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Abstract 6 

Relationships between time series are often studied on the basis of crosscorrelation 7 

coefficients and regression equations. This approach is generally incorrect for time series 8 

irrespective of the crosscorrelation coefficient value because relations between time series are 9 

frequency-dependent. Multivariate time series should be analyzed in both time and frequency 10 

domains, including fitting a parametric (preferably, autoregressive) stochastic difference 11 

equation to the time series and then calculating functions of frequency such as spectra and 12 

coherent spectra, coherences, and frequency response functions. The example with a bivariate 13 

time series 'Atlantic Multidecadal Oscillation (AMO)  sea surface temperature in Niño area 14 

3.4 (SST3.4)' proves that even when the crosscorrelation is low, the time series' components 15 

can be closely related to each other. A full time and frequency domain description of this 16 

bivariate time series is given.  The AMO  SST3.4 time series is shown to form a closed 17 

feedback loop system with a two-year memory. The coherence between AMO and SST3.4 is 18 

statistically significant at intermediate frequencies where the coherent spectra amount up to 19 

55% of the total spectral densities. The gain factors are also described. Some 20 

recommendations are offered regarding time series analysis in climatology. 21 

1 Introduction 22 

Studying relations between time series on the basis of observations is a common task in all 23 

branches of Earth sciences. Normally, it requires getting quantitative answers to the following 24 

questions: 25 

 what is the optimal time-domain stochastic model for a given multivariate time series?   26 

 which components of the time series could be regarded as inputs and outputs of 27 

respective hydrometeorological system? 28 

 is there any interaction between the inputs and the outputs (are there any closed-29 

feedback loops within the system)? 30 
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 what are the statistical properties of the multivariate time series in the time and 1 

frequency domains? 2 

In this article, we will apply the methods first developed in theory of information (Gelfand 3 

and Yaglom, 1956), time series analysis (Bendat and Piersol, 1966; Box and Jenkins, 1970), 4 

econometrics (Granger and Hatanaka, 1964; Granger, 1969), and in geophysics (Robinson, 5 

1967; Robinson and Treitel, 1980) to study relations between multivariate time series of 6 

climatic data; the goal is to describe time series in the time and frequency domains, including 7 

climatic teleconnections that can hardly be found within the correlation/regression approach. 8 

Although methods of multivariate time series analysis are also described, mostly in the 9 

frequency domain, in climatology (von Storch and Zviers, 1999) and oceanography (Emery 10 

and Wilson, 2004), they are rarely applied in both time and frequency domains (e.g. 11 

Privalsky, 1988, 1995) or just in the frequency domain (e.g., Oladipo, 1987, Schneider and 12 

Schönwiese, 1989; Ghanbari et al, 2009; Park and Dusek, 2013). 13 

2 Elements of multivariate time series analysis 14 

Note first that the linear correlation/regression approach as a means of studying relations 15 

between scalar time series, including teleconnections within the climatic system, is generally 16 

inapplicable to time series analysis. The simplest example given in Privalsky and Jensen 17 

(1995) and repeated in Emery and Wilson (2004) is a zero crosscorrelation coefficient 18 

between two white noise sequences, one of which is obtained by applying a shift operator to 19 

the other. A low correlation coefficient may occur between any time series related to each 20 

other through more complicated but still strictly linear transformations. In particular, it can be 21 

a time series and its first difference, or any autoregressive-moving average (ARMA) time 22 

series and its innovation sequence, or the time series at the input and output of a linear filter. 23 

The general statement is that if a time series is obtained from another time series through a 24 

strictly linear inertial transformation the correlation coefficient between them will not be 25 

equal to 1 in spite of the strictly linear dependence between them. 26 

Relations between two time series (say, A and B), which are not mutually independent, always 27 

correspond to one of the following three situations: A affects B but not vice versa, B affects A 28 

but not vice versa, A and B affect each other (interaction). Again, the correlation/regression 29 

approach does not allow one to determine what the actual situation is. It can be done within 30 

the framework of the time-and-frequency domain analysis of multivariate time series.     31 



