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Abstract 9 

At scales of ≈10 days (the lifetime of planetary scale structures), there is a drastic 10 

transition from high frequency weather to low frequency macroweather.  This scale is 11 

close to the predictability limits of deterministic atmospheric models; so that in GCM 12 

macroweather forecasts, the weather is a high frequency noise.  But neither the GCM 13 

noise nor the GCM climate is fully realistic.  In this paper we show how simple stochastic 14 

models can be developped that use empirical data to force the statistics and climate to be 15 

realistic so that even a two parameter model can perform as well as GCM’s for annual 16 

global temperature forecasts.      17 

The key is to exploit the scaling of the dynamics and the large stochastic memories 18 

that we quantify.  Since macroweather temporal (but not spatial) intermittency is low, we 19 

propose using the simplest model based on fractional Gaussian noise (fGn): the ScaLIng 20 
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Macroweather Model (SLIMM).  SLIMM is based on a stochastic ordinary differential 21 

equations, differing from usual linear stochastic models (such as the Linear Inverse 22 

Modelling, LIM) in that it is of fractional rather than integer order.  Whereas LIM 23 

implicitly assumes there is no low frequency memory, SLIMM has a huge memory that 24 

can be exploited.  Although the basic mathematical forecast problem for fGn has been 25 

solved, we approach the problem in an original manner notably using the method of 26 

innovations to obtain simpler results on forecast skill and on the size of the effective 27 

system memory. 28 

A key to successful stochastic forecasts of natural macroweather variability is to 29 

first remove the low frequency anthropogenic component.  A previous attempt to use fGn 30 

for forecasts had disappointing results because this was not done.   We validate our 31 

theory using hindcasts of global and northern hemisphere temperatures at monthly and 32 

annual resolutions.  Several nondimensional measures of forecast skill – with no 33 

adjustable parameters - show excellent agreement with hindcasts and these show some 34 

skill even at decadal scales.   We also compare our forecast errors with those of several 35 

GCM experiments (with and without initialization), and with other stochastic forecasts 36 

showing that even this simplest two parameter SLIMM model is somewhat superior.  In 37 

future, using a space-time (regionalized) generalization of SLIMM we expect to be able 38 

to exploit the system memory more extensively and obtain even more realistic forecasts. 39 

 40 
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1 Introduction 41 

Due to their sensitive dependence on initial conditions, the classical deterministic 42 

prediction limit of GCM’s is about ten days - the lifetime of planetary sized structures 43 

(τw). Beyond this, the forecast weather rapidly loses any relationship with the real 44 

weather.  The analogous scale (τοw) for near surface ocean gyres is about 1 year 45 

([Lovejoy and Schertzer, 2012b]), so that even the ocean component - important in 46 

fully coupled climate models (referred to simply as GCM’s below) - is poorly forecast 47 

beyond this.  When using long GCM runs for making climate forecasts, we are therefore 48 

really considering a boundary value problem rather than an initial value problem 49 

([Bryson, 1997]).  50 

For these longer scales, following [Hasselmann, 1976], the high frequency 51 

weather can be considered as a noise driving an effectively stochastic low frequency 52 

system; the separation of scales needed to justify such modelling is provided by the 53 

drastic transitions at τw, τοw.   In the atmosphere, the basic phenomenology behind this 54 

has been known since the earliest atmospheric spectra [Panofsky and Van der Hoven, 55 

1955] and was variously theorized as the “scale of migratory pressure systems of 56 

synoptic weather map scale” ([Van der Hoven, 1957]) and later as the “synoptic 57 

maximum” ([Kolesnikov and Monin, 1965]).  Later, it was argued to be a transition scale 58 

of the order of the lifetime of planetary structures that separated different high frequency 59 

and low frequency scaling regimes ([Lovejoy and Schertzer, 1986]).  More recently, 60 

based on the solar-induced energy rate density, the atmospheric scale τw was deduced 61 

theoretically from turbulence theory [Lovejoy and Schertzer, 2010], and τοw was 62 
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derived in  [Lovejoy and Schertzer, 2013] (ch. 8).  The same basic picture was also 63 

confirmed in the Martian atmosphere in [Lovejoy et al., 2014] including a correct 64 

prediction of the low and high frequency spectral exponents and Martian transtion scale 65 

τΜw (=1.8 sols).  Although it is only plausible at midlatitudes the competing theory from 66 

dynamical meteorology postulates that the transition scale τw is the typical scale of 67 

baroclinic instabilities ([Vallis, 2010]; see the critique in [Lovejoy and Schertzer, 68 

2013], ch. 8). 69 

Independent of its origin, the transition justifies the idea that the weather is 70 

essentially a high frequency noise driving a lower frequency climate system and the idea 71 

is exploited in GCM’s with long integrations as well as in Hasselmann-type stochastic 72 

modelling, now often referred to as “Linear Inverse Modelling” (LIM; sometimes also 73 

called the “Stochastic Linear Forcing“ paradigm), e.g. [Penland and Sardeshmuhk, 74 

1995],  [Newman et al., 2003], [Sardeshmukh and Sura, 2009]; analogous 75 

modelling is also possible at much longer time scales using energy balance models.   For 76 

a review, see [Dijkstra, 2013]; for a somewhat different Hasselmann inspired approach, 77 

see [Livina et al., 2013].   78 

In these phenomenological models, the system is regarded as a multivariate 79 

Ohrenstein-Uhlenbeck (OU) process.  The basic LIM paradigm is based on the stochastic 80 

differential equation: 81 

d
dt

+ωw
⎛
⎝⎜

⎞
⎠⎟ T = σγγ t( )

 (1)
 82 
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where T is the temperature, ωw = τw
−1  is the “weather frequency”, σγ is the amplitude of 83 

the forcing and  γ(t) is “δ correlated” Gaussian white noise forcing  with: 84 

 
γ t( )γ s( ) = δ t − s( ); γ t( ) = 0  (2) 85 

“<.>” indicates ensemble averaging and δ(t-s) is the Dirac function, t and s are two 86 

different times.  This uses the convenient physics notation for the generalized function 87 

γ(t); alternatively one may take, γ t( )dt = dW where W is a Wiener process. 88 

Fourier transforming eq.1 and using the rule F.T . d
n f
dt n

⎡

⎣
⎢

⎤

⎦
⎥ = iω( )n F.T . f[ ]  where “F.T.” 89 

indicates “Fourier Transform”, the temperature spectrum is thus: 90 

 
ET ω( ) = T ω( ) 2 ≈

σγ
2

ω2 +ωw
2

 (3)
 91 

where ω is the frequency, the tilde indicates Fourier transform, and at respectively low 92 

and high frequencies, ET ω( ) ≈ ω−β  with βl = 0, βh = 2.   A spatial LIM model (for 93 

regional forecasting) is obtained by considering a vector each of whose components is the 94 

temperature (or other atmospheric field) at different (spatially distributed) “pixels”, 95 

yielding a system of linear stochastic ordinary differential equations of integer order.  A 96 

system with 20 degrees of freedom (involving >100 empirical parameters) currently 97 

somewhat outperforms GCM’s for global scale annual temperature forecasts ([Newman, 98 

2013], table 2, fig. 2).    99 
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The basic problem with the LIM approach, is that although we are interested in the 100 

low frequency behaviour, for LIM models it is simply white noise and this has no 101 

memory (put d/dt =0 in eq. 1); by hypothesis LIM models therefore assume a priori there 102 

is no long term predictability.  However, ever since [Lovejoy and Schertzer, 1986], 103 

there has been a growing literature ([Koscielny-Bunde et al., 1998], [Huybers and 104 

Curry, 2006], [Blender et al., 2006], [Franzke, 2012], [Rypdal et al., 2013 ], [Yuan 105 

et al., 2014] and see the extensive review in [Lovejoy and Schertzer, 2013]) showing 106 

that the temperature (and other atmospheric fields) are scaling at low frequencies, with 107 

spectra significantly different than those of Orenstein- Uhlenbeck processes, notably with 108 

βl in the range 0.2 - 0.8 with the corresponding low frequency weather regime (at scales 109 

longer than τw ≈ 10 days) now being referred to as “macroweather” [Lovejoy, 2013].   At 110 

a theoretical level, for regional forecasting, a further shortcoming of the LIM approach is 111 

that it doesn’t respect the property of space-time statistical factorization [Lovejoy and 112 

Schertzer, 2013], ch. 10, [Lovejoy and de Lima, 2015]. 113 

  While the difference in the value of βl might not seem significant, the LIM white 114 

noise value βl = 0, has no low frequency predictability whereas the actual values 0.2 < βl 115 

<0.8 (depending mostly on the land or ocean location) correspond to potentially 116 

enormous predictability (see e.g. fig. 1a-e).  Although this basic feature of “long range 117 

statistical dependency” has been regularly pointed out in the scaling literature and an 118 

attempt was already made to exploit it ([Baillie and Chung, 2002b]; see below), the 119 

actual extent of this enhanced predictability has not been quantified before now (see 120 

however [Yuan et al., 2014]), it justifies the development of the new “ScaLIng 121 
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Macroweather Model” (SLIMM) that we present below. We argue that even in its 122 

simplest two parameter version, that it already is comparable to - or better - than GCM’s.   123 

 124 

2 Stochastic models and fractional Gaussian noise 125 

2.1 Linear and nonlinear stochastic atmospheric models 126 

We have discussed the phenomenological linear stochastic models introduced in 127 

atmospheric science by Hasselmann and others from 1976 onwards.  Yet there is an older 128 

tradition of stochastic atmospheric modelling that can be traced back to the 1960’s: 129 

stochastic cascade models for turbulent intermittency ([Novikov and Stewart, 1964], 130 

[Yaglom, 1966], [Mandelbrot, 1974], [Schertzer and Lovejoy, 1987]).  Significantly, 131 

these models are nonlinear rather than linear and the nonlinearity plays a fundamental 132 

role in their ability to realistically model intermittency.  By the early 1980’s it was 133 

realized that these multiplicative cascades were the generic multifractal processes and 134 

they were expected to be generally relevant in high dimensional nonlinear dynamical 135 

systems that were scale invariant over some range.    By 2010, there was a considerable 136 

body of work showing that atmospheric cascades were anisotropic – notably with 137 

different scaling in the horizontal and vertical directions (leading to anisotropic, stratified 138 

cascades), and that this enabled cascades to operate up to planetary sizes (see the reviews 139 

[Lovejoy and Schertzer, 2010], [Lovejoy and Schertzer, 2013]).   While the driving 140 

turbulent fluxes were modelled by pure cascades, the observables (temperature, wind 141 

etc.) were modelled by fractional integrals of the latter (see below): the Fractionally 142 

Integrated Flux (FIF) model.  Analysis of in situ (aircraft, dropsonde), remotely sensed 143 
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data, reanalyses as well as  weather forecasting models showed that at least up to 5000 144 

km, the cascade processes were remarkably accurate with statistics (up to second order) 145 

typically showing deviations of less than ≈±0.5% with respect to the theoretical 146 

predictions (see [Lovejoy and Schertzer, 2013], ch. 4 for an empirical review). 147 

