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Abstract 6 

Relationships between time series are often studied on the basis of crosscorrelation coefficients 7 

and regression equations. This approach is generally incorrect for time series irrespective of the 8 

crosscorrelation coefficient value because relations between time series are frequency-9 

dependent. Multivariate time series should be analyzed in both time and frequency domains, 10 

including fitting a parametric (preferably, autoregressive) stochastic difference equation to the 11 

time series and then calculating functions of frequency such as spectra and coherent spectra, 12 

coherences, and frequency response functions. The example with a bivariate time series 13 

'Atlantic Multidecadal Oscillation (AMO)  sea surface temperature in Niño area 3.4 (SST3.4)' 14 

proves that even when the crosscorrelation is low, the time series' components can be closely 15 

related to each other. A full time and frequency domain description of this bivariate time series 16 

is given.  The AMO  SST3.4 time series is shown to form a closed feedback loop system with 17 

a two-year memory. The coherence between AMO and SST3.4 is statistically significant at 18 

intermediate frequencies where the coherent spectra amount up to 55% of the total spectral 19 

densities. The gain factors are also described. Some recommendations are offered regarding 20 

time series analysis in climatology. 21 

1 Introduction 22 

Studying relations between time series on the basis of observations is a common task in all 23 

branches of Earth sciences. Normally, it requires getting quantitative answers to the following 24 

questions: 25 

 what is the optimal time-domain stochastic model for a given multivariate time series?   26 

 which components of the time series could be regarded as inputs and outputs of 27 

respective climatic system? 28 

 is there any interaction between the inputs and the outputs (are there any closed-29 

feedback loops within the system)? 30 
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 what are the statistical properties of the multivariate time series in the time and 1 

frequency domains? 2 

In this article, we will apply the methods first developed in theory of information (Gelfand and 3 

Yaglom, 1956), time series analysis (Bendat and Piersol, 1966; Box and Jenkins, 1970), 4 

econometrics (Granger and Hatanaka, 1964; Granger, 1969), and in geophysics (Robinson, 5 

1967; Robinson and Treitel, 1980) to study relations between multivariate time series of 6 

climatic data; the goal is to describe time series in the time and frequency domains, including 7 

climatic teleconnections that can hardly be found within the correlation/regression approach. 8 

Although methods of multivariate time series analysis are also described, mostly in the 9 

frequency domain, in climatology (von Storch and Zviers, 1999) and oceanography (Emery and 10 

Wilson, 2004), they are rarely applied in both time and frequency domains (e.g. Privalsky, 1988, 11 

1995) or just in the frequency domain (e.g., Oladipo, 1987, Schneider and Schönwiese, 1989; 12 

Ghanbari et al., 2009; Park and Dusek, 2013). 13 

2 Elements of multivariate time series analysis 14 

Note first that the linear correlation/regression approach as a means of studying relations 15 

between scalar time series, including teleconnections within the climatic system, is generally 16 

inapplicable to time series analysis. The simplest example given in Privalsky and Jensen (1995) 17 

and repeated in Emery and Wilson (2004) is a zero crosscorrelation coefficient between two 18 

strictly linearly connected white noise sequences, one of which is obtained by applying a shift 19 

operator to the other. A low correlation coefficient may occur between any time series related 20 

to each other through more complicated but still strictly linear transformations. In particular, it 21 

can be a time series and its first difference, or any autoregressive-moving average (ARMA) 22 

time series and its innovation sequence, or the time series at the input and output of a linear 23 

filter. The general statement is that if a time series is obtained from another time series through 24 

a strictly linear inertial transformation the correlation coefficient between them will not be equal 25 

to 1 in spite of the strictly linear dependence between them. 26 

Relations between two time series (say, A and B), which are not mutually independent, always 27 

correspond to one of the following three situations: A affects B but not vice versa, B affects A 28 

but not vice versa, A and B affect each other (interaction). Again, the correlation/regression 29 

approach does not allow one to determine what the actual situation is. It can be done within the 30 

framework of the time-and-frequency domain analysis of multivariate time series.     31 
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The linear regression equation B = A + , where  is a constant and  is a white noise sequence 1 