 3 

The linear regression equation B = A + , where  is a constant and  is a white noise 1 

sequence (regression error) means that the spectra sA(f), sB(f) of the time series A and B are 2 

identically shaped because sA(f) = 2sB(f) +
2
 (where f is frequency and 

2
  the regression 3 

error variance). This result is irrelevant when A and B are time-invariant random variables but 4 

if A and B are time series, it puts an unnecessary limitation upon their properties. In the 5 

general case, the shapes of the spectra are not identical, which would mean that  is not white 6 

noise thus making the regression equation inadequate. This is another reason why both the 7 

crosscorrelation coefficient and respective linear regression equation cannot describe relations 8 

between time series. 9 

The problem is solved if one uses methods of time series analysis including simultaneous 10 

description of multivariate time series in the time and frequency domains. It means fitting a 11 

stochastic difference equation to the time series, analyzing its properties in the time domain 12 

and then calculating and analyzing functions that describe the time series in the frequency 13 

domain. For a number of considerations (see below), the approach used here will be limited to 14 

the autoregressive (AR) case. Also, we will be regarding only the bivariate case. The 15 

extension to higher dimensions is rather simple (e.g., Bendat and Piersol, 1966; Robinson, 16 

1967) and will be briefly described at the end of this section. 17 

Let the bivariate time series 1, 2,[ , ]n n nx x x be a (zero mean) sample record of an ergodic 18 

discrete-time random process; here n = 1, …, N is the dimensionless argument, N∆t time 19 

series length in time units ∆t, and the strike means matrix transposition. The sampling interval 20 

∆t is supposed here to be equal to 1. 21 

In the time domain, the time series is described with a stochastic difference equation 22 

1
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are matrix AR coefficients, and 1, 2,[ , ]n n na a a is a bivariate innovation sequence (white 26 

noise) with a covariance matrix 27 



 4 

11 12

21 22

R R

R R

 
  
 

aR .               (3) 1 

The order p of an optimal AR model that agrees with the observed time series xn must be 2 

chosen on the basis of quantitative statistical considerations. Probably, the most efficient way 3 

to select an optimal order is to use order-selection criteria such as Akaike’s AIC, Schwarz-4 

Rissanen’s BIC, Parzen’s CAT, and Hannan-Quinn’s  (e.g., Box et al, 2008; Parzen, 1977; 5 

Hannan and Quinn, 1979).  6 

Properties of the time series xn in the frequency domain are defined with the spectral matrix 7 
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s ,             (4) 8 

which is obtained through a Fourier transform of stochastic difference equation (1) fitted to 9 

the time series xn. Here f is frequency in cycles per sampling interval (in our case, year-1), 10 

s11(f), s22(f) are spectra and s12(f), s21(f) complex-conjugated cross-spectra of the time series 11 

components x1,n and x2,n. In particular, the coherence function  12 
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describes the linear dependence between the time series components x1,n and x2,n in the 14 

frequency domain. It can be thought of as a frequency-dependent set of correlation 15 

coefficients between components of a bivariate time series. It is the coherence function 16 

Co12(f) (and not the crosscorrelation coefficient) that describes the degree of linear 17 

dependence between two scalar time series. Values of Co12(f) satisfy the condition 0  Co12(f) 18 

 1.  19 

The importance of the coherence function in time series analysis and modelling is illustrated 20 

with the following property. If the components of an ergodic bivariate time series present 21 

processes at the input and output of any linear time-invariant system, the coherence between 22 

them will be equal to 1 at all frequencies where the spectral density is not too close to zero.  23 

The spectral matrix (4) describes a linear stochastic system with the time series x2,n and x1,n as 24 

the system’s input and output, respectively. The coherent spectral density, or coherent 25 

spectrum 2
12 12 11( ) ( ) ( )Cs f Co f s f  defines the part of the output spectrum s11(f) that can be 26 

explained by the linear dependence between x1,n and x2,n. The coherent spectrum 27 

2
21 12 22( ) ( ) ( )Cs f Co f s f describes the share of the spectrum s22(f) defined by the contribution 28 
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of x1,n to x2,n. Finally, the complex-valued frequency response function 1 