The success of the cascade model up to planetary scales (Lw) showed that the 148 

horizontal dynamics were dominated by the solar induced energy flux (ε ≈ 10-3 W/Kg 149 

sometimes called the “energy rate density”) and it implies a break in the space-time 150 

cascades at about τw = ε−1/3Lw
2/3  ≈ 10 days discussed above.  The logical next question was 151 

therefore: what happens if the model is extended in time and the cascade starts at a outer 152 

time scale much longer than τw?  In [Lovejoy and Schertzer, 2013] (appendix 10A), 153 

some of the mathematical details of this Extended Fractionally Integrated Flux (EFIF) 154 

model were worked out, and it was shown that at frequencies below τw
-1 there would a 155 

nonintermittent (near) Gaussian, (near) scaling regime with generic exponents βl in the 156 

observed range.  157 

Although this (temporally) extended space-time cascade model well reproduces the 158 

basic space-time weather statistics (for scales <τw) and the temporal macroweather 159 

statistics (for scales >τw), by itself, it was not able to reproduce the spatial macroweather 160 

statistics that characterize climate zones and that were strongly intermittent, so that 161 

another even lower frequency climate process was necessary. [In quantitative terms, 162 

empirically, the basic intermittency parameter C1 that characterizes the intermittency near 163 

the mean is typically low - around 0.01- 0.02 in time -  whereas it is typically high - 164 

around 0.15 – 0.2 in space].  It was proposed that – following the basic mathematical 165 
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structure of the rest of the model - that the new climate process was also multiplicative in 166 

nature.  This factorization hypothesis was empirically verified on macroweather 167 

temperature and precipitation data ([Lovejoy and Schertzer, 2013], ch. 10 and 168 

[Lovejoy and de Lima, 2015] respectively).    169 

To summarize; there are three key empirically observed macroweather 170 

characteristics that models should respect: low temporal intermittency, high spatial 171 

intermittency and statistical space-time factorization.  According to the analysis in 172 

[Lovejoy and de Lima, 2015], the CEFIF model approximately satisfies these 173 

properties but has some disadvantages.  A practical difficulty is that it requires the 174 

explicit modelling of fine temporal (weather scale) resolution which - much like in 175 

GCM’s .  This is computationally wasteful since for macroweather modelling, it is 176 

subsequently averaged out in order to model the lower frequency macroweather.   A 177 

arguably more significant disadvantage is that CEFIF’s theoretical properties – including 178 

its predictability – are nontrivial and are largely unknown.   179 

SLIMM is an attempt to directly model space-time macroweather while respecting 180 

the factorization property and by using the comparatively simple, nonintermittent scaling 181 

process – fractional Gaussian noise (fGn) - to reproduce the low intermittency temporal 182 

behaviour.   In the temporal domain, it is thus based on a linear stochastic model (fGn) 183 

with reasonably well understood predictability properties and predictability limits. The 184 

strong spatial macroweather variability can be modelled either by using multifractal 185 

spatial variability (representing very low frequency climate processes) or alternatively - 186 

in the spirit of LIM modelling - it can be modelled as a system of (fractional order) 187 
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ordinary differential equations.  In the former case, developed in [Lovejoy and de Lima, 188 

2015], it turns out to be sufficient to take the product of a spatially nonlinear 189 

(multifractal) stochastic model, with a space-time fGn process.   The result is a model that 190 

is well defined at arbitrary spatial resolutions and with temporal scaling exponents that 191 

are the same at every spatial location (this restriction is somewhat unrealistic).  In the 192 

latter LIM-like case, one fixes the grid scale (the spatial resolution) and then treats each 193 

grid point as a component of an N component system of (fractional) ordinary differential 194 

equations.  In this version of space-time SLIMM, each grid point can have a different 195 

temporal scaling exponent corresponding to a different fractional order of differentiation 196 

and the system.  Although the result is formally closer to the LIM model (albeit with 197 

radically different predictability properties) it has the disadvantage that the model 198 

properties are not well defined under changes in spatial resolution - they potentially 199 

depend strongly on the grid that is used for the spatial discretization. As a final comment, 200 

we note that empirically, it is found that macroweather temperature probability 201 

distributions have “fat tails” - so that statistical moments of order ≈5 diverge [Lovejoy 202 

and Schertzer, 2013], ch. 5, [Lovejoy, 2014b; 2015b], see also [Lovejoy and 203 

Schertzer, 1986]).  However for the (low order) statistics (e.g. near the mean and 204 

variance -  first and second order), the deviations from Gaussianity are small enough that 205 

fGn can be used as an approximation. 206 

2.2 From LIM to SLIMM 207 

In this paper, we concentrate on the simplest scalar SLIMM model and we illustrate 208 

this by hindcasting global scale temperature series.   The key change to the LIM model is 209 



11 

 

thus a modification of the low frequency scaling: rather than βl=0 (white noise), the 210 

SLIMM model has 1>βl>0.  This can be effected by a simple extension of eq. 1 to yield 211 

the fractional differential equation: 212 

dH+1/2

dt H+1/2 ωw +
d
dt

⎛
⎝⎜

⎞
⎠⎟ T = σγγ t( )

 (4)
 213 

where H+1/2 is a fractional order of differentiation.  Using214 

F.T . d
H+1/2 f
dt H+1/2

⎡

⎣
⎢

⎤

⎦
⎥ = iω( )H+1/2 F.T . f[ ]

; this yields the temperature spectrum: 215 

ET ω( ) ≈ ω− 2H+1( ) σγ
2

ω2 +ωw
2( )  (5)

 216 

hence the low and high frequency SLIMM exponents are: βl =2H+1, βh =2H+3.   Note 217 

that for the global temperature series analysed below, we have βl ≈0.6 and  H ≈ -0.2 (see 218 

fig. 4a, b).   219 

Alternatively, eq. 4 can be solved in real space directly.  First, operate on both sides 220 

of the above by ωw +
d
dt

⎛
⎝⎜

⎞
⎠⎟
−1

 to obtain: 221 

dH+1/2

dtH+1/2 T = γ s t( ); γ s t( ) = σγ e−ωw t− ′t( )γ ′t( )d ′t
−∞

t

∫
 (6)

 222 

Since the autocorrelation of γs is: 223 

γ s t( )γ s t − Δt( ) = e−ωwΔtσγ ,s
2 ; σγ ,s

2 =
σγ
2

2ωw  (7)
 224 
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We see that for lags Δt>>ωw
-1 that γs is essentially an uncorrelated white noise: γs is 225 

simply γ smoothed over time scales shorter than τw = ωw
-1. 226 

If we are only interested in frequencies lower than ωw, we can therefore simply 227 

solve: 228 

dH+1/2

dt H+1/2 T = σγγ τ t( )
 (8)

 229 

The LIM paradigm is recovered as the special case with H = -1/2.  Although physically, 230 

the weather scales are responsible for the smoothing at τw , in practice, we typically have 231 

climate data averaged at even lower resolutions: for example monthly or annually.  232 

Therefore, it is simpler to consider a “pure” process (with pure white noise forcing γ 233 

rather than the smoothed γτ), and then introduce the resolution/smoothing simply as an 234 

averaging procedure.   235 

Formally, the solution to eq. 8 is obtained by (Riemann-Liouville) fractional 236 

integration of both sides of the equation by order H+1/2: 237 

T t( ) = σγ

Γ 1/ 2 + H( ) t − ′t( )− 1/2−H( ) γ ′t( )d ′t
−∞

t

∫ ; −1/ 2 < H < 0  (9) 238 

(Γ is the gamma function).  T(t) is a “fractional Gaussian noise“ process.  By inspection, 239 

the statistics are invariant under translations in time: so that this process is 240 

stationary.  Although basic processes of this type were first introduced by [Kolmogorov, 241 

1940], since [Mandelbrot and Van Ness, 1968], the usual order one integral of eq. 9 has 242 

received most of the mathematical attention: “fractional Brownian motion” (fBm).  An 243 

t→ t + Δt
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interesting mathematical feature of fBm and fGn is that they are not semi-Martingales 244 

and hence the standard stochastic Itô and Stratatovitch calculi do not apply (see [Biagini 245 

et al., 2008] for a recent mathematical review).  In the present case, this is not important 246 

since we only deal with Wiener integrals (i.e. integrals of fGn with respect to 247 

deterministic functions). The FIF model mentionned earlier has the same mathematical 248 

structure: it suffices to replace γ in eq. 9 by a turbulent flux from a multiplicative cascade 249 

model; this overall model has the same fluctuation exponent H but is intermittent with 250 

moments other than first order and potentially has quite different scaling. 251 

While below we use simple averaging to obtain small scale convergence of fGn, for 252 

many purposes, the details of the smoothing at resolution τ are unimportant and it can be 253 

useful to define the particularly simple “truncated fGn” process: 254 

Ttrun t( ) = σγ

Γ 1/ 2 + H( ) t + τ − ′t( )− 1/2−H( ) γ ′t( )d ′t
−∞

t

∫ ; −1/ 2 < H < 0  (10) 255 

where the singular kernel is truncated at scale τ.  It can be shown that for large enough 256 

lags Δt, the fluctuation and autocorrelation statistics for truncated fGn are the same as for 257 

the averaged fGn, although, when H approaches zero (from below), the convergence of 258 

the former to the latter becomes increasingly slow.  In practice, the truncated model is 259 

often a convenient approximation to the slightly more complex averaged fGn process. 260 
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2.3 Properties of fGn 261 

2.3.1 Definition and links to fBm: 262 

Fractional Brownian motion has received far more attention than fractional 263 

Gaussian noise and it is possible to deduce the properties of fGn from fBm.  However, 264 

since we are exclusively interested in fGn, it is more straightforward to first define fGn 265 

and then – if needed – define fBm from its integral.    266 

The canonical fractional Gaussian noise (fGn) process GH(t) with parameter H, can 267 

be defined as:   268 

GH t( ) = cH
Γ 1/ 2 + H( ) t − ′t( )− 1/2−H( ) γ ′t( )d ′t

−∞

t

∫ ; −1< H < 0
 (11)

 269 

where cH is a constant chosen so as to make the expression for the statistics particularly 270 

simple, see below.  First, taking ensemble averages of both sides of eq. 11 we find that 271 

the mean vanishes: GH ,τ t( ) = 0 .  Now, take the average of GH over a resolution τ: 272 

GH ,τ t( ) = 1
τ

GH ′t( )d ′t
t−τ

t

∫  (12) 273 

and define the function FH which will be useful below: 274 

FH λ( ) = 1+ u( )H+1/2 − uH+1/2( )2 du
0

λ−1

∫ ; λ ≥1  (13) 275 

(u is a dummy variable) with the particular value: 276 

FH ∞( ) = π−1/2 2− 2H+2( )Γ −1−H( )Γ 3 / 2 + H( )  (14) 277 
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and the asymptotic expression: 278 

FH λ( ) = FH ∞( )− H +1/ 2( )2
−2H

λ2H + ...   (15) 279 

 If cH is now chosen such that: 280 

cH =
Γ H + 3 / 2( )

FH ∞( ) + 1
2H + 2

⎡
⎣⎢

⎤
⎦⎥

1/2 =
π

2cos πH( )Γ −2H − 2( )
⎛
⎝⎜

⎞
⎠⎟

1/2

 (16) 281 

then we have: 282 

GH ,τ t( )2 = τ2H ; −1< H < 0  (17) 283 

This shows that a fundamental property is that in the small scale limit (τ->0), the variance 284 

diverges and H is scaling exponent of the root mean square (RMS) value.  This singular 285 

small scale behaviour is responsible for the strong power law resolution effects in fGn.   286 

Since in addition <GH,τ(t)>=0, we see that sample functions GH,τ(t) fluctuate about zero 287 

with successive fluctuations tending to cancel each other out; this is the hallmark of the 288 

macroweather regime.  289 

It is more common to treat fBm whose differential dBH’(t) is given by: 290 

dB ′H =GH t( )dt; ′H = H +1; 0 < ′H <1  (18) 291 

so that: 292 

ΔB ′H τ( ) = B ′H t( )− B ′H t − τ( ) = G ′H ′t( )d ′t = τG ′H ,τ t( )
t−τ

t

∫  (19) 293 
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with the property: 294 

