We appreciate the reviewers’ close reading of the text, and have incorporated the
reviewers’ constructive criticisms in our revised text, which resulted, we think, in a much
better paper. Our responses to the reviewer comments are in blue. The paper is changed
substantially in response to the reviewers, consistent with major revisions, including
changing the title and reorganizing the emphasis and order of the figures.

Anonymous Referee #1

Received and published: 21 April 2015

General comments:

The authors must be congratulated on analysing a large number of datasets and making a
useful evaluation for the ESM community. However there are several issues with the paper.

We appreciate the positive comments on the paper, and incorporate the reviewer’s
constructive criticism into our modified text. We have added numbers to the reviewer’s
comments, to better facilitate discussion.

1. First of all the paper is plagued with grammatical and syntactical errors, making it
awkward to read and repetitive. Many paragraphs need to be completely re-written.
[ understand how difficult it is for a non-native English speaker to write a paper, but
it is no justification for this many errors.

We have worked hard to improve the quality of the writing for the resubmission.

2. Secondly, I find the evaluation on the historical runs to lack originality. Anav et al.
2013 has already addressed the ability of ESMs at reproducing LAI in the high
Northern Hemisphere and Mao et al. 2013 attributed the relevant driving
mechanisms to the change in LAI globally. Both papers used the satellite product
that the authors included in this evaluation. It is hardly surprising to read that
models overestimate LAI in the NH, as this has been shown before. I also can’t
believe the results over the tropics, as satellite has been shown to saturate leading
to lower LAI values that reality. Many other comparisons between models and
satellite derived LAI are contained here:
http://www.mdpi.com/journal/remotesensing/special issues/monitoring global

We agree that the historical part of the analysis is not meant to stand alone, but
rather to provide context for the future studies. We have retitled the paper to focus
on the future simulations, and restructured the text to focus on the future
simulations.

We cite the above-mentioned studies, as well as other studies, to show the
connection of our study with previous historical analysis, and try to reduce the
amount of discussion of the historical analysis. However, this paper does have to
repeat some of the previous work in order to set the context for the rest of the

paper.

3. Thirdly, there is no reason why a model that performs well in the historical run also
does it for future scenarios. Important factors such as the representation of
vegetation dynamics and the effects of nutrient limitation may play a more
important role in the future may lead to biases in models that currently perform
highly. For example all IPSL modules are ranked highly but non include a full N-cycle



module. Another example, models that include prescribed vegetation tend to
perform better, but there is no reason to believe ecosystems will remain in the same
place over the future. A shift in vegetation may lead to rapid changes in LAL

This is an interesting assertion. We would argue that it is very common in
considering future trends in variables predicted by models, to evaluate the ability of
the models in the current climate (e.g. the whole of Chapter 9 of WG1 of AR5), and to
use that information to reduce the uncertainty in the future projects (two examples
for the carbon cycle are: Hoffman et al. 2014, Cox et al., 2014, as cited in our
manuscript). Therefore we think it is justified to take that approach here. Indeed,
only in the mid-latitudes is the reviewer correct for the current set of CMIP5 models
that there is no correlation between current skill and projections: in high latitudes
and tropics there does seem to be a correlation. Please note that we also consider
the CO; fertilization of the models, which is a proxy for whether N is included, so we
can test this hypothesis that this is important.

On the other hand, for the IPCC, they did not chose to use skill in the current climate
to restrict the spread in the future spread of the physical climate projections (i.e.
Chapter 9 influence on Chapters 10, 11 and 12 was not strong!), for many reasons,
some political and some scientific. The scientific reasons were discussed in some
detail in the last sections of Chapter 9, so we add in some discussion of this
interesting point in the appropriate section of the paper (old Section 4.2).

The way that we have restructured the paper also makes this less of a focus of the
paper, and we show the results both ways.

Finally, the issue of CO; fertilization and the relationship of that with LAl is an
interesting one. We had assumed, similar to the reviewer that CO; fertilization
would drive many of the LAI changes. We expand this section of the text to show the
decoupling of vegetation carbon and LAI in the future simulations, as well as add a
discussion of why carbon uptake SHOULD be decoupled from LAI in many
ecosystems and conditions, based on basic scientific understanding. We add a
coauthor (C. Goodale) to improve our discussion of this point.

Next, only one RCP (8.5) was analysed. With the data been available for all four RCPs
[ don’t see why this was not done. The paper would benefit from comparing the
response of LAI to the drivers in the different scenarios (i.e. does LAl response in the
same way to climate in all RCPs?)

We agree with the reviewer that this is a nice addition to the paper, so also consider
the RCP4.5 in the revised text and figures, although there are fewer models which
completed this experiment (RCP8.5 was the most commonly completed).

There are several methodological mistakes. The way the growing season (GS) is
calculated is poor. There are plenty of papers that use simple methodologies (e.g.
Murray-Tortarolo et al. 2013) that can account for changes in GS trough time. The
assumption that precipitation only plays an important role in the three months
before the growing season in simply wrong, particularly over the tropics, but also
for the boreal forest (where autumn browning has been linked to drought later on
the year). The authors claim the results for the correlation of climate and LAI are the
same annually than over the GS, but show no evidence for this.



10.

11.

12.

We agree that the way we have defined growing season isn’t adequate, and because
we do not have the space to fully consider multiple growing season definitions, we
remove the text from the current manuscript considering growing season, and just
focus on the annual averages. Using just annual averages has some problems as
well, as discussed in the text, but think is justified for a first study of future LAI
changes, and still results in some interesting results. We add in caveats about this
point in the relevant sections of the methods and results.

The authors’ definition of drought based on LAl is simply wrong, drought can only
be defined based on climate; additionally low LAI can be driven by fire and
disturbance and having drought 1/6 of the time is ecologically implausible.

We replace the word ‘drought’ in the manuscript with ‘Low LAI’, since we still think
the concept is very important.

The inclusion of Kenya in the analysis seems completely out of the blue.
We thought a concrete example would help the analysis, but remove the example
following the reviewer’s comment.

All figures need to be improved as they are poorly and inconsistently formatted.

We have reformatted all the figures, as noted also below. Please note that the figures
we had formatted for the final version of the paper (assuming A4 rectangular size)
were reformatted as square for the discussion version, which forced the copy-editor
to leave a great deal of white space around the figures. This won’t be the case in the
final version of the paper.

Generally the paper feels like a collection of preliminary results that have not been
properly analysed. A more in depth analyses are needed and simpler graphics and
tables would greatly benefit the paper.

We have removed some of the more complicated figures and tables, to improve the
accessibility of the paper, and rewrote the results to make them easier to grasp. We
have added more synthesis-type graphs, especially with respect to the RCP4.5
contrast to RCP8.5.

Particular comments

Tables:

Tables 3, 4a, 4b, 4c are difficult to read as they contain too many metrics. A simpler
approach is needed to facilitate the results to the reader. Table 6 is highly irrelevant.
We have moved Tables3, 4a-c into the Appendix. Table 6 is very relevant, as it
shows that the spread decreases if the top-models are used for the tropics, which we
think is interesting.

Figures :Figures are badly formatted, difficult to read (some I would say impossible)
and generally seem to be missing a more in depth-analisis.

Figure 1 has been shown before in the literature many times. Figure 1b seems to be
missing parts of the planet.

We agree that Figure 1 has been shown many times and move this figure to the
supplemental material.

Figure 2 impossible to read, as are figures 5 and 6.
The reviewer does not find probability density function plots easy to interpret,
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18.

19.

20.

while we find them wonderful for efficiently conveying substantial information. To
accommodate the reviewer and other readers like the reviewer, we have either
removed these figures or put them into the Supplement, and replaced them with
simpler plots.

Figure 3 has been shown before in the literature (or similar).

We agree that this has been shown previously, and cite the previous work, and move
this figure into the Supplement

Figure 4 does not include all ESMs, not even a ESM that is comparable to CLM.

The first statement is true, as it is trying to show an example, but the second
statement is not true, as indicated in the figure caption. We have removed this
figure in the rewrite in any case.

Figures 8-11 are poorly formatted and clearly contain many mistakes (e.g.
saturation of the legend). Figure 12 is unreadable. Figure 13 contains is poorly
formatted

We reformat these figures, and reduce the saturation of the legend. We move the
probability density function in Figure 12 into the Appendix, and replace with a line
plot. Please note that the legend is saturated when the changes are greater than 8
(now) in standard deviation units, which means it is very statistically significant, so
it's probably ok to have the legend saturate at some point. We try to make this point
more clear.

Abstract Generally I feel the abstract is poorly written. While it does explain in detail
the motivations of the authors, nothing is said on the methodology and the
formulation of the main results is very ambiguous. | am also missing the key point of
the paper as the last line of the abstract.

We rewrite the abstract to accommodate the comments of the reviewer, as well as
the updated emphasis of the text.

Particular comments: Plant Canopy: Canopy is understood as part of the plan
community or the ecosystem, not of a single plant. Needs rewording. Objective (3):
interannual variability of LAI Lines 21-23: awkwardly written Lines 29-31: last
sentence is out of place.

We replace ‘@’ with ‘the’ in front of plant canopy. We rewrite the sentences that are
considered awkward by the reviewer.

Introduction: Generally the introduction is poorly written and needs to be corrected
for grammatical and syntactical errors.
We re-edit the introduction to improve the writing.

There are also many fundamental theoretical errors (e.g. Line 7: “Carbon Cycle
Modules” should state Land Surface Schemes, as it CCM can also refer to ocean; LAI
is not a land C variable, but a vegetation parameter.).

In our model (the CLM), LAI as well as vegetative phenology is predicted in the
carbon model, but we rewrite the sentence to accommodate the reviewer and the
re-emphasis of the paper.

[ am also missing key literature such as: Anav et al. 2013 J. Climate, Sitch et al. 2015
Biogeosciences and Kala et al. 2014 ]. of Hydrometeorology.
Thank you for bringing to our attention these papers. We have added these papers
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to the relevant sections in the introduction and other parts of the paper.

Missing the discussion on how LAI is represented on the models (i.e. prescribed vs.
dynamic)

These models all predict LAI, which is why we are evaluating them and looking at
the projections. We hope with the rewrite that this point is clear.

Missing all arguments regarding satellite uncertainty (e.g. satellite saturates over
high-dense forest, leading to lower LAI estimates)

We add a discussion of satellite saturation over high density forests, leading to a
lower LAI estimate in the Results section.

Methods: There is really no need to explain what CMPI5 is.

We rewrite the introduction to CMIP5 to be more brief.

The definition of growing season is poor. Other simple approaches lead to better
results (e.g. Murray- Tortarolo et al. 2013 remote sensing).

As discussed above, we remove the growing season analysis to focus the paper
better.

Several paragraphs correspond to the introduction. 3°A ‘c

In order to make our methods flow better, we repeat some information in the
methods section. Unfortunately, it is unclear which part of the methods the
reviewer did not appreciate, so we cannot directly comply with this
recommendation, but we try to improve the writing in the methods section and
make it more succinct.

Informal English used in many sentences. 3°A ‘c

We edit the text to remove informal English.

The inclusion of CLM (a DGVM is not justified in the introduction), also why not
using JULES and ORCHIDEE?

The CLM is not used as a DGVM here (that is not the default version of the model:
see Table 1), but rather as a carbon model. We use the CLM because that is the
model we work with. We use it only as an example model, and as appropriate
indicate that any model results using this model are just examples.

The LSM is the same in the coupled and uncoupled runs. 3"A ‘¢
Yes, this is correct.

Murray-Tortarolo and Anav et al. 2013 proved that the selection of the LSM is more
important for the correct representation of LAI than the climate relationship. Using
only one DGVM for comparison is misleading.

Our results are quite consistent with Murray-Tortarolo and Anav, in showing that
for temperature effects as well as mean and seasonality in LAI, the model is most
important. The only place where we find that meteorology matters is for the
precipitation relationship, which was not examined in those papers. We make this
more clear. Please note that CLM is not a DGVM as used here. Because we reduce
the historical portion of this paper, we largely remove this part of the paper, and just
putitin as a note in the methods section.

The definition of drought is poor. Low LAI can also be driven by fire and disturbance
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38.

(real-world). Drought cannot be defined based on vegetation but only on climate.
As discussed above, we replace ‘drought’ with ‘Low LAI’. For the purposes of the
humans or animals trying to use the land biomass to live, it doesn’t really matter the
cause of the low LAI, so we keep this analysis in the paper. We add in a little more
introduction to why we want to use low LAI to indicate whether ecosystems or
humans dependent on ecosystems might be at risk.