12 12 22( ) ( ) / ( )G f s f s f shows in what manner the spectral energy s22(f) of the input x2,t is 2 

transformed into the spectral energy s11(f) of the output x1,t as well as the phase difference 3 

between them (the gain factor 12 ( )G f and phase factor 12(f), respectively). The spectral 4 

characteristics calculated on the basis of Gaussian AR models with properly selected 5 

autoregressive orders satisfy the requirements of the maximum entropy method in spectral 6 

analysis. This is one of the reasons for selecting the AR modelling. 7 

In the general case of an M-variate time series 1, ,[ ,..., ]n n M nx x x , the time domain model is 8 

still given by Eq. (1) with the matrix AR coefficients  9 
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Φ              (6) 10 

and with the innovation sequence 1, ,[ ,..., ]n n M na a a . Its covariance matrix 11 
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Consequently, the spectral matrix (4) changes to  13 
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,            (8) 14 

where sii(f) and sij(f) are spectral (if i = j) and cross-spectral (if i  j) densities, respectively, of 15 

the time series components xi,n, i = 1, …, M. The elements of the spectral matrix (8) are used 16 

to calculate spectra, multiple and partial coherence functions, multiple and partial coherent 17 

spectra, and M-1 frequency response functions (see Bendat and Piersol, 2010). The spectral 18 

matrix (8) is Hermitian. 19 
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It should be noted that if the multivariate time series is long (by orders of magnitude longer 1 

than the largest time scale of interest) and if the spectra of its components are intricate, the 2 

above-described approach may not be the best, especially in the  time domain – because of the 3 

high order of the optimal stochastic difference equation. In such cases the analysis may have 4 

to be limited to a frequency domain description of the time series by using the nonparametric 5 

(e.g., Percival and Walden, 1993, Bendat and Piersol, 2010) approach. However, this can 6 

hardly happen if one is interested in properties of time series at climatic time scales. 7 

3 An example of bivariate time series analysis 8 

The example with actual climatic data given below proves that the components of a bivariate 9 

time series can be connected to each other in spite of the fact that the crosscorrelation 10 

coefficient between them is low. It also provides a simultaneous description of a climatic 11 

system in both time and frequency domains. The case with a high crosscorrelation coefficient 12 

between the components of the ENSO system (Southern Oscillation Index and SST variations 13 

in the Niño area 3.4) has been treated in detail in Privalsky and Muzylev, 2013 where it was 14 

shown, in particular, that both time series are close to white noise, interact with each other 15 

mostly through the innovation sequence, and that the coherence function, coherent spectra, 16 

and the frequency response functions between SOI and SST are frequency dependent.  17 

The El Niño−Southern Oscillation (ENSO) system is believed to affect many phenomena in 18 

the Earth climate (e.g., Philander, 1990). We will construct an autoregressive model of the 19 

bivariate time series 1, 2,[ , ]n n nx x x , which consists, respectively, of the annual Atlantic 20 

Multidecadal Oscillation (AMO) time series x1,n (Kaplan SST V2 data provided by the 21 

NOAA/ OAR/ESRL PSD, Boulder, Colorado, USA, see Enfield et al., 2001) and sea surface 22 

temperature SST3.4  an oceanic component of the ENSO system (x2,n). The SST3.4 data is 23 

computed from the HadSST3 file at the University of East Anglia site (see Morice et al., 24 

2011), for the same time interval from 1876 through 2014 (Fig. 1a).     25 

As seen from thefigure, the two components behave in a different manner: AMO contains 26 

much stronger low-frequency variations than SST3.4. The correlation between AMO and 27 

SST3.4 (Fig. 1b) is very low, with the crosscorrelation coefficient 0.06 and the maximum 28 

absolute values of the crosscorrelation function below 0.26. With the crosscorrelation-based 29 

approach that prevails in climatology, the conclusion would have to be that the two scalar 30 

time series are either not related to each other at all or that the connection between them is 31 

very weak. And it would not be correct. 32 
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Consider first the time domain properties. All four above-mentioned order selection criteria 1 

selected the same order p = 2. The respective AR(2) model is  2 

1, 1, 1 2, 1 1, 2 2, 2 1,

2, 1, 1 2, 1 1, 2 2, 2 2,

0.59 0.09 0.21 0.07

1.28 0.29 1.00 0.22

n n n n n n

n n n n n n

x x x x x a

x x x x x a

   

   

    

     
         (9) 3 

with the innovation covariance matrix 4 

0.014   0.007

0.007   0.290

 
  
 

a
R .           (10) 5 

All coefficients in Eq. (9) are statistically significant at a confidence level of 0.95.   6 