ΔB ′H Δt( )2 = Δt 2 ′H  (20) 295 

While this defines the increments of BH’(t) and shows that they are stationary, it does not 296 

completely define the process, for this, one conventionally imposes BH’(0)=0, leading to 297 

the usual definition due to [Mandelbrot and Van Ness, 1968]: 298 

B ′H t( ) = c ′H

Γ ′H +1/ 2( ) t − s( ) ′H −1/2 − −s( ) ′H −1/2( )γ s( )ds
−∞

0

∫ + c ′H

Γ ′H +1/ 2( ) t − s( ) ′H −1/2 γ s( )ds
0

t

∫
299 

 (21) 300 

Whereas fGn has a small scale divergence that can be eliminated by averaging over a 301 

finite resolution τ, the fGn integral GH ′t( )d ′t
−∞

t

∫  on the contrary has a low frequency 302 

divergence.  This is the reason for the introduction of the second term in the first integral 303 

in eq. 21: it eliminates this divergence at the price of imposing BH’(0) = 0 so that fBm is 304 

nonstationary (although its increments are stationary, eq. 19).    305 

A comment on the parameter H is now in order.  In treatments of fBm, it is usual to 306 

use the parameter H confined to the unit interval i.e. to characterize the scaling of the 307 

increments of fBm.  However, fBm (and fGn) are very special scaling processes, and 308 

even in low intermittency regimes such as macroweather – they are at best approximate 309 

models of reality.  Therefore, it is better to define H more generally as the fluctuation 310 

exponent (see below); with this definition H is also useful for more general (multifractal) 311 

scaling processes although the interpretation of H as the “Hurst exponent" is only valid 312 

for fBm).  When -1<H<0, the mean at resolution τ (eq. 12) defines the anomaly 313 
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fluctuation (see below), so that H is equal to the fluctuation exponent for fGn, in contrast, 314 

for processes with 0<H<1, the fluctuations scale as the mean differences and eq. 20 315 

shows that H’ is the fluctuation exponent for fBm.  In other words, as long as an 316 

appropriate definition of fluctuation is used, H and H’ = 1+H are fluctuation exponents of 317 

fGn, fBm respectively.  The relation H’ = H+1 follows because fBm is an integral order 1 318 

of fGn.  Therefore, since the macroweather fields of interest have fluctuations with mean 319 

scaling exponent  -1/2<H<0, we use H for the fGn exponent and ½<H’<1 for the 320 

corresponding integrated fBm process. 321 

Some useful relations are: 322 

dB ′H t( )dB ′H s( ) = GH t( )GH s( ) dsdt = t − s 2H dsdt  (22) 323 

and: 324 

B ′H t2( )− B ′H t1( )( ) B ′H t4( )− B ′H t3( )( ) = 1
2

t4 − t1( )2 ′H + t3 − t2( )2 ′H − t3 − t1( )2 ′H − t4 − t2( )2 ′H( )325 

 326 

 (23)327 

valid for 0<H’<1 and   (e.g. [Gripenberg and Norros, 1996]).  328 

The relationship eq. 23 can be used to obtain several useful relations for finite 329 

resolution fGn.  For example: 330 

GH ,τ1
t( )GH ,τ2

t − Δt( ) = 1
2τ1τ2

Δt + τ2( )2H+2 + Δt − τ1( )2H+2 − Δt2H+2 − Δt + τ2 − τ1( )2H+2( ); Δt ≥ τ
−1< H < 0

331 

 332 

 (24) 333 

t1 < t2 ≤ t3 < t4
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A convenient expression for the special case at fixed resolution τ =τ1 = τ2 is: 334 

RH ,τ Δt( ) = GH ,τ t( )GH ,τ t − Δt( ) = τ2H

2
λ +1( )2H+2 + λ −1( )2H+2 − 2λ2H+2⎡⎣ ⎤⎦;

λ = Δt
τ

λ ≥1
335 

 (25) 336 

(-1<H<0). Where λ = Δt/τ is the nondimensional lag i.e. measured in integer resolution 337 

units.  This is convenient since real data is discretized in time and this shows that as long 338 

as we correct for the overall resolution factor (τ2H), that the autocorrelation only depends 339 

on the nondimensional lag.    340 

Since H<0 the large Δt limit is: 
341 

RH ,τ Δt( ) ≈ H +1( ) 2H +1( )Δt 2H ; Δt >> τ; −1< H < 0  (26) 342 

the autocorrelation falls off algebraically with exponent 2H. 343 

2.3.2 Spectrum and Fluctuations 344 

Since fGn is stationary, its spectrum is given by the Fourier transform of the 345 

autocorrelation function.  The autocorrelation is symmetric: RH ,τ Δt( ) = RH ,τ −Δt( ) , so that 346 

for the Fourier Transform we use the absolute value of Δt.    Also, we must take the limit 347 

of the autocorrelation of small resolution which is the same as using the large λ formula 348 

(eq. 26).  In this case we obtain: 349 

E ω( ) = Γ 3+ 2H( )sinπH
2π

ω −β ; β =1+ 2H  (27) 350 
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The relation between β and H is the standard monofractal one, it is valid as long as 351 

intermittency effects are negligible i.e. if we ignore the multifractal “corrections”. 352 

However, sometimes - as here for high order statistical moments - or in the case of 353 

precipitation even for low order moments -  these can give the dominant contribution to 354 

the scaling. 355 

The spectrum is one way of characterizing the variability as a function of scale 356 

(frequency), however it is often important to have real space characterizations.  These are 357 

useful not only for understanding the effects of changing resolution, but also at a given 358 

time scale Δt for studying the full range of variability (i.e. statistical moments other than 359 

second order, probability distributions, etc.).  Wavelets provide a general framework for 360 

defining fluctuations, we now give some simple and useful special cases. 361 

 362 

2.3.2.1 Anomalies: 363 

An anomaly is the average deviation from the long term average and since364 

GH = 0 , the anomaly fluctuation over interval Δt is simply GH at resolution Δt rather 365 

than τ: 366 

ΔGH ,τ Δt( )( )anom = 1
Δt

GH ′t( )d ′t =
t−Δt

t

∫
1
Δt

GH ,τ ′t( )d ′t = GH ,Δt t( )
t−Δt

t

∫  (28) 367 

Hence using eq. 25: 368 

ΔGH ,τ Δt( )( )anom
2

= Δt2H  (29) 369 
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While this definition of fluctuation is fine for fGn, it is not appropriate for processes with 370 

H>0 since these “wander”, they do not tend to return to any long term value.  Anomaly 371 

fluctuations were referred to with the less intuitive term “tendency” fluctuation in 372 

[Lovejoy and Schertzer, 2012a]. 373 

 374 

2.3.2.2 Differences: 375 

The classical fluctuation is the difference (the “poor man’s wavelet”): 376 

ΔGH ,τ Δt( )( )diff = GH ,τ t( )−GH ,τ t − Δt( )  (30) 377 

Hence: 378 

ΔGH ,τ Δt( )( )diff
2

= 2τ2H 1+ λ2H+2 − 1
2

λ +1( )2H+2 + λ −1( )2H+2( )⎛
⎝⎜

⎞
⎠⎟ ; λ = Δt

τ
 (31)

 379 

In the large Δt limit we have: 380 

ΔGH ,τ Δt( )( )diff
2

≈ 2τ2H 1− H +1( ) 2H +1( )λ2H( ); λ = Δt
τ

>>1  (32) 381 

Since H<0, the differences asymptote to the value 2τ2H (double the variance).  Notice that 382 

since H<0, the differences are not scaling with Δt. 383 

 384 

2.3.2.3 Haar Fluctuations 385 

As pointed out in [Lovejoy and Schertzer, 2012a], the preceding fluctuations 386 

only have variances proportional to τ2H over restricted ranges of H, specifically -1≤H≤0 387 

(anomalies), 0≤H≤1 (differences), a more generally useful fluctuation (used below) is the 388 
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Haar fluctuation (from the Haar wavelet, [Haar, 1910]). These are defined as the 389 

differences between the average of the first and second halves of the interval Δt: 390 

ΔGH ,τ Δt( )( )Haar =
2
Δt

GH ,τ ′t( )d ′t
t−Δt/2

t

∫ − GH ,τ ′t( )d ′t
t−Δt

t−Δt/2

∫
⎡

⎣
⎢

⎤

⎦
⎥  (33) 391 

Using eq. 23, we obtain: 392 

ΔGH ,τ Δt( )( )Haar
2

= 4Δt2H 2−2H −1( )
 (34) 

393 

this indeed scales as Δt2H and does not depend on the resolution τ. 
394 

 395 

2.4 Using fGn to model and forecast the temperature 396 

Using the definition (eq. 11) of fGn, we can define the temperature as: 397 

T t( ) = σTGH t( )  (35) 398 

(i.e. σT = σγ / cH ). Let us now introduce the integral S(t): 399 

S t( ) = T ′t( )d ′t
−∞

t

∫ = 1
Γ H + 3 / 2( ) t − ′t( )H+1/2 γ ′t( )d ′t

−∞

t

∫  (36) 400 

Since T is a fractional integral of order ½+H with respect to white noise, S(t) is a 401 

fractional integral of order 3/2+H = 1/2+H’.  Strictly speaking, the above integral 402 

diverges at −∞ , however this is not important since we will always take differences over 403 

finite intervals (equivalent to integrating T(t) over a finite interval) and the differences 404 

will converge.    405 
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We can therefore define the resolution τ temperature as: 406 

Tτ t( ) = σTGH ,τ t( ) =
S t( )− S t − τ( )

τ
= σT

B ′H t( )− B ′H t − τ( )
τ

 (37) 407 

Notice that because of the divergence of S(t) at ,  we did not define S t( ) = σTB ′H t( )408 

however the differences do respect: S t( )− S t − τ( ) = σT B ′H t( )− B ′H t − τ( )( ) . 409 

Using eq. 35, the τ resolution temperature variance is thus: 410 

Tτ
2 = σT

2τ2H  (38) 411 

From this and the relationTτ t( ) = σTGH ,τ t( ) , we can trivially obtain the statistics of Tτ(t) 412 

from those of . 413 

2.5 Forecasts 414 

Since an fGn process at resolution τ is the average of the increments of an fBm, 415 

process, it suffices to forecast fBm.  There are four important related problems in the 416 

prediction of fBm: a) to find the best forecast using finite past data, b) infinite past data. 417 

The cases 1) 0<H’<1/2 and 2) 1/2<H’<1 (with H’=1+H) must be considered separately.  418 

Since -1/2<H<0, our problem corresponds to cases 2a, 2b.  Yaglom solved problem 1b in 419 

1955 ([Yaglom, 1955]), Gripenburg and Norros solved 2a, 2b in 1996 ([Gripenberg 420 

and Norros, 1996]) and problem 1a was solved by ([Nuzman and Poor, 2000]).   421 

[Hirchoren and Arantes, 1998] used the Gripenburg and Norros results for ½<H’<1 to 422 

numerically test the method adapted to fGn, see also [Hirchoren and D’attellis, 1998].  423 

Although the [Gripenberg and Norros, 1996] result conveniently expresses the fBm 424 

−∞

GH ,τ t( )
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predictions at time t (the “forecast horizon”) directly in terms of the past series for t≤0, 425 

the corresponding formulae are not simple.   426 

The standard approach that they followed yields nontrivial integral equations 427 

(which they solved) in both the finite and infinite data cases.  In what follows, we use a 428 

more straightforward method - the general method of innovations (see e.g. [Papoulis, 429 

1965], ch. 13) - and we obtain relatively simple results for the case with infinite past data 430 

(which is equivalent to the corresponding [Gripenberg and Norros, 1996] result).  In a 431 

future publication we improve on this by adapting it to the finite data case.  The main 432 

new aspect of the forecasting problem with only finite data is that it turns out that not 433 

only do the most recent values (close to t = 0) have strong (singular) weighting, but the 434 

data in the oldest available data also have singular weightings.  In the words of 435 