Results:

Poorly written. Some results are hardly surprising (e.g. LAl is higher in the tropics).
Can’t believe model overestimation over the tropics. There is no discussion of
satellite errors over highly-dense vegetation.

We add a discussion of model errors over highly-dense vegetation. We refer to
previous studies and reduce this part of the paper, as well as rewrite the text.

Seasonal cycle is usually defined as max-min LAI.

For most climate variables, the seasonal cycle size is evaluated as the std deviation
of the monthly means(e.g. Glecker et al.,, 2008). In order to make this analysis more
consistent with climate variable analysis, so that, for example, it can be incorporated
into the model-data comparisons in future IPCCs, we try to make the LAI
comparison more similar. We add in this explanation in the text.

No discussion of why some models over or under predicts SA, IAV and LAIL Was this
related to the inclusion of vegetation dynamics? N-dep? Own climate?

Because the emphasis of this paper is on the future projections, and how current
skill might relate to future projections, we do not have space to consider the causes
of the errors. However, as stated previously, there have been many papers
considering these issues in detail, so therefore we cite these papers.

Climate-LAl relationships have been explored in detail before (e.g. Mao et al. 2013)
We cite in more detail the Mao et al., 2013 and other papers here.
Murray-Tortarolo does not compare LAI-precipitation metrics.

We clarify the text.

The analysis of East Africa is out of the blue and not justified or intro- duced
anywhere before. They feel unnecessary for the evaluation of global ESMs.

We remove this analysis to reduce the bulk of the paper.

Thirdly, there is no reason why a model that performs well in the historical run also
does it for future scenarios

This is an important point that we discussed above and in more detail in the paper,
and may just be a difference of believe, rather than of science. We think it is
important to consider whether there is a relationship.

Summary and conclusions: Repetitive. Not summarizing the main results clearly
We have rewritten the summary and conclusions to more clearly bring out the main
results.

Anonymous Referee #2

This paper compared multiple earth system models, and Leaf Area Index in these models is
the focus of this paper. These caparisons are valuable for the research community.
However, the writing of this paper should be improved. The authors need to do more work
to make the results easier for readers to understand, and the main conclusions easier for
readers to capture.

We appreciate the positive comments from the reviewer, and made the results easier to
understand.



Some detailed comments: 1) The abstract is too long, and not good for readers to
get the main take-home message from this paper.
We rewrite the abstract to better synthesis the results of the paper.

2) The fonts in the figures are so small that they are almost illegible.
We reformat the figures to make the fonts larger.

3) The authors produced a lot of numbers in the tables and lines in the figures; but these
numbers and figures were not summarized effectively, only making the readers confused.
We reformat the figures to make them easier to understand, present that tables as figures,
and rewrite the text to summarize the results more effectively.

4) Some sentences in the introduction were unnecessarily repeated in the conclusion part.
We rewrite the conclusions to more effectively communicate the main points of the paper.
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Abstract

key land-atmosphere interactions, including the exchange of energy, moisture,
carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an
essential variable in predicting terrestrial carbon, water, and energy fluxes. We
examine LAI projections from the latest generation of Earth system models (ESMs)

for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On

average, the models project increases in LAl jn both RCP8.5 and RCP4.5 over most of A

the globe, but also show decreases in some parts of the tropics. Because of projected

increases in variability, across broad regions of the tropics,there are more frequent

periods of low LAI. Projections for both RCP8.5 and 4.5 produce similar LAI trends,

with reduced magnitude for RCP4.5. Projections of LAI changes varied greatly

among models: some models project very modest changes, while others project

large changes, usually increases. Projected increases in LAI generally occur in the

same regions that are projected to experience increases in precipitation. Modeled

LAI typically increases with modeled warming in the high latitudes, but often

decreases with increasing local warming in the tropics. The models with the most

skill in simulating current LAI in the tropics relative to satellite observations tend to

project smaller increases in LAl in the future compared to the average of all the

models. Using LAI projections to identify regions that may be vulnerable to climate

change presents a slightly different picture than using precipitation projections,

suggesting LAI may be useful to the climate change impacts community.
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1.0 Introduction
Providing future projections of climate change feedbacks and impacts is one of the

goals motivating the development of Earth system models (ESMs). The latest
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Therefore, small errors in simulated LAI can become large errors in many ESMs’

biophysical and biogeochemical processes, and changes in LAl alone can change

climate (e.g. Bounoua et al,, 2000; Ganzefeld et al., 1998; Lawrence and Slingo, 2004;

Oleson et al., 2013; Kala et al., 2014). Unlike many biophysical attributes, LAI can be

observed from satellite (Zhu et al., 2013), and thus represents one of the few land

within the famine prediction community (Funk and Brown, 2006; Groten, 1993) and

represents a variable that is easy to use in climate impacts studies. Thus it is

important to consider the 21st century projections for LAI in Earth System Models.
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The current generation of ESMs has prepared historical and future scenario
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simulations,within the Coupled Modeling Intercomparison Project (CMIP5) (Taylor

etal, 2009). There have been extensive evaluations and comparisons of the future

(e.g. Arora et al.,, 2013a; Friedlingstein et al.,, 2013; Jones et al, 2013). There has

also been comparison of ESM-simulated seasonal variability in LAI against satellite-

al. (2015) evaluated the relationship between the carbon cycle and other variables,

such as temperature, or LA, over decadal and longer time scales. These ESM-based

comparisons build on the long history of evaluation of model simulations of

emphasizes the Representative Concentration Pathway (RCP) 8.5, the most extreme

future scenario, and we contrast it with RCP4.5, a less extreme scenario (van Vuuren

etal., 2011) (Section 3). We evaluate both the model mean LAI projected change, as

Tebaldi et al., 2011). In addition, we also consider whether LAI projections can help

the climate impact community anticipate regions that may experience increased

climate exposure and risk of increased food insecurity in the future. We consider
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information compares to precipitation projections, which are commonly used for
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2.1 Model datasets
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study, Some models submitted multiple versions, at different resolutions or with
slightly different physics (Table 1). Even though some of the models are closely
related (e.g. CESM1-BGC and NorESM-ME), we include different configurations of

the same model.

This analysis examines model mean changes between the current climate

(1981-2000) and future climate time periods (2011-2030, 2041-2060 and 2081-

2100). To identify the location where models project these changes will be

statistically significant, we analyze the ratio of the mean change to variability; this is

accomplished by dividing the mean changes over 20 year time periods by the

standard deviation over the current climate (1981-2000) and shown in terms of

standard deviation units (e.g. Mahlstein et al., 2012; Tebaldi et al., 2011). Previous

studies have shown that the spatial and temporal scale used to define these changes

can be important for whether these signals are statistically significant (Lombardozzi
etal. 2014).

Changes in LAI variability are also important for understanding the impact of

climate change. For example, in some regions there is a predicted increase in the

mean LAI as well as an increase in the variability. This can lead to an increase in the

length and frequency of low LAI events, even as mean LAI increases. The length and

frequency of these periods matter for understanding the potential for drought and

ramifications for agriculture or ecosystems. To estimate the periods of low LAI and

low precipitation, we calculate the percent of the time during which the variable is

one standard deviation (evaluated in the 1981-2000 time period) below the current

mean (1981-2000). By definition, if the variables have a Gaussian distribution, each
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gridbox would be considered having a “Low LAI” for 1/6 (16%) of the time, and this

is approximately true at most grid points (not shown). We use this metric to

estimate the fraction of the time in the future that this condition exists, and

specifically whether it increases in the future.

2.2 Observational data,

Leaf Area Index (LAI) data derived from satellite over the 30-year period 1981-2010

is used to evaluate the CMIP5 models. This observational dataset is derived using

neural network algorithms using the Global Inventory Modeling and Mapping
(GIMMS) Normalized Difference Vegetation Index (NDVI3g) and the Terra Moderate

Resolution Spectroradiameter (MODIS) LAI (Zhu et al., 2013). The satellite data are

only available over regions with green vegetation, and thus are lacking over desert

and arid regions. A detailed description of the algorithm and comparison to ground-

truth observations are shown in Zhu et al. (2013). Compared with field-measured

LAI Mean Squared Errors (RMSE) in the satellite LAI estimates,are estimated to be

approximately 0.68 LAJ, for spanning LAl ranges from < 1 to almost 6 (Zhu et al,,

2013). Comparisons with ground-based observations confirm that the new LAI

product also seems to capture observed interannual variability patterns,(Zhu et al.,

2013).
Gridded temperature data for the period 1981-2010 were derived from the
Global Historical Climatology Network and Climate Anomaly Monitoring System

(GHCN_CAMS) 2m temperature dataset (Fan and Dool, 2008). Estimates of the

uncertainty in temperature gridded datasets suggest that the uncertainty in
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temperatures at a grid box level is estimated to be between 0.2 and 1°C (Jones et al,,

1997; Fan and Dool, 2008).

ff Cornell University 8/19/2015 10:53 AM

Deleted: ). Uncertainty in precipitation
uncertainty is larger and can be as large as
45% in poorly observed regions (e.g. Dai et

2.3 Methodology for evaluation of LAI simulation

Several recent studies have used the same new satellite-derived LAI dataset

(GIMMS LAI3g) in land model evaluation (e.g. Murray-Tortarolo et al 2013; Anav et

al. 2013a; 2013b, Mao et al. 2013, Sitch et al. 2015), including some of the same land

models used here. Thus we do not repeat a complete evaluation of model LAI

compared to satellite LAI. We use the satellite LAI dataset to consider whether there

is a relationship between the model ability to simulate LAI in the current climate

and the model climate projections. We use a few basic metrics in this study (Table 2),

which are described briefly below.
Results for the model and observations are evaluated on a 2.5°x2.5° grid

based on the observed temperature data grid (see Section 2.2). For the metric

I{

analysis here, the averages shown are grid-box means, not areal averages. This
allows us to use similar weighting for both the averages and the rank correlation
coefficients, and tends to weight the global analysis towards high latitudes. However,
most of the analysis focuses on regional areas (tropical (<30°), mid-latitudes (>30°
and <60°) and high-latitudes (>60°), where the differences between weighting by

area and weighting by grid box are reduced.
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comparison. To examine regional differences in LAI simulations, the annual mean
LAl in the models and observations are averaged and compared over different
areas: global, tropical (<30°), mid-latitudes (>30° and <60°) and high-latitudes

(>60°) (Table 2: mean LAl: model/obs.). A second metric evaluates the models’

ability to capture spatial variations in LAI, using the spatial correlation across the
grid-boxes of the annual mean LAI in the model compared to the observations, (e.g.

Anav et al.,, 2013b; Table 2: Mean: Corr.),

Important for this study is the consideration of the temporal variability
simulated in the model. The magnitude of the seasonal cycle is calculated as the

standard deviation of the climatological monthly means at each grid box. This metric

is slightly different than how LAI has previously been evaluated in some studies (e.g.

Anav et al.,, 2013a; Murray-Tortarolo et al. 2013; Sitch et al. 2015), but is more

similar to analyses of other climate variables (Glecker et al., 2008), facilitating

inclusion of LAl within climate model evaluations. Metrics for the seasonal cycle

were computed Jising a spatial average over each region (Table 2: Std. Dev.

Seasonal: Model/obs.), For the seasonal cycle, the ability to capture the timing of

phenology can be important (e.g. Anav et al,, 2013a, Zhu et al,, 2013). To analyze this

ability, we computed the temporal correlation of observed and model-simulated
monthly means at every grid box, and then averaged over each region (Table 2:
Seasonal Avg. Corr.).

To evaluate the models’ ability to simulate LAI interannual variability (IAV),
we consider the magnitude of the interannual variability, which is calculated as the

standard deviation of annual mean LAI across years at each grid box (e.g. Zhu et al.
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2013). The IAV is then spatially averaged and compared between the model and

satellite observations (Table 2: Std. Dev. IAV: Model/obs.)., We focus our study on
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Land Model (Lawrence et al., 2012; Lindsay et al., 2014), which is the land model

used in the CESM (Table 1), with reanalysis derived data data (Qian et al., 2006;

Harris et al., 2013) instead of model derived winds. The LAI-precipitation

relationship across IAV was very sensitive to the meteorology used, and thus is not

shown or used to evaluate the current climate simulations of LAIL
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We use this method to convert mean biases and standard deviation biases to a

model evaluation value (MEV). This is a slightly different method than used in

previous studies (e.g. Gleckler et al., 2008), as the MEV does not square the standard

deviations. Since we use ranks and rank correlations, the difference between these

methods is unlikely to be jmportant, and allows us to use a similar ranking method

for mean and standard deviation comparisons.