(regression error) means that the spectra sA(f), sB(f) of the time series A and B are identically 2 

shaped because sA(f) = 2sB(f) + 2
 (where f is frequency and 2

  the regression error variance). 3 

This result is irrelevant when A and B are time-invariant random variables but if A and B are 4 

time series, it puts an unnecessary limitation upon their properties. In the general case, the 5 

shapes of the spectra are not identical, which would mean that  is not white noise thus making 6 

the regression equation inadequate. This is another reason why both the crosscorrelation 7 

coefficient and respective linear regression equation cannot describe relations between time 8 

series. 9 

The problem is solved if one uses methods of time series analysis including simultaneous 10 

description of multivariate time series in the time and frequency domains. It means fitting a 11 

stochastic difference equation to the time series, analyzing its properties in the time domain and 12 

then calculating and analyzing functions that describe the time series in the frequency domain. 13 

For a number of considerations (see below), the approach used here will be limited to the 14 

autoregressive (AR) case. Also, we will be regarding only the bivariate case. The extension to 15 

higher dimensions is rather simple (e.g., Bendat and Piersol, 1966; Robinson, 1967) and will 16 

be briefly described at the end of this section. 17 

Let the bivariate time series 1, 2,[ , ]n n nx x x be a (zero mean) sample record of an ergodic 18 

discrete-time random process; here n = 1, …, N is the dimensionless argument, N∆t time series 19 

length in time units ∆t, and the strike means matrix transposition. The sampling interval ∆t is 20 

supposed here to be equal to 1. 21 

In the time domain, the time series is described with a stochastic difference equation 22 

1
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are matrix AR coefficients, and 1, 2,[ , ]n n na a a is a bivariate innovation sequence (white noise) 26 

with a covariance matrix 27 
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The order p of an optimal AR model that agrees with the observed time series xn must be chosen 2 

on the basis of quantitative statistical considerations. Probably, the most efficient way to select 3 

an optimal order is to use order-selection criteria such as Akaike’s AIC, Schwarz-Rissanen’s 4 

BIC, Parzen’s CAT, and Hannan-Quinn’s  (e.g., Box et al., 2008; Parzen, 1977; Hannan and 5 

Quinn, 1979).  6 

Properties of the time series xn in the frequency domain are defined with the spectral matrix 7 
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which is obtained through a Fourier transform of stochastic difference equation (1) fitted to the 9 

time series xn. Here f is frequency in cycles per sampling interval (in our case, year-1), s11(f), 10 

s22(f) are spectra and s12(f), s21(f) complex-conjugated cross-spectra of the time series 11 

components x1,n and x2,n. In particular, the coherence function  12 

 
12

12 1/ 2

11 22
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( )

( ) ( )

s f
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s f s f
              (5) 13 

describes the linear dependence between the time series components x1,n and x2,n in the 14 

frequency domain. It can be thought of as a frequency-dependent set of correlation coefficients 15 

between components of a bivariate time series. It is the coherence function Co12(f) (and not the 16 

crosscorrelation coefficient) that describes the degree of linear dependence between two scalar 17 

time series. Values of Co12(f) satisfy the condition 0  Co12(f)  1.  18 

The importance of the coherence function in time series analysis and modelling is illustrated 19 

with the following property. If the components of an ergodic bivariate time series present 20 

processes at the input and output of any linear time-invariant system, the coherence between 21 

them will be equal to 1 at all frequencies where the spectral density is not too close to zero.  22 

The spectral matrix (4) describes a linear stochastic system with the time series x2,n and x1,n as 23 

the system’s input and output, respectively. The coherent spectral density, or coherent spectrum 24 

2
12 12 11( ) ( ) ( )Cs f Co f s f  defines the part of the output spectrum s11(f) that can be explained by 25 

the linear dependence between x1,n and x2,n. The coherent spectrum 2
21 12 22( ) ( ) ( )Cs f Co f s f26 

describes the share of the spectrum s22(f) defined by the contribution of x1,n to x2,n. Finally, the 27 

complex-valued frequency response function 12( )G f   12 22( ) / ( )s f s f shows in what manner 28 
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the spectral energy s22(f) of the input x2,t is transformed into the spectral energy s11(f) of the 1 

output x1,t as well as the phase difference between them (the gain factorG12(f)and phase factor 2 

