) were fixed at those
in the year 2000. To stabilize the initial conditions, the hydrological model was spun up using
data from 1950 to 1959.25

We assumed that irrigation water is supplied to irrigated cropland under the condition that
crops are not affected by water stress. The soil water content was maintained at 75 % of the field
capacity for all crops except rice (100 %) during the growing season and for 30 days before the

6



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

planting date. If there is a deficit relative to this threshold, soil water content was assumed to be
supplied by irrigation. The soil water of cropland is consumed through evapotranspiration and
lost through runoff. The former was calculated from both the meteorological conditions and the
soil water content (see Sect. 2.3), whereas the latter was assumed to vary with the soil water
content. The spatial distribution of the irrigated area was fixed at that for the year 2000 based5

on the data of Siebert et al. (2005) throughout the analysis period. We separately calculated the
results for three different water management schemes corresponding to three types of agricul-
tural land use: double-cropping irrigated cropland (we refer to this water management scheme
as Mosaic 1 hereafter), single-cropping irrigated cropland (Mosaic 2) and rain-fed cropland
(Mosaic 3). Their geographical distributions are shown in Fig. 1. Information on double- and10

single-croppings was taken from the cropping intensity reported by Döll and Siebert (2002). We
aggregated the three types of water management into a land cell (Mosaic 0) in consideration of
their areal fractions in each land cell. We considered the 19 crops (18 crops plus “others”) used
in Table 7 in Leff et al. (2004) but with an updated geographical distribution for the year 2000
(Monfreda et al., 2008). The crop parameters used to calculate their growth were based on the15

SWIM code (Krysanova et al., 2000).
In this study, we evaluated two quantities regarding the irrigation water (hereafter, the wa-

ter volume is reported on a consumption basis): irrigation water demand (IWD) and irrigation
water consumption from rivers (IWCR). The IWD gives the cumulative amount of water to
be supplied over cropland to compensate the deficit relative to a threshold soil water content.20

The soil water is primarily supplied by precipitation under natural conditions and consumed
via evapotranspiration, drained by runoff and so forth. Since we assumed that the soil water
should be kept at a certain level by irrigation (described in Sect. 2.3 in detail), IWD gives the
additional amount of water required to prevent crops from suffering water stress under given me-
teorological conditions. In other words, the IWD gives the maximum water consumption while25

maintaining the current agricultural maneuver (geographical distribution of irrigated cropland,
cultivars, water management in irrigated cropland, etc.) under idealized conditions without fear
of water shortage.
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The IWCR gives the irrigation water consumption that can be supplied from rivers and is
defined as a proportion of the IWD. In practice, irrigation water is abstracted from various re-
sources (e.g., rivers, local reservoirs, groundwater). Among them, rivers are the largest water
resource and their flow is vulnerable to future climate change. Thus, it is important to examine
the proportion of IWD that can be supplied from rivers. By taking this situation into considera-5

tion, our calculation scheme was based on the assumption that water is primarily abstracted from
rivers (Hanasaki et al., 2010). Through evaluation of IWCR under restrictions of riverine water
availability, we estimated the extent to which humidity biases affect hydrological variables that
are not determined only from meteorological conditions.

2.3 Evapotranspiration calculation scheme10

Various formulae for estimating potential evapotranspiration have been developed (e.g., Shel-
ton, 2009), and researchers have utilized suitable formulae for their own research purposes.
These formulae are classified into two basic categories: physical and empirical formulae. The
former describe potential evapotranspiration from the viewpoint of the energy balance at the
land surface, and such formulae are suitable for (micro-)meteorological studies requiring a high15

temporal resolution. Thus, this type of formula requires several meteorological elements such
as the surface temperature, humidity, radiation and wind speed. On the other hand, the latter de-
scribe climatological conditions for less time-varying phenomena in a simplified manner and, in
general, require only two or three meteorological elements. Thus, the latter are suitable for sites
where meteorological observation data are limited. Examples of evapotranspiration formulae20

are given in the Appendix.
The calculation scheme for potential evapotranspiration Epot employed in H08 is the bulk

formula (Kondo, 1994)

Epot = ρCDU(qsat(Ts)− q), (1)
25

where ρ, CD and U are the air density, bulk transfer coefficient (= 0.003) and wind speed,
respectively. Thus,Epot is proportional to the difference between the saturated specific humidity
at the surface temperature qsat(Ts) and the specific humidity of the air q. Since bias correction
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was independently applied to each meteorological element except for the relative humidity, the
physical consistency among meteorological elements guaranteed in the original GCMs might
be lost. In this study, we recalculated q to maintain local physical consistency between the bias-
corrected temperature and uncorrected relative humidity.

Actual evapotranspiration is estimated by multiplying by a function of the soil water con-5

tent W . If W is less than three-quarters of the field capacity Wfc, Eact linearly decreases with
decreasing W :

Eact = βEpot, (2)

where10

β =

{
1 (W ≥ 0.75Wfc)

W
0.75Wfc

(W < 0.75Wfc)
. (3)

The soil water content in irrigated cropland was assumed to be maintained at 0.75Wfc (Wfc
for rice) to prevent crops from suffering water stress. That is, evapotranspiration from irrigated
cropland is not suppressed by a decrease in the soil water content (i.e., Eact = Epot) during the15

growing season. Although the actual threshold may be different for different types of irrigation
(e.g., sprinklers, drip irrigation, ditch irrigation) or irrigation management, global information
on such variation is unavailable. The adopted irrigation scheme based on the soil water content
is simple but applicable for global-scale simulations (e.g., Döll and Siebert, 2002).

2.4 Experiment design of this study20

To investigate the effects of bias correction of the humidity, we designed three sets of exper-
iments in this study: (1) a reference experiment, (2) a sensitivity experiment and (3) a bias-
corrected experiment. In the reference experiment, a hydrological simulation was performed
with the uncorrected humidity data described in Sect. 2.1. We evaluated the evapotranspiration
and irrigation water for both present and future periods. The results were also used as a reference25

for the other two sets of experiments, details of which are given below.
9
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2.4.1 Sensitivity experiment with hypothetical bias in humidity

Measurement of the atmospheric humidity inevitably involves errors. Observation-based hu-
midity data sets, which are often used as reference data for bias correction, might contain
a certain level of error. Moreover, the sensitivity of the amount of irrigation water to atmo-
spheric humidity varies geographically or seasonally because irrigation water depends not only5

on meteorological conditions but also on the areal fraction of irrigated cropland, irrigation man-
agement, irrigation techniques and the cultivation maneuver (crop type, crop calendar, etc.) in
each land cell.

To evaluate the sensitivity of the amount of irrigation water to atmospheric humidity, we
carried out a sensitivity experiment in which we introduced a pair of constant biases so that the10

data were higher and lower than the original GCM-based humidity data and investigated the
effect of the biases on irrigation water. The sensitivity is also helpful for predicting the size of
the error in the simulation of irrigation water. In this experiment, we introduced “hypothetical”
biases into the relative humidity by simply adding biases of ±5 % RH as a worst case (discussed
below) homogeneously to all the land cells. (Hereafter, to discriminate between the unit of15

relative humidity and a general percentage, we use % RH for the unit of humidity.) When the
relative humidity exceeded 100 % RH or became negative, we used values of 100 and 0 % RH,
respectively. The other meteorological elements were unchanged. This experiment was carried
out for the both present and future periods.