A

3.0 Results

3.1 Future projections,

First we consider the model mean projections of change in LAI for RCP8.5, similar to

analyses for other standard model variables (e.g. Meehl et al., 2007). Across most of

the globe, LAl is projected to increase through 2081-2100, with small decreases

projected for parts of Central and South America and Southern Africa (Figure 1).

The increases in LAl are largest in high latitudes, mountainous regions (e.g. Tibetan

plateau) and some parts of the mid-latitudes and tropics (Figure 1; for reference,

mean satellite observed LAls in the current climate are presented in Fig. S1). Notice

that in this study we use projections of human land use based on the RCP8.5 or

RCP4.5, and thus an important human role in future land cover change is driven by

the assumptions of the scenario chosen for these studies. Generally, for all the RCPs,

there is less land use and land cover change projected in the future than occurred in

the past (e.g. van Vuuren et al., 2011; Ward et al., 2014).

In order to isolate the changes that are statistically significant, for each model

we divided the change in LAI by the IAV standard deviation. Values over 1 are
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considered statistically significant (e.g. following Tebaldi et al. 2011; Mahlstein et al.

2012). Using this approach, statistically significant changes in LAI start over the

high latitudes, and spread over much of the globe with time (Figure 2). By 2081-

2100, the increases in LAI are 8 times as large as IAV over large parts of high

latitudes, as well as the Tibetan plateau and some desert regions, indicating large

changes (Figure 2c). Part of the reason for these very large normalized LAI values is

that they have low IAV in the current climate. A few isolated tropical regions are

projected to have statistically significant reductions in mean LAI, such as in Central

America and the Amazon basin.

Examination of the RCP4.5 shows a similar pattern of an increase in LAI over

most of the globe, although lower in magnitude, based on either the mean change in

LA]J, or the normalized LAI change (Figure 3a and 3b). This result suggests that the

pattern of change in LAI, as seen in the literature for temperature or even to a lesser

extent for precipitation, is similar across different climate changes, with the

magnitude dependent on the magnitude of the forcing (e.g. Mitchell, 2003; Moss, et

al, 2010). There is a consistent relationship between changes in LAl and

temperature across the different time periods for each model; that is, most models

and regions show a constant slope between changes in LAI and temperature (Figure

4). Most models even show a similar slope between LAI and temperature for the

RCP4.5 as the RCP8.5 (Figure 4). Recognize that the change in temperature is likely

to scale with a change in precipitation as well (e.g. Mitchell, 2003; Moss et al., 2010).

This similarity in slope for each model across RCPs and time periods breaks down in

the tropics for a few of the models, as some show steeper increases in LAI at warmer
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temperatures and others shift from LAl increases to declines as warming continues

(GFDL, IPSL, MIROC and MPI models) (Figure 4b). Across the tropics, LAl is

projected to increase in some regions and decrease in others, so small changes in

the relative area of these changes can lead to large shifts in the regional net mean

LAI change. The value of spatial correlations between the RCP4.5 and RCP8.5 mean

LAI change at each gridbox for the 2081-2100 time period is 0.81, 0.70, 0.79 and

0.89, for the globe, tropics, mid-latitudes and high-latitudes, respectively (averaged

across the models), showing the spatial coherence in the LAI projections between

these two RCPs. Even the models with the lowest spatial correlation between the

two RCPs (GFDL, IPSL, MIROC and MPI) have statistically significant correlation

coefficients of 0.45 or higher in the tropics, where correlations are the lowest.

The models project a wide range of future changes in LAI (Figure 4). One

model (BNU-ESM) projects a large global mean increase of over 1 m?/m? by 2081-

2100. For the other models, projected global mean increases in LAl amounted to 0.5

m2/m?2 or less. Some models (inmcm4, IPSL, MIROC and MPI model versions)

projected small net decreases in LAl in the tropics (Figure 4). Between model

differences become even more apparent at the grid-box level, with very different

changes in LAI projected by the different models (Figure S2). The spread in model

projections is discussed further below (section 4.0) in relation to whether model

skill at predicting LAI in the current climate can be used to reduce model spread in

these projections (e.g. Steinacher et al,, 2010; Flato et al.,, 2013; Cox et al., 2013;

Hoffman et al., 2014).
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3.2 Identifying regions at risk due to climate change

In addition to being important for land-atmosphere biophysical and biogeochemical

interactions, LAI is also one of the few ESM model variables that is potentially

directly usable by the climate impacts community, along with temperature and

precipitation. This is because LAI and the closely related variable, NDVI are used for

identification and forecasting of drought and famine (e.g Funk and Brown, 2006;

Groten, 1993). Thus LAI projections that identify the regions that are most at risk

can help guide and motivate climate adaptation by identifying emergent areas of

vulnerability. The model mean view of the future projections of LAl is quite

optimistic (Figure 1, 2 and 3), however, if variability also increases, some regions

may experience years with lower LAl more frequently than in current climate,

despite having a constant or higher mean LAI. In fact, many regions, especially in

the tropics, are at risk for more Low LAl years (Figure 5). Here we define % Low

LAI as the % of years when the annual average is one standard deviation below the

current mean (Section 2.1). If the variability and mean stayed constant, the % Low

LAI would remain at 16%. More Low LAl years are projected for large areas of the

tropics and subtropics where projected increases to mean LAI are small in

magnitude or negligible (Figure 1c vs 5¢, for example). Model mean changes

between the current climate (1981-2000) and future climate time periods indicate

substantial (>2x) increases in the frequency of low LAI in important agricultural

areas (South America, Australia, Southeast Asia, and parts of Southern Africa)

(Figure 5). Increased risk areas in Fig. 5 also coincide, in some cases, with some of

the most food insecure regions of the world (e.g. Brown and Funk, 2008; Field et al.,
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2014). Similar to mean changes in LAI, the %Low LAI for the RCP4.5 at 2081-2100 is

similar in pattern and magnitude to that seen earlier in the century for the RCP8.5

scenarios (Figure 3c vs. Figure 5).

Next we consider whether using LAI adds information compared to

precipitation, which is more traditionally used in climate change impacts

assessments (e.g. Stocker et al. 2013; Field et al. 2014). First we consider the mean

change in normalized precipitation (Figure 6a) and the % Low Precipitation (Figure

6b), both defined equivalently to the LAI values (Section 2.1; Figure 2c and Figure 5c,

respectively) for the model simulations considered here. Broadly speaking, the
changes in precipitation seem to occur in similar regions as the changes in LAI, with

large increases in precipitation over the high latitudes, and decreases over the

subsidence zones of the tropics, as seen previously (e.g. Meehl et al., 2007; Tebaldi

etal,, 2012). Note that requiring the mean change to be statistically significant is a

much stricter criteria than just an increase in low LAI, and thus the area identified in

the two methods is quite different (Figure 6a vs. 6b). Overlaying the regions from

LAI and precipitation which are either one standard deviation below the mean on

average in the models (Figure 6¢) or see an increase in % Low values (Figure 6d)

suggests that LAI and precipitation largely show similar areas being at risk due to

climate change, but there are significant regions which do not overlap. This

suggests that there is potentially additional information for climate impact studies

using LAI projections than using precipitation alone (Figure 6c and 6d). One of the

most noticeable differences between LAI and precipitation projections is in in the

Mediterranean region where precipitation is projected to decrease, but LAl is not.
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Conversely, LAI projections suggest that some parts of South America and southern

Africa are likely to experience more stress, which are not identified using

precipitation. Future studies should consider whether the results of the LAI

projections are useful for impact studies specifically in these regions.

3,3 Drivers of LAI projections

Next we consider what drives the differences in model projections for LAL using the

example of RCP8.5 at 2080-2100. By correlating temperature and LAI projections at

each grid box for each model, , we can look for potentially causal relationships

between model projections of temperature and LAI (Figure 7). This is analogous to
using a ranked correlation coefficient to summarize the scatter in RCP8.5 points in
Figure 4, but at each grid box instead of the regional average. There are strong

positive correlations between model simulated changes in temperature and LAI in

some regions, especially the northern high latitudes (Figure 7a), suggesting that

models with a projected larger warming in the high latitudes also simulate larger

increases in LAI. Higher temperatures may drive higher LAI; higher LAIs may also

be driving higher temperatures because of the importance of LAl in changing

surface energy fluxes (e.g. Lawrence and Slingo, 2004; Kala et al. 2014). By contrast,

there are strong negative correlations across most of the tropics and subtropics
(Figure 7a).
The projected changes in precipitation strongly correlated with projected

changes in LAI (Figure 7b), suggesting that changes in precipitation are correlated

with the differences in LAI projections between models. This is consistent with the

Cornell University 8/19/2015 10:53 AM
Moved (insertion) [12]
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model mean analysis (Section 3.1) that showed for most locations, changes in LAI
occur in the same locations as changes in precipitation (Figure 6). Again, because

LAI changes the surface energy fluxes, there may be a feedback from LAI changes

(e.g. Lawrence and Slingo, 2004; Kala et al. 2014). The correlations seen in this

analysis for RCP 8.5 are similar for the RCP4.5 (Figure S3).

Last, we examine the correlation across models between the modeled

changes in vegetation carbon stocks and change in LAI between current conditions

and 2081-2100 (Figure 7c). The relationship between LAI and vegetation carbon is

not straightforward, and depends on the specific algorithms used in the models.

Many ESMs calculate photosynthetic rates per unit leaf area; these rates are then

extrapolated to canopy-level gross primary production using LAI and other

variables (e.g., light, nitrogen and CO; availability and leaf physiological parameters)

(e.g., See Bonan et al., 2011, Piao et al., 2013). The simulated increases in LAI are

correlated across models with simulated increases in plant carbon stocks in many

low-LAI regions, including many deserts, grasslands, and tundra ecosystems (Figure

7¢). Leaves compose most or all of the aboveground plant biomass in these

ecosystems (e.g., Friedlingstein et al. 1999), such that increases in LAl relate directly

Cornell University 8/19/2015 10:53 AM
to increases in plant carbon stocks. Changes in LAI correlate more poorly with Moved (insertion) [9]

simulated changes in plant carbon stocks in other regions, with small or negative

correlations in many boreal, temperate, and tropical forested regions (Figure 7c).

Leaves typically compose only 3-5% of aboveground plant biomass in forests

(Friedlingstein et al. 1999), and closed-canopy forests can contain widely variable

stocks of woody biomass that typically depend more on successional status than LAI
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or growth rate. Differences in the fractional composition and turnover of these leaf-

and woody tissues should decouple changes in LAI from changes in carbon stocks in

woody biomass. As an example, in the CLM, the land model for the CESM-BGC, CO;

fertilization causes a larger increase to wood allocation (62%) than to leaf allocation

(21%) in the Southeastern US (Lombardozzi, personal communication, 2015). Thus

the issue of how LAI responds in different models is interesting and should be

considered in future studies.

Another important potential contributor to the future projections of LAl is

the effectiveness of carbon fertilization in the models (e.g. Arora et al.,, 2013), Using

the carbon dioxide fertilization factor (3-land) from the Arora et al. (2013) study we

use a rank correlation to explore the importance of the carbon dioxide fertilization

strength for predicting future vegetation carbon and LAI across the models, We
would expect models that respond more strongly with increased carbon uptake
under higher CO, conditions (i.e. larger $-land) to have greater vegetation carbon

and LAI in the future. Globally the correlation with 3-land is 0.46 for vegetation

carbon and -0.21 for LAI suggesting that while some of the differences in future

vegetation carbon projections across models is due to differences in the model

simulation of COz fertilization, LAI changes are not necessarily related to CO2

fertilization. The -land correlation for vegetation carbon is 0.29, 0.47 and 0.60 for

tropical, mid-latitude and high latitude, regions, respectively, while for LAI these

values are -0.18, -0.09 and 0.21, Thus for high latitudes, especially, the projections

of LAl appear to be dependent on the way the models’ simulate the carbon dioxide

fertilization in the different models. This could also be, however, an artifact that the

- | Moved (insertion) [1]
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two models with the lowest carbon dioxide effect (CESM-BGC and NOR-ESM) use
the same land carbon model (Thornton et al., 2009), which predicts low values of

LAl in high latitudes for present day and does not tend to increase LAI much in the

future. These models also have low carbon dioxide fertilization effects, because of

their nitrogen limitation, which could be driving the correlation between model

projections of LAI and carbon dioxide fertilization in the high latitudes. It is

interesting that in the tropics the carbon dioxide fertilization is negatively

correlated to future LAI changes, and only slightly correlated with vegetation carbon,

Again, this could be an artifact of having only two related low carbon fertilization
models, as these models see a strong increase in nitrogen mineralization in the
tropics in a warming climate, which allows an increase in productivity in the future

tropics (Thornton etal., 2009). In other words, the negative correlation in the

tropics between LAI projections and CO; fertilization could be due to the smaller

temperature impact on carbon cycle (y-land from Arora et al. 2013) in the N-limited

models (i.e. the B-land and y-land are negatively correlated in Table 2 of Arora et al.,

2013).