Gripenberg and Norros, this is because they are the “closest witnesses” of the distant past. 436 

We now derive the forecast result for resolution τ fGn using innovations assuming 437 

that data is available over the entire past (i.e. from t = -infinity to 0).   Recall that the 438 

resolution τ temperature at time t is given by: 439 

Tτ t( ) = S t( )− S t − τ( )
τ

= cHσT

τΓ H + 3 / 2( ) t − ′t( )H+1/2 γ ′t( )d ′t − t − τ − ′t( )H+1/2 γ ′t( )d ′t −
−∞

t−τ

∫
−∞

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

440 
 (39) 441 

(t>τ>0). We have used the fact that S(t) in a fractional integral of order H+3/2 of γ since 442 

the γ’s are effectively independent random variables, they are called “innovations”.   If 443 

Tτ(t) is known for t≤0, then the above relation can be inverted to obtain γ(t) for t≤0. If γ(t) 444 
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is known for t≤0, then the minimum square (MS) estimator (circonflex) at time t≥τ is 445 

given by:  446 

 
T τ t( ) = S

 t( )− S t − τ( )
τ

= cHσT

τΓ H + 3 / 2( ) t − ′t( )H+1/2 γ ′t( )d ′t − t − τ − ′t( )H+1/2 γ ′t( )d ′t −
−∞

0

∫
−∞

0

∫
⎡

⎣
⎢

⎤

⎦
⎥447 

 (40) 448 

which depends only on γ(t) for t≤0.  That this is indeed the MS estimator follows since 449 

the error ET in this estimator is orthogonal to the estimator.  To see this, note that ET only 450 

depends on γ(t) for t≥0: 451 

ET = Tτ t( )− T̂τ t( ) = cHσ T

τΓ H + 3 / 2( ) t − ′t( )H+1/2 γ ′t( )d ′t − t −τ − ′t( )H+1/2 γ ′t( )d ′t
0

t−τ

∫
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥  (41) 452 

Since the range of integration for  in eq. 40 is t’<0 whereas the range for the error 453 

ET (eq. 41) is t’>0, , ET are clearly orthogonal: 454 

Tτ t( )−

Tτ t( )( )γ s( ) = 0; t ≥ 0; s < 0  (42) 455 

We can use this to obtain: 456 

ET t( )2 = Tτ t( )2 − Tτ t( )

Tτ t( ) = Tτ t( )2 −


Tτ t( )2  (43) 457 

Using the substitution u =-(t-τ-t’)/τ in the integral eq. 41 and the function FH(λ) 458 

introduced in eq. 13, and using eq. 16 for cH, we obtain: 459 


Tτ t( )2 = σT

2τ2H
FH ∞( )− FH λ( )
FH ∞( )+ 1

2H + 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (44) 460 

 T


τ t( )

 T


τ t( )
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and with  given in eq. 14. 461 

Using eq. 43, 44, the error variance is: 462 

ET t, τ( )2 = Tτ t( )2 −

Tτ t( )2 = σT

2τ2H
FH λ( )+ 1

2H + 2
FH ∞( )+ 1

2H + 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= σT

2τ2H
1+ 2H + 2( )FH λ( )
1+ 2H + 2( )FH ∞( )
⎡

⎣
⎢

⎤

⎦
⎥

463 
 (45) 464 

Hence, the fraction of the variance explained by the forecast, the “skill” (Sk) is: 465 

 

Sk λ( ) =

Tτ t( )2

Tτ t( )2
= 1−

ET t( )2

Tτ t( )2
=

FH ∞( )− FH λ( )
FH ∞( ) + 1

2H + 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; λ = t / τ; λ ≥1  (46) 466 

Fig. 1 a shows the theoretical skill as a function of H for different forecast horizons, and 467 

fig. 1b for different forecast horizons as a function H.  In fig. 1a, dashed reference lines 468 

indicate the three empirically significant values: land (H ≈ -0.3), global, (H ≈ -0.2), ocean 469 

H ≈ -0.1).  In fig. 1b, the estimated global value (H=-0.20±0.03, see below) is indicated in 470 

red.    471 

This definition of skill is slightly different from the Root Mean Square Skill Score 472 

(RMSSS) that is sometimes used to evaluate GCM’s (see e.g. [Doblas-Reyes et al., 473 

2013]).  The RMSSS is defined as one	   minus	   the	   ratio	   of	   the	   RMS	   error	   of	   the	  474 

ensemble-‐mean	  prediction	  divided	  by	  the	  RMS	  temperature	  variation:	  475 

RMSSS =1−
T −

T( )2

1/2

T 2 1/2 	   (47)	  476 

FH ∞( )
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In	   our	   case,	   the	   forecast	   is	   orthogonal	   to	   the	   prediction	   so	   that	  477 

T −

T( )2 = T 2 −


T 2 	  and	  we	  obtain:	  478 

RMSSS =1− 1− Sk( )1/2 ≈ 1
2
Sk +

1
8
Sk
2 + ... 	   (48)	  479 

This	  shows	  that	  Sk	  and	  RMSSS	  are	  more	  or	  less	  equivalent	  skill	  measures	  both	  being	  480 

in	  the	  range	  0	  to	  1.	  	  However,	  GCM	  forecasts	  are	  generally	  not	  orthogonal	  to	  the	  data	  481 

and	  for	  them,	  the	  RMSSS	  can	  be	  negative.	  482 

If the process is scaling over an infinite range in the data, but we only have access 483 

to the innovations over a duration λmem (in “pixels”) then: 484 

Sk ,λmem,∞ λ( ) = FH λ + λmem( )− FH λ( )
FH ∞( ) + 1

2H + 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; λ ≥1  (49) 485 

To illustrate the potentially huge amount of memory in the climate system (especially in 486 

the ocean), we can (somewhat arbitrarily) define the memory in the system by the λmem 487 

value such that Sk,λmem,∞ 1( ) / Sk,∞,∞ 1( ) = 0.9 , the result is shown in fig. 1c.  We see that over 488 

land (using H =-0.3), the memory estimated this way typically only goes back 15 pixels 489 

(nondimensional time steps), whereas over the ocean (using H =-0.1), it is 600.  This 490 

means that the annual temperatures over the ocean typically have information from over 491 

600 years in the past whereas over land, it is only for 15 years.  Note that these indicate 492 

the memory associated with 90% of the skill (see fig. 1a) and these skill levels fall off 493 

rapidly as H approaches the white noise value H = -1/2.   We could also note that this 494 

calculation does not imply that we if we only had a short length of ocean data that the 495 
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forecast would be terrible.  This is because the calculation is true for the innovations (γ’s) 496 

not the temperatures (T’s) themselves (i.e. the data).  Even if we only had 10 years of 497 

ocean temepratures, the past from 10 years ago implicitly contains significant information 498 

from the distant past, and can be exploited (see the numerical experiments in [Hirchoren 499 

and Arantes, 1998]). 500 

In the real world, after the removal of the anthropogenic component (see [Lovejoy 501 

and Schertzer, 2013] and fig. 4c), the scaling regime has a finite length (estimated as ≈  502 

100 years here), so that the memory in the process is finite.  In addition, the monthly and 503 

annual resolution series that we hindcast below used memories of λ = 180, 20 units 504 

(months, years) respectively.  The finite memory is easy to take into account; if the 505 

process memory extends over an interval of λmem units at resolution τ (i.e. over a time 506 

interval t = λmemτ) it suffices to integrate to λmem  instead of infinity; i.e. to replace infinity 507 

by λmem  in eq. 50: 508 

Sk ,λmem,λmem λ( ) = FH λ + λmem( )− FH λ( )
FH λ + λmem( ) + 1

2H + 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; λmem ≥ λ ≥1  (50) 509 

In fig. 1d we show that the effect of finite memory increases strongly as H moves closer 510 

to zero, and is non negligible, even for λmem = 180, the largest used here (for the monthly 511 

series, when H =-0.17, the skill is reduced by 3- 5% up to λ =60, see the bottom curves in 512 

fig. 1d. 513 
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It is instructive to compare the skill obtained with the full memory with that if only 514 

the most recent variable Tτ(0) is used.  The latter can be used either as classical 515 

persistence so that the forecast at time t = λτ forecast to be equal to the present value (no 516 

change) (i.e. 

Tτ t( ) = Tτ 0( ) ) or as “enhanced” persistence in which Tτ(0)  is used as a 517 

linear estimator of  Tτ
 t( ) .  Since the mean of the process is zero, for a single time step t = 518 

τ in the future, this is the same as the minimum square forecast made of an order 1 519 

autoregressive model with nondimensional time step = 1: AR(1).  Note however this 520 

equivalence is only for a single time step in the future, for forecasts further in the future; 521 

the AR(1) skill decays exponentially, not in a power law manner.  522 

In persistence,  

Tτ t( ) = Tτ 0( ) , the error in the forecast is simply the difference ET(t) 523 

= ΔTτ(t)= Tτ(t)-Tτ(0), the skill is therefore Sk =1− ΔTτ
2 / Tτ

2 .  In “enhanced 524 

persistence”, the value Tτ(0) is simply considered as an estimator and the minimum 525 

square error linear estimator  is only proportional to Tτ(0).  A standard calculation 526 

(e.g. following [Papoulis, 1965], ch. 13) yields: 
 


Tτ t( ) = Tτ t( )Tτ 0( ) / Tτ 0( )2⎡

⎣
⎤
⎦Tτ 0( )

 
527 

so that the term in the square brackets “enhances” the persistence value Tτ(0).  Fig. 1e 528 

compares the skill of the three estimators as functions of H for λ=1 (i.e. using eq. 25 for 529 

the autocorrelation):
 


Tτ τ( ) = 22H+1 −1( )Tτ 0( ) .   Whereas for H ≈ <-0.1, classical 530 

persistence is quite poor, we see that the enhanced persistence forecast is much better. 531 

 T
 t( )
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3 Forecasting the northern hemisphere and global temperatures 532 

3.1 The data and the removal of anthropogenic effects 533 

In order to test the method, we chose the NASA GISS northern hemisphere and 534 

global temperature anomaly data sets, both at monthly and at annually averaged 535 

resolutions.  A significant issue in the development of such global scale series is the 536 

treatment of the air temperature over the oceans which are estimated from sea surface 537 

temperatures; NASA provides two sets, the Land-Ocean Temperature Index (LOTI) and 538 

Land-Surface Air Temperature Anomalies only (Meteorological Station Data): the  dTs 539 

series.   According to the site 540 

(http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt),  LOTI provides a 541 

more realistic representation of the global mean trends than dTs; it slightly underestimates 542 

warming or cooling trends, since the much larger heat capacity of water compared to air 543 

causes a slower and diminished reaction to changes; dTs on the other hand it 544 

overestimates trends, since it disregards most of the dampening effects of the oceans that 545 

cover about two thirds of the earth's surface. In order to compare the two, we used LOTI 546 

for the annual series and dTs for the monthly series. 547 

The prediction formulae assume that the series has the power law dependencies 548 

indicated above with RMS anomaly or Haar fluctuations following ΔtH (eqs. 34), and 549 

spectra with ω-β, with β =(1+2H) (eq. 27).   However, this scaling only holds over the 550 

macroweather regime, and in the industrial epoch, anthropogenic forcing begins to 551 

dominate the low frequency variability at scales τc ≈ 10- 20 years whereas it occurs at 552 

scales τc ≈100 years in the pre-industrial epoch, see [Lovejoy et al., 2013b] and fig. 4d 553 
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below.  However, [Lovejoy, 2014b], [Lovejoy, 2014a] showed that if the radiative 554 

forcing due to the observed global annually averaged CO2 concentrations  (ρCO2) is used 555 