Obviously, Eq. (9) describes a closed feedback loop system: AMO (x1,n) depends upon two of 7 

its previous values and upon two previous values of SST3.4 (x2,n) and SST3.4 depends upon 8 

two previous values of both SST3.4 and AMO. The eigen-frequency of this system was found 9 

to be 0.24 year-1 so that respective period of about 4 years is the time required to close the 10 

system’s feedback loop.  11 

The stochastic difference equations (9) and the innovation sequence covariance matrix (10) 12 

allow one to understand how much of the variances of AMO and SST3.4 can be explained by 13 

the “deterministic” components of the model (9) that describe the dependence of x1,n (AMO) 14 

and x2,n (SST3.4) upon their own past values and upon past values of the other time series. 15 

The variance of AMO 
2
1   0.035(C)2 while, according to Eq. (10), the variance R11 of the 16 

innovation sequence a1,n is 0.014(C)2. Therefore, the part of the AMO variance 
2
1  which 17 

cannot be explained by the dependence of the time series upon their past behavior is 18 

0.014/0.035  0.4. Thus, Eq. (9) allows one to explain about 60% of the AMO variance by its 19 

dependence upon its own past values and upon the past values of SST3.4.  20 

The SST3.4 variance 
2
2  0.37(C)2 while the variance R22 of the innovation sequence a2,n is 21 

0.29 (C)2. Thus, the unexplainable part of the SST3.4 variance amounts to almost 80% of the 22 

SST3.4 variance. The results for AMO and SST3.4 differ because AMO and SST3.4 have 23 

very dissimilar spectra (Fig. 2a).  24 

Both AMO and SST3.4 time series can be regarded as  Gaussian so that their autoregressive 25 

spectral estimates satisfy the requirements of the maximum entropy spectral analysis. The 26 

AMO spectrum s11(f) quickly decreases with frequency, which is characteristic of spatially-27 

averaged climatic processes. Such behavior of the spectrum means that AMO is strongly 28 

dependent on its past values. The SST3.4 spectrum s22(f) is not monotonic, has a wide 29 
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maximum at intermediate frequencies and, in general, does not differ much from a white 1 

noise spectrum. The dependence on its past values is weak.  2 

Though the crosscorrelation coefficient between AMO and SST3.4 is very low, the maximum 3 

entropy estimate of coherence Co12(f) shown in Fig. 2b is statistically significant everywhere 4 

except at the frequencies below 0.13 year-1 and above 0.44 year-1.  It is bell-shaped and 5 

exceeds 0.6 within the frequency band from 0.20 year-1 to 0.36 year-1, that is, roughly, at time 6 

scales between 3 and 5 years. Its maximum value is 0.74 at f  0.27 year-1. This behavior of 7 

the coherence function means that the components of this bivariate time series contribute to 8 

each other up to about 55% of the spectral density at intermediate frequencies.  9 

The coherence between AMO and SST3.4 is weak at the low-frequency end, where AMO’s 10 

spectral energy is much higher than elsewhere. The high coherence occurs at intermediate 11 

frequencies where the spectral density of AMO is much lower. The strong dependence of 12 

AMO on its past values and the relative closeness of the SST3.4 spectrum to a constant seem 13 

to be the reasons why the stochastic model (9) can explain so much of the total AMO variance 14 

and less of the total SST3.4 variance.  15 

The contribution of SST3.4 to the AMO spectrum is 
2

12 12 11( ) ( ) ( )Cs f Co f s f  where s11(f) is 16 

the AMO spectrum (Fig. 3a). Respective contribution of AMO to SST3.4 shown in Fig. 3b 17 

is 2
21 12 22( ) ( )Cs f Co s f . These coherent spectrum estimates are statistically significant within 18 

the frequency band from 0.18 year-1 to 0.38 year-1 where they amount to 25%  55% of the 19 

spectral densities s11(f) and s22(f).  This is a substantial contribution but it occurs within the 20 

frequency band where the spectral density of AMO is at least an order of magnitude smaller 21 

than at lower frequencies where the coherence between AMO and SST3.4 is not significant. 22 

The crosscorrelation coefficient that “integrates” the coherence function is small in spite of 23 

the relatively close connection between the two processes at moderate frequencies for at least 24 

two reasons: the complex structure of the interdependence between the time series 25 

components expressed by Eqs. (9) and (10) which cannot be described with a linear 26 

regression equation and the low absolute contribution of SST3.4 to the AMO variance.  27 