12(f), respectively). The spectral characteristics calculated on the basis of Gaussian AR models 3 

with properly selected autoregressive orders satisfy the requirements of the maximum entropy 4 

method in spectral analysis. This is one of the reasons for selecting the AR modelling. 5 

In the general case of an M-variate time series 1, ,[ ,..., ]n n M nx x x , the time domain model is still 6 

given by Eq. (1) with the matrix AR coefficients  7 
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and with the innovation sequence 1, ,[ ,..., ]n n M na a a . Its covariance matrix 9 
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Consequently, the spectral matrix (4) changes to  11 
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where sii(f) and sij(f) are spectral (if i = j) and cross-spectral (if i  j) densities, respectively, of 13 

the time series components xi,n, i = 1, …, M. The elements of the spectral matrix (8) are used to 14 

calculate spectra, multiple and partial coherence functions, multiple and partial coherent 15 

spectra, and M-1 frequency response functions (see Bendat and Piersol, 2010). The spectral 16 

matrix (8) is Hermitian. 17 

It should be noted that if the multivariate time series is long (by orders of magnitude longer 18 

than the largest time scale of interest) and if the spectra of its components are intricate, the 19 

above-described approach may not be the best, especially in the  time domain – because of the 20 

high order of the optimal stochastic difference equation. In such cases the analysis may have to 21 



 6 

be limited to a frequency domain description of the time series by using the nonparametric (e.g., 1 

Percival and Walden, 1993, Bendat and Piersol, 2010) approach. However, this can hardly 2 

happen if one is interested in properties of the time series at climatic time scales. 3 

3 An example of bivariate time series analysis 4 

The example with actual climatic data given below proves that the components of a bivariate 5 

time series can be connected to each other in spite of the fact that the crosscorrelation coefficient 6 

between them is low. It also provides a simultaneous description of a climatic system in both 7 

time and frequency domains. The case with a high crosscorrelation coefficient between the 8 

components of the ENSO system (Southern Oscillation Index and SST variations in the Niño 9 

area 3.4) has been treated in detail in Privalsky and Muzylev, 2013 where it was shown, in 10 

particular, that both time series are close to white noise, interact with each other mostly through 11 

the innovation sequence, and that the coherence function, coherent spectra, and the frequency 12 

response functions between SOI and SST are frequency dependent.  13 

The El Niño−Southern Oscillation (ENSO) system is believed to affect many phenomena in the 14 

Earth climate (e.g., Philander, 1990). We will construct an autoregressive model of the bivariate 15 

time series 1, 2,[ , ]n n nx x x , which consists, respectively, of the annual Atlantic Multidecadal 16 

Oscillation (AMO) time series x1,n (Kaplan SST V2 data provided by the NOAA/ OAR/ESRL 17 

PSD, Boulder, Colorado, USA, see Enfield et al., 2001) and sea surface temperature SST3.4  18 

an oceanic component of the ENSO system (x2,n). The SST3.4 data is computed from the 19 

HadSST3 file at the University of East Anglia site (see Morice et al., 2011), for the same time 20 

interval from 1876 through 2014 (Fig. 1a).     21 

As seen from the fiugure, the two components behave in a different manner: AMO contains 22 

much stronger low-frequency variations than SST3.4. The correlation between AMO and 23 

SST3.4 (Fig. 1b) is very low, with the crosscorrelation coefficient 0.06 and the maximum 24 

absolute values of the crosscorrelation function below 0.26. With the crosscorrelation-based 25 

approach that prevails in climatology, the conclusion would have to be that the two scalar time 26 

series are either not related to each other at all or that the connection between them is very 27 

weak. And it would not be correct. 28 

Consider first the time domain properties. All four above-mentioned order selection criteria 29 

selected the same order p = 2. The respective AR(2) model is  30 

1, 1, 1 2, 1 1, 2 2, 2 1,

2, 1, 1 2, 1 1, 2 2, 2 2,

0.59 0.09 0.21 0.07

1.28 0.29 1.00 0.22

n n n n n n

n n n n n n

x x x x x a

x x x x x a

   

   

    

     
         (9) 31 
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with the innovation covariance matrix 1 