In fact, Willett et al. (2013) reported that the maximum uncertainties in humidity measure-20

ments with dry- and wet-bulb thermometers amounted to 2.75 and 5 % RH at temperatures of 0
and −10 ◦C, respectively. Emeis (2010) summarized the errors for various measurement equip-
ment: for example, advanced equipment based on the capacitive method has an accuracy of
2 % RH (for a humidity of 10–80 % RH) to 3 % RH (for a humidity of 80–ca. 100 % RH). By
considering these reports, we set ±5 % RH as the worst case in this study.25

Through such sensitivity experiments, we are able to estimate the largest possible ranges
of uncertainty in irrigation water consumption due to an uncertainty in the relative humidity
of α% RH because the uncertainty for irrigation water in the case of geographically random
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biases within ±α% RH necessarily lies between those for the two extremes of the globally
homogeneous bias of ±α% RH. Recall that, because of the supply of irrigation water, Eact =
Epot for irrigated cropland during the growing season. If we artificially add positive (negative)
biases to the relative humidity without changing other elements, both ρ and qsat(Ts)− q on the
right-hand side of the bulk formula (Eq. 1) will decrease (increase), resulting in a decrease (an5

increase) in potential evapotranspiration. The increase in Epot via qsat(Ts)
1 is smaller than the

direct decrease inEpot resulting from introducing a hypothetical bias of α% RH. Therefore,Eact
has a monotonic dependence on the humidity bias: Eact becomes smaller (larger) for positive
(negative) biases in the relative humidity.

We note that this simple relation holds only for irrigated cropland during the crop growing10

season when irrigation water is limitlessly supplied. In rain-fed cropland or irrigation-free sea-
sons, evapotranspiration has a complex dependence on meteorological conditions (Wang and
Dickinson, 2012) because Eact also depends on the soil moisture content (Eq. 3).

The sensitivity experiment was also carried out for a future period because different GCMs
project different future climates. Even if the biases in meteorological elements were completely15

removed for the present period, the future temperature or precipitation would still differ across
the GCMs. Since evapotranspiration is also sensitive to temperature conditions, the future sen-
sitivity may be different from the present sensitivity and also vary among the GCMs. The sensi-
tivity experiment for a future period will help clarify the propagation of humidity biases into the
amount of irrigation water even under different future climates projected by different GCMs.20

2.4.2 Bias-corrected experiment

If we introduce bias correction of the humidity, does it affect hydrological projections and have
any advantages? To examine this effect, we prepared another set of meteorological data for
which the humidity data were bias-corrected with a primitive methodology that adjusts only the

1A decrease (an increase) in potential evapotranspiration will increase (decrease) Ts owing to the
prevention (promotion) of cooling by latent heat, and result in an increase (a decrease) in Epot through
an increase (a decrease) in qsat(Ts).
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monthly climatology. Using this bias-corrected humidity data set and the original bias-corrected
meteorological data sets for the other elements, we recalculated the hydrological process in
the same way and compared the results with the uncorrected ones (i.e., those of the reference
experiment). This experimemt was carried out for both the present and future periods.

The bias-correction methodology was based on additive adjustment in order to preserve the5

range of variability in the relative humidity because the evapotranspiration obtained by a phys-
ical formula (see Appendix) is sensitive to the vapor pressure deficit. First, we obtained the
monthly climatological relative humidity at all land cells for each GCM by averaging the rela-
tive humidity data for the same month of the year over the period 1960–1999. By subtracting
the monthly climatological relative humidity in the GCM for the same period from those in10

the WATCH observational data, we determined the climatological monthly adjustments. Then,
we compiled daily bias-corrected humidity data by simply adding the climatological monthly
adjustments to the original GCM daily humidity data. Values of less than 0 % RH and greater
than 100 % RH were set to 0 and 100 % RH, respectively.

We summarize the statistics of the truncated humidity data before and during our bias cor-15

rection in Table 2. The original regridded data already contain supersaturation (greater than
100 % RH), except for IPSL (Table 2a). Most of the supersaturation data were obtained at high
northern latitudes in winter where the atmospheric temperature was well below 0 ◦C. The num-
ber of truncated humidity data at 100 % RH during our primitive bias correction (Table 2b) is
less than the number of supersaturation data in the original regridded data except for IPSL,20

particularly in the boreal winter, because a certain proportion of the oversaturated data in the
GCMs were adjusted to undersaturated data by the bias correction when the monthly climato-
logical humidity of the GCMs was larger than that of the WATCH data. In contrast, the number
of truncated humidity data at 0 % RH is very small (Table 2c). These truncations were observed
in highly dry regions, such as deserts. Generally, the number of truncated data at 100 % RH25

in the future projection (RCP 8.5) is smaller than that in the present, whereas the number at
0 % RH is larger than the present number.

We expect the errors in evapotranspiration due to these truncations to be marginal and not
to cause major problems in the interpretation of our results on hydrological variables. In fact,
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the evapotranspiration under the low-temperature conditions typically seen at high northern lat-
itudes in winter approaches zero. Moreover, few crops are cultivated in the winter and irrigated
agriculture is not practiced in these regions. Similarly, evapotranspiration in and around desert
areas (except in limited areas with intensive irrigation) is also very small.

3 Results5

3.1 Comparison of performance of meteorological elements between GCMs

We first examine the differences in the meteorological elements between the five GCMs in the
framework of the reference experiment to search for existing GCM-inherent biases and compare
them with the WATCH observation-based meteorological elements to evaluate the performance
of bias correction. Figure 2 shows the monthly difference worldwide averaged over each type of10

land use (mosaic). Monthly profiles of the atmospheric temperature, precipitation and shortwave
downward radiation for the five GCMs agree with those of WATCH. Note that the 30 year
analysis period (1971–2000) is slightly different from the bias correction period (1960–1999).
For the wind speed data, although the monthly profile of MIROC is slightly larger than that of
WATCH over Mosaic 1, we consider the overall performance of bias correction to be reasonably15

good for the wind data.
In contrast, the monthly profiles of the relative humidity, which contain GCM-inherent biases,

show a large dispersion between the five GCMs and also deviate from those of WATCH. The
global-mean relative humidity over Mosaic 1 shows a larger dispersion than those over the other
mosaics: the largest difference in the relative humidity between the monthly GCMs reaches20

19.8 % RH in both January and October with a minimum of 11.0 % RH in May for Mosaic 1.
Such differences in the uncorrected relative humidity cause the deviation of the potential

evapotranspiration and evapotranspiration between the five GCMs. Figure 3 shows their monthly
profiles. Different GCMs have different monthly profiles and peak months. The difference
in the potential evapotranspiration among the GCMs for Mosaic 1 reaches a maximum of25

1.23 mm day−1 in June with a minimum of 0.56 mm day−1 in December. The difference ex-
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ceeds 0.9 mm day−1 from March to October. Since the temperature, shortwave downward radi-
ation and wind speed, which are required for the calculation of the potential evapotranspiration
(Eq. 1), are successfully bias-corrected (Fig. 2), these differences in the potential evapotranspi-
ration are considered to be mainly due to GCM biases in the relative humidity. NorESM tends
to have a small but positive bias of the potential evapotranspiration and a small negative bias5

of the evapotranspiration during the summer. However, no clear biases of the relative humidity
can be observed in Fig. 2.