This example also shows that using proper methods of analysis allows one to avoid filtering 28 

of time series in order to suppress ‘noise’. Indeed, though the low-frequency variations 29 

dominate the spectrum of AMO, the coherence function has revealed the ‘signal’  a 30 

teleconnection between AMO on SST3.4 at intermediate frequencies where the AMO 31 
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spectrum is low. This is another useful property of autoregressive time and frequency domain 1 

models.   2 

Our frequency-domain results generally agree with the earlier results by Park and Dusek 3 

(2013) regarding the connection between AMO and the Multivariate ENSO Index (MEI) at 4 

intermediate frequencies.  The authors used a nonparametric spectral estimation – singular 5 

spectrum analysis keeping 10 first empirical orthogonal functions that cover slightly over 6 

75% of the time series total variances. At frequencies above 0.15 year-1, our estimate of 7 

coherence is quite similar to the coherence estimate in Park and Dusek (2013). However, the 8 

authors did not estimate the frequency response function (FRF) because, according to them, 9 

“a physically-based transfer function is likely [to be] nonlinear”. Actually, a nonlinear 10 

theoretical model of the FRF between AMO and SST3.4 time series would have been in 11 

disagreement with observations because both time series are Gaussian. At frequencies from 12 

0.1 year-1 to 0.4 year-1, the gain factors of the empirical FRFs AMO – SST3.4 and SST3.4 – 13 

AMO  (Fig. 4) behave in the same manner as the coherent spectra shown in Fig. 3 and their 14 

values at intermediate frequencies amount to approximately 0.1 and 4, respectively. The 15 

coherent spectra and gain factors are shaped similarly because the coherence function is bell-16 

shaped and the AMO and SST3.4 spectra are rather flat at intermediate frequencies. 17 

The phase factors in this case cannot give explicit information about the AMO – SST3.4 18 

system because its feedback loop is closed (interaction between AMO and SST3.4). We 19 

cannot compare our spectra with those shown in Park and Dusek (2012) because their spectral 20 

estimates are given without confidence bounds but generally the shapes of the spectra at 21 

frequencies below 0.5 year-1 seem to be rather similar.  22 

4 Conclusions and comments 23 

1. Relations between time series should not be studied on the basis of crosscorrelation 24 

coefficients and regression equations. An efficient approach within the framework of 25 

time series analysis includes two stages both involving parametric (preferably, 26 

autoregressive) modelling:  27 

 fitting a stochastic difference equation to the time series (time domain), analyzing the 28 

selected model, and  29 

 using the fitted equation to calculate and analyze frequency domain characteristics 30 

(spectra and coherent spectra, coherence function(s), gain and phase factor(s)). 31 
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This two-pronged approach is little known in climatology and related sciences. 1 

2. Methods of multivariate time series analysis should be used in all cases, irrespective of 2 

the value of the crosscorrelation coefficient. The crosscorrelation and regression 3 

coefficients do not generally describe relations between time series. In particular, a 4 

low crosscorrelation coefficient does not necessarily mean the lack of even a strictly 5 

linear dependence between the time series.  6 

3. The stochastic difference equation (9) with the innovation sequence covariance matrix 7 

(10) shows quantitatively that AMO and SST3.4 interact with each other so that AMO 8 

and SST3.4 can be regarded as either inputs or outputs to the AMO – SST3.4 system.  9 

It also reveals that the system’s memory extends for two years. The dependence of 10 

AMO and SST3.4 upon their own past and upon the past of the other time series 11 

explains about 60% and 25% of the AMO and SST3.4 variances, respectively.  12 

4. The frequency domain analysis of the system shows that the spectra of AMO and 13 

SST3.4 behave in a different manner, with the AMO spectrum decreasing fast with 14 

frequency and with a relatively flat SST3.4 spectrum.  15 

5. In spite of the very low crosscorrelation coefficient between the time series of AMO 16 

and SST3.4, a close linear dependence between them was shown to exist at 17 

intermediate frequencies corresponding to time scales from 3 to 5 years. The 18 

coherence between AMO and SST3.4 is statistically significant in a wide frequency 19 

band centered at 0.26 year-1 where the coherence peaks at 0.74. This result has been 20 

obtained earlier by Park and Dusek (2013) for a similar climatic systm.  21 

6. The coherent spectra AMO – SST3.4 and SST3.4 – AMO are ststistically significant at 22 

frequencies from 0.18 to 0.38 year-1 contributing 25%-55% of the spectral densities of 23 