0.014   0.007

0.007   0.290

 
  
 

a
R .           (10) 2 

All coefficients in Eq. (9) are statistically significant at a confidence level of 0.95.   3 

Obviously, Eq. (9) describes a closed feedback loop system: AMO (x1,n) depends upon two of 4 

its previous values and upon two previous values of SST3.4 (x2,n) and SST3.4 depends upon 5 

two previous values of both SST3.4 and AMO. The eigen-frequency of this system was found 6 

to be 0.24 year-1 so that respective period of about 4 years is the time required to close the 7 

system’s feedback loop.  8 

The stochastic difference equations (9) and the innovation sequence covariance matrix (10) 9 

allow one to understand how much of the variances of AMO and SST3.4 can be explained by 10 

the “deterministic” components of the model (9) that describe the dependence of x1,n (AMO) 11 

and x2,n (SST3.4) upon their own past values and upon past values of the other time series. The 12 

variance of AMO 2
1   0.035(C)2 while, according to Eq. (10), the variance R11 of the 13 

innovation sequence a1,n is 0.014(C)2. Therefore, the part of the AMO variance 2
1  which 14 

cannot be explained by the dependence of the time series upon their past behavior is 0.014/0.035 15 

 0.4. Thus, Eq. (9) allows one to explain about 60% of the AMO variance by its dependence 16 

upon its own past values and upon the past values of SST3.4.  17 

The SST3.4 variance 2
2  0.37(C)2 while the variance R22 of the innovation sequence a2,n is 18 

0.29 (C)2. Thus, the unexplainable part of the SST3.4 variance amounts to almost 80% of the 19 

SST3.4 variance. The results for AMO and SST3.4 differ because AMO and SST3.4 have very 20 

dissimilar spectra (Fig. 2a).  21 

Both AMO and SST3.4 time series are Gaussian so that their autoregressive spectral estimates 22 

satisfy the requirements of the maximum entropy spectral analysis. The AMO spectrum s11(f) 23 

quickly decreases with frequency, which is characteristic of spatially-averaged climatic 24 

processes. Such behavior of the spectrum means that AMO is strongly dependent on its past 25 

values. The SST3.4 spectrum s22(f) is not monotonic, has a wide maximum at intermediate 26 

frequencies and, in general, does not differ much from a white noise spectrum. The dependence 27 

on its past values is weak.  28 

Though the crosscorrelation coefficient between AMO and SST3.4 is very low, the maximum 29 

entropy estimate of coherence Co12(f) shown in Fig. 2b is statistically significant everywhere 30 

except at the frequencies below 0.13 year-1 and above 0.44 year-1.  It is bell-shaped and exceeds 31 
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0.6 within the frequency band from 0.20 year-1 to 0.36 year-1, that is, roughly, at time scales 1 

between 3 and 5 years. Its maximum value is 0.74 at f  0.27 year-1. This behavior of the 2 

coherence function means that the components of this bivariate time series contribute to each 3 

other up to about 55% of the spectral density at intermediate frequencies.  4 

The coherence between AMO and SST3.4 is weak at the low-frequency end, where AMO’s 5 

spectral energy is much higher than elsewhere. The high coherence occurs at intermediate 6 

frequencies where the spectral density of AMO is much lower. The strong dependence of AMO 7 

on its past values and the relative closeness of the SST3.4 spectrum to a constant seem to be the 8 

reasons why the stochastic model (9) can explain so much of the total AMO variance and less 9 

of the total SST3.4 variance.  10 

The contribution of SST3.4 to the AMO spectrum is 2

12 12 11( ) ( ) ( )Cs f Co f s f  where s11(f) is 11 

the AMO spectrum (Fig. 3a). Respective contribution of AMO to SST3.4 shown in Fig. 3b is12 