Next, we determine the geographical distribution of the GCM biases with respect to the
WATCH data because regional deviations with opposite signs may cancel each other when
calculating the global mean. Figures 4, 5 and 6 show the SD of 12 month climatological data10

of the relative humidity, atmospheric temperature and precipitation of the GCMs with respect
to the WATCH data, respectively. Strong regional patterns were detected in the relative humid-
ity (Fig. 4). Figure 4 also shows that the relative humidity in high mountainous areas (Rocky,
Andes and Himalayas) have larger deviations from the WATCH data for all GCMs. Each GCM
has a different geographical distribution. For example, GFDL exhibits large differences over15

the world. HadGEM and IPSL have large differences in Eurasia but good performance in Aus-
tralia. MIROC has high deviations in inland regions of Asia and Australia. NorESM has small
differences in Europe and Eastern United States but large differences in Australia.

In contrast, uniformly distributed small biases (less than 0.5 ◦C for most of the world) were
observed for the temperature (Fig. 5). The SD for the precipitation (Fig. 6) is less than 0.2 mm day−1

20

for most of the world and around 0.5 mm day−1 for humid areas (e.g., Southeast Asia). Al-
though exceptions are seen in the Amazonian inland, where a large SD is observed for GFDL
and IPSL, these contributions are considered to be marginal when taking the large annual pre-
cipitation (greater than 2000 mm) and the smaller amount of cropland (see Fig. 1) into account.
These results also indicate that the bias corrections of the atmospheric temperature and precip-25

itation were successful at the regional scale.
We averaged the monthly SD over the land cells of each mosaic and summarized the results

in Table 3. As expected from Fig. 4, HadGEM has the smallest deviation from WATCH over
all land cells (Mosaic 0). However, MIROC and NorESM have superior performance for Mo-
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saics 1 and 2. Since both Mosaics 1 and 2 are irrigated cropland, differences in the potential
evapotranspiration directly affect differences in the amount of irrigation water. Errors in the hu-
midity are one possible error source when calculating evapotranspiration. In this sense, small
humidity biases over irrigated cropland are beneficial for suppressing their effects on irrigation
water provided that other meteorological elements are sucessfully bias-corrected.5

3.2 GCM features and their propagation into future projections

Next, we examine the extent to which GCM-inherent features in the relative humidity affect the
estimation of irrigation water and propagate into a future period (2070–2099) in the framework
of the reference experiment. If the effects are not negligible, bias correction of the humidity, as
well as other meteorological elements, is highly recommended.10

Figure 7 shows future monthly profiles of the five GCMs. Since the meteorological variables
are bias-corrected for 1960–1999, the GCM-inherent future climate trends diverge from their
monthly profiles. The monthly profiles of the atmospheric temperature and precipitation show
small differences but have similar shapes across the GCMs. Shortwave downward radiation
and wind have little dispersion among the GCMs. In contrast, the relative humidity has large15

dispersion among the GCMs. For each GCM, in comparison with Fig. 2, the monthly profiles
of the relative humidity for the present and future periods have similar shapes.

To easily perceive the differences between the GCMs, we evaluate the relative anomaly of
the five GCMs with respect to their ensemble mean. The results of anomalies in the relative
humidity and related hydrological elements (potential evapotranspiration, evapotranspiration,20

IWD and IWCR) are shown in Figs. 8 and 9.
First, Fig. 8 shows that the monthly anomaly profiles of the potential evapotranspiration,

evapotranspiration and IWD are similar but vertically opposite those of the relative humidity.
This relation is expected from Eq. (1) while other meteorological conditions are fixed. We note
that although the evapotranspiration from rain-fed cropland (Mosaic 3) also depends on the soil25

moisture, GCM-inherent features are weakly observed in the monthly profile of evapotranspi-
ration.
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Second, Fig. 9 shows that the future monthly anomaly profiles of the relative humidity are
very similar to the present ones (Fig. 8) for all GCMs. This implies that the GCM-inherent biases
propagate into future projections. As a result, the future monthly profiles of other hydrological
elements also resemble the present ones.

Since IWCR is limited by the availability of riverine water, GCM-inherent features are weak-5

ened but remain. For example, larger positive anomalies in HadGEM and IPSL and negative
ones in MIROC during boreal fall for 1971–2000 (Fig. 8) are similarly observed in the future
projections (Fig. 9).

Geographical distribution of the monthly anomaly of the relative humidity (Fig. 10) also
shows that GCM-inherent biases are propagated into future projections. For all GCMs, the10

anomaly pattern for the future periods resembles that for 1971–2000. The results imply that,
if we adequately remove the GCM-inherent biases of the humidity, their propagation into future
projections can be alleviated.

3.3 Uncertainties in absolute values of irrigation water across GCMs

In Table 4, we summarize the results of the reference experiment on present and future values15

of the global sum of irrigation water, focusing on their ranges across the GCMs. Note that
the global sum of irrigation water (Mosaic 0) is equivalent to the sum of those for Mosaics
1 and 2 because no irrigation is applied to Mosaic 3. IWD (Table 4a) ranges between 1152.6
and 1435.5 km3 yr−1 for 1971–2000. A larger increase of ca. 20 % in the future (2070–2099)
is projected under a higher concentration of greenhouse gases such as under RCP 8.5. Both20

absolute values and relative changes show a large dispersion between the GCMs.
Since it is difficult to validate these results with observed data because of the lack of global

census data, we compare the results with those in previous studies. Wada et al. (2013) reviewed
past studies on irrigation water consumption (in their Table S1), which was in the range of
1029–1772 km3 yr−1 at the end (or the last few decades) of the 20th century. Rost et al. (2008)25

reported that global blue water consumption for irrigation use was 1364 km3 yr−1. Our estima-
tions of IWD are close to these reported results.
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In contrast to IWD, future changes in IWCR (Table 4b) relative to the 1971–2000 values
show a small increase of at most 3.4 %. Several pairs of GCM-RCPs show a small decrease in
the future. Since IWCR is strongly constrained by water availability from rivers, these results
reflect the future river flow. In other words, current irrigation maneuvers cannot be sustained
by only riverine water under a future warming climate for these scenarios because, despite5

increasing demand for irrigation water (Table 4a), water consumption that can be supplied from
rivers cannot meet the demand (Table 4b) at the global scale.

We note that MIROC and NorESM, whose relative humidity shows small deviations from
the observation (see Sect. 3.1), tend to have the smallest IWD and IWCR values among the five
GCMs.10

Monthly profiles of the global sum of the present and future IWCR (Fig. 11) differ among the
GCMs. Since most irrigated croplands are distributed in the Northern Hemisphere, the global
sum of IWCR has a peak in boreal summer of approximately three times the value in boreal
winter. Despite large differences in the absolute monthly values between the GCMs, all GCMs
show a future increase in IWCR in boreal summer and a decrease in boreal spring under a future15

warmer climate. Although in April, the global sum of the future IWD is approximately the
same as that of the present IWD (not shown), the future IWCR is expected to decrease in boreal
spring (Fig. 11). This result indicates that the future decrease in IWCR is attributable to a deficit
in irrigation water that can be supplied from rivers, not to an increase in evapotranspiration
demand from cropland.20

3.4 Sensitivity experiment with hypothetical biases

3.4.1 Present period (1971–2000)

We investigate the effect of humidity biases on irrigation water by examining the results of the
sensitivity experiment by adding biases of ±5 % RH homogeneously all over the world. Table 5
shows that biases of ±5 % RH approximately correspond to changes in IWD of ±6.5 to ±7.5 %25

and IWCR of ±3.5 to ±5.0 % as the maximum error range. Monthly profiles of IWCR with
biased humidity also deviate from the original profiles (Fig. 12). The effect of the artificial
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bias is clearly observed during boreal summer. Comparing Tables 4 and 5 or Figs. 11 and 12,
changes with ±5 % RH biases are comparable to, or sometimes larger than, future changes in
IWCR under RCP 8.5.