(proportional to log 2ρCO2), that the “effective climate sensitivity” λ2XCO2 ,eff is quite close 556 

to the more usual “transient“ and “equilibrium“ climate sensitivities estimated by GCM’s 557 

and that the residues had statistics over the scale range 1 to ≈ 125 years that were very 558 

close to pre-industrial multiproxy statistics (see table 1). 559 

Therefore as a first step, using the [Frank et al., 2010] data (extended to 2013 as 560 

described in [Lovejoy, 2014a]), we removed the anthropogenic contribution, using: 561 

T t( ) = Tanth t( ) +Tnat t( )  (51) 562 

Tanth t( ) = λ2 xCO2 ,eff log2 ρCO2 t( ) /ρCO2 ,pre( ); ρCO2 ,pre = 277ppm a
 563 

where ρCO2,pre is the pre-industrial concentration (=277 ppm), the monthly data are shown 564 

as a function of date (fig. 3a) and CO2 forcing (fig. 3b) with residues shown in fig. 3c.  565 

The effective sensitivities are shown in table 1a.  We could note that if alternatively, the 566 

equivalent CO2 since 1880 was used (“CO2eq” as estimated in the IPCC AR5 report), the 567 

senstivities need only be divided by a factor 1.12, and the residues are essentially 568 

unchanged.  This is because of the nearly linear relation between the actual CO2 569 

concentration and the estimated equivalent concentration (correlation coefficient > 0.993; 570 

see table 3 for the standard deviations of the residues, Tnat).  By using the observed CO2 571 

forcing as a linear surrogate for all anthropogenic effects we avoid various uncertain 572 

radiative assumptions needed to estimate CO2eq especially those concerning the cooling 573 

effects of aerosols which are still unsettled.  As explained in [Lovejoy, 2014b], since the 574 
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anthropogenic effects are linked via global economic activity, the observed CO2 forcing 575 

is a plausible linear surrogate for all them.    576 

From table 2 we see that the sensitivities do not depend on the exact range over 577 

which they are estimated (columns 2-4).  As we move to the present (column 4 to column 578 

2), the sensitivities stay within the uncertainty range of the earlier estimates with the 579 

uncertainties constantly diminishing, consistent with the convergence of the sensitivities 580 

as the record lengthens. As a consequence, if we determine Tanth using the data only up to 581 

1998 or up to 2013, there is very little difference: for the global data at monthly 582 

resolution, the difference in the standard deviations (SD’s) of Tnat estimated with the 583 

different sensitivities is 0.005K whereas at annual resolutions, it is 0.0035K (for this 584 

period ,  Δlog2ρCO2 = 0.05).  These differences are larger than the estimated error in the 585 

global scale temperatures (estimated as ±0.03K for both – the errors have very little scale 586 

dependence, [Lovejoy et al., 2013a] and [Lovejoy, 2015a]).  From table 2, we see that 587 

there is a ≈30% difference between the global and monthly sensitivities due to the change 588 

from the LOTI (global) to dTs (monthly) series the sensitivities are virtually independent 589 

of whether the data is at one month or one year resolution.   We also see that the northern 590 

hemisphere has systematically higher sensitivities than the entire globe, this is consistent 591 

with the larger land mass in the north and the larger sensitivity of land with respect to the 592 

ocean. 593 

An obvious criticism of the method of effective climate sensitivities is that 594 

anthropogenic forcing primarily warms the oceans and only with some lag, the 595 

atmosphere.  Systematic cross-correlation analysis in [Lovejoy, 2014b], [Lovejoy, 596 
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2014a] shows that while the residues are barely affected (see rows 2, 3 in table 2 and 597 

[Lovejoy, 2014b] for more on this), the values of the sensitivities are affected (see e.g. 598 

column 4 in table 2).   We may note that using eq. 51 (no lag), or the same but with a lag 599 

are equivalent to assuming a linear climate with Green’s function given by a Dirac delta 600 

function.  This and more sophisticated Green’s functions are discussed in a future 601 

publication. 602 

Finally, we can note that the difference between LOTI and dTs temperature is 603 

primarily the sensitivities (table 2); that the remaining differences in the residues is 604 

mostly due to their different resolutions.  From eq. 39 we see that the ratio of RMS 605 

fluctuations in these should be λH where λ is the resolution ratio, here 12 months/year.  606 

Table 1 shows that the H estimated from the RMS values is indeed close to the H 607 

estimated more directly in the next subsection.   This shows that the main difference 608 

between the LOTI and dTs series is indeed their climate sensitivities. 609 

In order to judge how close the residues from the CO2 forcing (eq. 51) are to the 610 

true natural variability, we can make various comparisons (table 3).  Starting at the top 611 

(row 1), we see that, as shown in [Lovejoy, 2014b], the statistics of the resulting residues 612 

are very close to those of pre-industrial multiproxies (see also fig. 4c below).  In row 3, 613 

we see that we take the residues of the 20 year lagged temperatures, there is virtually no 614 

difference (although the sensitivities are significantly higher, see table 2).  As further 615 

reference, (row 4), we see that it is substantially smaller than the standard deviation of the 616 

linearly detrended series (i.e. when the residues are calculated from a linear regression 617 

with time rather than the forcing).   618 
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As further evidence that they provide a good estimate of the true natural variability, 619 

in rows 5-10 we also show the annual RMS errors of various GCM global temperature 620 

hindcasts.  For example, in rows 5-6 we compare hindcasts of CMIP 3 GCM’s both with 621 

and without annual data initialisation, assimilation (rows 5, 6).   Without initialization 622 

(row 5), the results are half way between the CO2 forcing residues (i.e. Tnat, row 2) and 623 

the standard deviation of the linearly detrended series (row 4), i.e. the forecast is poor 624 

even for the anthropogenic part.  Unsurprisingly, with annual data initialisation, 625 

assimilation (row 6) it is much better, but it is apparently still unable to do better than 626 

simply estimating the anthropogenic component.  We can deduce this since the resulting 627 

RMS errors are virtually identical to the standard deviation of the estimated Tnat (row 3).  628 

This conclusion is reinforced in row 7 where CMIP 3 GCM’s (without data initialization) 629 

were analyzed.   However, in place of annual data initialization, a complex empirical bias 630 

and variance correction scheme was implemented in order to keep the statistics of 631 

uninitialized hindcasts close to the data.  We see that the resulting RMS error is virtually 632 

identical to GCM with data initialization  (row 6) as well as the standard deviation of Tnat 633 

(row 3).  They are also very close to other GCM estimates of natural variability.   These 634 

conclusions are reinforced in the 5 year and 9 year “anomaly” columns.  As expected - 635 

due to the averaging of the temperature in the definition of the anomalies out to the 636 

forecast horizon - the RMS error decreases.  However, it is still only barely better than 637 

the Tnat estimates from the residues.    638 

Very similar results are indicated in rows 8-10 for other GCM hindcast 639 

experiments, these are shown graphically in fig. 2, which is adapted from a multimodel 640 

ENSEMBLES experiment hindcasts discussed in [Garcıa-Serrano and Doblas-Reyes, 641 
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2012].  The multimodel mean is consistently close to - but generally a little above - Tnat 642 

(bottom horizontal line) while remaining better than the standard deviation of the linearly 643 

detrended temperature  (top horizontal line).  Also shown in table 1 and fig. 2 are the 644 

results of LIM, SLIMM and other stochastic models, these will be discussed further in 645 

section 4.  For now suffice it to indicate that the SLIMM model error is bounded above 646 

by the standard deviation of Tnat.  By using the long range memory to forecast Tnat, it can 647 

only do better.  It thus generally improves upon the GCM’s and - for two year horizons 648 

and beyond – it is better than the >100 parameter LIM model whose 9 year forecast is 649 

essentially equivalent to a linear detrending.  650 

3.2 Estimating H from the residues 651 

Having estimated Tnat by removing the anthropogenic contribution, we may now 652 

test the quality of the scaling and estimate H.  Figure 4a shows the raw spectra of the 653 

residues showing the scaling but with large fluctuations (as expected) with β ≈0.60.  We 654 

have already mentionned that the intermittency is low in this macroweather regime, 655 

indeed using exponents estimated in [Lovejoy and Schertzer, 2013], the resulting 656 

multifractal corrections to the variance are ≈0.01 – 0.02 so that we may use the 657 

monofractal relation β =1+2H which yields: H ≈-0.20.  Slightly more accurate estimates 658 

can be obtained by averaging the spectrum over logarithmically spaced bins (fig. 4b, and 659 

by compensating the spectrum by dividing it by the theoretical spectrum with β=0.54 (H 660 

=-0.17).  This figure makes the estimate β = 0.20±0.06 (H =-0.20±0.03) plausible.  661 

Finally, the corresponding RMS Haar fluctuations are shown in fig. 4c, we see that they 662 

plausibly follow H =-0.20 out to about 100 years (the sharp drop at the largest lag is not 663 
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significant: it corresponds to a single long fluctuation that is somewhat biased since some 664 

of the low frequency natural variability is also removed when Tnat is estimated by the 665 

method of residuals.   666 

Also shown for reference in fig. 4c is the GISS-E2-R millennium control run (with 667 

fixed forcings), as well as the RMS fluctuations for three pre-industrial multiproxies.    668 

We see that out to about 100 year scales, all the fluctuations have nearly the same 669 

amplitudes as functions of scale giving supporting the idea that Tnat as estimated by 670 

residuals is indeed a good estimate of the natural variability, and also confirming the 671 

estimate the global scale exponent value H = -0.20±0.03. 672 

As a final comparison, fig. 4d shows RMS Haar fluctuations for the global  673 

averages (from fig. 4c), land only averages and from the oceans - the Pacific Decadal 674 

Oscillation (PDO).  The PDO is the amplitude of the largest eigenvalue of the Pacific Sea 675 

Surface Temperature autocorrelation matrix (i.e. the amplitude of the most important 676 

Empirical Orthogonal Function: EOF).   For the land only curve, notice the sharp rise for 677 

scales >≈ 10 years; this is the effect of the anthropogenic signal that was not removed in 678 

this series.  Overall we see that (roughly) for land H ≈-0.3, for the globe, H =-0.2, and for 679 

the oceans, H = -0.1.  Fig. 1a, c shows the drastic differences in memory implied by these 680 

apparently small changes in H.  681 

4 Testing SLIMM by hindcasting 682 

4.1 The numerical approach 683 

The theory for predicting fGn leads to the general equation for the variance of 684 

forecast error (ET) at forecast horizon t, resolution τ, eq. 45.   In order to test the equation 685 
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on the temperature residues, we can use the global and northern hemisphere series 686 

analyzed in the previous section and systematically make hindcasts.   In this first study, 687 

we took a simple, straightforward approach based on the method of innovations.  We 688 

discretised eq. 9, which was then written as a matrix equation of the form: Tt = Mt , ′t γ ′t
′t <t
∑689 

where the indices refer to the discrete time nondimensionalized by the series resolution, 690 

and Mt,t’ which is the (singular) kernel from the fractional integration.   The sum was over 691 

finite past of length tmem = λmemτ units (see below) and the matrix was then inverted to 692 

yield the corresponding innovations γt.   To make the forecast at time t+Δt (i.e. Δt units in 693 

the future), the  equation was used with an augmented kernel Mt+Δt , ′t  with the innovation 694 

vector lengthened by appending Δt zeroes (the expectation values of the unknown future 695 

innovations) to the tmem innovations that were determined in the previous step.  696 

While our approach has the advantage of being straightforward (and it was tested 697 

on numerical simulations of fGn), in future applications improvements could be made.  698 