4.0, Reducing spread in the future projections

There are large differences between the different models’ projections of

future LAI (e.g. Figure 4; Figure S2; Figure 8b). Previous studies have tried to

reduce the uncertainty in future projections by looking for relationships between

model metrics and future projections of climate, and then choosing the models

which best match the observations in the current climate (e.g. Cox et al.

Cornell University 8/19/2015 10:53 AM
Moved (insertion) [17]
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2013;Hoffman et al., 2014) or by subsampling models for different regions by their

performance (e.g. Steinacher et al., 2010). In this section we use both approaches to

try to reduce the spread in LAI projections at the end of the 215t century (2081-

2100). In essence, we are looking for a correlation between current model

performance and the future projection, in order to reduce the uncertainty in the

future projections. In many cases in climate modeling and projections, there is no

correlation between model skill in current climate conditions and projections (e.g.

Look and Vizy, 2006), however in some limited cases there is a correlation between

metric score and a projection, and one is able to constrain future projections (e.g.

Cox etal., 2013; Steinacher et al., 2010). Here we consider whether such a case

applies. In doing this type of analysis, we are making an assumption that model skill

in the current climate translates into better model projections, which may be a

product of real model differences or a statistical error. The advantages and

disadvantages of using this type of approach are discussed in more detail in Flato et

al. (2013).

4.1 Evaluation of model LAI

Several recent studies have evaluated the land models in ESMs using the LAI

satellite records (e.g. Anav et al. 2013a; 2013b; Mao et al. 2013; Sitch et al. 2015).

Thus we do not repeat those assessments, but rather briefly summarize the results

of the comparisons here.

Most models tend to overestimate the mean LAI compared to the

observations (Figure 9a), and this is true at all latitudes (Figure 9a, Table S52).
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Several models have a large overestimates (>50% too high), including bcc-csm1,
bce-csm1-1, BNU-ESM, GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM. The over-
prediction relative to the satellite data tend to be larger in tropical regions for most

models, but are also larger in the high latitudes for the GFDL model versions (Figure

9a, Table S2). However, the satellite derived LAls have biases; for example, they

underestimate high LAIs due to being unable to see all the leaf layers in closed

canopies or overestimate LAls in more arid regions, and thus there may also be an

error in the observational dataset (see discussion in Anav et al. 2013b or Pfeifer et al.

2014, for example).

Some models also tend to over predict the strength of the seasonal cycle (e.g.

bcc-csm1, BNU-ESM, MIROC-ESM) (Figure 9b; Table S1), where the strength of the

seasonal cycle is measured by the globally averaged standard deviations of the

monthly mean climatology. But the region in which they over-predict the strength of

the seasonal cycle differs between models. Of course, there is not a strong seasonal

cycle in the tropics, where the lowest standard deviations tend to occur (Figure 9e;

Table S2a). Again, because of the difficulties of retrieving accurate LAI from

satellites in closed canopies, the observations may underestimate the seasonal cycle

in tropical forests.

Interannual variability tends to be over-predicted in some of the models (e.g. < 

bcc-csm1, bec-csm1_1, BNU-ESM, CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, MIROC-

ESM, MIROC-ESM_CHEM) (Figure 9c, Table S1). For this calculation, the interannual

variability (IAV) is calculated as the standard deviation of the annual average across

multiple years. Generally, the models do a decent job simulating the spatial
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variability in the annual mean LAI (Figure 9d; Table S1), with the correlations being

strongest in the tropics, and weakest in the high latitudes (Figure 9d; Table S2). This ~
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is likely partly due to the strength of the LAI differences in tropics and its limitation

primarily by moisture alone (with low LAl in the deserts and high LAl in tropical

forests). The timing of the seasonal cycle (Figure 9e; Table S1) is less well simulated

jn the models, with several models not having on average a statistically significant

correlation (~0.5 for 95% significance for 12 month seasonal cycle) on the global

scale, or in the mid- and high latitudes (e.g. GFDL, MPI-ESM-MR on global scale,

GFDL, inmcm4 and MPI-ESM-MR for various regions).

Next we explore the observed and modeled relationship between LAI and

femperature and fhe observed and modeled trend in LAI (e.g. Anav et al.,, 2013a;

Anav et al., 2013b; Ichii et al., 2002; Zeng et al., 2013; Mao et al., 2013; Zhu et al,,

2013). As previously shown, there are positive relationships between modeled and

measured LAl and temperature in high latitudes (Figure 7a; Figure S4; e.g. Anav et al.

2013a; Ichii et al,, 2002; Zeng et al. 2013; Zhu et al. 2013). In the tropics (<30°), the

relationship can be positive or negative but some regions tend towards a negative

relationship (Figure S4; Figure 7a). This is consistent with our understanding that

many places in the tropics are close to the optimal growing temperature already,
and increases may lead to reduced productivity (Lobell et al., 2011), although this

also could be related to moisture stress (Fung et al., 2005). Compared to the

observed correlations, most models have too strong of a negative relationship

between LAI and temperature in the tropics, and too strong of a positive

relationship in the high latitudes (Figure 9f, Table S2a-c). In the tropics, the BNU-
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ESM model has a weakly positive impact of temperature, while in the high latitudes,

especially the CanESM2, HadGEM2-CC, HadGEM2-ES, MPI-ESM-MR models have a

much stronger correlation than observed. The model and observations show

similarly weak correlations between the temperature and LAI in the mid-latitudes.

Some regions show substantial trends over time (1981-2010) in measured |

LAI (Figure S4b), especially in high latitudes in the Northern Hemisphere, (e.g. Zhu et

al,, 2013; Mao et al. 2013). This could be associated with the longer growing season

due to warming (e.g. Lucht et al., 2002; Zeng et al. 2013). Itis also possible that this

trend is due to CO, fertilization effects (e.g. Friedlingstein and Prentice, 2010). For

high latitudes, we find a rank correlation of 0.58 across the models between the CO>

fertilization factor on land for the Earth system models (called the 3-land jn Arora et /i

al,, 2013, as discussed above) and the average correlation of observed LAI with time,

suggesting that there may be a component of carbon dioxide fertilization in the
models’ temporal trends. These trends are stronger in the models than the

observations, which may be related to an overestimate of the fertilization effect.

With regard to LAl interannual variability correlations with temperature,or time,

that there are also strong correlations among temperature, precipitation and time
themselves (e.g. IPCC, 2007). Here we do not attempt to differentiate these signals
because of the statistical complexity and the shortness of the time record. The

shortness of the record considered could also lead to aliasing of the real variability,

especially in regions like the Sahel that have strong decadal scale variations (e.g.

Loew, 2014), The observational datasets also contain measurement noise, while

the model values do not, We expect the measurement noise to reduce the
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correlations of LAI with the environmental variables in the observations relative to
the true values, as seen compared to many models (Figure 9f). Thus, our metrics for

Cornell University 8/19/2015 10:53 AM
interannual variability are likely to be more impacted by uncertainty in the Deleted: 5)
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useful for evaluation of the models, although potentially interesting. For this study

we consider the IAV in the annual mean, but there may be important changes in the

seasonal cycle or length of growing season on an interannual time basis, which our

simple approach does not consider (e.g. Murray-Tortarolo et al. 2013). In addition,
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interpret, as not statistically significant (e.g. Figure 9f), thus making the LAI IAV

correlations less helpful.

Figure 10 summarizes our comparisons of the models to the observations for
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largest relative change in LAI over the last 30 years (1980-2010) will have the
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largest change in LAI in the future (Figure 11a). It also suggests that models with

Jhigher LALjn the current climate, will have a Jarger change in the future (Figure

11b). In Fig 11a and 11b, the observation-based estimates are indicated by the gray ,1
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uniquely constrain the future projections (although it does suggest that the highest

values are the least likely). There is one model with a very large change in LAl in the
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correlation in the seasonal cycle, the size of the interannual variability and the size

of the seasonal cycle in LAI (Figure 11f, 11g, 11h). Unfortunately again, these three

metrics suggest a different projected change in LAI when the observed value is used

to identify the models that are most realistic (grey line in Figure 11f, 11g and 11h).

Overall, this analysis of multiple metrics suggests that there is no single
metric available that is the most important in all circumstances for improving our

estimates for the changes in LAI Thus, deduction of 2 more probable future LAI

projection is not available to us in this case (as opposed to Cox et al,, 2013, where
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there is not as much difference between using all models or the top performing
models (Table 6), while for high latitudes, the top models tend to project slightly

higher LAl in the future, also consistent with Figure 11 (f,g,h), where the
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Our analysis suggests that using multiple metrics does provide information
that allows us in some cases (especially the tropics) to change our mean future

projection, and reduce the spread between models predictions. Overall, including

only the top models in the tropics project a more pessimistic future, with small

increases in mean LAI, and an expansion in the regions at risk for a low LAI, while at

high latitudes, it tends to increase the already large increase in mean in LAIL

5.0 Summary and Conclusions

LAl is an important term for scaling leaf-level biogeophysical and biogeochemical -«
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an increase in mean LALin the RCP8.5 scenario over the 21st century. Decreases are

projected in the limited regions where there is also a projected decrease in mean

precipitation, constrained primarily to the tropics. The change in LAI appears to

grow with temperature increases across regions over the 21st century (Figure 4).

Changes in LAI projected in the RCP4.5 are largely consistent with changes in

RCP8.5, but have a reduced amplitude due to the smaller climate forcing.

For assessing climate change impacts, we propose that both mean LA and
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mean LAlIs, especially in the tropics (Figure 5). While much of the variability in LAI

is driven by changes in precipitation, projections of lower mean LAI or Low-LAI
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Finally, the spread among models’ projections of LAI was correlated with
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of LAI ultimately rest on the ability of models to project future precipitation, Yet, in
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Table 1 Model simulations from the Climate Modeling Intercomparison Projection

(CMIP5) included in this study. All models listed here were available for the RCP8.5

Cornell University 8/19/2015 10:53 AM
Deleted: 1Model simulation

analysis, while the all models except BNU-ESM and CESM-BGC were available for the

RCP4.5 analysis.

Model Land Model Land N- Dynamic | Citation
Resolution Cycle | Veg.
BCC-CSM1 BCC-AVIM1.0 2.8°x2.8° N Y (Wuetal, 2013)
BCC-CSM1-M BCC-AVIM1.0 1.1°x1.1° N Y (Wu etal,, 2013)
CoLM + BNU-DGVM 2.8°x2.8° N Y (BNU-ESM,
http://esg.bnu.edu.cn/BNU_ESM_webs/h
BNU-ESM tmls/index.html)
CanESM2 CLASS2.7+CTEM1 2.8°x2.8° N N (Aroraetal, 2011)
CESM1-BGC CLM4 0.9°x1.2° Y N (Lindsay et al., 2014)
GFDL-ESM2G LM3 2.5°x 2.5° N Y (Dunne et al., 2013)
LM3 (uses different 2.5°x2.5° N Y (Dunne et al., 2013)
GFDL-ESM2M physical ocean model)
HadGEM2-CC JULES+TRIFFID 1.9°x1.2° N Y (Collins et al., 2011)
JULES+TRIFFID 1.9°x1.2° N Y (Collins et al., 2011)
HadGEM2-ES (includes chemistry)
INM-CM4 Simple model 2°x1.5° N N (Volodin et al.,, 2010)
IPSL-CM5A-LR ORCHIDEE 3.7°x1.9° N N (Dufresne et al., 2013)
IPSL-CM5A-MR ORCHIDEE 2.5°x1.2° N N (Dufresne et al., 2013)
ORCHIDEE (improved | 3.7°x1.9° N N (Dufresne et al,, 2013)
IPSL-CM5B-LR parameterization)
MIROC-ESM_ MATSIRO+SEIB-DGVM | 2.8° x 2.8° N Y (Watanabe et al.,, 2011)
MATSIRO+SEIB-DGVM | 2.8° x 2.8° N Y (Watanabe et al.,, 2011)
MIROC-ESM-CHEM | (adds chemistry)
MPI-ESM-LR JSBACH+BETHY 1.9°x1.9° N Y (Raddatz et al., 2007)
JSBACH+BETHY 1.9°x1.9° N Y (Raddatz et al., 2007)
(ocean model higher
MPI-ESM-MR resolution)
NorESM1-ME CLM4 2.5°x1.9° Y N (Bentsen et al., 2013)
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Table 2: Table of Metrics for LAI comparisons between model and observation used in the following

tables. More description of these metrics are provided in Section 2.3.

v

Metrics Description
Mean Model | Ratio of mean LAI from the model and
/obs observations
Corr. Spatial correlation of Mean LAI
Std. Dev. | Model | Ratio of seasonal cycle strength: Ratio of standard
Seasonal | /obs deviation of the climatological monthly mean LAI
from the model and observations
Avg. Avg. Corr. of the temporal evolution of the
Corr. climatological seasonal cycle in the model vs.
observations at each grid box
Std. Dev. | Model | Ratio of IAV strength: ratio of standard deviation of
IAV /obs the annual mean LAl from the model and
observations
IAV LAI Avg. Avg. Corr. between LAl and temperature in IAV
ys. T Corr.
IAV LAl vs | Avg. Avg. Corr. between LAl and date in IAV
date Corr.
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Table 3: Model ranking based on performance on mean annual and seasonal
cycle metrics for each region (see description in section 2,1).