Figure 13 shows the geographical distribution of the sensitivity (i.e. the change in IWD or
IWCR per unit change in the relative humidity (1 % RH)) for June and August. The negative5

sensitivity of IWD, as expected from Eq. (1), is observed, particularly in India and East China,
where both double-cropping and single-cropping irrigated croplands are intensely distributed.
In contrast, midlatitudes (Europe to Central Asia and North America) show smaller negative
sensitivity than India and East China. This implies that IWD in India and East China is more
sensitive to small changes in the relative humidity than other regions of the world, possibly due10

to the high temperature in summer and the high areal fraction of irrigated cropland.
The sensitivity of IWCR shows a similar geographical distribution to that of IWD but with

a smaller magnitude. In June, the negative sensitivity of IWCR is markedly weaker than that
of IWD in India and East China. These features are considered to be due to the limited water
availability in river flow, which results in less dependence on the atmospheric humidity. In fact,15

the rainy season starts in June in India and in June and July in southern and northern China,
respectively.

From these results, to effectively and efficiently reduce the uncertainty of irrigation water
consumption, more stringent accuracy for the atmospheric humidity data is required for India
and East China.20

3.4.2 Future period (2070–2099)

Table 5 also shows the results of the sensitivity experiment for the future period. We observed
slightly smaller sensitivities (±6.0 to ±7.5 % for IWD and ±3.0 to ±4.5 % for IWCR) for the
future period than for the present. Readers are reminded that these sensitivities were evaluated
under GCM-inherent future climate trends because only the relative humidity was artificially25

changed around its future projected value while the other variables were fixed to their future
projected values in the experiment.
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The differences in the relative humidity among the GCMs for the future period (Figure 7) are
sufficiently large for the estimates of IWD and IWCR to diverge. The differences in the relative
humidity between the GCMs are one of the marked uncertainty sources in the future projection
of hydrological variables.

3.5 Bias-corrected experiment and effects of reduction of uncertainty across GCMs5

Next, we examine the extent to which uncertainties are reduced by bias correction of the humid-
ity data (Sect. 2.4.2). Figure 14 shows monthly anomalies of hydrological elements with respect
to the GCM-ensemble means. In comparison with Fig. 8, the relative humidity of all GCMs are
in good agreement, implying that bias correction, even with a primitive method, is effective.
The potential evapotranspiration is also similar among the GCMs except for NorESM, which10

has a positive bias. NorESM also had a positive bias in Fig. 3. The monthly profiles of the evap-
otranspiration, IWD and IWCR are confined in narrower ranges than those for the uncorrected
humidity data. For example, IWD remains within ±20 % from the ensemble mean throughout
the year, in clear contrast to the range of approximately ±30 % in Fig. 8. Future projections
(Fig. 15, in comparison with Fig. 9) also show the advantageousness of reducing differences in15

projected hydrological elements across the GCMs by bias correction of the humidity data.
Bias correction of the humidity data also reduces the uncertainties (i.e. the range between

the maximum and minimum) in the monthly IWD and IWCR for the five GCMs (Fig. 16).
Hereafter, the monthly reduction in uncertainties is quantified as the ratio of the range with bias-
corrected humidity data to that with uncorrected humidity data for IWD and IWCR. For 1971–20

2000, the range of IWD projected with the bias-corrected humidity data is smaller than that
with the uncorrected data: the range of the corrected data is 12 % for the best month (January)
and 84 % for the worst month (June). Even for future projections under RCP 8.5, the range of
IWD with the bias-corrected data is 35 % (best month, January) to 89 % (worst month, August)
of that with the uncorrected data. The results for IWCR, which is governed by riverine water25

availability, also suggest the advantageousness of bias correction of the humidity data: for 1971–
2000, the range of IWCR with the bias-corrected data is reduced to as little as 29 % of that with
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the uncorrected data (February), although the range is increased in June and July (110 and
102 %, respectively).

The reduction in uncertainty by bias correction of the humidity was also clearly observed
in the absolute annual values of IWD and IWCR. Table 6 shows the annual values of IWD
and IWCR and their ranges across the GCMs. The uncertainty ranges with bias-corrected hu-5

midity data (bottom line), in comparison with those in Table 4, are reduced from 282.9 to
167.0 km3 yr−1 and from 53.7 to 40.1 km3 yr−1 for the present IWD and IWCR, respectively.
Similarly, the range decreases from 381.1 to 214.8 km3 yr−1 and from 44.5 to 28.7 km3 yr−1

for future (RCP 8.5, 2070–2099) projections of IWD and IWCR, respectively. Absolute values
estimated using a single GCM were also affected by bias correction of the humidity. For exam-10

ple, IPSL shows a large reduction in IWD as a result of bias correction. This indicates that the
large IWD values for IPSL in Table 4 can be attributed to biased humidity data.

4 Discussion

4.1 Necessity of bias correction of humidity data

It is widely known that bias correction is necessary for hydrological simulations with GCM15

meteorological data because the raw meteorological outputs of GCMs deviate from meteoro-
logical observations. The probability density functions of meteorological elements generated
by GCMs for a past period often deviate from those of observed elements (e.g., Piani et al.,
2010a, b). Since these GCM-inherent features in the humidity affect other hydroclimatologi-
cal elements and propagate in future projections, we are convinced that bias correction of the20

humidity, as well as the atmospheric temperature and precipitation, is crucial for analyzing the
impact of climate change and also beneficial for dampening GCM-inherent features in projec-
tions of evapotranspiration and irrigation water consumption.

Owing to the successful removal of GCM biases except for humidity by employing a state-
of-the-art methodology (Hempel et al., 2013) (Fig. 2), we can focus on the effects of GCM25

biases in the humidity in this study. For the present period, since the GCM biases are negligible
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in other meteorological elements (such as temperature and precipitation), we consider that the
differences in evapotranspiration and irrigation water consumption (Figs. 8 and 9) among the
GCMs are primarily attributable to GCM biases in the relative humidity. For the future period
(Fig. 7), both the humidity biases and the differences in GCM-inherent climate change trends
in temperature and/or precipitation can cause differences in evapotranspiration and irrigation5

water consumption. However, since the monthly anomaly profiles of evapotranspiration and
irrigation water consumption tend to show the opposite dependence to that of relative humidity
(Fig. 9), and since future monthly anomaly profiles of relative humidity tend to preserve present
monthly anomaly profiles (by comparing Fig. 9 with Fig. 8), we consider that biases in relative
humidity have a considerable effect on differences in evapotranspiration and irrigation water10

consumption across the GCMs. The sensitivity results obtained under future climate conditions
(Table 5) by projecting existing humidity differences into the future (Fig. 7) also support this
hypothesis.