For example, by using a Girsanov formula, we could rewrite fGn in terms of a finite 699 

integral (see [Biagini et al., 2008]), and the discretised numerics would then be more 700 

accurate (this is especially important for H near the limiting values 0 and -1/2). 701 

Alternatively, we could use [Gripenberg and Norros, 1996] integral equation approach 702 

discretized with a variant of the [Hirchoren and Arantes, 1998], approach which 703 

notably has the advantage of requiring less past data.   704 
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4.2 The hindcasts 705 

In order to obtain good hindcast error statistics, it is important to make and validate 706 

as many hindcasts as possible, i.e. one for each discretised time that is available.  707 

However, due to the long-range correlations, we want to use a reasonable number of past 708 

time steps in the hindcast for memory, so that the earliest possible hindcast will be later 709 

than the earliest available data by the corresponding amount.  The compromise used here 710 

consisted of dividing the 134 year series into 30 annual blocks (annual resolution) and 20 711 

year blocks (monthly resolution).  In each block in the annual series, the first 20 years 712 

were used as “memory” to develop the hindcast over the next 10 years so that for 713 

estimating the hindcast errors: a total of 134-30=104 forecasts were made.  For the 714 

monthly series, the same procedure involved blocks of 240 months: 180 months for the 715 

memory and 60 months for the hindcast for a total of 1608-240=1368 hindcasts.   716 

The hindcasts can be evaluated at various resolutions and forecast horizons, eqs. 46, 717 

49, 50 gives the general theoretical results.  The cases of special interest are the 718 

temperature hindcasts and the anomaly hindcasts with (resolutions, horizons) of (τ, λτ) 719 

and  (λτ , λτ)  respectively.   The error variance ratios (R) are: 720 

Rtemp =
ET λτ, τ( )2

ET τ, τ( )2
=1+ 2 + 2H( )FH λ( )  (52)  721 

and: 722 

Ranom =
ET λτ,λτ( )2

ET τ,τ( )2
= λ2H   (53) 723 
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Both ratios are shown in fig. 5 along with the exact theory curves and table 3 gives 724 

the corresonding highest resolution standard deviations (for both lagged and unlagged 725 

estimates of Tnat, there is virtually no difference).  It is seen that all the forecast error 726 

variances (global, northern, annual, monthly resolution) collapse quite well between the 727 

theory curves corresponding to H = -0.17 and H= -0.23 corresponding to H ≈ -0.20±0.03 728 

(although they are closer to the H =-0.17 curves).   It is important to stress that fig. 5 is 729 

completely nondimensional, it depends on a single parameter (H), and this parameter was 730 

estimated earlier using a quite different technique (Haar fluctuations and spectra) that had 731 

no direct relation to the property being measured (forecast skill).  We have effectively 732 

used spectral and Haar and spectral analysis of scaling to determine the accuracy of 733 

forecasts using no extra information.  Figure 5 has no adjustable parameters so that the 734 

agreement of the hindcast errors with theory is a particularly strong confirmation of the 735 

theory.  We could add that the fact that the errors depend only on the dimensionless 736 

forecast horizon is also a consequnce of the scaling, i.e. on the lack of strong 737 

characteristic time scale in the macroweather regime. 738 

Since the anomaly errors are power laws (eq. 54), they can conveniently evaluated 739 

on a log-log plot; see fig. 6.  Note that the RMS anomaly errors decrease with forecast 740 

horizon.  The reason is that while forecasts further and further in the future loose 741 

accuracy, this loss is more than compensated by the decrease in the variance due to the 742 

lower resolution, so that the anomaly variance decreases.  Finally, we could note that the 743 

method has been applied to explaining the “pause” or “hiatus” in the global warming 744 

since 1998 as well as to make a forecast to 2023 [Lovejoy, 2015b]. 745 
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4.3 Hindcast Skill 746 

Another way to evaluate the hindcasts is to determine their nondimensional skills 747 

i.e. the fraction of the variance that they explain (see the general formula eq. 46).   From 748 

the formula, we can see that  the skill depends only on the nondimensional forecast 749 

horizon λ = t/τ.   Therefore the skill for forecast anomalies – i.e. the average of the 750 

forecast up to the horizon i.e. t =τ, hence λ =1, has the remarkable property of being 751 

constant, independent of the horizon.   The reason is that while forecasts further and 752 

further in the future loose accuracy, this loss is exactly compensated by the decrease in 753 

the variance due to the lower resolution, so that the anomaly skill doesn’t change.  Fig. 7 754 

is another example of a nondimensional plot where the theory involves no adjustable 755 

parameters, it shows that the theoretical prediction is well respected by the global, 756 

northern hemisphere annual and global resolution series.  Since we estimated H =                757 

-0.20±0.03, it can be seen that the skill for the monthly series is nearly as high as 758 

theoretically predicted up to a year or so for the global, but up to several years for the 759 

northern hemisphere series.  The global  series has slightly lower forecast skill than 760 

theorically predicted, but is still of the order of 15% at 10 years.  Also shown is the effect 761 

of using only a finite part of the memory. 762 

The skill in usual temperature forecasts (i.e. with fixed resolution τ, and increasing 763 

horizon t =λτ) is shown in fig. 8.  We see that monthly series can be predicted to nearly 764 

the theoretical limit up to about 2- 3 years (≈5% skill), for the annual series, this is up to 765 

about 5 years (≈10% skill).  Again the results are close to the H  = -0.17 theory.  766 
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4.4 Hindcast Correlations 767 

A final way to evaluate the hindcasts is to calculate the correlation coefficient 768 

between the hindcast and the temperature: 769 

 

ρ T ,T t,τ( ) =

Tτ t( )Tτ t( ) −


Tτ t( ) Tτ t( )


Tτ t( )2

1/2
Tτ t( )2

1/2

  (54)

 770 

Since <T> = 0, the cross term vanishes; using eq. 44 we obtain the simple result: 771 

 

ρ T ,T t,τ( ) = FH ∞( )− FH λ( )
FH ∞( ) + 1

2H + 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/2

; λ = t
τ

  (55) 772 

i.e. ρ T ,T t, τ( ) = Sk t, τ( )1/2 a result which depends on the consequences of orthogonality: 773 

Tτ t( )

Tτ t( ) =


Tτ t( )2  (eq. 42).  Asymptotically for λ>>1: 774 

 

ρ T ,T t,τ( ) ≈ 2H+1/2 H + 1
2

⎛
⎝⎜

⎞
⎠⎟U

1/2λH ; λ >>1; U = π

2Γ 1− H( )Γ 3
2
+ H⎛

⎝⎜
⎞
⎠⎟

 (56) 775 

In the special cases of anomalies t =τ, λ =1 and we obtain: 776 

 ρ

T ,T t,t( ) = 1+ HU22H+2  (57) 777 

so that the correlations are constant at all forecast horizons.  Over the range -1/2 <H <0, 778 

the constant U is conveniently close to unity. 779 

As in the previous hindcast error analyses, the series were broken into blocks and 780 

the forecasts were repeated as often as possible; each forecast was correlated with the 781 
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observed sequence and averages were performed over all the forecasts and verifying 782 

sequences (the mean correlation given by the thick lines), fig. 9.  The uncertainty in the 783 

hindcast correlation coefficients was estimated by breaking the hindcasts into thirds: three 784 

equal sized groups of blocks with the error being given by the standard deviation of the 785 

three about the mean (dashed lines).  Also shown in fig. 9 are the theoretical curves (eq. 786 

54) for H =-0.20, in this case the dashed lines indicate the theory for one standard 787 

deviations in H i.e. for H = -0.17, H = -0.23.   788 

As predicted by eq. 57, the anomaly correlations are relatively constant up to about 789 

5 years for the annual data (top row), and nearly the same for the monthly data (bottom 790 

row).  In addition, the northern hemisphere series (blue) are somewhat better forecast 791 

than the global series (red).  It can be seen that temperature forecasts (i.e. with fixed 792 

resolutions) have statistically significant correlations out to 8-9 years for the annual 793 

forecasts, out to about 2 years for the monthly global and nearly 5 years for the monthly 794 

northern hemisphere forecasts (bottom dashed lines).  The anomaly forecasts are 795 

statistically significantly correlated at all forecast horizons.  Fig. 9 provides more 796 

examples of nondimensional plots with no free parameters, and again the agreement with 797 

the hindcasts validation is remarkable. 798 

Although the results for the anomaly correlations are quite close to those of 799 

hindcasts in [Garcıa-Serrano and Doblas-Reyes, 2012], the latter are for the entire 800 

temperature forecast, not just the natural variability as here.  This means that the GCM 801 

correlations will be augmented with respect to ours due to the existence of long term 802 
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anthropogenic trends in both the data and the forecasts that are absent in ours (but even 803 

with this advantage, their correlations are not higher).  804 

4.5 Comparison with GCM’s, LIM, AR(1) and ARFIMA hindcasts 805 

In table 1 and fig. 2, we have already compared GCM hindcast errors with 806 

estimates of the natural variability (Tnat) from the residues of a linear regression on the 807 

CO2 radiative forcing since 1880.   We found that the annual, global GCM hindcasts had 808 

errors that were close to, but generally larger than the standard deviation of Tnat ( Tnat
2 1/2

) 809 

but smaller than the standard deviation of the linearly detrended temperature series (the 810 

horizontal lines in fig. 2). Tnat
2 1/2

is the RMS error of an unconditional forecast (i.e. with 811 

no knowledge of the past): Tnat ,τ
2 = ET

2 τ,∞( ) (see eq. 45), it is the upper bound to the 812 

hindcast errors.  In figure 2, we see that the one-parameter stochastic hindcast (with H =   813 

-0.2) is somewhat better than the GCM’s up to about 6 years after which it is about the 814 

same.  This bolsters the hypothesis that GCM’s primarily model the anthropogenic 815 

temperature change, not the natural variability whereas SLIMM has some skill in 816 

forecasting the latter. 817 

Table 2 and fig. 2 also compare these to LIM hindcasts modelled with 20 degrees of 818 

freedom (involving > 100 parameters).   We see that LIM is slightly better than SLIMM 819 

for horizons up to about 2 years beyond which SLIMM is better.  According to the 820 

analysis in [Newman, 2013], for periods beyond about a year, the forecasts are mostly 821 

determined by the two most important Empirical Orthogonal Functions (EOF’s), and 822 

their skill decays exponentially, not as a power law.  From fig. 2, their main effect seems 823 
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to be to remove the long term linear trend allowing LIM to have an asymptotic RMS 824 

error roughly equal to the standard deviation of the linearly detrended series (the upper 825 

horizontal line). 826 

Finally, in table 1, rows 12, 13, we have compared the errors with those of an early 827 

attempt at scaling temperature forecasts using the AutoRegressive Fractionally Integrated 828 

Moving Average process (ARFIMA) [Baillie and Chung, 2002b] along with the 829 

corresponding order one AutoRegressive (AR(1)) process.  Unfortunately, the forecasts 830 

were made by taking 10 year segments and in each removing a separate linear trend so 831 

that the low frequencies were not well accounted for (see the footnote to the table for 832 

more details).  The AR(1) results were not so good: close to the standard deviations of the 833 

detrended temperatures. As expected - because it assumes a basic scaling framework - the 834 

ARFIMA results were somewhat better.  Yet they are substantially worse than the other 835 

methods, probably because they did not remove the anthropogenic component first. 836 

5 Conclusions 837 

GCM’s are basically weather models whose forecast horizons are well beyond the 838 

deterministic predictability limits, corresponding to many lifetimes of planetary scale 839 

structures: the macroweather regime.  In this regime - that extends from about 10 days to 840 