36

High
Tropical Midlatitude | latitude

bcc-csml 10 10 2
bcc-csmi1-1 9 8 11
BNU-ESM 18 18 1
CanESM2 17 1 16
CESM1-BGC 6 11 17
GFDL-ESM2G 14 15 17
GFDL-ESM2M 16 17 6
HadGEM2-CC 10 5 7
HadGEM2-ES 14 3 11
inmcm4 1 8 13
IPSL-CM5A-LR 2 5 13
IPSL-CM5A-MR 4 1 9
IPSL-CM5B-LR 3 4 5
MIROC-ESM 12 15 4
MIROC-

ESM_CHEM- 13 14 2
MPI-ESM-LR 5 7 9
MPI-ESM-MR 7 12 15
NorESM1-ME 8 13 7
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Table 4: Mean and standard deviation across models for future projections

(LAI change in m?/m?) (2081-2100) for all models and for the top half of the

models

Tropics Mid-latitude High-latitude
Mean Change (all
models) 0.16 0.35 0.31
Mean Change (top
models) 0.07 0.31 0.37
Standard Deviation
across models (all
models) 0.35 0.23 0.20
Standard Deviation
across models (top
models) 0.25 0.24 0.24

Cornell University 8/19/2015 10:53 AM
Deleted: 6




10

11

12

13

14

15

16

17

18

19

20

21

22

23

38

Figure captions

Figure 1: Mean of all models for the annual mean change in LAI (m?/m?) over time

relative to current (1981-2000) for 2011-2030 (a), 2041-2060 (b) and 2081-2100

(c) for RCP8.5.

Figure 2: Mean of all models for the annual mean change in LAI over time relative to

current (1981-2000), normalized by each model’s current (1981-2000) standard

deviation at each grid point, for 2011-2030 (a), 2041-2060 (b) and 2081-2100 (c)

for RCP8.5.

v

Figure 3: Mean of all models for the annual mean change in LAI (m?/m?) over time

relative to current climate (1981-2000) for 2081-2100 for RCP4.5. (a) The mean

change (similar to Figure 1c), (b) the mean change across models normalized by the

model standard deviation for 2081-2100 (similar to Figure 2c¢); and (c) the mean of

all models for the percent of the time during which the annual mean LAI is

considered “Low” (model projected annual mean LAI is less than one standard

deviation of the current mean at each gridbox) (similar to Figure 5).

A

Figure 4: Scatter plot of the change in annual average surface temperature (Ts C)

(x-axis) against the change in annual average LAl (m2/m2) (y-axis) for the global (a)

tropics (b), mid-latitudes (c) and high-latitudes (d). Averages over four time periods

are shown for each RCP: 1981-2000(with 0 changes), 2011-2030, 2041-2060 and

2081-2100, connected by a line. The final point (2081-2100) for RCP8.5 is a triangle,
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while RCP4.5 is a filled circle. The temperatures increase in all simulations with

time, so increases in the x-axis indicate an increase in time. Note that there are 4

points along each line, and thus if there is no inflection point, the slope of the line is

constant across the 21st century.

Figure 5: Mean of the models for the percent of the time during which the annual

mean LAI is considered “Low” (model projected annual mean LAI is less than one

standard deviation of the current mean at each gridbox) is shown for 2011-2030 (a),

2041-2060 (b) and 2081-2100 (c) for RCP85, where the current mean and standard

deviation are defined for each grid box for 1981-2000. For the current climate, the

percentage of time below one standard deviation will be 16%, which is colored in

grey, so all colors represent an increase in low LAL

Figure 6: Mean of all models for the change in annual mean precipitation for 2081-
2100 compared to current (1981-2000), normalized by the model standard

deviation for RCP8.5 (similar to Figure 2c, but for precipitation) (a). Mean of the

models % of the time during which the annual mean precipitation is one standard

deviation below current values (similar to figure 5c, but for precipitation) for 2081-

2100 in RCP8.5 (b). Grid-boxes identified as statistically significantly decreasing in

LAI (green) or precipitation (blue) or both (red) (i.e. the blue regions in Figure 2a

and Figure 6a contrasted) (c). Grid-boxes identified as having an increase in the

amount of time with Low LAI (green) or precipitation (blue) or both (red) (i.e. the

blue regions in Figure 5c and Figure 6b contrasted) (c).
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The black line is the line which results from a linear regression of the x and y-axis.
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accurately simulating the mean LAI spatial distribution? 2) are the models accurately simulating the seasonal cycle in LAI? 3)

are the models correctly simulating the processes driving interannual variability in the current climate? And finally based on
this analysis, 4) can we reduce the uncertainty in future projections of LAl by using each model’s skill in the current climate?
Overall, models are able to capture some of the main characteristics of the LAl mean and seasonal cycle, but all of the models
can be improved in one or more regions. Comparison of the modeled and observed interannual variability in the current

climate suggested that in high latitudes the models may overpredict
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based on warming temperature, while in the tropics the models may overpredict the negative impacts of warming
temperature on LAL. We expect, however, larger uncertainties in observational estimates of interannual LAI compared to
estimates of seasonal or mean LAI
Future projections of LAI by the ESMs are largely optimistic, with only limited regions seeing reductions in LAI. Future

projections of LAl in the models are quite different, and are sensitive to climate model projections of precipitation. They
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strongly depend on the amount of carbon dioxide fertilization in high latitudes. Based on comparisons between model

simulated LAI and observed LAI in the current climate, we can reduce the spread in model future projections, especially in
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, by taking into account model skill. In the tropics the models which perform the best in the current climate
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average of all models. These top performing models also project an increase in the frequency of drought in some regions of the

tropics, with droughts being defined as minus one standardized deviation events.
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have been used to identify trends in NDVI and LAI (Forkel et al.,, 2013; Jong et al,, 2013; Mao et al,, 2013; Vrieling et al,,

2013). While satellite derived LAI estimates are known to have systematic and random errors, they have been usefully
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employed to evaluate the relative importance of different climate factors (e.g. temperature, precipitation) for vegetation

productivity (Zeng et al.,, 2013). We expand on previous studies that evaluated simulated LAI (e.g. Anav et al. 2013) by looking

at LAl means and variability across all latitudes, and considering what climate factors impact interannual variability.

There are several potential drivers of LAI changes in the future, such as temperature, precipitation, as well as carbon dioxide

fertilization, which can impact future
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. Based on the interannual variability of LAl and climate drivers in the current climate, we consider whether the models can

reproduce the observed relationships, suggesting they have the correct sensitivity to such important drivers of LAI as

temperature or precipitation (e.g. Fung et al., 2005; Lobell et al., 2011; Zeng et al,, 2013). The main questions we seek to

answer in this paper are 1) are the models accurately simulating the mean LAI spatial distribution? 2) are the models

accurately simulating the seasonal cycle in LAI? 3) are the models correctly simulating the processes driving interannual

variability in the current climate? And finally based on this analysis, 4) can we reduce the uncertainty in future
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2010)? To this end, we develop several metrics to evaluate the models’ ability (similar to that done for other climate

variables, e.g. Taylor, 2001) , some of which could be used in future model intercomparisons (e.g. Luo et al,, 2012; Randerson

etal,, 2009).

In this paper we present in our methods
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2 and a comparison of LAI variability in space and time between observations and the models in Section 3. In Section 4

projections of climate change in temperature, precipitation and LAI are shown, while
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2.2 Model datasets

The Climate Model Intercomparison Project (CMIP5), as part of the Working Group on Coupled Models of the World

Climate Resource Program, organized a set of experiments which were assessed as part of the 5t Assessment of the

Intergovernmental Panel on Climate Change (Taylor et al. 2009). Coupled carbon model experiments were included in the

CMIP5 (e.g.
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Model variables analyzed included monthly-mean precipitation, surface temperature, and LAIL. Only models which had

data for all these variables, for historical and RCP8.5 scenarios, were included in this study.
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Some models submitted multiple versions, at different resolutions or with slightly different physics (Table 1). Even though

some of the models are closely related (e.g. CESM1-BGC and NorESM-ME), we include different configurations of the same

model.
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LAI’s relationship with climate variables
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In order to assess the ability of the earth system models to simulate the temperature and precipitation dependence of

LAl in the future, we use current relationships in the observations of LAI and climate. We want to evaluate whether the
models have the correct temperature and precipitation impacts on vegetation. To do so, we develop several metrics.

For the models and the observations, we show results based on annual averages. We also considered a more
complicated time period, where the LAI and temperature are based on growing seasons. The growing season is defined as the
monthly maximum LAI and its two adjacent months. Because previous studies (e.g. Zeng et al., 2013) have shown that

precipitation shows the highest correlation at 1-3 months ahead of vegetation, we use average precipitation for the month of
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the maximum LAI and the three previous months. This implies that pre-maximum LAI precipitation is most important for soil
moisture during the growing season (Funk and Budde, 2009). Zeng et al. 2013 showed that temperature correlations are
highest with vegetation during the month of maximum LAI, and thus temperature during the growing season is used. Results
obtained using the growing season were quantitatively different from using an annual average, but qualitatively similar, and

with similarly strong correlations. Thus for simplicity we present only results using the annual time period metrics in this

paper.
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The metrics used in this study are summarized in Table 2.
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Similar to Zeng et al. 2013 we assess the rank correlation of temperature and precipitation to leaf area index in the
observations but we also look at trends over the last 30 years. At each grid box, a correlation between the annual mean of
temperature and precipitation and time (e.g. the trend with time) against leaf area index are obtained for each model and
observation. Because the models do not simulate exactly the same climate as observed, we cannot expect the models to

simulate the same LAI at each grid box. However, we expect that across multiple grid boxes that the relationships should be
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similar between the model and observations. Thus, we calculate the temporal correlation between LAl and temperature, LAI
and precipitation, and LAI and time (e.g. incrementing the year, to see if there is a trend in time), at every grid point, and
calculate the spatial average of each correlation across the different regions (Table 2: LAl vs. T: Avg. Corr. for example).

We also perform a comparison of LAI simulated in a fully coupled model simulation to LAI simulated by a land model
driven by observationally derived datasets (called CLM-obs) (e.g. Qian et al,, 2006), but extended using CRU data through 2010
(Harris et al,, 2013) for the Community Land Model (Lawrence et al., 2012; Lindsay et al., 2014). For this model, substantial
computer software development has occurred so that the same model can be similarly driven by observation-based
meteorology (“offline) or the simulated meteorology (“online”) (Oleson et al., 2013). The reason for including this simulation
is to test the sensitivity of the results to different driving meteorology. If we compare the same model driven by different
meteorological data, we can isolate metrics that can identify model traits, from those that are dependent on meteorology, or
simply are not strong enough to be used as metrics. Of course this analysis is dependent on the model and datasets used, but
can be used as a sensitivity study to suggest how important meteorological factors are in the analysis.