Although considerable attention has been paid to GCM biases in the temperature and pre-
cipitation, less attention has been paid to GCM biases in the humidity. A pioneering study by15

Haddeland et al. (2012) examined the compound effects of bias corrections of shortwave and
longwave radiation, humidity and wind, in contrast to our analysis focusing on the bias cor-
rection effects of humidity. They compared hydrological simulations driven by bias-corrected
and uncorrected meteorological data and showed that bias correction of radiation, humidity and
wind speed increases the agreement with baseline simulations. They also pointed out that bias20

correction significantly affects the absolute values of simulated runoff and evapotranspiration.
In this sense, our results are in agreement with their results. On the other hand, they used four
GHMs implementing different potential evapotranspiration formulae (see also Appendix); three
of them, LPJmL, WaterGAP (Priestley–Taylor) and MPI-HM (Thornthwaite), are empirical-
type formulae that are independent of the atmospheric humidity. Only VIC (Penman–Monteith)25

is a physical type and dependent on the humidity. Thus, we consider that GHMs with empirical
formula are insensitive to uncertainties in humidity data. We will discuss the problem of the
GHM dependence on humidity data from a different viewpoint in the next subsection.
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Figure 13 implies that the high sensitivity of humidity data over India and East China plays
a key role in the uncertainty in the global sum of irrigation water. In these regions, the areal
fraction of irrigated cropland is higher than in other regions. Even if the evapotranspiration over
a unit area of irrigated cropland was the same over the globe, the total amount of water con-
sumption via evapotranspiration over a unit land area would be larger over densely distributed5

irrigated cropland than over sparsely distributed irrigated cropland. Moreover, the potential
evapotranspiration has higher sensitivity to the atmospheric humidity at higher temperatures
than at lower temperture; since air is able to contain more vapor at higher temperatures, the
vapor pressure deficit for a given relative humidity is also larger at higher temperatures.

Moreover, in both India and East China, since future water availability is expected to worsen10

in these regions owing to an increase in the population and increasing demand for agricultural
production, it is highly desirable to accurately estimate future water demand. Some studies
(Wada et al., 2010, 2012) have warned that a large volume of irrigation water in excess of
recharge is being abstracted from groundwater in India. Water availability is determined by the
balance between water supply and demand. Reducing the uncertainties in future projections15

of irrigation water demand, as well as other factors such as future socio-economic scenarios
and agricultural maneuvers, will help obtain reliable estimates of future water availability. This
statement also applies to monthly water availability. In fact, some studies have shown that water
availability (or water stress) varies from month to month (Hoekstra et al., 2012; Hanasaki et al.,
2013).20

4.2 Caveats on different sensitivities of evapotranspiration to atmospheric humidity

In climate impact studies on evapotranspiration, since GCM outputs are used as GHM inputs,
both GCMs and GHMs may be sources of intermodel differences. Different evapotranspira-
tion formulae adopted in different GHMs may be a source of differences in evapotranspira-
tion among GHMs. The performance of the various evapotranspiration formulae that have been25

proposed has been primarily examined in comparison with the results of in situ observation
(e.g., Winter et al., 1995; Federer et al., 1996; Vörösmarty et al., 1998; Lu et al., 2005; Rao
et al., 2011) at various geographical scales. As described in Sect. 2.3 and the Appendix, evap-
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otranspiration formulae are classified into physical and empirical formulae. In practice, since
the former formulae require more meteorological elements (e.g., wind, humidity, etc.) than the
latter, the availability of observed meteorological data is the key to choosing which type of
potential evapotranspiration formula to implement.

Existing these two types of potential evapotranspiration formula indicates that GHMs im-5

plementing physical potential evapotranspiration formulae (referred to as phGHMs hereafter)
are sensitive to the atmospheric humidity, whereas GHMs implementing empirical formulae
(emGHMs hereafter) are insensitive to the humidity. Thus, uncertainties in the humidity affect
phGHMs but not emGHMs.

Recently, studies on irrigation water published as ISI-MIP Fast Track results have reported10

future changes in its seasonality (Wada et al., 2013) and the possibility of reduced water avail-
ability in river basins due to increasing demand for irrigation water (Haddeland et al., 2014). In
both papers, the authors reported that there are large differences in the future projections of hy-
drological elements among the GHMs. As summarized in Huber et al. (2014), the next impact
studies should explore the reasons for intermodel differences to better understand the mecha-15

nisms underlying the impact of climate change. However, since each GHM is an assemblage
of software modules, every scheme and parameter adopted in each GHM may be a source of
intermodel differences. For example, as tabulated in Table S3 of Wada et al. (2013), intermodel
differences in the global sum of irrigation water withdrawal among the GHMs are ascribed
to differences in not only the evapotranspiration but also the total area of irrigated cropland20

adopted in the GHMs. We are a long way from identifying possible sources of intermodel dif-
ferences.

To examine the contributions to uncertainty from smaller components of software, we can
take top-down and bottom-up approaches. In the former approach, we first evaluate the overall
differences, then we allocate them into smaller differences originating from smaller compo-25

nents of software modules. One example of this approach can be seen in Wada et al. (2013),
who classified the overall uncertainties into three possible sources (GHMs, GCMs and RCPs)
based on the method of Hawkins and Sutton (2009). In the latter approach, as shown in this
study, we first obtain differences generated by a single software component and estimate their
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overall differences. This is laborious but advantageous for identifying contributions from each
component or from the calculation process.

We note that a special care should be taken to account for the different sensitivity to the
humidity between phGHMs and emGHMs when using a top-down approach. For example, if we
deal with both phGHMs and emGHMs together without special care, GCM-inherent humidity5

biases can be misinterpreted as GHM-inherent features because of the different sensitivity to
the humidity.

4.3 Other factors contributing to uncertainty in future projections of hydroclimatologi-
cal environments

Evapotranspiration plays a key role in global water circulation (Oki and Kanae, 2006; Trenberth10

et al., 2011). Under global warming, the global hydrological cycle is considered to be strength-
ened owing to intensified precipitation and increasing evapotranspiration. The global energy cy-
cle (Trenberth et al., 2009; Stephens et al., 2012) can be altered by changes in the hydrological
cycle via latent heat transported by water vapor flux. It has been a matter of controversy whether
the surface humidity will change with climate change. Dai (2006) found that the relative humid-15

ity averaged over the global land area remained almost constant during 1976–2004, whereas the
specific humidity increased owing to the increasing surface temperature. Willett et al. (2007)
showed that the significant increase in surface specific humidity is mainly attributable to human
influence by performing a detection-and-attribution analysis. If the climatological relative hu-
midity changes in the future, we should also consider its effects on assessments of the impact20

of climate change by applying a suitable methodology for bias correction.
We consider that, in a practical sense, bias correction is still necessary for analyzing the im-

pact of climate change to remove GCM-inherent biases. Ehret et al. (2012) posed the controver-
sial but important question of whether we should prioritize the application of bias correction to
meteorological inputs because most bias correction methodologies independently correct biases25

of different elements without considering their mutual physical relations. In fact, as described in
Sect. 2.1, humidity-related variables are strictly linked to the atmospheric temperature (and pres-
sure). Moreover, the atmospheric humidity closely interacts with weather conditions (e.g., the
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humidity is high on rainy days). In this study, sacrificing stringency, we attempted to adjust the
monthly climatology of the relative humidity by applying a primitive additive bias correction
(Sect. 2.4.2). Even without an advanced methodology, bias correction of the humidity is ad-
vantageous in reducing uncertainties in irrigation water across the GCMs. The development of
next-generation methodologies of bias correction with physical consistency among meteorolog-5

ical variables would greatly increase the reliability of future projections of hydroclimatological
environments.

Although we primarily focused on irrigation water in this study, we did not fully discuss the
reduction in evapotranspiration caused by a low soil water content (see Eq. 2) in an explicit
manner. Recent studies have addressed the possibility of deficit irrigation, where the irrigation10

water use is below the optimal level, for irrigated cropland in water-limited areas (Döll et al.,
2014). Future changes in global evapotranspiration, including those in areas of rain-fed crop-
land and natural vegetation, require a more complex discussion because evapotranspiration is
determined by not only atmospheric conditions but also soil moisture conditions, which vary
with the soil properties and topography. However, the latter has higher geographical diversity15

than the former because of the dependence on topographical and geological conditions. The in
situ observation of soil moisture often shows significant differences at two sites separated by
a small distance (Masaki et al., 2011). Jung et al. (2010) showed that the declining trend in
global land evapotranspiration since 1998 is attributable to limited soil moisture.