SST3.4 and AMO to each other. The gain factors in the band behave in a manner 24 

similar to the behavior of the coherennt spectra and peak at about 0.1 and 4.0, 25 

respectively.  26 

These conclusions provide answers to the questions formulated at the introduction to this 27 

work.  28 

Time series can often be treated as Gaussian. The ability to use a Gaussian approximation is 29 

important because for such time series the nonlinear approach cannot give better results than 30 

what is obtained within the linear approximation. This latter statement holds, in particular, for 31 
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time series extrapolation within the framework of the Kolmogorov-Wiener theory. Also, as 1 

shown by Choi and Cover (1984), the random process that maximizes the entropy rate under 2 

constrains on p first values of the correlation function is a Gaussian autoregressive process of 3 

order p.  4 

Many time series, especially at climatic time scales, are short, that is, their length does not 5 

exceed the time scales of interest by orders of magnitude. Therefore, the non-parametric 6 

analysis in the frequency domain may not be efficient  because, with short time series, it 7 

would produce less reliable results. Besides, the nonparametric approach does not allow one 8 

to obtain explicit stochastic models in the time domain. (These are two more reasons to prefer 9 

the parametric modeling.)  10 

A parametric (first of all, autoregressive) analysis in time and frequency domains is effective 11 

because it results in relatively accurate estimates due to the postulation of a stochastic model 12 

for the time series. In particular, the frequency domain estimates obtained with the properly 13 

selected order satisfy, in the Gaussian case, the requirements of the maximum entropy 14 

spectral analysis. However, it is not correct to say that any autoregressive spectral estimate 15 

has this important property. The number of parameters to be estimated should always be 16 

much smaller than the time series length. If, for example, the length Nt of a bivariate time 17 

series is 128 years, one should hardly expect statistically reliable results for models with AR 18 

orders higher than 5 (20 AR coefficients plus 3 elements of the innovation sequence 19 

covariance matrix plus 23 estimate errors to be estimated). This is one of the reasons why it is 20 

not possible to make any realistic conclusions about the presence of 60-70 years long 21 

“periods”, “cycles”, “oscillations”, or about any other features at such large time scales unless 22 

the time series is at least 300 - 400 years long (e.g., Gulev et al, 2013). For parametric models, 23 

it is strongly recommended to determine the model’s order and, consequently, the number of 24 

parameters to be estimated, on the basis of order selection criteria; an improper selection of 25 

the order invalidates the results of analysis. 26 

5. Appendix 27 

The following preliminary conclusion has been made in Privalsky et al, 1987 on the basis of a 28 

Monte Carlo experiment with several autoregressive and one moving average models with 29 

5000 time series of length N = 50, 100, and 200: “ … when no sharp peaks appear in the 30 

spectral characteristics of a [bivariate] time series, their [autoregressive estimates] seem to be 31 

distributed more or less similar to respective [Blackman-Tukey estimates], possess smaller 32 
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bias and variance and, as a first and conservative approximation, the equivalent number of 1 

degrees of freedom of [autoregressive estimates] is n = N/2p; their approximate confidence 2 

bounds can be found in the same manner as for [the] nonparametric spectral estimates (Bendat 3 

and Piersol, 1986).”   4 

5 
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Figure captions 1 

Figure 1. Observed AMO and SST3.4, 1876-2014 (a) and AMO  SST3.4 crosscorrelation 2 

function estimate (b); the dashed lines show approximate 90% confidence bounds. 3 

Figure 2. (a) spectra of AMO (black lines) and SST3.4 (blue lines) with approximate 90% 4 

confidence bounds (dashed lines); (b) coherence function AMO  SST3.4 (solid line) with 5 

approximate 90% confidence bounds (dashed lines). The dot-dashed line shows the 6 

approximate uper 90% confidence bound for the true zero coherence. For confidence bounds 7 

see Privalsky et al (1987) and Appendix below. 8 

Figure 3. Coherent spectra: contribution of SST3.4 to the AMO spectrum (a), and contribution 9 

of AMO to the SST3.4 spectrum (b). Dashed, grey, and blue lines show approximate 90% 10 

confidence bounds and AMO and SST3.4 spectra, respectively. 11 

Figure 4. Gain factors SSR3.4 – AMO (a) and AMO – SST3.4 (b) with  approximate 90% 12 

confidence bounds (dashed lines). 13 