Other metrics were also considered for this paper, including the overlap in the probability density functions (e.g.
Maxino et al,, 2008) and root mean squared differences, but these did not provide additional information that would justify the

additional complexity in the paper.
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We evaluate the mean change in the future using the RCP8.5 scenarios for temperature, precipitation, and LAI (e.g. Tables 3
and 4) using the models listed in Table 1. RCP8.5 is the most extreme scenario in the CMIP5 archive. We use it to identify
regions that are most at risk in the future. Areas with mean changes in LAI, precipitation, and temperature that are larger than
the historical variability indicate statistically changes to climate and vegetation from current climate. To highlight where
models predict these areas will be, mean changes over 20 year time periods are divided by the standard deviation over the
current climate (1981-2000) and shown in terms of standard deviation units (e.g. Mahlstein et al. 2012; Tebaldi et al. 2011).
The spatial and temporal scale we use to define these changes can be important for whether these signals are statistically
significant (Lombardozzi et al.,, 2014) and we calculate this using a 20-year time scale at the grid level.

In addition, there could be changes in LAl variability, which may also be important for understanding the impact of
climate change. For many regions we are concerned about the incidence of time periods with low precipitation and/or high
temperatures causing low vegetative productivity, which we will refer to here as drought. In terms of drought, the length and
frequency matter, so the percent of the time during which the variable is in drought is also calculated. We define drought as
time periods where LAl is one standard deviation (evaluated during the current climate) below that of the mean during the

current climate. By definition, if the variables have a Gaussian distribution, each gridbox would be in ‘drought’ for 1/6 (16%)
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of the time. Thus we seek to estimate the fraction of the time in the future that this condition exists, and specifically whether it

increases in the future.

3.0
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Our goal in this section is to explore the value of a new 30 year satellite LAI record for evaluating LAI simulations in the
current generation of CMIP5 models. (Anav et al. 2013) evaluated the LAl seasonal cycle and interannual variability for
current climate high latitude Northern Hemisphere simulations. Here we look across all regions and also look at the
temperature and precipitation as potential drivers of interannual variability.

3.1 Climatological comparison

The observed mean LAI has the largest values of leaf area index in the tropics (Figure 1a). The largest seasonal cycle tends to
be in mid-latitude regions, although there is still a signal in some parts of the tropics (Figure 1b). The interannual variability
tends to be much smaller than the seasonal cycle, and is equally large in tropics, mid-latitudes and high latitudes (Figure 1c).
One should note that there are many possible errors in the observational datasets, although the latest versions used here tend

to have smaller biases than previous versions (
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2013). In this study, we compare model simulations against the satellite data, recognizing that these data are not perfect, and
thus our conclusions are sensitive to potential biases in the observational data.

The
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overpredict the strength of the seasonal cycle differ. Several models underpredict the seasonal cycle at high-latitudes (e.g.
CanESM2, CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR) (Figure 2b, 2h,
2k; Table 4; Anav et al. 2013). The magnitude and direction of bias in model projections also vary by region. For example, one
set of models overpredicts the strength of the seasonal cycle in the tropics and mid-latitudes, but underpredicts in the high-
latitudes (e.g. bcc-csm1, bce-csm1_1), while one set of models overpredicts the seasonal cycle at mid latitudes, but
underpredicts in the tropics (e.g. MIROC models). Another set of models underpredict the seasonal cycle across all latitudes,
but especially the tropics and high-latitudes (e.g. HadGEM2 models). The spatially averaged correlations between the
seasonal cycle in the observations and models show a range of between 0.2 to 0.58 (Table 4), suggesting the need for
substantial improvement in the timing of the seasonal cycle. Of course, there is not a strong seasonal cycle in the tropics,

where the lowest correlations tend to occur (Table 4a). A smaller seasonal signal in this region could lead to larger relative



1  errors in the observational estimates, and the smaller seasonal signal could be harder for models to simulate accurately. In

2 mid-latitudes, where the seasonal cycle is likely to be more robust, the correlation coefficient averages above 0.5 for most

3 models, except for the GFDL models and the INMCM4 (Table 4b).

4
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6  within the earth system model (Figure 2 and Table 3 and 4: CLMobs vs. CESM row of Table 2). This suggests that these metrics

7  are more model dependent than meteorology dependent. Of course, with another model we might obtain a different result, but

8  this result suggests that these model tests are
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precipitation and the interannual variability in LAIL. In addition, we also consider whether there is
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the LAI (thus a correlation between advancing time and the LAI in the observations and the model). The observations suggest

statistically significant relationships between interannual variability in
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and temperature, precipitation, and time trends (Figure 3).
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Precipitation patterns tend to show positive correlations in many regions (Figure 3b), but with some high latitude regions
exhibit a negative correlation of precipitation with LAL. These relationships highlight the regional nature of sensitivity to
temperature or precipitation, as seen in previous studies (e.g. Anav et al. 2013; Ichii et al. 2002; Wang et al., 2013; Zeng et al.
2013). High latitude regions, furthermore, may depend on snowfall, which will be poorly captured by our precipitation

compositing procedure
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Model simulations can capture many of these relationships (e.g. Figure 4 vs. Figure 3), but with varying strengths
(Table 3; Figure 5). Because the coupled models are not intended to predict specific events or decadal variability, we want to
evaluate the broad pattern of these relationships, instead of specific details. Thus, we consider the spatial mean of the
temporal correlation between LAI and climate variables in the observations and model (as described in Section 2.3; Table 3
and 4; Figure 5). This tests, for example, whether the models capture the mainly positive correlation between LAI and
temperature in high latitudes and mixed but more negative correlation in the tropics (Figure 3a; Figure 4a, Figure 5).

Notice that for one land model (the CLM), simulated interactively within an earth system model (CESM-BGC) (Figure
4a) presents more similar results of the LAl-temperature correlation to the CLM driven by observed-based datasets (CLM-obs)
(Figure 4b) than to either the observations (Figure 3a), or other models (Figure 4d or 4e). Thus, LAI correlations with
temperature indicate a metric that appears to be intrinsic to the CLM model. Both the CLM and CLM-obs simulations (Figure
4a,b) exhibited stronger negative LAI-temperature correlations over the tropics than seen in the observations (Fig. 3a). In
general, almost all of the models exhibited a much stronger negative correlation between temperature and LAI in the tropics
(Table 4a; Figure 5) than that observed.

The relationship between CESM and CESM-obs LAI-precipitation relationships (e.g. Figure 4c and 4d compared to Figure 4a

and 4b) are weaker. In fact, LAl-precipitation relationships do not appear to be more similar when the CLM within the CESM is



O 0 N O

10

11

12

13

14

15

16

compared against the CLM driven by observed-meteorology (Table 3 and 4), suggesting that LAl-precipitation relationships
are very sensitive to the meteorology used, and not a good metric to be tested in a coupled earth system environment. This
could be due to the fact that precipitation has a weaker relationship with LAI, except in an occurrence of rare but strong
drought (e.g. Funk and Brown, 2006). Or this could be due to more complicated time lags that need to be considered or
because random chance becomes too important. Growth in many tropical regions may be radiation limited, rather than water

limited.
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LAI-precipitation correlation metric may be more useful for inter-model comparison when used for offline-model tests
when observed meteorology is used to force the models (e.g. Murray-Tortarolo et al. 2013).

Most of the models have too strong a negative relationship between LAl and temperature in the tropics, and too strong
of a positive relationship in the high latitudes (Figure 5, Table 4a-4c). In the tropics, only the BNU-ESM model does not have
too strong of a negative impact of temperature, while in the high latitudes, the CanESM2, HadGEM2-CC, HadGEM2-ES, MPI-
ESM-MR tend to have twice the spatial average correlation of the observations.

For precipitation, there is a less clear relationship across latitudes, although one model has a tendency towards higher

correlations with precipitation (INM-CM4; Figure 4f and Figure 5). Similarly, the correlation between LAI and time is variable



between models, but there is no strong relationship across latitudes (Figure 5c, f, i, 1). A summary of the ability of the models to
capture these metrics suggests that all the models could be improved in their simulation of LAI, but that many of the models
are roughly doing a similarly good job at simulating LAI, depending on which metric is considered.

Note that there is measurement noise in the
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have an equivalent random noise added.
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An example set of model time series of temperature, precipitation, net primary production and leaf area index from 1900-

2100 shows that, similar to previous modeling studies (Doherty et al. 2010;
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2007), there is a mean increase in precipitation, as well as leaf area index in this region (Figure 7). However, one model (IPSL-

CMA-LR) shows an increase LAI variability (Figure 7a), which could have large negative impacts to the local population

despite an increased mean LAI As this simple example suggests, for studies on the impact of climate change, we should look

not only at the mean change in leaf area index, but also look at changes in the variability of leaf area index, in order to identify

regions which may be at risk for famine in the future.

The projections for future LAI are quite variable across different models for this region (Figure 8), although generally

quite optimistic in most of the CMIP5 models. For example, one model (BNU-ESM) predicts very large increases in LAI (>4;

Figure 8a), while another (MPI-ESM) predicts modest increases and decreases (<0.5; Figure 8b). Normalizing
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climate and statistically significant (e.g. Tebaldi et al., 2011), shows similar patterns. Notice that if the standard deviation in
the current climate is zero (i.e. there is not interannual variability reported at this grid box), the normalized difference is not

finite, and is removed from further analysis. Some models are quite optimistic in East Africa, while others are less so (Figure

8c vs.
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Usually we consider the multi-model mean for future projections (e.g. Meehl et al,, 2007). Model mean climate
projections for the next century suggest statistically significant increases in LAI (the mean change divided by current
variability) over most of East Africa (Figure 9a, 9c and 9e). But some regions see a reduction in mean LAI after the mid-century.
If we consider also the possibility of an increased mean, and also increased variability, which may indicate more frequent

drought, we see that broad areas of East Africa are at a higher risk for drought by 2090 (Figure 9e), despite a higher mean LAI.
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Here we define drought as the percent of time LAl is one or more standard deviations below the mean (as defined in the
current climate), and thus any non-gray colored area indicates a higher drought risk than in the current climate (Figure 9b; 9d;
and 9f). While the areas with increased drought tend to be in regions with reductions in mean LAI, or smaller increases in LAI,
the projections for increased drought show large regions at risk and thus maybe a more conservative metric for future
vulnerability studies.

To consider the question of whether models project an increased risk of drought in East Africa in the future, one must
also keep in mind that there are larger uncertainties in projections at smaller scales (e.g. Hawkins and Sutton, 2009), and thus
one should not believe that in Kenya, for example, there will be an increase in LAI, while neighboring countries will necessarily
see a decrease. The ability of the models to resolve and project at such small scales is not strong enough (e.g. Hawkins; Sutton
2009). Broader scale patterns considered in the next section are likely to be more robust. In addition, the projection of
precipitation estimated in climate models for this region, which tend to be optimistic, is quite different than statistical studies
which suggest less precipitation in a warming climate (e.g. Jury and Funk, 2013). Many of the observed drying trends in this
region are linked to the sea surface temperature gradient between the equatorial western and central Pacific (Funk et al,,
2014). While this gradient has strengthened, causing an intensification of the Walker circulation and drying, the future state of

this gradient is uncertain.
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4.2 Global projections

At the global level, there is also variability in the projections of future LAI changes. Some models project large increases while
other project more modest increases (e.g. Figure 10a and 10b; notice the different scale). After normalizing by the standard
deviation to highlight the results that are statistically significant (Figure 10c and 10d), we still see large variations in the
projections, especially in the tropics.

The 21st century projections of mean model LAI (normalized by the standard deviation in each model) suggest a
statistically significant increase in leaf area index over much of the globe, especially high latitudes (Figure 11). Some tropical
regions are seen to be at risk for reductions in mean LAI, such as in Central America and the Amazon basin. These regions are
also at risk of more frequent drought, as identified by the percent of the time their LAI is below one standard deviation of the
current mean (Figure 11b,d f). More frequent drought is also projected for large areas of the tropics and subtropics where
projected increases to mean LAI are small in magnitude or negligible (Figure 11a vs b, for example).