Changes in land use (e.g., transition to irrigated cropland), which are not considered in this20

study nor in the ISI-MIP Fast-Track results, also alter the regional water flux between the land
and the atmosphere (Gordon et al., 2005). However, such anthropogenic effects are highly de-
pendent on future socio-economic scenarios, which still contain large uncertainties. If future
changes in land use are large, we cannot neglect the feedback process from the land to the at-
mosphere, and the validity of offline simulation (i.e., GHMs able to run separately with GCMs),25

which is frequently used in climate impact studies, might become limited.
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5 Conclusions

We have quantitatively investigated the propagation of uncertainties in humidity data into the
estimation of the amount of irrigation water under ongoing climate change. We used bias-
corrected meteorological data sets (except for the atmospheric humidity) of five GCMs dis-
tributed by the ISI-MIP. We used H08 for hydrological simulation at the global scale for both5

present and future periods under four RCPs. H08 employs the bulk formula, which is sensitive
to the atmospheric humidity, to calculate the potential evapotranspiration. This study was based
on the principle that we should examine one of the possible uncertainty sources in the evalua-
tion of hydrological elements after the removal of bias from the temperature or precipitation by
a state-of-the-art bias correction methodology.10

The monthly relative humidity of the five GCMs deviated from the observed meteorological
data sets (WATCH) by up to ca. 20 % RH for 1970–2000 over global land cells (Mosaic 0).
Monthly profiles of the relative humidity showed the characteristics of each GCM, which prop-
agate into monthly profiles of hydrological elements such as evapotranspiration and irrigation
water demand obtained by both historical and future simulations. The global sums of irrigation15

water demand (IWD) and irrigation water consumption from rivers (IWCR), where the latter is
constrained by riverine water availability, were evaluated as a reference when we used uncor-
rected humidity data. The obtained values were widely spread from 1152.6 to 1435.5 km3 yr−1

(range = 282.9 km3 yr−1) for IWD and from 497.7 to 551.4 km3 yr−1 (53.7 km3 yr−1) for IWCR
between the five GCMs for the present period (1971–2000). Estimations of IWD and IWCR un-20

der RCP 8.5 (2070–2099) varied from 1322.6 to 1703.7 km3 yr−1 (381.1 km3 yr−1) and from
506.0 to 550.5 km3 yr−1 (44.5 km3 yr−1) between the GCMs, respectively.

A sensitivity experiment involving the uniform addition of hypothetical biases of ±5 % to
the humidity data over all land areas showed that the hypothetical biases cause the global sum
of IWCR to deviate by ±3.5 to ±4.5 %. High sensitivity to bias was observed in India and East25

China, where intensively irrigated cropland is distributed, during the crop-growing season.
We also found that the bias correction of humidity data can reduce uncertainties in the es-

timation of IWD and IWCR across the GCMs. Even for a primitive bias correction method

26



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

that adjusts the monthly climatological humidity of each land cell, we observed a reduction
in uncertainties. The ranges across the GCMs for the present and future (RCP 8.5) periods
were reduced to 167.0 and 214.8 km3 yr−1 for IWD and 40.1 and 28.7 km3 yr−1 for IWCR, re-
spectively. Their ensemble means were less affected by the bias correction. Therefore, the bias
correction of the humidity has a merit to narrow the uncertainty range of estimated irrigation5

water across GCMs. The absolute values obtained using a single GCM were also improved by
the bias correction.

We conclude that GCM biases in the humidity propagate into the present and future estima-
tion of hydroclimatological factors such as evapotranspiration and irrigation water. The humid-
ity is one of the important uncertainty sources in evaluating hydrological variables. However,10

after the successful removal of biases from other meteorological variables, biases in the humid-
ity become a significant uncertainty source. Thus, bias correction of the humidity can reduce
uncertainties in the estimation of irrigation water across the GCMs. The results indicate that it
is desirable to apply bias correction to not only the atmospheric temperature and precipitation
but also the humidity.15

Reliable future projections for IWCR are crucial for future projections of water availability,
particularly in water-limited regions where different purposes of water abstraction conflict with
each other. People living in some river basins have been or will be obliged to make difficult
decisions regarding the allocation of water for various purposes in their society because of the
increasing demand for water under limited riverine water availability.20

Recently, many authors have pointed out the problem of uncertainties in assessing the impact
of climate change through research projects such as the ISI-MIP. It is not an easy task to identify
possible uncertainty sources from a huge assemblage of models, calculation schemes and pa-
rameters. Investigations such as this study will be helpful for identifying sources of uncertainty
underlying assessments on the impact of climate change. Although we have a long way to go,25

reducing the possible uncertainties in studies on the impact of climate change is necessary to
obtain a better understanding of future hydroclimatological environments and is an important
next step.
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Appendix A: Potential evapotranspiration formulae

Many formulae for calculating the potential evapotranspiration Epot have been proposed. The
performance of these formulae has been examined in comparison with observed data at various
spatial and temporal scales (e.g., Winter et al., 1995; Federer et al., 1996; Vörösmarty et al.,
1998; Lu et al., 2005; Rao et al., 2011). Descriptions of these formulae are also given in these5

references and in Shelton (2009); however, here we give some examples of the two types of
formulae (physical and empirical; see also Sect. 4.2) that have been implemented in GHMs in
studies on the impact of climate change (e.g., Wada et al., 2013; Haddeland et al., 2014; Schewe
et al., 2014).

Physical formulae10

Penman–Monteith

Epot =
∆(Rn−G) + ρcp(esat − e)r−1

a

∆ + γ(1 + rsr
−1
a )

(A1)

Bulk

Epot = ρCDU (qsat(Ts)− q) (A2)15

Empirical formulae

Priestley–Taylor

Epot = c
∆

∆ + γ
(Rn−G) (A3)

20

Thornthwaite

Epot = 1.067Λ

(
10Ta
I

)A

(A4)

28



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

where I =
∑(Ta

5

)1.514
Hamon

Epot =
715.5Λesat(Ta)

Ta + 273.2
(A5)

5

The symbols used in these equations have the following meanings.
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∆ gradient of saturated vapor pressure curve vs. air temperature
Rn net radiation
G soil heat flux (sometimes ∼ 0)
ρ air density
cp specific heat
e vapor pressure
Xsat saturated condition of X
ra aerodynamic resistance to vapor transfer
γ psychrometric constant
rs canopy resistance
CD bulk transfer coefficient (= 0.003)
U wind velocity
q specific humidity
Ts surface temperature
c empirical constant
Λ daylight hours per day
Ta mean atmospheric temperature
A third-order polynomials of I
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Table 1. Bias-corrected meteorological data used in this study. The data sets were distributed by the
ISI-MIP, after bias correction by the method proposed by Hempel et al. (2013).

Element Bias correction

average temperature additive
total precipitation multiplicative
snowfall multiplicative
shortwave radiation multiplicative
longwave radiation multiplicative
near-surface wind speed multiplicative
surface pressure multiplicative

relative humidity uncorrected
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Table 2a. (a) Total number of days when the humidity is oversaturated (> 100 % RH) in the original
regridded GCM data. Both the annual and seasonal sums are given as the mean over all land cells (67420
cells). The total numbers of days are given in brackets in the header.