≈ 100 years (preindustrial), the weather patterns that are generated are essentially random 841 

noise.  With fixed boundary conditions, GCM’s therefore converge asymptotically (in a 842 

power law manner, fig. 4c) to their (model) climates.   In order to model the low 843 

frequency variations associated with the climate proper, the GCM’s must be externally 844 

forced; if the forcing is strong enough, in principle it can reverse the trend of 845 
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macroweather fluctuations decreasing with increasing time scale and initiate a new 846 

climate regime where fluctuations instead increase with scale (qualitatively similar to 847 

their behaviour in the higher frequency weather regime, see [Lovejoy et al., 2013b]).  In 848 

the real world (pre-industrial), this occurs somewhere around 100 years and fluctuations 849 

increasing in scaling manner (but now with H>0) out to ice-age time scales (≈ 50 -  100 850 

kyrs; note that this 100 year pre-industrial transition scale apparently has large 851 

geographical variability, see [Lovejoy and Schertzer, 2013], section 11.1.4).  At these 852 

scales, in addition to solar, and volcanic forcings, the real world may involve new, slow 853 

internal processes that become important. 854 

In this view, the problem with the GCM approach is that in spite of massive 855 

improvements over the last 40 years, the weather noise that they generate isn’t totally 856 

realistic nor does their climate coincide exactly with the real climate.   In an effort to 857 

overcome these limitations, stochastic models have been developed that directly and 858 

more realistically model the noise and use real world data to exploit the system’s memory 859 

so as to force the forecasts to be more realistic. 860 

The main approaches that could potentially overcome these limitations are the 861 

stochastic ones.  However, going back to [Hasselmann, 1976] these only use integer 862 

ordered differential equations, they implicitly assume that the low frequencies are white 863 

noises - and hence cannot be forecast with any skill.  Modern versions – the Linear 864 

Inverse Models (LIM) add sophistication and a large number of (usually, but not 865 

necessarily) spatial parameters, but they still impose a short (exponentially correlated) 866 

memory and they focus on periods up to a few years at most.  This contrasts with 867 
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turbulence based nonlinear stochastic models which assume that the system is scaling 868 

over wide ranges.  When they are extended to the macroweather regime (the Extended 869 

Fractionally Integrated Flux – EFIF-  model), these scaling models have low 870 

intermittency, scaling fluctuations with temporal exponents close to those that are 871 

observed by a growing macroweather scaling literature.  Contrary to their behaviour in 872 

the weather regime, in macroweather they are only weakly nonlinear.  However, 873 

empirically, the spatial macroweather variability is very high so that [Lovejoy and 874 

Schertzer, 2013] already proposed that the EFIF model be spatially modulated by a 875 

multifractal climate process (yielding the Climate EFIF model, CEFIF) whose temporal 876 

variability was at such low frequencies so as to be essentially constant in time over the 877 

macroweather regime.  878 

The CEFIF model is complex both numerically and mathematically and it’s 879 

prediction properties are not known.  In this paper, we therefore make a simplified model, 880 

the ScaLIng Macroweather Model (SLIMM) that can be strongly variable (intermittent) 881 

in space, Gaussian (nonintermittent) in time.  The simplest relevant model of the temporal 882 

behaviour is thus fractional Gaussian noise (fGn) whose integral is the better known 883 

fractional Brownian motion (fBm) process (see [Lovejoy and de Lima, 2015] for this 884 

regional SLIMM model).  A somewhat different way of introducing the spatial variaiblity 885 

is to follow the Linear Inverse Modelling (LIM) approach and treat each (spatial) grid 886 

point as a component of a system vector.  In this case, SLIMM can be obtained as a 887 

solution of a fractional order generalization of the usual LIM differential equations.  888 

Although in future publications we will show how to make regional SLIMM forecasts, in 889 
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this paper, we only discuss the scalar version for single time series – here global scale 890 

temperatures.   891 

In section 2, we situate the process in the mathematical literature and derive basic 892 

results for forecasts and forecast skill.   These results show that a remarkably high level 893 

of skill is available in the climate system; for example for forecast horizons of one 894 

nondimensional time unit in the future (i.e. horizons equal to the resolution), the forecast 895 

skills – defined as the fraction of the variance explained by the forecast - are 15%, 35%, 896 

64% for land, the whole globe and oceans respectively (fig. 1b; taking rough exponent 897 

values H = -0.3, -0.2, -0.1 respectively, fig. 4c).  To quantify the size of the memory, it 898 

can be defined as the number of nondimensional units needed to supply 90% of the full 899 

memory of the system.  Using the same empirical exponents, we found that the memory 900 

is 15, 50, 600 for typical land, the globe and typical ocean regions respectively. 901 

The SLIMM model forecasts the natural variability.  While the responses to solar 902 

and volcanic forcings are implicitly included in the forecast, the responses to the 903 

anthropogenic forcings are not; we must therefore remove the anthropogenic component 904 

which becomes dominant at scales of 10 - 30 years.   For this, we follow [Lovejoy, 905 

2014b] who showed that the CO2 radiative forcing is a good linear proxy for all the 906 

anthropogenic effects (including the difficult to estimate cooling due to aerosols) so that 907 

the natural variability is the residue with respect to a regression against the forcing.  In 908 

table 1 and in fig. 2, we showed that the resulting standard deviation (±0.109 K) is very 909 

close to the RMS errors in annual, globally averaged GCM temperature hindcasts that use 910 

annual data initialisation, assimilation.  Indeed, to a good approximation, all the models 911 
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have errors bounded between this estimate of the natural variability and the slightly 912 

higher standard deviation of the linearly detrended temperature series (±0.163 K).  This is 913 

true in spite of the fact that they are “optimistic” since they assume that the future 914 

volcanic and solar forcings are known in advance.  The only partial exception is the 915 

stochastic LIM model (with > 100 parameters) which is only marginally better (±0.085 916 

K) than SLIMM for forecast horizons of one to two years after which it asymptotes to the 917 

linearly detrended standard deviation.  918 

Using the method of innovations, we developed a new way of forecasting fGn that 919 

allows SLIMM hindcasts to be made; the long-time forecast horizon RMS error is thus 920 

±0.109 K, the exploitation of the memory with the single parameter – the exponent H ≈-921 

0.20±0.03 - reduces this to ≈ ±0.093 K for one year global hindcasts so that  SLIMM 922 

remains better than or comparable to the multimodel GCM mean (fig. 2).  923 

This paper only deals with single time series (global scale temperatures) but it is 924 

nevertheless ideal for revisiting the problem of the “pause” or “slow down”, “hiatus” in 925 

the warming since 1998 which is a global scale phenomenon.   [Lovejoy, 2015b] shows 926 

how SLIMM hindcasts nearly perfectly predict this hiatus.  However, most applications 927 

involve predicting the natural variability at regional scales.    A future publication shows 928 

how this can be done and quantifies the improvement that the additional information 929 

(from the regional memory) makes to the forecasts.  For forecasts from months to a 930 

decade or so, the SLIMM forecast are potentially better than alternatives. 931 

 932 
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Tables: 
1086 

1087 1088 
 1089 

Row  1 year 5 year 
anomalies 

9 year 
anomalies 

	   Temperature,	  Residues	  
1	   Pre-‐industrial	   Multiproxies	  

(1500-‐1900)a	  
0.112	   0.105	   0.098	  

2 Tnat: Residues (1880-2013) (no lag 
with CO2): Tanth t( )∝ log2 ρCO2 t( )  

0.109 0.077b 0.070 

3 Tnat,20: residues from 1900-2013, 20 
yr lag with CO2: 
Tanth,Δt t( )∝ log2 ρCO2 t − Δt( )  

0.108   

4 Standard deviation of the linearly 
detrended series 1880-2013 
(residues, from a linear regression 
with the date). 

0.163   

 Deterministic Forecasts (GCM’s) 
5 Without data assimilation 1983 -

2004 [Smith et al., 2007] 
0.132 0.106 0.090 

6 With data assimilation 
(“DePresSys”) 1983 -2004, [Smith 
et al., 2007] 

0.105 0.066 0.046 

7 CMIP3 simulations with bias and 
variance corrections 1983 -2004, 
[Laepple et al., 2008] 

0.106 0.059 0.044 

8 GFDL CM2.1 (initialized yearly) 
cited in [Newman, 2013] 

0.11   

9	   CMIP5	   multimodel	   ensemble	  
[Doblas-Reyes et al., 2013] not	  
initializedc 

	   0.095  

10	   CMIP5	   multimodel	   ensemble	  
[Doblas-Reyes et al., 2013] 
initialized	  

	   0.06	   
	  

 

 Stochastic Forecasts 
11	   LIMd	  ([Newman, 2013]) 0.085 (0.128) (0.155) 
12 [Baillie and Chung, 2002a] 

ARFIMAe 
0.132±0.023 

13 [Baillie and Chung, 2002a] 
AR(1)f forecast 

0.156±0.068 

14	   SLIMM	   (one	   parameter,	  
Stochastic	  1880-‐2013)g	  

0.093	   0.071	  	  
(0.102)	  

0.067	  	  
(0.105)	  
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Table 1:  A comparison of Root Mean Square (RMS) variances (data residues) and 1090 

hindcast errors (deterministic and stochastic models) of global scale, annual temperatures.   1091 

See also fig. 2.  Note that the GCM hindcasts are all “optimistic” in the sense that they 1092 

use the observed volcanic and solar forcings and these would not be available for a true 1093 

forecast.  In comparison, the stochastic models forecast the responses to these (unknown) 1094 

future forcings. 1095 

 1096 

a The average of the three multiproxies from [Huang, 2004], [Moberg et al., 2005], [Ammann 1097 

and Wahl, 2007].  These analyses were discussed in [Lovejoy, 2014b]. 1098 

b The empirical 5 year and 9 year anomaly values are close to the theoretical values 1099 

 0.109-0.2 = 0.079 and 0.109 9-0.2 = 0.070. 1100 

c The results here are for a subset of the CMIP5 simulations that were run with and without 1101 

annual data assimilation (initialization). 1102 

d Linear Inverse Modelling using,	  20	  eigenmodes,	  >100	  parameters.	   	  The	  errors	   in	  brackets	  1103 

are	  for	  the	  temperatures,	  not	  anomalies.	  	  Note	  that	  the	  9	  year	  LIM	  value	  is	  almost	  identical	  1104 

to	  the	  standard	  deviation	  of	  the	  residues	  of	  the	  linear	  regression	  (fourth	  row	  of	  the	  table). 1105 

e ARFIMA= Autogressive Fractionally Integrated Moving Average process; this is close to the 1106 

SLIMM model used here.  However the data and the data treatment were somewhat different. The 1107 

annually, globally averaged temperatures from 1880 with a linear trend removed were used to 1108 

make hindcasts over horizons of one to 10 years for the decades 1930, 1940, 1950, 1960.  For 1109 

each decade all the forecast errors were averaged.  The value indicated here is the mean of the 1110 
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decade to decade mean error and the standard deviation of that error, the errors cannot therefore 1111 

be directly compared with the others.  The data were from a series complied in 1986.  1112 

f AR(1)= AutoRegressive order 1, is equivalent to “enhanced persistence” in the preceding.  The 1113 

variance reduction when using ARFIMA instead of AR(1) is 29%,  1114 

g The values in parentheses are for 1 year resolution temperatures. 1115 
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 1117 

 1118 

Resolution  

(K/doubling, 
no lag, 1880- 

2013) 

 

(K/doubling, 
no lag, 1880- 

1998) 

 

(K/doubling, 
no lag, 1880- 

1976) 

 

(K/doubling, 
20 yr lag, 

1900- 2013) 

Monthly 
(dTs) 

Global 2.97±0.08 2.92±0.13 2.97±0.25 4.29±0.13 

Northern 
H. 