2
21 12 22( ) ( )Cs f Co s f . These coherent spectrum estimates are statistically significant within the 13 

frequency band from 0.18 year-1 to 0.38 year-1 where they amount to 25%  55% of the spectral 14 

densities s11(f) and s22(f).  This is a substantial contribution but it occurs within the frequency 15 

band where the spectral density of AMO is at least an order of magnitude smaller than at lower 16 

frequencies where the coherence between AMO and SST3.4 is not significant. The 17 

crosscorrelation coefficient that “integrates” the coherence function is small in spite of the 18 

relatively close connection between the two processes at moderate frequencies for at least two 19 

reasons: the complex structure of the interdependence between the time series components 20 

expressed by Eqs. (9) and (10) which cannot be described with a linear regression equation and 21 

the low absolute contribution of SST3.4 to the AMO variance.  22 

This example also shows that using proper methods of analysis allows one to avoid filtering of 23 

time series in order to suppress ‘noise’. Indeed, though the low-frequency variations dominate 24 

the spectrum of AMO, the coherence function has revealed the ‘signal’  a teleconnection 25 

between AMO on SST3.4 at intermediate frequencies where the AMO spectrum is low. This is 26 

another useful property of autoregressive time and frequency domain models.   27 

Our frequency-domain results generally agree with the earlier results by Park and Dusek (2013) 28 

regarding the connection between AMO and the Multivariate ENSO Index (MEI) at 29 

intermediate frequencies.  The authors used a nonparametric spectral estimation – singular 30 

spectrum analysis keeping 10 first empirical orthogonal functions that cover slightly over 75% 31 

of the time series total variances. At frequencies above 0.15 year-1, our estimate of coherence 32 
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is quite similar to the coherence estimate in Park and Dusek (2013). However, the authors did 1 

not estimate the frequency response function (FRF) because, according to them, “a physically-2 

based transfer function is likely [to be] nonlinear”. Actually, a nonlinear theoretical model of 3 

the FRF between AMO and SST3.4 time series would have been in disagreement with 4 

observations because both time series are Gaussian. At frequencies from 0.1 year-1 to 0.4 year-5 

1, the gain factors of the empirical FRFs AMO – SST3.4 and SST3.4 – AMO  (Fig. 4) behave 6 

in the same manner as the coherent spectra shown in Fig. 3 and their values at intermediate 7 

frequencies amount to approximately 0.1 and 4, respectively. The coherent spectra and gain 8 

factors are shaped similarly because the coherence function is bell-shaped and the AMO and 9 

SST3.4 spectra are rather flat at intermediate frequencies. 10 

The phase factors in this case cannot give explicit information about the AMO – SST3.4 system 11 

because its feedback loop is closed (interaction between AMO and SST3.4). We cannot 12 

compare our spectra with those shown in Park and Dusek (2012) because their spectral 13 

estimates are given without confidence bounds but generally the shapes of the spectra at 14 

frequencies below 0.5 year-1 seem to be rather similar.  15 

4 Conclusions and comments 16 

1. Relations between time series should not be studied on the basis of crosscorrelation 17 

coefficients and regression equations. An efficient approach within the framework of 18 

time series analysis includes two stages both involving parametric (preferably, 19 

autoregressive) modelling:  20 

 fitting a stochastic difference equation to the time series (time domain), analyzing the 21 

selected model, and  22 

 using the fitted equation to calculate and analyze frequency domain characteristics 23 

(spectra and coherent spectra, coherence function(s), gain and phase factor(s)). 24 

This two-pronged approach is little known in climatology and related sciences. 25 

2. Methods of multivariate time series analysis should be used in all cases, irrespective of 26 

the value of the crosscorrelation coefficient. The crosscorrelation and regression 27 

coefficients do not generally describe relations between time series. In particular, a low 28 

crosscorrelation coefficient does not necessarily mean the lack of even a strictly linear 29 

dependence between the time series.  30 
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3. The stochastic difference equation (9) with the innovation sequence covariance matrix 1 

(10) shows quantitatively that AMO and SST3.4 interact with each other so that AMO 2 

and SST3.4 can be regarded as either inputs or outputs to the AMO – SST3.4 system.  3 

It also reveals that the system’s memory extends for two years. The dependence of AMO 4 

and SST3.4 upon their own past and upon the past of the other time series explains about 5 

60% and 25% of the AMO and SST3.4 variances, respectively.  6 

4. The frequency domain analysis of the system shows that the spectra of AMO and 7 

SST3.4 behave in a different manner, with the AMO spectrum decreasing fast with 8 

frequency and with a relatively flat SST3.4 spectrum.  9 

5. In spite of the very low crosscorrelation coefficient between the time series of AMO 10 

and SST3.4, a close linear dependence between them was shown to exist at intermediate 11 

frequencies corresponding to time scales from 3 to 5 years. The coherence between 12 