GCMs 1971–2000 2070–2099 RCP8.5
Annual DJF MAM JJA SON Annual DJF MAM JJA SON
(10958) (2708) (2760) (2760) (2730) (10957) (2707) (2760) (2760) (2730)

GFDL-ESM2M 715.6 330.4 99.0 20.8 265.5 692.4 342.5 87.9 27.9 234.1
HadGEM2-ES 738.6 416.1 165.5 10.1 146.9 417.8 263.7 78.9 3.1 72.2
IPSL-CM5A-LR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MIROC-ESM-CHEM 636.8 310.9 187.9 14.6 123.3 228.5 122.7 62.8 12.8 30.2
NorESM1-M 290.9 169.7 48.7 0.5 72.0 130.0 91.7 20.5 0.8 16.8
Ensemble mean 476.4 245.4 100.2 9.2 121.5 293.7 164.1 50.0 8.9 70.7
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Table 2b. Total number of days when the humidity is truncated at 100 % RH during adjustment by our
primitive bias correction described in Sect. 2.4.2. Both the annual and seasonal sums are given by the
mean over all land cells (67420 cells). The total numbers of days are given in brackets in the header.

GCMs 1971–2000 2070–2099 RCP8.5
Annual DJF MAM JJA SON Annual DJF MAM JJA SON
(10958) (2708) (2760) (2760) (2730) (10957) (2707) (2760) (2760) (2730)

GFDL-ESM2M 526.7 256.0 117.8 37.5 115.4 563.0 280.6 115.6 49.9 116.8
HadGEM2-ES 528.2 313.4 89.9 11.6 113.2 333.1 202.4 52.7 10.1 67.7
IPSL-CM5A-LR 186.2 92.3 32.2 27.9 33.8 141.0 72.5 24.3 20.9 23.3
MIROC-ESM-CHEM 411.6 245.6 74.5 7.3 84.3 170.5 99.4 27.8 10.7 32.5
NorESM1-M 277.2 167.2 41.8 10.0 58.2 159.9 103.9 23.7 7.9 24.3
Ensemble mean 386.0 214.9 71.2 18.9 81.0 273.5 151.8 48.8 19.9 52.9
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Table 2c. Total number of days when the humidity is truncated at 0 % RH during adjustment by our
primitive bias correction described in Sect. 2.4.2. Both the annual and seasonal sums are given by the
mean over all land cells (67420 cells). The total numbers of days are given in brackets in the header.

GCMs 1971–2000 2070–2099 RCP8.5
Annual DJF MAM JJA SON Annual DJF MAM JJA SON
(10958) (2708) (2760) (2760) (2730) (10957) (2707) (2760) (2760) (2730)

GFDL-ESM2M 28.34 3.19 7.53 10.42 7.20 39.35 4.25 10.25 15.35 9.51
HadGEM2-ES 2.34 0.11 1.34 0.38 0.49 5.20 0.39 2.56 1.31 0.95
IPSL-CM5A-LR 1.03 0.04 0.61 0.19 0.19 4.94 0.74 2.50 0.80 0.90
MIROC-ESM-CHEM 7.79 1.23 2.01 2.04 2.50 17.21 2.63 4.98 3.65 5.95
NorESM1-M 10.62 2.61 3.82 2.45 1.74 18.80 2.80 9.46 4.43 2.11
Ensemble mean 10.02 1.44 3.06 3.10 2.42 17.10 2.16 5.95 5.11 3.88
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Table 3. Global average of monthly SD [ % RH] in relative humidity, shown in Fig. 4, for each land use.

GCMs Mosaic 0 Mosaic 1 Mosaic 2 Mosaic 3

GFDL-ESM2M 20.3 26.2 23.9 17.6
HadGEM2-ES 11.7 24.3 20.1 13.4
IPSL-CM5A-LR 15.0 34.8 27.0 13.6
MIROC-ESM-CHEM 20.4 18.0 20.0 17.4
NorESM1-M 17.9 20.4 18.8 13.4
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Table 4a. Results of the present (1971–2000) estimation and future (2070–2099) projection of irrigation
water demand (IWD). The values in brackets are changes [%] relative to the present values. The range
(the difference between the maximum and minimum) of the five GCMs is given in the bottom line.

Global sum of IWD [km3 yr−1] and relative change [%]
GCMs Mosaic 0

present future (2070–2099)
(1971–2000) RCP2.6 RCP4.0 RCP6.0 RCP8.5

GFDL-ESM2M 1324.7 1425.4 (+7.60) 1426.9 (+7.71) 1485.1 (+12.11) 1569.7 (+18.49)
HadGEM2-ES 1295.1 1289.5 (−0.43) 1370.9 (+5.85) 1345.7 (+3.90) 1435.7 (+10.85)
IPSL-CM5A-LR 1435.5 1484.5 (+3.41) 1507.7 (+5.03) 1585.4 (+10.44) 1703.7 (+18.68)
MIROC-ESM-CHEM 1161.3 1265.4 (+8.96) 1249.4 (+7.59) 1389.1 (+19.61) 1377.0 (+18.57)
NorESM1-M 1152.6 1182.2 (+2.56) 1211.4 (+5.10) 1238.1 (+7.41) 1322.6 (+14.75)

Ensemble mean 1273.8 1329.4 (+4.36) 1353.3 (+6.24) 1408.7 (+10.59) 1481.7 (+16.32)
Range 282.9 302.3 296.3 347.3 381.1
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Table 4b. Results of the present (1971–2000) estimation and future (2070–2099) projection of irrigation
water consumption from rivers (IWCR). The values in brackets are changes [%] relative to the present
values. The range (the difference between the maximum and minimum) of the five GCMs is given in the
bottom line.

Global sum of IWCR [km3 yr−1] and relative change [%]
GCMs Mosaic 0

present future (2070–2099)
(1971–2000) RCP2.6 RCP4.0 RCP6.0 RCP8.5

GFDL-ESM2M 522.5 525.1 (+0.49) 526.9 (+0.83) 527.9 (+1.02) 540.0 (+3.35)
HadGEM2-ES 524.9 515.7 (−1.75) 522.8 (−0.39) 518.4 (−1.23) 532.0 (+1.35)
IPSL-CM5A-LR 551.4 542.4 (−1.62) 542.7 (−1.57) 539.6 (−2.13) 550.5 (−0.15)
MIROC-ESM-CHEM 511.6 513.5 (+0.36) 507.4 (−0.83) 519.0 (+1.44) 506.0 (−1.10)
NorESM1-M 497.7 500.3 (+0.53) 502.6 (+0.99) 507.3 (+1.93) 514.4 (+3.36)

Ensemble mean 521.6 519.4 (−0.42) 520.5 (−0.21) 522.4 (+0.15) 528.6 (+1.34)
Range 53.7 42.1 40.1 32.3 44.5
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Table 5a. Results of the reference and sensitivity experiments with artificial biases of ±5 % RH – irriga-
tion water demand (IWD). The values in brackets are changes [%] relative to the original values.

Global sum of IWD [km3 yr−1] and relative change [%]
GCMs Mosaic 0

original −5 % RH +5 % RH RCP8.5 −5 % RH +5 % RH
(1971–2000) (1971–2000) (1971–2000) (2070–2099) (2070–2099) (2070–2099)

GFDL-ESM2M 1324.7 1414.0 (+6.74) 1238.4 (−6.51) 1569.7 1673.2 (+6.59) 1469.7 (−6.37)
HadGEM2-ES 1295.1 1388.8 (+7.24) 1204.5 (−7.00) 1435.7 1536.8 (+7.04) 1338.0 (−6.80)
IPSL-CM5A-LR 1435.5 1531.6 (+6.69) 1342.3 (−6.49) 1703.7 1813.9 (+6.47) 1596.8 (−6.28)
MIROC-ESM-CHEM 1161.3 1249.9 (+7.63) 1075.9 (−7.35) 1377.0 1477.6 (+7.31) 1280.0 (−7.04)
NorESM1-M 1152.6 1236.6 (+7.28) 1071.6 (−7.03) 1322.6 1415.2 (+7.00) 1233.1 (−6.77)
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Table 5b. Results of the reference and sensitivity experiments with artificial biases of ±5 % RH – irri-
gation water consumption from rivers (IWCR). The values in brackets are changes [%] relative to the
original values.