Models vary in how much change they project in the future (Figure 12). The model projections tend to have larger
increases than decreases in absolute magnitude of the LAI (Figure 12), and some models project very large increases, while

there are only very small decreases predicted in a small number of cases.
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.3 Drivers of LAI projections

Next we consider what drives the differences in model projections for LAI, using the example of RCP8.5 at 2080-2100.
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By correlating at each grid box, across the models, the temperature and LAI projections, we can look for relationships

between model projections of temperature and LAI, which may be causal (Figure 13a). There are strong positive correlations
between model simulated changes in temperature and LAI in some regions, especially the northern high latitudes, suggesting
that models with a projected larger warming in the high latitudes also simulate larger increases in LAI. On the other hand,
there are strong negative correlations in the tropics, for example the Amazon (Figure 13a), suggesting that models that
simulate higher tropical temperature changes tend to have lower LAI projections in the future. Notice that while higher
temperatures may drive higher LAI, higher LAls may also be driving higher temperatures because of the importance of LAl in

changing surface energy fluxes (e.g. Lawrence and Slingo, 2004).
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The projected changes in precipitation are strongly correlated with projected changes in LAI, when we correlate across

models (Figure 14a), suggesting that changes in precipitation across the models drive much of the difference between models

in many regions. In addition, if we look spatially at where the lower LAls occur, it is where the precipitation has decreased.

If a region has a model mean lower precipitation in the in the future (Figure 13c), it also has lower LAI predicted by the model

mean (Figure 11e).

Another important potential contributor to the future projections of LAl is the effectiveness of the carbon fertilization in the

models (e.g. Arora et al. 2013).
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Using the carbon dioxide fertilization factor ($-land) from the Arora et al. (2013) study we use a rank correlation to explore

the importance of the carbon dioxide fertilization strength for predicting future
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We would expect models that respond more strongly with increased carbon uptake under higher CO2 conditions (i.e.
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larger B-land ) to have greater LAl in the future. Globally the correlation is 0.34, suggesting that some of the differences in

future LAI projections across models is due to differences in the model simulation of CO: fertilization. The value is -0.36, 0.26

and 0.58, for tropical, mid-latitude and high latitude, regions, respectively.
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Thus for high latitudes, especially, the projections of LAl appear to be dependent on the way the models’ simulate the carbon

dioxide fertilization in the different models. This could also be, however, an artifact that the two models with the lowest

carbon dioxide effect (CESM-BGC and NOR-ESM) use the same land carbon model
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, which predicts low values of LAI in high latitudes for present day and does not tend to increase LAl much in the future

(Thornton et al., 2009). These models also have low carbon dioxide fertilization effects, because of their nitrogen colimitation,

which could be driving the correlation between model projections of LAl and carbon dioxide fertilization in the high latitudes.

[t is interesting that in the tropics the carbon dioxide fertilization is negatively correlated to future LAI changes.

| Page 26: [55] Moved to page 20 (Move #17)

Cornell University

8/19/15 10:53 AM




O

10

11

12

13
14
15

16
17
18

19

Again, this could be an artifact of having only two related low carbon fertilization models, as these models see a strong

increase in nitrogen mineralization in the tropics in a warming climate, which allows an increase in productivity in the future

tropics (Thornton et al., 2009).
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In other words, the strong negative correlation in the tropics between LAI projections and CO: fertilization could be due

to the smaller temperature impact on carbon cycle in the N-limited models (the 3-land and y-land (climate impact on carbon

cycle) are negatively correlated in Table 2 of Arora et al., 2013).

Finally, the disconnect between carbon dioxide fertilization effect and future LAI in the mid-latitudes and tropics could also be

due to the way that carbon is allocated among different biomass pools in models. For example, in the CLM, the land model for

the CESM-BGC, CO: fertilization causes a larger increase to wood allocation (62%) than to leaf allocation (21%) in the

Southeastern US (Lombardozzi, personal communication, 2015).
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Thus, the issue of how LAl responds in different models is interesting and should be considered in future studies.
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4.3
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Reducing spread in the future projections

There are large differences between the different models’ projections of future LAI (e.g.
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Figure 12; Figure 14c). Previous studies have tried to reduce the uncertainty in future projections by looking for relationships
between model metrics and future projections, and then choosing the models which best match the observations in the

current climate (e.g.
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Cox et al., 2013;Hoffman et al., 2014) or by subsampling models for different regions by their performance (e.g. Steinacher et

al,, 2010). In this section we use both approaches to try to reduce the spread in
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projections at the end of the 215t century (2081-2100). In essence, we are looking for a correspondence between current
model performance and the future projection, in order to reduce the uncertainty in the future projections. In many cases in

climate modeling and projections, there is no correlation between current climate skill and projections (e.g.
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Cook and Vizy, 2006), however in some limited cases there is a correlation between metric score and a projection, and one is

able to constrain future projections (e.g. Cox et al., 2013; Steinacher et al., 2010).
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14). Our results suggest that the better performing models tend to project lower LAls in the future in the tropics in contrast to
(Cox et al., 2013), which focused on carbon-temperature relationships in the Amazon and which showed that observational
constraints on the models tend to suggest less loss in carbon under higher temperatures. However these results may not be
inconsistent as they consider different metrics in different regions, and LAI is not necessarily linearly related to carbon uptake
in the models (see discussion in Section 4.2; (Lombardozzi, personal communication, 2015)), suggesting that more analysis of

how allocation is parameterized in the land carbon models is warranted.

Page 35: [71] Deleted Cornell University 8/19/15 10:53 AM

Page 35: [72] Deleted Cornell University 8/19/15 10:53 AM
IAV LAI Avg. Avg. Corr. between LAl and precipitation in 1AV

vs. P Corr.

Page 35: [73] Deleted Cornell University 8/19/15 10:53 AM

Other AT Change in temperature (2081-2100 minus current)




variables ‘ AP ‘ Change in precipitation (2081-2100 minus current)




Table 3:Evaluation of LAI over globe. Metrics are described in text and Table 2, models in Table 1. The CESM vs. CLM column
indicates the value of the comparison between the CESM1-BGC and the CLM-obs simulations (which use the same land model,
but different meteorology). The Corr A LAI row indicates the correlation coefficient across models between the model value of

this metric (this column) against the change in LAl in 2080-2100 (last column).

Mean LAI Seasonal Std Dev | LAIIAV correlations AT A ALAI
1AV precip

Models Mod | Corr. | Std Avg. Model/ | LAlvs. LAlvs. | LAlvs. (K) (mm/ (m?/ m?)

el/ob Dev. Corr. obs Ts Precip | time. day)

s Model

/obs

Obs. 0.11 0.11 0.21
bcc-csm1l 1.74 0.70 1.28 0.54 1.64 -0.07 0.34 0.26 | 5.13 0.18 0.29
bcc-csm1-1 1.52 0.67 1.27 0.55 1.43 -0.13 0.38 0.28 | 4.88 0.17 0.35
BNU-ESM 2.12 0.56 1.47 0.48 1.79 0.27 0.00 0.32 | 6.39 0.28 1.01
CanESM2 1.05 0.66 0.75 0.40 1.15 0.02 0.18 0.17 | 5.55 0.24 0.09
CESM1-BGC 1.49 0.64 0.70 0.48 1.86 0.00 0.13 0.24 | 5.32 0.23 0.32
GFDL-ESM2G 2.27 0.45 0.78 0.18 1.64 -0.06 0.21 0.29 | 2.95 0.10 0.19
GFDL-ESM2M 2.35 0.39 0.78 0.18 1.93 -0.13 0.20 0.28 | 3.19 0.12 0.20
HadGEM2-CC 1.44 0.76 0.58 0.46 0.92 0.15 0.27 0.32 | 6.77 0.17 0.48
HadGEM2-ES 1.52 0.77 0.58 0.46 1.00 0.17 0.31 0.35 | 6.88 0.17 0.44
inmcm4 0.97 0.61 0.93 0.42 0.86 0.05 0.53 0.04 | 4.02 0.12 0.16
IPSL-CM5A-LR 1.44 0.67 0.98 0.49 1.21 0.03 0.27 0.08 | 6.73 0.22 0.10
IPSL-CM5A-MR 1.44 0.68 0.97 0.50 1.21 0.04 0.28 0.14 | 6.52 0.20 0.08
IPSL-CM5B-LR 1.33 0.60 0.95 0.50 1.36 0.02 0.24 0.17 | 5.39 0.10 0.18
MIROC-ESM 1.64 0.44 1.17 0.56 3.23 -0.08 0.12 0.11 | 7.13 0.27 0.22
MIROC-ESM- 1.62 0.44 1.11 0.53 3.23 -0.05 0.12 0.14 | 7.55 0.29 0.22




CHEM

MPI-ESM-LR 1.32 0.59 0.83 0.45 0.85 -0.04 0.18 0.14 | 5.11 0.10 0.13
MPI-ESM-MR 1.36 0.60 0.86 0.26 0.85 0.02 0.19 0.20 | 4.63 0.10 0.12
NorESM1-ME 1.61 0.54 0.82 0.44 2.50 -0.05 0.16 0.17 | 4.18 0.19 0.12
CLMobs 1.44 0.73 0.71 0.53 2.08 0.01 0.22 0.23

CESMvs.CLM 1.08 0.89 0.98 0.76 1.18 0.00 0.13 0.24

Corr A LAl 0.49 0.10 0.06 0.30 0.27 0.02 -0.04 0.67 | 0.24 0.16




Table 4a: Tropical LAI evaluation and projection. As in Table 3, but for tropical region (<30 ).

Mean LAI Seasonal Std Dev IAV LAl IAV correlations AT ALAI
precip

Models Mod | Corr. | Std. Avg. Model/obs LAl vs. Ts. LAl vs. LAI vs. (K) (mm/ (m?/

el/ob Dev. Corr. Precip.. | time day) m?)

s Model

/obs

Obs. 0.02 0.20 0.20
bcc-csm1l 1.69 0.82 1.79 0.24 2.63 -0.45 0.38 0.10 4.18 0.12 0.18
bcc-csm1-1 1.44 0.78 1.66 0.27 2.06 -0.44 0.41 0.13 4.36 0.05 0.34
BNU-ESM 2.45 0.63 0.85 0.17 1.25 0.22 -0.04 0.33 4.07 0.27 1.29
CanESM2 1.23 0.54 0.74 0.13 1.81 -0.40 0.34 0.05 4.07 0.10 0.06
CESM1-BGC 1.72 0.72 0.91 0.38 2.69 -0.29 0.17 0.14 4.13 0.27 0.57
GFDL-ESM2G 1.80 0.64 0.96 0.17 2.06 -0.37 0.22 0.04 2.79 0.09 0.22
GFDL-ESM2M 1.74 0.63 0.92 0.16 2.50 -0.39 0.24 0.09 2.81 0.10 0.21
HadGEM2-CC 1.71 0.81 0.47 0.29 0.88 -0.08 0.28 0.15 5.81 -0.03 0.25
HadGEM2-ES 1.76 0.81 0.47 0.28 0.94 -0.15 0.33 0.11 5.95 -0.01 0.21
inmcm4 1.00 0.83 0.83 0.36 0.69 -0.19 0.68 -0.02 3.44 0.00 -0.04
IPSL-CM5A-LR 1.21 0.80 1.09 0.36 1.38 -0.25 0.39 -0.07 5.90 0.26 -0.03
IPSL-CM5A-MR 1.20 0.75 1.09 0.35 1.44 -0.24 0.41 0.01 6.05 0.26 -0.02
IPSL-CM5B-LR 1.09 0.70 1.02 0.33 1.63 -0.19 0.36 0.05 4.22 -0.06 -0.01
MIROC-ESM 1.61 0.53 0.64 0.35 5.06 -0.37 0.14 0.01 5.89 0.13 -0.08
MIROC- 1.61 0.53 0.65 0.33 5.00 -0.38 0.15 0.05 6.18 0.11 -0.14
ESM_CHEM-
MPI-ESM-LR 1.41 0.75 1.04 0.15 1.19 -0.51 0.46 -0.04 5.47 -0.07 -0.14
MPI-ESM-MR 1.42 0.75 1.06 0.02 1.13 -0.50 0.45 -0.09 4.96 -0.02 -0.12
NorESM1-ME 1.73 0.58 0.98 0.32 3.44 -0.34 0.24 0.15 2.80 0.16 0.16
CLMobs 1.64 0.82 0.90 0.45 2.88 -0.19 0.26 0.10
CESMvs.CLM 1.09 0.85 1.02 0.68 1.13 -0.29 0.17 0.14
Corr A LAI 0.64 0.11 -0.08 -0.06 0.02 0.37 -0.40 0.80 | -0.43 0.26




Table 4b: Mid-latitude LAI evaluation and projection. As in Table 3, but for mid-latitude re

ion (between 30° and 50°).