AMO and SST3.4 is statistically significant in a wide frequency band centered at 0.26 13 

year-1 where the coherence peaks at 0.74. This result has been obtained earlier by Park 14 

and Dusek (2013) for a similar climatic systm.  15 

6. The coherent spectra AMO – SST3.4 and SST3.4 – AMO are ststistically significant at 16 

frequencies from 0.18 to 0.38 year-1 contributing 25%-55% of the spectral densities of 17 

SST3.4 and AMO to each other. The gain factors in the band behave in a manner similar 18 

to the behavior of the coherennt spectra and peak at about 0.1 and 4.0, respectively.  19 

These conclusions provide answers to the questions formulated at the introduction to this work.  20 

Time series can often be treated as Gaussian. The ability to use a Gaussian approximation is 21 

important because for such time series the nonlinear approach cannot give better results than 22 

what is obtained within the linear approximation. This latter statement holds, in particular, for 23 

time series extrapolation within the framework of the Kolmogorov-Wiener theory. Also, as 24 

shown by Choi and Cover (1984), the random process that maximizes the entropy rate under 25 

constrains on p first values of the correlation function is a Gaussian autoregressive process of 26 

order p.  27 

Many time series, especially at climatic time scales, are short, that is, their length does not 28 

exceed the time scales of interest by orders of magnitude. Therefore, the non-parametric 29 

analysis in the frequency domain may not be efficient  because, with short time series, it would 30 

produce less reliable results. Besides, the nonparametric approach does not allow one to obtain 31 
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explicit stochastic models in the time domain. (These are two more reasons to prefer the 1 

parametric modeling.)  2 

A parametric (first of all, autoregressive) analysis in time and frequency domains is effective 3 

because it results in relatively accurate estimates due to the postulation of a stochastic model 4 

for the time series. In particular, the frequency domain estimates obtained with the properly 5 

selected order satisfy, in the Gaussian case, the requirements of the maximum entropy spectral 6 

analysis. However, it is not correct to say that any autoregressive spectral estimate has this 7 

important property. The number of parameters to be estimated should always be much smaller 8 

than the time series length. If, for example, the length Nt of a bivariate time series is 128 years, 9 

one should hardly expect statistically reliable results for models with AR orders higher than 5 10 

(20 AR coefficients plus 3 elements of the noise covariance matrix to be estimated). This is one 11 

of the reasons why it is not possible to make any realistic conclusions about the presence of 60-12 

70 years long “periods”, “cycles”, “oscillations”, or about any other features at such large time 13 

scales unless the time series is at least 300 - 400 years long. For parametric models, it is strongly 14 

recommended to determine the model’s order and, consequently, the number of parameters to 15 

be estimated, on the basis of order selection criteria; an improper selection of the order 16 

invalidates the results of analysis. 17 
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  1 

Figure 1. Observed AMO and SST3.4, 1876-2014 (a) and AMOSST3.4 crosscorrelation 2 

function estimate (b); the dashed lines show approximate 90% confidence bounds. 3 

 4 

 5 

Figure 2. (a) spectra of AMO (black lines) and SST3.4 (blue lines) with approximate 90% 6 

confidence bounds (dashed lines); (b) coherence function AMO  SST3.4 (solid line) with 7 

approximate 90% confidence bounds (dashed lines). The dot-dashed line shows the 8 

approximate uper 90% confidence bound for the true zero coherence. For confidence limits see 9 

Privalsky et al. (1987). 10 
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 1 

Figure 3. Coherent spectra: contribution of SST3.4 to the AMO spectrum (a), and contribution 2 

of AMO to the SST3.4 spectrum (b). Dashed, grey and blue lines show approximate 90% 3 

confidence bounds and AMO and SST3.4 spectra, respectively. 4 

 5 

Figure 4. Gain factors SSR3.4–AMO (a) and AMO–SST3.4 (b) with  approximate 90% 6 

confidence bounds (dashed lines). 7 