Global sum of IWCR [km3 yr−1] and relative change [%]
GCMs Mosaic 0

original −5 % RH +5 % RH RCP8.5 −5 % RH +5 % RH
(1971–2000) (1971–2000) (1971–2000) (2070–2099) (2070–2099) (2070–2099)

GFDL-ESM2M 522.5 543.8 (+4.08) 500.9 (−4.14) 540.0 559.3 (+3.57) 520.3 (−3.65)
HadGEM2-ES 524.9 549.4 (+4.68) 499.7 (−4.79) 532.0 554.1 (+4.15) 509.6 (−4.21)
IPSL-CM5A-LR 551.4 572.4 (+3.81) 529.8 (−3.92) 550.5 569.1 (+3.36) 531.7 (−3.42)
MIROC-ESM-CHEM 511.6 535.7 (+4.71) 486.9 (−4.84) 506.0 525.2 (+3.78) 486.5 (−3.86)
NorESM1-M 497.7 521.4 (+4.76) 473.7 (−4.82) 514.4 535.7 (+4.13) 492.9 (−4.18)

45



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Table 6. Global sum of irrigation water demand (IWD) and irrigation water consumption from rivers
(IWCR) [km3 yr−1] with bias-corrected humidity data. See Table 4 for comparison with uncorrected
humidity data. The values in brackets are changes [%] relative to present values. The range (the difference
between the maximum and minimum) of the five GCMs is given in the bottom line.

GCMs IWD [km3 yr−1] IWCR [km3 yr−1]
present RCP 8.5 present RCP 8.5

1971–2000 2070–2099 1971–2000 2070–2099

GFDL-ESM2M 1282.3 1516.4 (+18.26) 525.4 544.4 (+3.62)
HadGEM2-ES 1312.4 1462.5 (+11.44) 542.0 542.3 (+0.06)
IPSL-CM5A-LR 1283.5 1526.8 (+18.96) 521.1 522.8 (+0.33)
MIROC-ESM-CHEM 1196.0 1412.6 (+18.12) 522.3 515.7 (−1.25)
NorESM1-M 1145.4 1312.0 (+14.55) 501.9 517.2 (+3.06)

Ensemble mean 1243.9 1446.1 (+16.26) 522.5 528.5 (+1.15)
Range 167.0 214.8 40.1 28.7
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Mosaic1 Mosaic2

Mosaic3

Figure 1. Geographical distribution of irrigated croplands – (a) double-cropping each year (Mosaic 1),
(b) single-cropping each year (Mosaic 2) and (c) rain-fed cropland (Mosaic 3) – used in this study. The
distributions are indicated in black.
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Figure 2. Monthly profiles of meteorological elements used in this study for 1971–2000. The results
are aggregated over each type of land use, identified by the mosaic number. Profiles of the five GCMs
are indicated in different colors: (red) GFDL, (green) HadGEM, (blue) IPSL, (dark yellow) MIROC and
(light blue) NorESM. Profiles of the WATCH data are shown as black lines with dots.
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Figure 3. Monthly profiles of the potential evapotranspiration and evapotranspiration for 1971–2000
calculated in this study. The results are aggregated over the same land use. Profiles of the five GCMs
are indicated in different colors: (red) GFDL, (green) HadGEM, (blue) IPSL, (dark yellow) MIROC and
(light blue) NorESM.
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GFDL Rh______ HadGEM Rh______

IPSL Rh______ MIROC Rh______

NorESM Rh______
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SD (12 monthly RH) [%]

Figure 4. Geographical distribution of the SD from the WATCH data for the relative humidity. The SD
was evaluated from 12 month climatological (1971–2000) data for each land cell.
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Figure 5. Same as Fig. 4 but for the atmospheric temperature.
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Figure 6. Same as Fig. 4 but for the precipitation.
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Figure 7. Monthly profiles of meteorological elements used in this study for 2070–2099 under RCP 8.5.
The results are aggregated over each type of land use, identified by the mosaic number. Profiles of the
five GCMs are indicated in different colors: (red) GFDL, (green) HadGEM, (blue) IPSL, (dark yellow)
MIROC and (light blue) NorESM.
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Figure 8. Monthly anomalies with respect to the ensemble mean of five GCMs for 1971–2000. The
results are aggregated over each land use. The anomaly in each GCM is indicated in different colors:
(red) GFDL, (green) HadGEM, (blue) IPSL, (dark yellow) MIROC and (light blue) NorESM. The panels
from top to bottom show the relative humidity, potential evapotranspiration, evapotranspiration, irrigation
water demand (IWD) and irrigation water consumption from rivers (IWCR).
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Figure 9. Same as in Fig. 8 but for the future period (2070–2099) under RCP 8.5.
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Figure 10. Geographical distribution of the monthly anomaly of the relative humidity with respect to the
ensemble mean of five GCMs for January (left two columns) and July (right two columns). Each pair
of adjoining panels shows results for the present (1971–2000) and future (2070–2099, RCP8.5) periods,
respectively.
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Figure 11. Monthly profiles of the global sum of present and future irrigation water consumption from
rivers (IWCR). Black, blue and red lines show the results of the present (1971–2000) estimation and
future (2070–2099) projections under RCPs 2.6 and 8.5, respectively.
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Figure 12. Monthly profiles of the global sum of irrigation water consumption from rivers (IWCR) for
the reference and sensitivity experiments with artificial biases of ±5 % RH. The analysis period is 1971–
2000.

62



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

HadGEM IWD(M#0) HadGEM IWD(M#1) HadGEM IWD(M#2)

HadGEM IWCR(M#0)

1971−2000 June

HadGEM IWD(M#0) HadGEM IWD(M#1) HadGEM IWD(M#2)

HadGEM IWCR(M#0)

1971−2000 August

−10.000−1.000 −0.300 −0.100 −0.030 −0.001 0.000 0.001

slope [10−3 km3(/month)/%point]

Figure 13. Geographical distribution of sensitivity, given by change in IWD or IWCR per change of
1 % RH in the relative humidity. HadGEM results for June and August are shown.
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Figure 14. Monthly anomalies with respect to the ensemble mean in five GCMs with bias-corrected hu-
midity data for 1971–2000. The results are aggregated over each land use. The anomaly in each GCM
is indicated in different colors: (red) GFDL, (green) HadGEM, (blue) IPSL, (dark yellow) MIROC and
(light blue) NorESM. The panels from top to bottom show the relative humidity, potential evapotranspi-
ration, evapotranspiration, irrigation water demand (IWD) and irrigation water consumption from rivers
(IWCR).
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Figure 15. Same as in Fig. 14 but for the future period (2070–2099) under RCP 8.5.
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Figure 16. Changes in monthly ranges of irrigation water demand (IWD) and irrigation water consump-
tion from rivers (IWCR) after correcting humidity bias. Broken black and solid red lines show the results
with uncorrected and bias-corrected humidity data, respectively. Each pair of lines gives the maximum
and minimum values for the five GCMs.
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