3.41±0.11 3.11±0.17 3.10±0.33 4.99±0.18 

Annual 

(LOTI) 

Global 2.33±0.16 2.26±0.24 2.08±0.48 3.73±0.25 

Northern 
H. 

2.56±0.23 2.25±0.34 2.41±0.65 3.96±0.38 

Table 2:  The climate sensitivities estimated by linear regression of log2ρCO2 against the 1119 

temperature anomalies at monthly and annual resolutions from global and northern 1120 

hemisphere series. The far right column shows the 20 year lagged sensitivity to (1900-1121 

2013), i.e. using Tanth,Δt t( ) = λ2 xCO2 ,eff ,Δt log2 ρCO2 t − Δt( ) /ρCO2 ,pre( )  where Δt = 20 years.   1122 

 1123 

 1124 

 Monthly Annual H = log σ T ,yr /σ T ,month( ) / log12  

Global 0.201 0.109 -0.24 

Northern 
Hemisphere 

0.273 0.155 -0.23 

Table 3: The various standard deviations of the temperature residues (Tnat) after removing 1125 

Tanth at monthly and annual resolution and the estimate of H obtained assuming perfect 1126 

scaling over a factor of 12 in time scale, units, (K). 1127 

 1128 

λ2XCO2 ,eff λ2XCO2 ,eff λ2XCO2 ,eff λ2XCO2 ,eff
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 1129 

Resolution ET τ, τ( )2
1/2

 

No lag 

ET τ, τ( )2
1/2

 

20 yr lag 

Monthly Global 0.148 0.146 

Northern H. 0.214 0.209 

Annual Global 0.093 0.092 

Northern H. 0.132 0.133 

Table 4: The hindcast standard deviations (in units of K) at the finest resolutions (1 1130 

month, 1 year) for natural variability temperatures obtained from the unlagged and 20 1131 

year lagged climate sensititivities. Note that the lag makes very little difference to the 1132 

hindcast error variance.  1133 

  1134 
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Figures 1135 

 1136 

 
1137 

 1138 

 1139 

 1140 

Fig. 1a: Forecast skill for nondimensional forecast horizons λ = (horizon/resolution) = 1,2 1141 

4, 8,…64 (left to right) as functions of H.  For reference, the rough empirical values for 1142 

land, ocean and the entire globe (the value used here, see below) are indicated by dashed 1143 

vertical lines.  The horizontal lines show the fraction of the variance explained (the skill, 1144 
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Sk, eq. 47) in the case of a forecast of resolution τ data at a forecast horizon t = τ (λ = 1; 1145 

corresponding to forecasting the anomaly fluctuation one time unit ahead). 1146 

 1147 

 1148 

Fig. 1b: The theoretical skill with infinite memory for various ratios of nondimensional 1149 

forecast horizons λ over the range 0> H >-0.35 (top to bottom in steps of 0.05).  The 1150 

limiting value H =-1/2 corresponds to Gaussian white noise with zero skill.  The 1151 

empirically relevant range for the whole earth (H ≈ -0.20±0.03) is in red, thick the best 1152 

estimated parameter (H = -0.20). 1153 
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 1155 

 1156 

Fig. 1c:  This illustrates the potentially huge memory in the climate system (especially the 1157 

ocean).  It gives the λmem value such that Sx,λmem 1( ) / Sx,∞ 1( )=0.9.  When H = -1/2, there is 1158 

no memory and λmem  is not defined, it diverges when H ->0. 1159 

 1160 
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 1162 

Fig.1d: The theoretical skills for hindcasts with infinite (eq. 46) and finite memory (eq. 1163 

49) for the empirically relevant parameter range (H = -0.23, brown, bottom, H = -0.17, 1164 

red, top).  The flat (constant skill) at the top are the curves for the anomaly forecasts (i.e. 1165 

with forecast horizon t is equal to the resolution τ so that λ = 1), the bottom curves are for 1166 

constant resolution τ with forecast horizon.  In each case a triplet of curves is shown 1167 

corresponding to varying lengths of memories used in the forecast: infinite, 180 and 20 1168 

(the latter two corresponding to the those used for the monthly and global forecasts 1169 

analysed here). 1170 
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 1172 

Fig. 1e:  The skill of λ = t/τ = 1 forecasts using the full memory (black, eq. 46, from fig. 1173 

1a), the corresponding classical persistence forecast (red), Sk = 1− 4 1− 2
2H( )  

and the 1174 

corresponding “enhanced persistence” result (blue; for this λ =1 case, this is the same as 1175 

the AR(1) model forecast) with  .  With classical persistence the skill 1176 

becomes negative for H <≈-0.2, so it is not shown over the whole range. 
 

1177 

 1178 

 1179 
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 1180 

Fig. 2: ENSEMBLES experiment, LIM and SLIM hindcasts for global annual 1181 

temperatures for horizons 1 to 9 years.  The light lines are from individual members of 1182 

the ENSEMBLE experiment, the heavy line is the multimodel ensemble adapted from 1183 

fig. 4 in [Garcıa-Serrano and Doblas-Reyes, 2012].   This shows the RMSE 1184 

comparisons for the global mean surface temperatures compared to NCEP/NCAR (2 m 1185 

air temperatures). Horizontal reference lines indicate the standard deviations of Tnat 1186 

(bottom), and of the linearly detrended temperatures (top).  Also shown are the RMS 1187 

error for the LIM model (from table 1, [Newman, 2013]) and the SLIMM.  1188 
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 1191 

Fig. 3a: The monthly surface temperature anomaly series from NASA GISS data (the 1192 

monthly dTs series).  Top (red) is the global average, displaced upward by 2 K for clarity, 1193 

the bottom (blue) is the northern hemisphere series displaced upward by 1 K.  1194 
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 1196 

Fig. 3b:  The same as fig. 3a but for the temperatures as functions of the logarithm of the 1197 

CO2 concentration ρCO2 normalized by the preindustrial value ρCO2,pre = 277ppm (global 1198 

values are displaced upward by 2 K, northern hemispher by 1 K for clarity).  The 1199 

regressions have slopes indicated in table 2, they are the effective climate sensitivities to 1200 

CO2 doubling. 1201 
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 1204 

Fig. 3c:  The residues of the linear regressions of fig. 3b; the estimate of the natural 1205 

variability, again the global (red, top), northern hemisphere (blue, bottom) have been 1206 

shifted upward by 1 K for clarity. 1207 
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 1210 

 1211 

Fig. 4a:  The spectrum of the monthly residues for northern (blue) and global (red) data.   1212 

The slope β = 0.6 is shown corresonding to the best overall estiamte (H =-0.20). 1213 
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 1214 

Fig. 4b:  The northern hemisphere (top, blue) and global (bottom, red) spectra, at monthly 1215 

(solid) and annual (dashed) resolutions using the NASA GISS surface temperature 1216 

anomaly series from 1880-2013.   For frequencies higher than the lowest factor of ten, 1217 

averages have been made over ten frequency bins per order of magnitude in scale.  In 1218 

addition, the spectra have been “compensated” by multiplying by ω0.54 so that spectra 1219 

with H =-0.23 (β =0.54) appear flat.  The range -0.17<H<-0.23 corresponding to one 1220 

standard deviation limits (β =1+2H, i.e. ignoring small multifractal intermittency 1221 

corrections) corresponds to 0.54<β<0.66, the lower and upper bounding reference lines 1222 

are shown as dashed. 1223 
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 1224 

Fig. 4c:  The RMS Haar fluctuations for the northern (blue) and global (red) monthly 1225 

series.  Reference lines with slopes H = -0.2 are shown, we see that the scaling is fairly 1226 

well respected up to ≈100 years.  The raw Haar fluctuations have been multiplied by 2 1227 

(the “canonical calibration”, see [Lovejoy and Schertzer, 2012a]) in order to bring 1228 

them closer to the anomaly fluctuations.  Also shown is the NASA control run and the 1229 

pre-industrial multiproxies.  They all agree quantitatvely very well up to about 100 years 1230 

where the pre-industrial natural climate change starts to become important.  This shows 1231 

that the monthly scale residuals are almost exactly as simulated by the GISS model 1232 
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without any anthopogenic effects, supporting the idea that Tnat is a good estimate of the 1233 

natural variability. 1234 

 1235 

 1236 

Fig. 4d: Comparisons of the RMS Haar fluctuations of global scale natural varilibty 1237 

(Tnat) from fig. 4c, with those from land only (HADCRUT3, black) and from the Pacific 1238 

Decadal Oscillation (PDO, top, purple, from [Lovejoy and Schertzer, 2013], fig. 1239 

10.14).  Reference lines of slopes H = -0.1, -0.2, -0.3 are shown close to the curves for 1240 

ocean, globe and land respectively.  1241 
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 1243 

 1244 

Fig. 5: The dimensionless ratios (R) of the hindcast error variances to the variance at the 1245 

smallest resolution and horizon t equal to the resolution τ for both temperature (with 1246 

horizon λτ, resolution τ (top, R = ET λτ,τ( )2 / ET τ,τ( )2 = 1+ 2 + 2H( )FH λ( ) ) and 1247 

anomaly, with horizon λτ, resolution λτ (bottom, R = ET λτ,λτ( )2 / ET τ,τ( )2 = λ2H ).  1248 

The red are global, the blue northern hemisphere, the thick, shorter curves are at annual 1249 

resolution (τ =1 yr) and the thin, longer lines are at monthly resolution (τ= 1 month).  1250 

Also shown (dashed) are the theory curves for H = -0.17, -0.23 (top (black) and bottom 1251 

(brown) of each dashed pair respectively).  The data closely follow the H = -0.17 curves.  1252 
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The standard deviations at the highest resolution ET τ,τ( )2
1/2

 are given in table 4.  This 1253 

plot has no adjustable parameters. 1254 

 1255 

 1256 

 1257 

 1258 

Fig. 6: A log-log plot of the standard deviations of the anomaly hindcasts with the 1259 

theoretical reference line corresponding to H = -0.20.  The solid lines are for the monthly 1260 

data, the dashed lines for annual data, red for global, blue for northern hemisphere. 1261 
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 1262 

 1263 

 1264 

 1265 

 1266 

 1267 

 1268 

 1269 

Fig. 7: The anomaly forecast skill on a log-linear plot for both all series (annual thin, 1270 

monthly thick, global red, northern hemsiphere (blue).  Also shown are pairs of 1271 
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theoretical predictions (constant skill independent of the forecast horizon) for various 1272 

values of H, the top (dashed) member of the pair is for an infinite memory, the bottom 1273 

solid line is for the finite memory used here: (the monthly series has a memory of 180, 1274 

the annual series has 20).  This plot has no adjustable parameters. 1275 

 1276 

 1277 

Fig. 8:  The forecast skill for the temperature at fixed resolutions (one month, bottom left, 1278 

one year, upper right) for global (red) and northern hemisphere (blue) series.  Also shown 1279 

are the exact theoretical curves (for H =-0.17) that take into account the finite memories 1280 

of the forecasts (20 years, 15 years annual, monthly series respectively).  The raw curves 1281 

were shifted a little upward so that their long-time parts were close to the theory; this is 1282 
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equivalent to using the theory to improve the estimate of the ensemble average skill from 1283 

the single series that were available.   1284 

 1285 

 1286 

Fig. 9: The empirical correlations of the forecast temperatures (left column) and 1287 

anomalies (right column), the same data as previous but with different empirical 1288 

comparisons and also with comparisons with theory for H =-0.2 (thick black), H = -0.17, 1289 

-0.23 top and bottom dashed black.  Now note that in all cases the one standard deviation 1290 

bounds (dashed) on the empirical and theoretical curves overlap virtually throughout.   1291 

The theory curves have no adjustable parameters.  1292 
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