Mean LAI Seasonal Std Dev IAV | LAl IAV correlations AT A precip ALAI
Models Mod | Corr. | Std.Dev. | Avg. Model/obs | LAI LAl vs. LAI vs. (K) (mm/ (m?/

el/ob Model/o | Corr. Vs. Precip.. time. day) mz)

s bs Ts.
Obs. 0.11 0.18 0.22
bcc-csm1l 1.90 0.60 1.33 0.75 1.50 | -0.14 0.43 0.23 4.71 0.03 0.50
bcc-csm1-1 1.61 0.52 1.34 0.74 1.50 | -0.18 0.50 0.31 4.72 0.07 0.62
BNU-ESM 2.20 0.48 1.80 0.61 2.80 | 0.22 0.02 0.07 5.76 0.01 0.80
CanESM2 0.90 0.75 0.88 0.56 1.00 | 0.03 0.17 0.12 4.34 0.12 0.11
CESM1-BGC 1.86 0.73 0.82 0.51 2.80 | -0.03 0.17 0.09 4.69 0.15 0.55
GFDL-ESM2G 1.37 0.52 1.46 0.17 2.20 | -0.07 0.25 0.22 2.45 -0.06 0.20
GFDL-ESM2M 1.36 0.42 1.37 0.20 240 | -0.11 0.25 0.15 2.64 -0.04 0.24
HadGEM2-CC 1.20 0.68 0.86 0.56 1.10 | 0.02 0.31 0.19 6.40 0.13 0.63
HadGEM2-ES 1.21 0.69 0.88 0.57 1.20 | 0.06 0.33 0.23 6.29 0.11 0.62
inmcm4 1.28 0.70 0.83 0.33 1.20 | 0.15 0.57 0.07 3.79 0.01 0.17
IPSL-CM5A-LR 1.68 0.71 1.05 0.53 1.90 | 0.00 0.29 0.05 6.16 -0.04 0.11
IPSL-CM5A-MR 1.62 0.76 1.00 0.57 2.00 | -0.04 0.35 0.09 6.23 -0.11 0.07
IPSL-CM5B-LR 1.74 0.69 1.05 0.58 1.80 | 0.07 0.27 0.21 4.85 0.07 0.24
MIROC-ESM 1.89 0.44 1.79 0.71 2.80 | -0.09 0.19 0.08 7.30 0.14 0.31
MIROC- 1.88 0.46 1.75 0.69 2.80 | -0.09 0.19 0.08 7.48 0.16 0.34
ESM_CHEM-
MPI-ESM-LR 1.42 0.41 0.94 0.71 0.70 | 0.11 0.15 0.07 5.08 0.01 0.19
MPI-ESM-MR 1.47 0.38 0.94 0.52 0.70 | 0.16 0.11 0.15 4.58 0.03 0.20
NoreSM1-ME 2.19 0.68 1.09 0.50 3.80 | -0.01 0.19 0.18 3.32 0.07 0.15
CLMobs 1.69 0.82 0.80 0.57 2.80 | -0.05 0.21 0.01
CESMvs.CLM 1.18 0.88 1.02 0.76 1.17 | -0.03 0.17 0.09
Corr A LAI 0.16 | -0.31 0.19 0.38 0.12 | -0.11 -0.00 0.35 0.34 0.46




=

Table 4c. High-latitude LAI evaluation and projections.As in Table 3, but for high-latitude region (> 50°).

Mean LAI Seasonal Std Dev | LAIIAV correlations AT | Aprecip ALAI
1AV
Models Model | Corr. | Std.Dev. | Avg. Model/ | LAlvs. | LAlvs. LAl vs. (K) (mm/ (m?/ m?)
/obs Model/o | Corr. | obs Ts. Precip. | time day)
bs
Obs. 0.20 -0.02 0.21
bcc-csm1l 1.73 0.58 0.69 0.91 0.79 0.36 0.25 0.43 | 5.71 0.26 0.27
bcc-csm1-1 1.61 0.57 0.77 0.91 0.86 0.21 0.28 0.41 | 5.16 0.25 0.27
BNU-ESM 1.45 0.35 1.81 0.90 1.93 0.36 0.02 0.48 | 7.69 0.38 0.95
CanESM2 0.85 0.63 0.69 0.74 0.43 0.42 0.03 0.31 | 7.33 0.40 0.10
CESM1-BGC 0.84 0.48 0.35 0.69 0.50 0.31 0.06 0.44 | 6.01 0.23 0.14
GFDL-ESM2G 3.67 0.22 0.21 0.22 1.00 0.26 0.18 0.59 | 3.33 0.19 0.17
GFDL-ESM2M 4.03 0.21 0.23 0.24 1.14 0.11 0.11 0.54 | 3.75 0.22 0.18
HadGEM2-CC 1.13 0.61 0.39 0.70 0.85 0.48 0.23 0.58 | 7.31 0.27 0.54
HadGEM2-ES 131 0.60 0.40 0.72 0.92 0.57 0.28 0.66 | 7.47 0.27 0.48
inmcm4 0.71 0.14 1.21 0.79 0.93 0.21 0.36 0.08 | 4.80 0.32 0.36
IPSL-CM5A- 1.68 0.42 0.83 0.71 0.79 0.32 0.15 0.27 | 7.92 0.36 0.23
IPSL-CM5A- 1.74 0.44 0.82 0.72 0.64 0.36 0.12 0.31 | 7.16 0.35 0.19
IPSL-CM5B- 1.50 0.40 0.77 0.75 0.86 0.19 0.10 0.25 | 6.90 0.29 0.32
MIROC-ESM_ 1.52 0.31 1.13 0.83 1.00 0.22 0.05 0.24 | 7.62 0.38 0.32
MIROC-ESM- 1.46 0.28 0.97 0.81 1.07 0.29 0.06 0.26 | 8.16 0.40 0.35
MPI-ESM-LR 1.09 0.49 0.56 0.75 0.36 0.32 -0.07 0.37 | 4.96 0.19 0.23
MPI-ESM-MR 1.17 0.51 0.56 0.38 0.36 0.43 -0.02 0.52 | 4.50 0.17 0.20
NoreSM1-ME 0.95 0.38 0.42 0.66 0.71 0.20 0.05 0.19 | 5.63 0.26 0.08
CLMobs 0.92 0.50 0.44 0.66 0.50 0.26 0.18 0.51
CESMvs.CLM 0.93 0.97 0.78 0.96 1.17 0.31 0.06 0.44
Corr A LAI -0.03 | -0.01 0.49 0.57 0.52 0.23 0.30 0.06 | 0.44 0.37




Table 5
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2: Probability density function (pdf) of observed (thick black line) and modeled LAI
for mean (first column), seasonal cycle standard deviation (middle column) and
interannual variability standard deviation (right column) for global (a, b, c), tropical
(<30°) (d, e, f), mid-latitude (between 30° and 50°) (g, h, i) and high-latitudes
(>50°) (j, k, 1), respectively. Probability density functions are smoothed using an
Epanechnikov smoothing kernel. Models are show as colored lines, as indicated on
legend in figure. CLM-obs (driven by observational-derived dataset, with the same

land carbon model as CESM-BGC) is shown as a dotted line).

Figure 3: Rank correlation between observationally-derived interannual variability
in LAI and temperature (a) and precipitation (b), and year(c). Correlations above an
absolute value of 0.36 are significant at the 95% and are shown in darker colors.
Observations are derived from satellite retrievals (Zhu et al. 2013) for LAl and
gridded datsasets GHCN (Fan; Dool 2008) for temperature and GCPC (Adler et al.

2003) for precipitation

Figure 4: Rank correlation between model derived LAl and temperature (a and b)
and precipitation (c and d) for the CESM-BGC (a and c) and for the CLM-obs (b and
d). Both models have the same land model, but the difference is that the CESM-BGC
meteorology is from the coupled climate model, while the CLM-obs is driven by

datasets constrained by observations (Harris et al. 2013; Qian et al. 2006). The rank



correlation between model derived LAl and precipitation are shown for the IPSL-

CM5A-LR andINM-CM4 models are shown in e and f, respectively.

Figure 5. Probability density function (pdf) of rank correlations for the rank
correlation between temperature (first column), precipitation (middle column) and
date (right column) for global (a, b, c), tropical (<30°) (d, e, f), mid-latitude
(between 30° and 50°) (g, h, i) and high-latitudes (>50°) (j, k, 1), respectively.
Probability density functions are smoothed using an Epanechnikov smoothing
kernel. Models are show as colored lines, as indicated on legend in figure. CLM-obs
(driven by observational-derived dataset, with the same land carbon model as

CESM-BGC) is shown as a dotted line
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8: East African differences in mean LAI between future climate (2081-2100) and
current climate (1981-2000) from two different models: BNU-ESM (a) and MPI-ESM
(b) (notice the different scale). Difference in mean LAI (2081-2100 minus 1981-
2000) divided by the standard deviation in LAI (1981-2000) for BNU-ESM (c) and
MPI-ESM (d). Regions with a zero standard deviation are left blank. Regions with

absolute value > 1 are more than one standard deviation away from current climate.

Figure 9: Mean of all models for the annual mean change in LAI over time relative to
current period (1981-2000) focused on East Africa, normalized by each model’s
current (1981-2000) standard deviation at each grid point, for 2011-2030 (a),

2041-2060 (c) and 2081-2100 (e). Drought frequencies based on the modeled



mean percent of time that LAI is more than one standard deviation below the
current mean LAI for 2011-2030 (b), 2041-2060 (d) and 2081-2100 (f), where the

current mean and standard deviation are defined for each grid box for 1981-2000.
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For the current climate, the percentage of time below one standard deviation will be

16%, which is colored in grey, so all colors represent an increase in drought.
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Figure 10: Global differences in mean LAI between future climate (2081-2100) and
current climate (1981-2000) from two different models: BNU-ESM (a) and MPI-ESM
(b) (notice the different scale). Difference in mean LAI (2081-2100 minus 1981-
2000) divided by the standard deviation in LAI (1981-2000) for BNU-ESM (c) and
MPI-ESM (d). Regions with a zero standard deviation are left blank. Regions with
absolute value > 1 are more than one standard deviation away from current climate.

(as in Figure 7, but global).

Figure 11: Mean of all models for the annual mean change in LAI over time relative
to current (1981-2000) (same as Figure 7, but for globe), normalized by each
model’s current (1981-2000) standard deviation at each grid point, for 2011-2030
(a), 2041-2060 (c) and 2081-2100 (e). Indication of drought is the model mean
percent of time that LAI is more than one standard deviation below the current

mean LAI and is shown for 2011-2030 (b), 2041-2060 (d) and 2081-2100 (f),



where the current mean and standard deviation are defined for each grid box for
1981-2000. For the current climate, the percentage of time below one standard
deviation will be 16%, which is colored in grey, so all colors represent an increase in

drought.
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12: Probability density function of the change in LAl between 2081-2100 at each
grid box for each model for the globe (a), tropics (<30°) (b), mid-latitudes (between
30° and 50°) (c) and high-latitudes (>50°) (d). Probability density functions are
smoothed using an Epanechnikov smoothing kernel. Models are show as colored

lines, as indicated on legend in figure.
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13: Rank correlation across models at every grid box of the mean model change in
LAI (2081-2100 minus 1981-2000) against the model change over the same time
period of temperature (a) and precipitation (b). The mean model change (2081-
2100 minus 1981-2000) in precipitation, normalized by the current standard

deviation (1981-2000) in precipitation at each grid cell (c).

Figure 14: Mean of all models for the annual mean change in LAI over time (2081-

2100) relative to current (1981-2000), normalized by each model’s current (1981-
2000) standard deviation at each grid point (a) for all models (same as Figure 11e)
and (b) for the top models, defined as the models performing in the top half (Table

6) for each region, tropical, mid-latitude or high-latitude. Because different models



are included in different regions, there can be discontinuities at the boundaries in

figure 14b (e.g.
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30 and 60 degrees latitude). The standard deviation in the mean future projection
at 2081-2100 across the models at each grid point are shown for (c) all models and

(d) top models.
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Indication of drought is the model mean percent of time that LAI is more than one
standard deviation below the current mean LAI and is shown for (e) all models
(same as figure 11f) and (f), top models for the period 2081-2100, where the
current mean and standard deviation are defined for each grid box for 1981-2000.
For the current climate, the percentage of time below one standard deviation will be

16%, which is colored in grey, so all colors represent an increase in drought.

Figure 15
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.and Budde, M.: Phenologically-tuned MODIS NDVI-based production anomaly
estimates for Zimbabwe, Remote Sensing of Environment, 113, 115-125,
20009.
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